
Algorithmic Randomness with Probabilistic

Strategies and Intermediate Success

Preliminary draft, comments appreciated

Sam Buss∗

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

sbuss@math.ucsd.edu

Mia Minnes†

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

minnes@math.ucsd.edu

July 2, 2013

Abstract

Probabilistic betting strategies provide a method of characterizing
algorithmically random sequences, including Martin-Löf random se-
quences and (partial) computably random sequences. We generalize
probabilistic betting strategies to allow probabilistic moves at every
step, not just at betting steps; we also consider restricting randomness
to binary choices (or, “coin flips”). We prove that these modifications
do not change the strength of probabilistic betting strategies. We in-
troduce probabilistic strategies with intermediate success probabilities,
and prove some simulation results. We give a new proof of the sepa-
ration of Martin-Löf randomness and partial computable randomness
using probabilistic betting strategies.

1 Introduction

An algorithmically random real is a binary sequence which appears random
to any computable process. The central notions of algorithmic randomness
can be defined in several equivalent ways by using Martin-Löf tests, Kol-
mogorov compressibility, or algorithmic martingales. (See [4, 7] for back-
ground on algorithmic randomness.) The authors recently gave new char-

∗Supported in part by NSF grants DMS-1101228 and CCR-1213151.
†Supported in part by NSF grant DMS-1060351.

1

acterizations of algorithmic randomness using probabilistic betting strate-
gies [3]. A probabilistic betting strategy works similarly to a martingale
in that the algorithm places bets on the bits of an infinite sequence X.
However, a probabilistic betting strategy can make a randomized choice
each time it is about to bet by computing a rational probability that con-
trols whether the bet is actually placed or not. Thus, probabilistic betting
strategies differ essentially from martingales, since they are (probabilistic)
algorithms and do not compute fixed functions.

A probabilistic betting strategy is deemed “successful” against X pro-
vided it accumulates unbounded capital when betting against X. There
are two distinct ways of defining “success”. First, a probabilistic betting
strategy is “Ex-successful” provided it accumulates unbounded capital in
expectation, where the expectation is computed in terms of expected capi-
tal after n bets. Second, a probabilistic betting strategy is “P1-successful”
provided it accumulates unbounded capital with probability one. (Precise
definitions are given in Section 2.) Our earlier paper [3] proved that Ex-
randomness characterizes Martin-Löf randomness. It was also proved that
P1-randomness characterizes computable randomness or partial computable
randomness, depending on whether or not the probabilistic betting strategy
always continues betting with probability one.

The probabilistic betting strategies of [3] are constrained to used ran-
domization only for the purpose of deciding whether to place a bet or to wait
to place a (possibly different) bet later. In Section 3 below, we introduce a
more general notion of probabilistic strategies, called “R-strategies”, which
are allowed to use randomization at any point in the computation. In other
words, an R-strategy can make a probabilistic choice without having to risk
making a bet right away. These R-strategies are seen to be equivalent in
strength to probabilistic betting strategies but have the advantage of being
easier to design and describe than the probabilistic betting strategies of [3].
We also show that, with no loss in computational power, R-strategies may be
restricted to dyadic randomness, namely, restricted to making probabilistic
decisions among two equally likely choices.

Section 4 defines a Pα-strategy (for fixed 0 < α ≤ 1) against a se-
quence X to be an (R-)strategy which accumulates unbounded capital with
probability at least α. We prove that Pα-strategies are equivalent to Pβ-
strategies, for all 0 < α < β < 1. A strategy is “locally weak” for X if
it always continues to bet against X with probability one. We show that
there exists a locally weak Pα-strategy against X iff there is a P1-strategy
against X. By [3], this is equivalent to X being computably random.

Section 5 proves that every Martin-Lof random sequence is Pα-random,

2

for all α ∈ (0, 1]. The question of whether every Pα-random sequence is
Martin-Lof random is still open. Section 6 concludes the paper by giving
a new exposition of the proof that Martin-Löf randomness is stronger than
partial computable randomness. This new proof uses the characterization of
Martin-Löf randomness in terms of Ex-R-strategies, and gives an example of
how the use of R-strategies can streamline proofs in algorithmic randomness.

2 Background

Definition Let Σ be a finite set of symbols. The set of finite strings over Σ
is denoted Σ∗; the set of (one-way) infinite strings is Σ∞. The length of
a finite string σ is denoted by |σ|. We write λ for the empty string. The
number of occurrences of a symbol a in σ is denoted |σ|a. Given σ ∈ Σ∗ and
x ∈ Σ∗ ∪ Σ∞, we write σ ⊏ x if σ is a proper initial prefix of x. The set of
infinite extensions of σ ∈ Σ∗ is denoted by [σ] ⊆ Σ∞. Concatenation of two
strings is represented by writing them one next to another. Given X ∈ Σ∞,
its restriction to the first n letters is denoted X↾n. The i-th symbol of X is
denoted X(i).

For the purposes of studying random strings, we restrict to infinite binary
strings X ∈ {0, 1}∞. We now recall the definitions used in characterizing
algorithmic randomness via betting strategies or martingales.

Definition A function d : {0, 1}∗ → R≥0 is a martingale if, for each
σ ∈ {0, 1}∗,

d(σ) =
d(σ0) + d(σ1)

2
. (1)

The martingale d succeeds on X ∈ {0, 1}∞ if lim supn d(X↾n) = ∞ 1.

A martingale can be viewed as equaling the capital of a betting strategy
as it bets on successive bits of an infinite string. The martingale property (1)
ensures that bets are fair.

The motivation behind many definitions of algorithmic randomness is
that a random object is unpredictable and, therefore, an effective betting
strategy should not succeed against it. Varying the effectiveness require-
ment leads to different notions of randomness. Hence, we recall some basic
definitions of computable real-valued functions.

1It can be shown that for all the notions of algorithmic randomness discussed below,

the “lim sup” may be replaced by “lim”.

3

Definition Let D be a computable set. A function f : D → Q≥0 is
computable if there is a Turing machine which, on input x ∈ D, halts in
finite time and outputs f(x). The function f : D → R≥0 is computable if
there is a rational-valued computable function g : D × Q>0 → Q≥0 such
that, for all x ∈ D and ǫ > 0, |f(x)− g(x, ǫ)| < ǫ. A function f : D → R≥0

is computably enumerable (or c.e.) if there is a rational-valued computable
function h : D × N → Q≥0 such that, for all x ∈ D, limi h(x, i) = f(x) and
for all i ∈ N, h(x, i) < h(x, i+1) < f(x).

Definition A function f : D → R≥0 is partial if its domain is a subset
of D. We write f(x)↓, resp. f(x)↑, if x ∈ D is, resp. is not, in the domain
of f . A partial function f is a partial martingale provided that whenever
either f(σ0)↓ or f(σ1)↓, then all three of f(σ), f(σ0), and f(σ1) are defined
and the martingale condition (1) holds.

Definition An infinite string X ∈ {0, 1}∞ is Martin-Löf random, abbrevi-
ated as ML-random, if no c.e. martingale succeeds on it. It is partial com-
putably random if no partial computable martingale succeeds on it. And,
X is computably random if no computable martingale succeeds on it.

The relationships between these notions of randomness are well-known.

Theorem 1 [1, 6, 8] Every ML-random is partial computably random; every
partial computably random is computably random. Moreover, the inclusions
are strict.

In [3], the authors introduced probabilistic strategies and showed that
they characterize each of these classes of randomness. The rest of this section
briefly reviews the definitions and results from [3].

A probabilistic betting strategy A is an algorithm which, at each step of
its computation, makes a probabilistic choice to either bet (b) on the next
symbol of X, or wait (w) and not bet on that symbol yet. The history of
bet/wait choices so far is coded by a string π ∈ {b,w}∗, and the history of
the bet-upon bits of X is coded by a σ ∈ {0, 1}∗. If |σ| = |π|b, then the pair
(π, σ) is called a valid A-configuration, and fully specifies the history of A’s
computation after |π| steps and |π|b bets.

Definition [3] A probabilistic betting strategy A is specified by a pair of
(total) computable functions pA : {b,w}∗ × {0, 1}∗ → Q ∩ [0, 1] and qA :
{b,w}∗ × {0, 1}∗ → Q ∩ [0, 2].

4

If (π, σ) is a valid A-configuration, pA(π, σ) specifies the probability of A
placing a bet. In the event a bet is placed, qA(π, σ) specifies the stake
function value for the bet.

The success of a probabilistic betting strategy depends on the proba-
bilistic choices that are made. For this, there are two inductively defined
auxiliary functions. The notation Prob[· | ·] denotes conditional probability.

Definition The cumulative probability function PA is defined as

PA(π, σ) = Prob[π codes the initial bet/wait moves of A | σ ⊏ X]

for (π, σ) a valid A-configuration and X ∈ {0, 1}∞ the infinite binary string
being played against. Thus, PA(λ, λ) = 1, PA(πb, σx) = PA(π, σ)pA(π, σ),
and PA(πw, σ) = PA(π, σ)(1 − pA(π, σ)) where x ∈ {0, 1}. The capital
function CA is defined as CA(λ, λ) = 1, CA(πw, σ) = CA(π, σ), and

CA(πb, σ0) = CA(π, σ)(2 − qA(π, σ))

CA(πb, σ1) = CA(π, σ)qA(π, σ)

for (π, σ) a valid A-configuration. We let PX
A (π) and CX

A (π) abbreviate
PA(π,X↾|π|b) and CA(π,X↾|π|b), respectively.

Definition The probability measure µX
A induced on {b,w}∞ by the strat-

egy A playing against an infinite string X ∈ {0, 1}∞ is defined on basic open
sets by

µX
A ([π]) = PX

A (π).

A probabilistic strategy succeeds when playing against X ∈ {0, 1}∞

along a fixed infinite path Π ∈ {b,w}∞ provided it accumulates unbounded
capital during its play. The measure of the paths along which A succeeds
when playing against X leads to one definition of success for probabilistic
strategies:

Definition [3] The probability of success of a probabilistic betting strat-
egy A when playing against X ∈ {0, 1}∞ is

PrXA (Succ) = µX
A

(

{Π ∈ {b,w}∞ : limnC
X
A (Π↾n) = ∞}

)

.

Then, A is a P1-strategy for X if PrXA (Succ) = 1. Replacing the “lim” with
“lim sup” gives the (equivalent) notion of a limsup P1-strategy for X.

5

Definition [3] A probabilistic betting strategy A eventually bets on X with
probability one provided that for all π ∈ {b,w}∗

PX
A (π) ·

∏

i∈N

(1− pXA (πwi)) = 0.

In this case, A is called locally weak with respect to X. If A is locally weak
for all sequences X, then we say that A is weak or that A always eventually
bets with probability one.

An alternate notion of success for a probabilistic betting strategy con-
siders the expected capital of the strategy after n bets have been placed:

Definition We denote by R(n) the set of possible b/w histories up through
the n-th bet. That is, for n ∈ N, define R(0) = {λ} and R(n + 1) =
{πb ∈ {b,w}∗ : |π|b = n}.

If A is a probabilistic betting strategy, X ∈ {0, 1}∞, and n ∈ N, then

Ex
X
A (n) =

∑

π∈R(n)

PX
A (π)CX

A (π).

This is exactly the expected value for the capital of A after n bets if we
define the value of “the capital of A after n bets” to equal zero in the event
that A never makes n bets.

We say that A is an Ex-strategy for X if limn Ex
X
A (n) = ∞. As be-

fore, we can replace “lim” by “lim sup”: A is a limsup Ex-strategy for X if
lim supn Ex

X
A (n) = ∞.

Lemma 2 [3] Let X ∈ {0, 1}∞. There is a P1-strategy (resp. weak P1-
strategy) for X if and only if there is a limsup P1-strategy (resp. weak limsup
P1strategy) for X. Similarly, there is an Ex-strategy for X if and only if
there is a limsup Ex-strategy for X.

Definition [3] An infinite string X ∈ {0, 1}∞ is P1-random (resp. weak
P1-random) if no probabilistic betting strategy is a P1-strategy (resp. weak
P1-strategy) for X. And, X is Ex-random if no probabilistic betting strategy
is an Ex-strategy for it.

Theorem 3 [3] An infinite string is ML-random if and only if it is Ex-
random. It is partial computably random if and only if it is P1-random. It
is computably random if and only if it is weak P1-random.

It was also shown in [3] that X is partial computably random (resp.
computably random) if and only there is a locally weak (resp. weak) Ex-
strategy for X.

6

3 Equivalent notions of strategies

The definition of probabilistic betting strategy in [3] is based on special
probabilistic algorithms in which randomness is used only to decide whether
or not to place a bet. The complexity theory literature, on the other hand,
uses a more general and more convenient model of probabilistic computation,
given by probabilistic Turing machines that allow randomness at every step
of the computation.

Definition (Def. 7.1 in [2]) A probabilistic Turing machine (PTM) is a
Turing machine with two transition functions δ0 and δ1. Each computation
step of a PTM randomly chooses to use either δ0 or δ1; selecting each δi
with probability 1

2 . The choice of transition function at each step is made
independently of all previous choices.

We define alternate versions of probabilistic betting strategies called “R-
strategies” (for “random strategies”) which use the PTM model of compu-
tation:

Definition An R-strategy with rational randomness B is specified by a
computable stake function qB : {0, 1}∗ × {0, 1}∗ → {w} ∪ (Q ∩ [0, 2]) and a
computable bias function pB : {0, 1}∗ × {0, 1}∗ → Q ∩ [0, 1]. As described
below, if B so far has bet on bits σ ∈ {0, 1}∗ and has randomly selected
bits r ∈ {0, 1}∗, then qB(σ, r) controls whether and how much B bets next,
and pB(σ, r) controls the bias in selecting the next random bit.

If the bias function is the constant function pB(σ, r) =
1
2 , then we call B

an R-strategy with dyadic randomness.

Suppose that B has carried out its strategy for n steps, working against
X ∈ {0, 1}∗. Let σ be the sequence of bits of X that have been bet upon
so far, and thus are known to B. Also let the string r be the sequence of
random bits selected so far; since exactly one random bit is chosen per step,
|r| = n. We interpret qB(σ, r) = w to mean that B does not make a bet at
this stage. Otherwise, qB(σ, r) ∈ Q ∩ [0, 2], and B bets with a stake value
of qB(σ, r). We interpret the value pB(σ, r) as the probability that the next
selected random bit is equal to 1.

The following definitions formalize the action of an R-strategy. First we
define when σ and r code a feasible valid configuration for B.

Definition Let B be an R-strategy. The set of valid B-configurations is
inductively defined by

7

a. (λ, λ) is a valid B-configuration.

b. If (σ, r) is a valid B-configuration, qB(σ, r) = w, and y ∈ {0, 1}, then
(σ, ry) is a valid B-configuration.

c. If (σ, r) is a valid B-configuration, qB(σ, r) 6= w, and x, y ∈ {0, 1},
then (σx, ry) is a valid B-configuration.

The intuition is that y is the next random bit, and x is the bet-upon bit
of X.

When B is working against X, and (σ, r) is a valid B-configuration with
σ ⊏ X, we define PB(σ, r) to be the probability that B reaches configura-
tion (σ, r), and CB(σ, r) to be B’s capital upon reaching (σ, r):

Definition Let B be an R-strategy. The probability function PB and
the capital value function CB are defined as follows. Initially, PB(λ, λ) =
1 and CB(λ, λ) = 1. Suppose that (σ, r) and (σx, ry) are both valid B-
configurations, with y ∈ {0, 1}, and x ∈ {0, 1, λ}. Then

PB(σx, ry) =

{

(1− pB(σ, r)) · PB(σ, r) if y = 0
pB(σ, r) · PB(σ, r) if y = 1

CB(σx, ry) =







CB(σ, r) if x = λ
CB(σ, r) · (2− qB(σ, r)) if x = 0
CB(σ, r) · qB(σ, r) if x = 1

Note that x = λ iff qB(σ, r) = w, so the definition is well-formed.

Definition Let r ∈ {0, 1}n. We write PX
B (r) and CX

B (r) for the probability
and capital values associated with the random bits r when playing against X
for n = |r| steps. Namely, let σ ⊏ X be the unique initial substring of X
such that (σ, r) is a valid B-configuration. Then PX

B (r) = PB(σ, r) and
CX
B (r) = CB(σ, r). We define pXB (r) and qXB (r) similarly.

The measure µX
B is defined as before so that µX

B ([r]) = PX
B (r). Note that

if B uses dyadic randomness, then µX
B is just the usual (Lebesgue) measure µ

on Cantor space, with µ([r]) = 2−|r|.

Definition The probability of success of an R-strategy B when playing
against X ∈ {0, 1}∞ is

PrXB (Succ) = µX
B

(

{R ∈ {0, 1}∞ : lim
n

CX
B (R↾n) = ∞}

)

.

8

B is said to be P1-successful against X provided PrXB (Succ) = 1. The
sequence X is P1-R-random if no R-strategy is P1-successful against X.

The limsup probability of success, limsup PrXB (Succ), and the notion of
limsup P1-successful are defined similarly with “lim sup” in place of “lim”.

We also need to define the expected capital after n bets, ExXB (n). For
probabilistic strategies, this definition was made using the set R(n). For
R-strategies, it is a little more complicated as the random bits r do not
by themselves describe how many bets have been placed. Instead, define
RB,X(n) to be the set of valid B-configurations (σ, r) such that σ ⊏ X and
|σ| = n and such that B has placed a bet (its n-th bet) during the step
leading to the configuation (σ, r).

Definition The expected capital after n bets of an R-strategy B when
working against X ∈ {0, 1}∞ is defined as

Ex
X
B (n) =

∑

(σ,r)∈RB,X (n)

PB(σ, r)CB(σ, r) =
∑

(σ,r)∈RB,X (n)

PX
B (r)CX

B (r).

B is said to be Ex-successful against X provided limn Ex
X
B (n) = ∞. The

sequence X is Ex-R-random if no R-strategy is Ex-successful against X.
The notion of limsup Ex-successful is defined similarly with “lim sup” in

place of “lim”.

Definition An R-strategy B eventually bets on X with probability one if

Prob[∀m ∃n>m
(

qXB (R↾n) 6= w
)

] = 1.

with the probability taken over all infinite binary strings R under the prob-
ability measure µX

B . As before, we equivalently say that B is locally weak
against X.

Definition An R-strategy is weak if it is locally weak against all X. The
sequence X is weak-P1-R-random if there is no weak R-strategy which is
P1-successful against X.

The above definitions of R-strategies, like the definitions of probabilistic
betting strategies in [3], are “stateless”. That is to say, although based on
the intuition of a probabilistic Turing machine carrying out the R-strategy,
the formal definition of R-strategy does not include any notion of the current
state and tape contents of a Turing machine. The above definitions can be
modified to define “stateful” R-strategies. For this, a configuration of a

9

stateful R-strategy would be a triple (σ, r, s) where σ and r are as before,
and s is intended to encode the state information. For example, in the
Turing machine model, s would encode the Turing machine’s finite control
state plus its tape contents and tape head positions. Formally, a stateful
R-strategy is defined by letting the computable functions pB = pB(σ, r, s)
and qB = qB(σ, r, s) now take the current state as an additional input, and
adding a new computable function NextB = NextB(σ, r, s) which computes
the state value s for the next configuration of B. The rest of the definitions
are easily modified to incorporate the presence of the state value s. The
notion of stateful probabilistic betting strategy can be defined by modifying
the definitions of [3] analogously.

It is easy to see that stateful strategies and stateless strategies have
the same computational power: this follows from the fact we are working
only with computable strategies, and not with resource-bounded algorithms.
Indeed, any stateful strategy can be converted into an equivalent stateless
strategy by the simple expedient of having the stateless strategy recompute
all the state values s of the stateful strategy as necessary.

For the present paper, the advantage of using stateful strategies is that
it makes it easier to informally describe strategies. Generally when we are
proving that a certain strategy exists, it is convenient describe the strategy
as a stateful strategy. Conversely, when proving limits on a strategy, or when
simulating a strategy, it can be easier to assume the strategy is stateless.
We expect it could also be useful to work with stateful strategies when
using resource-bounded strategies (requiring, say, time- or space-bounded
computation), but we do not consider resource-bounded computation in the
present paper.

Definition Two betting (R-)strategies A and B are strongly equivalent if
for all X ∈ {0, 1}∞,

• PrXA (Succ) = PrXB (Succ),

• Ex
X
A (n) = Ex

X
B (n) for all n ≥ 0.

• A eventually bets with probability 1 on X iff B eventually bets with
probability 1 on X.

For example, it is not difficult to show that every stateful R-strategy A is
strongly equivalent to a stateless R-strategy B. The next theorem states that
R-strategies and probabilistic betting strategies are strongly equivalent. 2

2It is possible to define an even stronger notion of equivalence, by stating that A and B

are “very strongly equivalent” provided there is a measure-preserving correspondence be-

10

Theorem 4 If A is a strategy of one of the following three kinds, then there
are strategies of each of the other two kinds which are strongly equivalent
to A.

• R-strategies with dyadic randomness.

• R-strategies with rational randomness.

• Probabilistic betting strategies.

Theorem 4 allows us to work with R-strategies with rational or dyadic ran-
domness, or with probabilistic betting strategies, choosing whichever one is
most suitable for the task at hand. It also immediately implies that P1-R-
randomness, weak-P1-R-randomness, and Ex-R-randomness are equivalent,
respectively, to P1-randomness, weak-P1-randomness, and Ex-randomness.

Proof (Sketch.) Of course, an R-strategy with dyadic randomness is also
an R-strategy with rational randomness. Conversely, suppose A is an R-
strategy with rational randomness. We claim there is a strongly equivalent
R-strategy B with dyadic randomness. The (stateful) strategy B simulates A
directly: at each step where A chooses a random bit y with bias pA(σ, r) 6= w,
B begins enumerating the base-two representation of pA(σ, r) as 0.x1x2x3 . . .,
with each xi ∈ {0, 1}. At the same time, B chooses random bits z1, z2, z3, . . .
uniformly at random (with dyadic probabilities). As soon as B finds an i
such that xi 6= zi, B halts the enumerations and sets the random bit y
equal to 1 if zi < xi or equal to 0 if zi > xi. Then, B forgets the values zi
and resumes the simulation of A. Note that B will find some zi 6= xi with
probability 1. It is easy to verify that B faithfully simulates A.

Now we consider strong equivalences between probabilistic betting strate-
gies and R-strategies. First, a probabilistic betting strategy A is clearly
strongly equivalent to some R-strategy B. This is because A is restricted
to using probabilities only when (possibly) placing a bet, where B may
use randomness at every step. Second, let A be an R-strategy with dyadic
randomness. (The argument would be very similar if A used rational prob-
abilities.) We describe a stateful probabilistic strategy B which is strongly
equivalent to A.

To describe the operation of B, we first describe how it decides to place
its first bet, that is, what it does to bet on bit X(0). For this, B enumerates

tween computations of A and B such that the corresponding computations of A and B

make exactly the same bets with the same stake values. Theorem 4 holds also for “very

strongly equivalent”. The notion of “very strongly equivalent” is not needed for the results

of the present paper however.

11

all bit strings r ∈ {0, 1}∗, say in length-lexicographic order, such that (λ, r) is
a valid A-configuration and such that qA(λ, r) 6= w. Let r1, r2, r3, . . . denote
the enumerated values of r. Note there may be either finitely or infinitely
many ri’s. The ri’s are interpreted as the random bits chosen by A before
placing the first bet on X: the condition qA(λ, r) 6= w means that (λ, r)
is a configuration where A places its first bet with stake value qA(λ, r).
When the first value, r1, is enumerated, B bets on X(0) with probability
p1 = 2−|r1| using the same stake value qA(λ, r1) as A: the probability p1 is
just the probability that the random bits r1 are chosen by A. If B does not
bet, then it resumes enumerating the ri’s. For each subsequent ri in the
enumeration, B bets with probability

pi =
2−|ri|

1−
∑

j<i 2
−|rj |

. (2)

using the stake value qA(λ, ri). It is easy to check that each bet of B corre-
sponds faithfully to a bet of A. Furthermore, B bets on X(0) with proba-
bility 1 iff A does. If and when B does place a bet based on a pair (λ, ri),
then B defines the strings σ1 := X(0) and r1 := ri to record the now-known
bit of X and the random bits chosen by A so far.

The strategy B uses an analogous algorithm to decide how to bet onX(m+1),
the (m+ 1)-st bit of X. At this point, B has already set σm ∈ {0, 1}m (the
first m bits of X) and rm (the random bits chosen by A so far). B now
enumerates all values r1, r2, r3, . . ., such that ri ∈ {0, 1}∗ and such that
(σm, rmri) is a valid A-configuration with qA(σm, rmri) 6= w. For each ri,
B places a bet on X(m + 1) with probability pi as given by (2) and with
stake value qA(σm, rmri). Once a bet is placed, the values σm+1 and rm+1

are set equal to σmX(m+1) and rmri, respectively. We leave to the reader
to verify that this a faithful simulation of A by B, and that B is strongly
equivalent to A. 2

Corollary 5 There is a locally weak P1-strategy (resp., Ex-strategy) against X
iff there is a locally weak P1-R-strategy (resp., Ex-R-strategy) against X.

For the proof of Theorem 10 in the next section, it will be convenient to
assume that R-strategies never use the stake value 0 or 2; so that the capital
never falls to zero. This is shown by the next proposition. We cannot use
strong equivalence for this however, since the stake values will change and
this affects the values of ExXA (n), which can change by as much as a constant
factor. Instead, we rely on a weaker notion of “acceptance equivalence”.

12

Definition Two R-strategies A and B are P1-acceptance equivalent pro-
vided that for all X ∈ {0, 1}∞, A is P1-successful against X iff B is P1-
successful against X. A similar definition is used for Ex-acceptance equiva-
lent. In addition, A and B are acceptance equivalent provided they are both
P1-acceptance equivalent and Ex-acceptance equivalent.

We make several observations: Any strongly equivalent R-strategies are
also P1-acceptance equivalent, Ex-acceptance equivalent, and acceptance
equivalent. Also, if two R-strategies are, in fact, deterministic, then they
either succeed or fail on each infinite string, without any probabilistic con-
siderations. Hence, they are P1-acceptance equivalent if and only if they
are Ex-acceptance equivalent. However, there are P1-acceptance equiv-
alent R-strategies that are not Ex-acceptance equivalent, and vice versa.
For example, two R-strategies which have a nonzero probability of never
betting would be P1-acceptance-equivalent (because they are nowhere P1-
successful) but may not be Ex-acceptance-equivalent. Conversely, let A be
an R-strategy which is P1-successful on some string X. Modify A to obtain
a new R-strategy B by adding an initial step which, with some small non-
zero probability, enters a loop and never places any bet. The strategy B
is Ex-successful on exactly those strings for which A Ex-succeeds, but B is
nowhere P1-successful. Thus A and B are Ex-acceptance equivalent, but not
P1-acceptance equivalent.

Lemma 6 Every R-strategy B is acceptance equivalent to an R-strategy B′

such that 0 and 2 are not in the range of qB′ .

Proof Informally, the strategy B′ copies the strategy B except that any bets
B makes with stake values 0 and 2 are changed by B′ to bets that differ from
0 and 2 by increasingly small amounts. That is, consider the computable
sequence ǫi = 1/2i+2, which has the property that 1/2 <

∏∞
i=0(1 − ǫi) < 1.

Set pB′(σ, r) = pB(σ, r) and define qB′(σ, r) to equal

qB′(σ, r) =







2− ǫ|r| if qB(σ, r) > 2− ǫ|r|
ǫ|r| if qB(σ, r) < ǫ|r|
qB(σ, r) otherwise.

It is easy to verify that B′ is acceptance equivalent to B. 2

We end this section with a couple of simple observations about R-strategies.
First, we note that there is no benefit to be obtained by letting the functions
pB and qB be partial computable:

13

Definition A partial R-strategy B is defined similarly to an R-strategy
except that pA and qA are allowed to be partial computable instead of (total)
computable.

Lemma 7 Every partial computable R-strategy A is strongly equivalent to
a (total) R-strategy B.

Proof (Sketch.) The idea is to insert extra wait states into the com-
putations of pA(σ, r) and qA(σ, r), say by fixing a fixed constant T > 0,
and interrupting the computations of pA(σ, r) and qA(σ, r) every T steps
and waiting (w) without betting. This allows B to have total functions pB
and qB. The extra random bits obtained by B at these interruptions are
just ignored. 2

Finally, the next theorem states in effect that randomness does not in-
crease the power of total computable martingales.

Theorem 8 Let B be an R-strategy such that qB(σ, r) 6= w for all (σ, r).
Then B is Ex-acceptance equivalent to a probabilistic betting strategy A which
always bets, that is, such that pA(π, σ) = 1 for all (π, σ).

The condition that pA(π, σ) always equals 1 means that A is actually
deterministic, not probabilistic.

Proof (Sketch.) Since A always bets and never waits, pA(π, σ) and qA(π, σ)
need to be defined only for π = b

|σ|. The idea of the proof is to let

qA(b
n, σ) =

∑

r∈{0,1}n PB(σ, r)CB(σ, r)qB(σ, r)
∑

r∈{0,1}n PB(σ, r)CB(σ, r)
, (3)

where n = |σ|. Note that w.l.o.g. by Lemma 6, the values CB(σ, r) are
non-zero, so qA(b

n, σ) is well-defined and equal to a weighted average of
the values qB(σ, r). Under this definition, induction on n establishes that if
σ ⊏ X then CA(b

n, σ) is equal to Ex
X
B (n), namely the denominator of (3).

The details of the proof are left to the reader. 2

4 Intermediate success probabilities

A natural alternative criterion for the success of a probabilistic betting strat-
egy is that the set of successful paths has positive measure, instead of mea-
sure one.

14

Definition Let 0 < α ≤ 1. A probabilistic betting strategy A is a Pα-
strategy against X if A’s probability of success on input X ∈ {0, 1}∞ is at
least α, namely if

PrXA (Succ) = µX
A

(

{Π ∈ {b,w}∞ : lim
n

CX
A (Π↾n) = ∞}

)

≥ α. (4)

The string X is Pα-random if there is no Pα-strategy against it. The no-
tions of limsup Pα-strategy and limsup Pα-random are defined similarly by
replacing “lim” with “lim sup” in (4).

The techniques from [3] carry over to prove that X is Pα-random iff X is
limsup Pα-random. The key tool is the well-known “slow-but-sure” savings
trick. We discuss and extend this trick in the proof of Theorem 12 below.

Pα-strategies can also be formulated in terms of R-strategies.

Definition An R-strategy B is a Pα-R-strategy against X if its probability
of success on input X ∈ {0, 1}∞ is at least α, namely if

PrXB (Succ) = µX
B

(

{R ∈ {0, 1}∞ : lim
n

CX
B (R↾n) = ∞}

)

≥ α. (5)

The string X is Pα-R-random if there is no Pα-R-strategy against it. The
notions of limsup Pα-R-strategy and limsup Pα-R-random are defined simi-
larly.

Lemma 9 A sequence X ∈ {0, 1}∞ is (limsup) Pα-random if and only if it
is (limsup) Pα-R-random.

Lemma 9 follows by the proof method of Theorem 4.
We next establish our first main result about Pα-randomness; namely,

that its definition is independent of the choice of the value α ∈ (0, 1). For
this we show that the measure of successful paths can be amplified arbitrarily
close to 1.

Theorem 10 Let X ∈ {0, 1}∞ and let β > 0. If X is not Pβ-random
then, for each 0 < α < 1, X is not Pα-random. Hence, for α, β ∈ (0, 1),
Pα-randomness and Pβ-randomness are equivalent.

Proof Suppose A is a limsup Pα-R-strategy against X that uses dyadic
randomness. Let α < β < 1. Without loss of generality, the limsup prob-
ability of success of A, as given by (5) with “lim sup” in place of “lim”, is
equal to exactly α.

15

We construct a Pβ-R-strategy B against X. Let ǫ = 1− β. Fix rational
numbers q1, q2 such that 0 < q1 < α < q2 < 1 and q2 < (1 + ǫ)q1. Let C0 be
a rational number such that

Prob[∃n
(

CX
A (R↾n) > C0

)

] < q2, (6)

where the probability is taken over all choices of R ∈ {0, 1}∞. Such a C0

exists because the probability that A succeeds on X is α < q2, and since
success is defined in terms of capital having limsup equal to ∞. Of course,
the left hand side of (6) is ≥ α. The R-strategy B needs to know the values
q1 and C0, but not q2 or α.

The first phase of B’s computation is devoted to finding an initial finite
sequence of random bits that leads to success with probability ≥ β. For
this, B simulates the initial computation of A on all possible finite random
sequences r. Namely, for successive values m = 1, 2, 3, . . ., the strategy B
simulates all possible runs of A against X for m steps, using all 2m different
sequences of random bits in {0, 1}m. As these simulations are performed, B
queries the first m bits of X, by betting evenly with stake value 1 on each
bit of X. Although these m bits of X might not all be needed, they are
enough to carry out the simulations of A, as A can place at most one bet
per step. The simulation of A continues until a value m is reached where
the left hand side of the inequality in (6) is seen to have value > q1; namely,
until |R0| > q12

m where

R0 = {r ∈ {0, 1}m : ∃n≤m
(

CX
A (r↾n) > C0

)

}.

The strategy B now enters its second phase. For this, B chooses uni-
formly at random a member r0 of R0 and switches to emulating A using
r0 as the first m many random bits for A, and then using randomly chosen
bits R for the subsequent steps of A.3 For the firstm queries made by A, the
corresponding bits of X are already known: after those queries, B emulates
A by betting on the bits of X using the same stake value as A would have.

We need to prove that B has unbounded limsup capital against X with
probability ≥ β = 1−ǫ. Let R ∈ {0, 1}∞, and let r0R denote the con-
catenation of the (finite) sequence r0 and the (infinite) sequence R. We
claim that B’s capital converges to infinity in the limsup sense whenever

3For the second phase of B, we use the terminology “B emulates A” instead of “B

simulates A”. The point is that B “emulates” A by placing bets with stake values deter-

mined by A’s algorithm, rather than merely betting evenly with stake value 1 as was done

while “simulating” A in phase one. This distinction will be more crucial in the proof of

Theorem 12.

16

lim supnC
X
A ((r0R)↾n) = ∞. To prove this claim, it is enough to assume

that A makes infinitely many queries to X, since otherwise CX
A ((r0R)↾n)

is constant in the limit. As B emulates A using r0, it initially uses stake
values equal to 1 until m bits of X have been queried. After that, B uses
the same stake values as A. This means that B’s capital is proportional to
CX
A ((r0R)↾n), and therefore implies the claim.
We write R ⊐ R0 to mean that r0 ⊏ R for some r0 ∈ R0. Since B

chooses an r0 ∈ R0 at random and then emulates A using a random R ⊐ r0,
the probability that B has unbounded capital against X can be bounded
below as follows.

Prob[lim supnC
X
B (R↾n) = ∞]

≥ Prob[lim supnC
X
A (R↾n) = ∞ | R ⊐ R0]

= 1−
Prob[R ⊐ R0 & lim supn C

X
A (R↾n) < ∞]

Prob[R ⊐ R0]

≥ 1−
Prob[supnC

X
A (R↾n) > C0 & lim supnC

X
A (R↾n) < ∞]

Prob[R ⊐ R0]

= 1−
Prob[supnC

X
A (R↾n) > C0]− Prob[lim supnC

X
A (R↾n) = ∞]

Prob[R ⊐ R0]

≥ 1−
q2 − α

q1
≥ 1−

q2 − q1
q1

≥ 1− ǫ.

This proves Theorem 10. 2

The above proof can be iterated to prove Theorem 12, the second main
theorem of this section. This will give a stronger conclusion than Theo-
rem 10, with P1-random in place of Pβ-random, but under the additional
assumption of local weakness.

Lemma 11 There is a locally weak Pα-strategy for X iff there is a locally
weak Pα-R-strategy for X.

Lemma 11 follows by the proof method of Theorem 4.

Theorem 12 Let X ∈ {0, 1}∞. If there is a locally weak Pα-strategy for X
then there is a P1-strategy for X.

(Recall that P1-strategies for X must be locally weak against X, since
otherwise there is a non-zero probability of making only finitely many bets.)
The two previous theorems imply that if X is P1-random, then X is also

17

locally weak Pα-random for every α > 0. Conversely, if X is locally weak
Pα-random, then trivially X is P1-random.

It is an open question whether the assumption of of local weakness can
be removed from Theorem 12:

Question 13 Is every P1-random string Pα-random? In other words, is
every partial computable random string Pα-random?

In preparation for proving Theorem 12, we discuss slow-but-sure (SBS)
simulations. Recall that slow-but-sure simulations are used for converting a
strategy which succeeds in the “limsup” sense into one which succeeds in the
“lim” sense (see, for example, [4, Proposition 6.3.8]). An SBS-strategy splits
its current capital C into two portions, the saved capital S and the working
capital W . The stake values for bets put the working capital at risk, and
thus the working capital W can increase and decrease; however, the saved
capital S never decreases. Whenever the working capital exceeds a fixed
threshold, part of the working capital is transferred to the saved capital.
We adopt the convention that whenever the working capital exceeds 2 units,
then 1 unit of capital is transferred to the saved capital.

More formally, if A is a betting strategy or R-strategy, then the SBS-
emulation of A is the strategy B which operates as follows: Initially, B’s
saved capital is S = 0 and its working capital is W = 1. B then emulates A
but modifies the stake values so that when A uses stake value q, B uses
stake value

qB = q ·
W

S +W
. (7)

The result of the bet transforms the working capitalW toW ′ = W±(1−q)W
and leaves the saved capital unchanged as S′ = S. If W ′ < 2, then B’s
working capital is updated by settingW := W ′ and the saved capital remains
unchanged. However, if W ′ ≥ 2, then B moves 1 unit of capital into its saved
capital, namely B sets W := W ′ − 1 and S := S′ + 1.

We use the terminology “B SBS-simulates A”, to mean that B keeps
track of what its saved capital and working capital would have been equal
to had it been SBS-emulating A, but that B does not base its stake values
on the stake values computed by the simulation of A. The point is that
B can SBS-simulate many executions of A, but can SBS-emulate only one
execution of A at a time.

Proof (of Theorem 12) Let A be a locally weak limsup Pα-R-strategy for X
that uses dyadic randomness, so that lim supnC

X
A (R↾n) = ∞ holds with

probability α for random R ∈ {0, 1}∞. By Theorem 10, we may assume

18

α > 1
2 . Without loss of generality, by Lemma 6, A never uses stake values 0

or 2. We must define a P1-R-strategy B against X. The strategy B has an
infinite sequence of phases, each of which is somewhat like the second phase
of B from the proof of Theorem 10 in that B will SBS-emulate a particular
computation of A. However, at the same time, B will also SBS-simulate
all other possible computations of A. At the end of each phase, B halts its
SBS-emulation, and makes a new selection of the initial random bits of A
for the next phase.

In more detail, the strategy B works as follows: B will be an SBS-type
strategy and maintains separate values for its working capital W and saved
capital S. The initial capital values are W0 = 1 and S0 = 0. We also set
T0 = 0, since no bits of X have been bet upon yet.

Phase i: (for i > 0.) At the beginning of Phase i, B has already bet on (and
thus knows) Ti−1 many bits of X, and it has saved capital Si−1 and working
capital Wi−1 > 0. Now B begins SBS-emulating A using a sequence of
randomly selected bits which we denote ri. The first Ti−1 many bets placed
by the (SBS-)emulation are already known and cannot be bet upon again.
However, once the emulation of A makes more than Ti−1 many bets, B
begins SBS-emulating A using equation (7) to set its stake values. The
SBS-emulation of A keeps track of the values m and t, where m is the total
number of steps performed by the entire execution of A, and t = t(m) is
the total number of bets that have been placed by A. (The count t includes
the first Ti−1 bets placed against the bits of X that are already known from
earlier phases.) The hope is that the SBS-emulation of A will cause B to
increase its savings value to at least Si−1 + 1 before the end of Phase i.

As this SBS-emulation is carried out, B also SBS-simulates all possible
executions of A that use ≤ m many steps and that make ≤ t many bets
(using all possible choices of random bits r). As B SBS-emulates A and
the values m and t increase, B computes a prefix-free set P = P(m, t) of
finite strings of choices of random bits for which A has been SBS-simulated.
Namely, P(m, t) is the set of those r such that either (a) |r| = m and A run
with random bits r on input X makes ≤ t bets in its first m moves, or
(b) |r| < m and A run with random bits r on input X makes its t-th bet in
its |r|-th move.

For each r ∈ P(m, t), B also computes the associated saved capital and
working capital values; the intuition being that these are the capital values
that B would have achieved had it used r instead of ri in the SBS-emulation
described two paragraphs earlier. More precisely, B first uses a r ∈ P(m, t)
and the known bits of X to simulate A until the simulation makes Ti−1 bets

19

on bits of X. As the SBS-simulation continues, B then computes the capital
values that would have been achieved by B starting with saved capital Si−1

and working capital Wi−1 and using (7) to compute stake values. We define
r ∈ P(m, t) to be savings-successful if the calculation indicates that B would
have achieved a saved capital value ≥ Si−1 + 1. Let R(m, t) be the set

R(m, t) = {r ∈ P(m, t) : r is savings-successful}.

Phase i ends once µ(R(m, t)) > 1
2 . At this point, the SBS-emulation of A is

halted. Ti is set equal to t, namely the number of bits of X that are known.
We define Si and Wi to be the saved capital and working capital achieved
by B at the end of the SBS-emulation using ri. Since A never uses stake
values 0 or 2, we have Wi 6= 0.

This completes the description of the algorithm for B. To finish the
proof of Theorem 12, we will show that Phase i ends with Si > Si−1 with
probability ≥ 1/2, where the probability is taken over the random choice
of ri. In other words, we need to show that, at the end of Phase i, the SBS-
emulation of A corresponds to one of the savings-successful computations
of R(m, t) with probability ≥ 1/2.

We first claim that each Phase i halts with probability 1. Recall that
m and t = t(m) measure the number of steps and the number of bets
carried out by the SBS-emulation of A using ri. If Phase i does not halt,
then m increases without bound, and since A is locally weak against X,
the value of t also increases unboundedly with probability 1. Therefore,
with probability one, if Phase i does not halt, the SBS-simulations with all
possible r are carried out indefinitely (without being permanently halted at
any finite stage by the value of t). Let Rsucc be the set of random choices
for which A is limsup successful against X:

Rsucc = {R ∈ {0, 1}∞ : lim sup
n

CX
A (R↾n) = ∞}.

Of course,
µ(Rsucc) = α > 1

2 .

For R ∈ Rsucc, the Phase i SBS-simulation of A using R will be savings-
successful, unless it is limited by the values of m and t(m) from the Phase i
SBS-emulation. If follows that, with probability one, µ(R(m, t)) will sur-
pass 1

2 . Thus, with probability one, Phase i will eventually halt.
We must also compute a lower bound for the probability that Si > Si−1.

The intuition is that the SBS-simulations of Phase i are run until more than
half of them are savings-successful, and that since the SBS-emulation was

20

carried out for a randomly chosen ri, it will also be savings-successful and
thus Si > Si−1 with probability ≥ 1

2 . This intuition is accurate enough, but
there is a minor complication caused by the fact that the SBS-simulations
are controlled by the values of t(m), and these depend on the SBS-emulation.
To handle the complication, we think of B as selecting an infinite sequence of
random bits ri before running the SBS-emulation. (Of course, in actuality,
B randomly selects additional bits of ri only as they are needed.) Define
mri and tri to be the first values of m and t(m) at which the SBS-emulation
of A using ri causes the saved capital of B to increase from Si−1; except, if
no such values exist, set mri = tri = ∞.

Then Si > Si−1 holds at the end of Phase i+1 precisely when

µ(R(mri − 1, tri − 1)) ≤
1

2
.

An infinite sequence R is in R(mri − 1, tri − 1) iff both mR ≤ mri − 1 and
tR ≤ tri − 1. We write R ≺ ri for this condition, namely,

R ≺ ri ⇔ mR < mri and tR < tri .

The ≺ relation is a partial order. Thus Phase i successfully causes Si to be
greater than Si−1 provided ri satisfies

µ({R : R ≺ ri}) ≤
1

2
.

It follows immediately that a randomly chosen ri causes Si > Si−1 with
probability ≥ 1

2 .
Therefore, with probability one, Si > Si−1 for infinitely many values of i.

Since the saving capital is always an integer, it follows that supi Si = ∞ with
probability one. This proves Theorem 12. 2

5 Every ML-random is Pα-random

The next theorem is a strengthening of the fact that every Martin-Löf ran-
dom sequence is partial computably random.

Theorem 14 Let 0 < α ≤ 1. If there is a (limsup) Pα-strategy against a
sequence X then X is not ML-random.

Corollary 15 Every ML-random sequence is Pα-random for all 0 < α ≤ 1.

Question 16 Is every Pα-random sequence an ML-random sequence?

21

Proof Let the probabilistic betting strategy A be Pα-successful against X.
Let T be the set of valid A-configurations (π, σ) satisfying π ∈ R(|σ|). We
view T as an infinitely branching tree by letting the infinitely many children
of (π, σ) be the elements of the set

{(πwj
b, σ0), (πwj

b, σ1) : j ∈ N}.

The nodes (π, σ) and (π′, σ′) are incomparable, provided they are distinct
and neither is an ancestor of the other in T .

For i > 0, let Si equal the set of pairs (π, σ) ∈ T such that (1) CA(π, σ) ≥
2i, and (2) no ancestor (π′, σ′) of (π, σ) has capital CA(π

′, σ′) ≥ 2i. The Si’s
are uniformly computable because the capital function CA is computable.
Note that the sets Si are disjoint since A’s capital value can at most double
in a single bet. Furthermore, for each i, the members of Si are pairwise
incomparable. For (π, σ) ∈ T and τ ∈ {0, 1}∗, define

dπ,σ(τ) =







PA(π, σ) if τ ⊒ σ

2(|τ |−|σ|)PA(π, σ) if τ ⊏ σ
0 otherwise.

It is clear from the definition that dπ,σ satisfies the martingale property (1).
Define di as

di(τ) =
∑

(π,σ)∈Si

dπ,σ(τ).

Finally, define D(τ) =
∑

i>0 di. We will prove that D is a computably
enumerable martingale and that limn D(X↾n) = ∞. This will imply that X
is not ML-random.

The function D is clearly computably enumerable (left-c.e.) provided
it converges to a finite value. Moreover, whenever it converges, D is a
martingale since it is a sum of martingales. By the martingale property (1),
it is sufficient to prove that D(λ)↓ in order to show D(τ)↓ for all τ . For this,
we prove that for each i, di(λ) ≤ 2−i and thus that D(λ) ≤ 1. The following
variant of Kolmogorov’s inequality is useful.

Lemma 17 Let (π0, σ0) ∈ T and let S be a subset of T such that the mem-
bers of S are pairwise incomparable and such that π0 ⊑ π and σ0 ⊑ σ for all
(π, σ) ∈ S. Further suppose that i > 0 and CA(π, σ) ≥ 2i for all (π, σ) ∈ S.
Then,

∑

(π,σ)∈S

2−|σ|2iPA(π, σ) ≤ 2−|σ0|CA(π0, σ0)PA(π0, σ0). (8)

22

Proof It suffices to prove the lemma for finite sets S, since (8) is true for S
if it is true for every finite subset of S. Of course, the lemma is trivially true
when S is empty. For non-empty S, the proof is by induction on

kS = max
(π,σ)∈S

{|σ| − |σ0|}.

In the base case, kS = 0 and S = {(π0, σ0)}. By hypothesis, CA(π0, σ0) ≥ 2i,
and this implies that (8) holds.

For the induction case, fix k > 0, and assume the lemma holds for all S
with kS < k. We now prove the lemma for S such that kS = k. The as-
sumption of pairwise incomparability implies that (π0, σ0) /∈ S. Partition S
into subsets Sj,x, where j ≥ 0 and x ∈ {0, 1} and where

Sj,x = {(π, σ) ∈ S : π ⊒ π0w
j
b and σ ⊒ σ0x}.

The induction hypothesis applied to Sj,x over the base point (π0w
j
b, σ0x)

gives

∑

(σ,π)∈Sj,x

2−|σ|2iPA(π, σ) ≤ 2−(|σ0|+1)CA(π0w
j
b, σ0x)PA(π0w

j
b, σ0x).

From this we get

2−|σ0|CA(π0, σ0)PA(π0, σ0)

≥ 2−|σ0|CA(π0, σ0)
∑

j∈N

PA(π0w
j
b, σ00)

= 2−|σ0|
∑

j∈N

CA(π0w
j , σ0)PA(π0w

j
b, σ00)

= 2−|σ0|
∑

j∈N

1

2
[CA(π0w

j
b, σ00) + CA(π0w

j
b, σ01)]PA(π0w

j
b, σ00)

=
∑

j∈N

∑

x∈{0,1}

2−(|σ0|+1)CA(π0w
j
b, σ0x)PA(π0w

j
b, σ0x)

≥
∑

j∈N

∑

x∈{0,1}

∑

(σ,π)∈Sj,x

2−|σ|2iPA(π, σ), by the induction hypothesis

=
∑

(σ,π)∈S

2−|σ|2iPA(π, σ).

This proves the induction step, and Lemma 17. 2

23

Applying Lemma 17 with S = Si and π0 = σ0 = λ gives

di(λ) =
∑

(π,σ)∈S

2−|σ|PA(π, σ) ≤ 2−i,

as required to prove that D is a c.e. martingale.
We complete the proof of Theorem 14 by showing that limnD(X↾n) =

∞. By assumption on A,

µX
A ({Π ∈ {b,w}∞ : lim

n
CX
A (Π↾n) = ∞}) ≥ α.

Therefore, for each capital threshold 2i, there is a number ni such that, if

Πi = {Π ∈ {b,w}∞ : ∀n ≥ ni(C
X
A (Π↾n) ≥ 2i)}

then µX
A (Πi) ≥ α/2. Note that if Π ∈ Πi and thus CX

A (Π↾ni) ≥ 2i, then
there is a (π, σ) ∈ Si such that π ⊑ Π↾ni and σ ⊑ X. Thus, for n ≥ ni,

di(X↾n) ≥
∑

(π,σ)∈Si
σ⊑X↾ni

PA(π, σ) ≥ µX
A (Πi) ≥

α

2
.

Hence, for each i, limn di(X↾n) ≥ α/2. (In fact, α/2 can be replaced with α.)
Since α > 0, it follows that limnD(X↾n) = ∞, and this completes the proof
of Theorem 14. 2

6 A probabilistic strategy separation proof

This section presents a proof of the separation between partial computable
randomness and Martin-Löf randomness. There are at least two existing
proofs of this separation. The first proof, described in [4] and [7], exploits
the equivalence between ML-randomness and incompressibility with respect
to Kolomogorov complexity. The second proof is one ingredient in Kaster-
mans and Lempp’s result [5] separating ML-randomness from a restricted
version of randomness with respect to nonmonotonic strategies. We present
a translation of this second proof to the language of probabilistic strategies,
thereby illustrating how probabilistic strategies can be used to obtain simple
and intuitive separation proofs.

Theorem 18 There is a string X ∈ {0, 1}∞ which is partial computably
random but not Martin-Löf random.

24

Proof Let {di}i>0 be a computable enumeration of all partial computable
martingales. In particular, for each i and each σ ∈ {0, 1}∗, if either di(σ0)
and di(σ1) are defined, then all three of di(σ), di(σ0) and di(σ1) are de-
fined and the martingale property (1) holds. For a detailed justification
of the enumerability of this set of functions, see [5]. We will define an R-
strategy A and a string X ∈ {0, 1}∞ such that lim supn Ex

X
A (n) = ∞ while

lim supn di(X↾n) < ∞ for each i. The string X is partial computably ran-
dom but, by Theorem 3, not Martin-Löf random.

The string X is constructed in stages, each stage working to defeat some
partial computable strategy. The R-strategy A models these stages in the
construction of X, and at each stage i, A makes a probabilistic guess about
the i-th stage of the construction of X. The i-th stage in the construction
of X has the following data:

a. Data summarizing the martingales that are being worked against. There
are non-negative rational constants α1, . . . , αi, and Di is the martin-
gale defined by

Di(σ) = α1d1(σ) + α2d2(σ) + · · ·+ αidi(σ)

for all σ. Some of the αi’s are equal to zero, and in this case the term
αidi(σ) is interpreted as equaling zero, whether or not di(σ)↓.

Once the value αj has been chosen (during stage j), it remains fixed
for all later stages.

b. Initial segment of X that has already been specified. There is a string
σi ∈ {0, 1}∗. We have σi−1 ⊏ σi for all i.

The constructed string X is the limit of the σi’s, namely, the X such that
σi ⊏ X for all i. The following conditions hold for all i:

i. Di(σi) < 2.

ii. If αi = 0, then di(σi)↑.

iii. If αi > 0, then di(σj)↓ for all j.

These conditions imply that X is not partial computably random. To
prove this, note that if the i-th partial computable martingale di succeeds
against X, it must be that di(σj)↓ for all j, so αi > 0. Then, for all j ≥ i,

di(σj) ≤ Dj(σj)/αi < 2/αi,

which means that lim supn di(X↾n) < ∞, so di does not succeed against X.

25

Definition Suppose τ ∈ {0, 1}∗ and Di(τ)↓. The length k Di-decreasing
extension of τ is the lexicographically first string σ = τx1x2 · · · xk such that
each xi ∈ {0, 1} and

Di(τ) ≥ Di(τx1) ≥ Di(τx1x2) ≥ · · · ≥ Di(τx1x2 · · · xk).

The intuition is that σ is the string that causes Di to repeatedly lose
bets. Note that σ is well-defined provided that Di(τx1 . . . xℓxℓ+1)↓ whenever
Di(τx1 · · · xℓ) ≤ Di(τ) for all ℓ < k.

To prove that X is not Martin-Löf random, we describe the details of
the stages in the construction of the Di’s and σi’s, and then describe the
R-strategy A which is Ex-successful against X. Let σ0 be the empty string.
Assume that Di, α1, . . . , αi, and σi have already been defined, with Di(σi) <
2. The definition of αi+1 and σi+1 splits into two cases:

Case (1): If there is a τ ⊒ σi such that Di(τ) < 2 and di+1(τ)↑, then set τi
to equal the lexicographically first shortest such τ . Let ki = |τi| − |σi|
and define σi+1 be the length ki+3 Di-decreasing extension of τi. In
this case, di+1(σi+1)↑, so αi+1 is defined to equal 0.

Case (2): Otherwise, let σi+1 be the length 2 Di-decreasing extension of
τi = σi. Note Di(σi+1) ≤ Di(σi) < 2. Set

αi+1 =
2−Di(σi+1)

2di+1(σi+1)
(9)

if di+1(σi+1) 6= 0, and set αi+1 = 1 otherwise. Note that di+1(σi+1)↓
and hence Di+1(σi+1)↓, since otherwise Case (1) would apply. By (9),
αi+1 > 0 and Di+1(σi+1) < 2.

It is not hard to verify that the necessary Di-decreasing extensions re-
quired for the two cases exist. The only way for a Di-extension to not exist
is for there to be an αj > 0 such that some dj(τix1 · · · xℓ) fails to converge
during the process of the forming the Di-extension. But, αj > 0 means
that that Case (1) did not apply in stage j, and this means that the values
dj(τix1 · · · xℓ) needed for defining the Di-extension all converge.

The R-strategy A makes probabilistic guesses about the values of ki
and σi, and then bets all-or-nothing (stake value equal to 0 or 2) that its
guess is correct. Initially, of course, σ0 is the empty string. Suppose that,
at the beginning of the i-th stage, A has already picked the correct values
for σi and α1, . . . , αi. Also, suppose that σi ⊑ X and that A has already

26

bet all-or-nothing that the first |σi| many bits of X equal the bits of σi.
The R-strategy A then uses a random bit to decide whether Case (1) or (2)
holds. With probability 1

2 , A decides that Case (2) occurred: in this case,
A computes σi+1 = σix1x2 to equal the length 2 Di-decreasing extension
of σi. A does this by calculating Di(σ0) and Di(σ1) to determine x1 and
then calculating Di(σx10) and Di(σx21) to determine x2. This is possible
since A knows the correct values for all the αj ’s. A then bets all-or-nothing
that the next two bits of X are equal to x1x2. If it is correct that Case (2)
holds, this increases A’s capital by a factor of 4.

Alternatively, also with probability 1
2 , A decides that Case (1) holds.

A then chooses a value ki ≥ 0 by choosing bits at random until a bit 1
is chosen, and letting ki be the number of 0’s obtained before that first 1.
A chooses ki more random bits y1y2 · · · yki , and sets τi = σiy1 · · · yki . Finally,
A sets σi+1 = τix1 · · · xki+3 to be the length ki+3 Di-decreasing extension
of τi. We have |σi+1| = |σi|+ 2ki + 3; so A then bets that the next 2ki + 3
many bits of X are as specified by σi+1. If A has correctly chosen ki and τi,
then this increases A’s capital by a factor of 22ki+3.

If Case (2) holds, then A correctly decides this with probability 1
2 and

increases its capital by a factor of 22 = 4. If Case (1) holds, then A chooses
the correct values for ki and σi+1 with probability 2−(2ki+2), namely by
using one bit to decide Case (1) holds, ki + 1 many bits to determine ki, and
ki more bits to determine τi. In this case, A then multiplies its capital by a
factor of 22k+3. Therefore, in both Cases (1) and (2), A increases its expected
capital by a factor of 2. By induction on i, we have Ex

X
A (σi+1) ≥ 2i+1.

Therefore, lim supn Ex
X
A (σi+1) = ∞. This establishes that X is not Martin-

Löf random, and completes the proof of Theorem 18. 2

References

[1] K. Ambos-Spies, Algorithmic randomness revisited, in Language, Logic,
and Formalization of Knowledge, Coimbra Lecture and Proceedings of a
Symposition held in Siena in September 1997, Bibliotheca, 1998, pp. 33–
52.

[2] S. Arora and B. Barak, Computational Complexity: A Modern Ap-
proach, Cambridge University Press, 2009.

[3] S. R. Buss and M. Minnes, Probabilistic algorithmic randomness,
Journal of Symbolic Logic, 78 (2013), pp. 579–601.

27

[4] R. G. Downey and D. Hirschfeldt, Algorithmic Randomness and
Complexity, Springer, 2010.

[5] B. Kastermans and S. Lempp, Comparing notions of randomness,
Theoretical Computer Science, 411 (2010), pp. 602–616.

[6] A. A. Muchnik, A. L. Semenov, and V. Uspensky, Mathematical
metaphysics of randomness, Theoretical Computer Science, 207 (1998),
pp. 263–317.

[7] A. Nies, Computability and Randomness, Oxford University Press, 2009.

[8] C. P. Schnorr, Process complexity and effective random tests, Journal
of Computer and System Sciences, 5 (1973), pp. 378–388.

28

