
Pool resolution is NP-hard to recognize

Sam Buss∗

Department of Mathematics
University of California, San Diego

La Jolla, CA 92093-0112, USA
sbuss@math.ucsd.edu

September 10, 2009

Abstract

A pool resolution proof is a dag-like resolution proof which admits
a depth-first traversal tree in which no variable is used as a resolution
variable twice on any branch. The problem of determining whether a
given dag-like resolution proof is a valid pool resolution proof is shown
to be NP-complete.

Propositional resolution has been the foundational method for reason-
ing in propositional logic, especially for forming refutations of satisfiability
of set of clauses. In recent years, the most successful satisfiability testers
have used the DPLL (Davis-Putnam-Logeman-Loveland) algorithm com-
bined with clause learning, backtracking, restarts, and other techniques.
(See Beame, Kautz and Sabharwal [4] for an overview of clause learning.)
Pool resolution was introduced by Van Gelder [11] as an resolution-based
refutation system that provides a good theoretical model for the proofs pro-
duced by real-world satisfiability testing algorithms that incorporate clause
learning and backtracking. Van Gelder proved that pool resolution is ex-
ponentially stronger than regular resolution. Bacchus, Hertel, Pitassi and
Van Gelder [3], building on techniques from [4], proved that pool resolu-
tion can “effectively p-simulate” full resolution; and Buss, Hoffmann, and
Johannsen [6, Th. 19] gave an effective p-simulation for a system similar to
pool resolution. However, it is open whether pool resolution can directly
p-simulate full resolution.

∗Supported in part by NSF grant DMS-0700533.

1

Van Gelder defined pool resolution algorithmically; however, we shall use
his characterization that a pool resolution proof is a dag-like resolution proof
that admits a regular, depth-first traversal. A depth-first traversal defines
a tree on the clauses in the proof, which is a subgraph of the dag. The tree
is called “regular”, provided that no branch in the tree that contains two
clauses that are derived by resolution on the same variable.

Actually, Van Gelder defined pool resolution using an extended form of
the resolution that allows any two clauses to be resolved with any resolution
variable — regardless of whether the variable occurs appropriately in the
clauses. This extended resolution rule was called the degenerate resolution
rule by [3].

A depth first traversal τ of a refutation R and the associated traversal
tree Tτ are formally defined as follows. If C is a non-initial clause in R and
D is one of the hypotheses of the inference used to derive C, then we call D
a child of C. We assume w.l.o.g. that R is rooted, that is, that every clause
in R is a descendent of the empty clause. A depth first traversal τ of R is
a sequence E0, E1, . . . , Ep containing the clauses of R, each clause exactly
once, starting with the empty clause. For 1 ≤ i ≤ m, Ei must be a child of
an earlier Ej , where j must be the maximum value < i such that not all of
Ej ’s children occur among E0, . . . , Ei−1. In this case, Ei is also a child of Ej

in the tree Tτ induced by the traversal τ , and all edges in Tτ are obtained
in this way.

The traversal τ is called regular provided Tτ has no branch that contains
two clauses derived by resolution on the same variable. R is a pool resolution
refutation if and only if it admits a regular depth first traversal.

The Pool Resolution problem is the decision problem of deciding
whether a given dag-like resolution proof R is also a pool resolution refuta-
tion. Note that this problem is clearly in NP, since the algorithm can just
non-deterministically guess a regular, depth-first traversal.

Theorem 1 The Pool Resolution problem is NP-complete.

To fully specify the Pool Resolution problem, we need to say how
the dag-like proof R is presented. Our proof of Theorem 1 will make the
strongest possible assumptions: First, we will work only with proofs R that
are refutations in which all resolution inferences are standard. (A “refuta-
tion” is a proof that ends with the contradictory clause ∅.) Furthermore, the
refutation R will be specified as a sequence of clauses, and each non-initial
clause can be derived in exactly one way from the earlier clauses. Thus,
R will admit a unique dag structure.

2

There have been a number of results, including [1, 2, 8, 9, 10], about the
hardness of finding resolution proofs, or of determining whether resolution
proofs exist. Theorem 1, however, is more in the spirit of hardness results
by Buss-Hoffmann [5] and Hoffmann [7]: these show that, given a particular
resolution refutation, it is hard to determine if it satisfies extra conditions.

The rest of the paper gives the proof of the theorem. The main construc-
tion for the proof will be a reduction from the NP-complete satisfiability
problem Sat to Pool Resolution. An instance Γ of Sat consists of a set
of m clauses C1, . . . , Cm involving k variables x1, . . . , xk.

Given Γ, we will construct another set Π of clauses and a dag-like reso-
lution refutation R of Π. The propositional variables in Π will be ui and vi

for 1 ≤ i ≤ k, cj for 1 ≤ j ≤ m, and one further variable y. We will prove
that R is a valid pool resolution refutation iff Γ is satisfiable.

The root portion of the refutation R is shown in Figure 1. The figure
uses the following conventions. (1) Each node in the dag is labeled with a
clause. (2) Each non-initial clause C has two children (immediate successors)
D0 and D1, indicated by edges drawn from C upward towards D0 and D1,
such that C is inferred from the two children clauses using resolution with
respect to some resolution variable. (3) The resolution variable is easily
determined from D0 and D1, and is also indicated in the column on the
right side of the figure. (4) Initial clauses are written in boldface. (5) Other
leaves in the figure, decorated with . . .

... . . .’s are not initial clauses; rather
their derivations are shown in other figures.

The remaining portions of R are shown in in Figures 2-4. It should
be noted that no clause appears more than once in R. In particular, the
clauses ci are used multiple times in Figures 2 and 3, but these represent
multiple uses of the same clause, and each ci is derived exactly once as shown
in Figure 4.

Examining the refutation R in Figures 1-4 shows that the only way that
a traversal τ can fail to be regular is for the resolution variable y to be used
twice along some branch of Tτ . In fact, the variable y is the only variable
that is used twice along any directed path in R.

As shown in Figure 4, the variable y is the resolution variable used to
derive each clause cj . It is also used as the resolution variable at the top
of Figure 1. In the traversal tree Tτ , the clause yvk will be the child of
the clause v1v2···vk which is derived using y as the resolution variable. In
addition, as shown in Figure 2, cj is in the sub-derivation of R rooted at
yvk. Therefore, if there is any clause cj which is not visited before yvk in
the traversal, then there will be a branch in Tτ containing two uses of y as a

3

∅

u1 u1

u1

u1v1 v1 u1 v1

v1

. . .
...

... . . .
u2v1 u2v1

u2

u2v2 v1v2 u2 v2

v2

. . .
...

... . . .
u3v1v2 u3v1v2

u3

u3v3 v1v2v3 u3 v3

v3

. . .
...

... . . .
...

v1v2···vk−1

ukv1v2···vk−1 ukv1v2···vk−1

uk

ukvk v1v2···vk uk vk

vk

. . .
...

... . . .
yvk yv1v2···vk

. . .
... . . .

y

Figure 1: This shows the root portion of the dag refuation R. The end clause
is ∅. The only initial clause, shown in boldface, is yv1v2···vk. The other
leaves, decorated with . . .

... . . .’s are derived from the proof fragments shown
in Figures 2-4. The variables in the right column indicate the resolution
variable for the corresponding inferences.

4

yvk

yvk c1
c1

. . .
... . . .

c1

yvk c1 c2
c2

. . .
... . . .

c2

yvk c1 c2 c3
c3

. . .
... . . .

c3

yvkc1 c2···cm−1

yvk c1 c2···cm
cm

. . .
... . . .

cm

Figure 2: The derivation of the clause yvk.

u∗
i vi

u∗
i vi ci1

ci1

. . .
... . . .

ci1

u∗
i vi ci1 ci2

ci2

. . .
... . . .

ci2

u∗
i vi ci1 ci2 ci3

ci3

. . .
... . . .

ci3

u∗
i vi c1 c2···cip−1

u∗
i vi ci1 ci2···cip

cip

. . .
... . . .

cip

Figure 3: This shows the derivation of u∗
i vi, where u∗

i is either ui or ui.
Letting ` be xi or xi, respectively, then Ci1 , Ci2 , . . . , Cip are the clauses that
contain `.

5

ci

yci yci

y

Figure 4: The derivation of ci.

resolution variable. It follows that any regular traversal must visit every cj

before visiting yvk.
The only way to visit a clause cj before yvk is by visiting the clauses u∗

i vi

that are derived as shown in Figure 3, where u∗ is either ui or ui. There are
2k such sub-derivations, two for each Γ-variable xi. Fixing the value of i,
let the literal ` be either xi or xi. In the first case, the variable u∗

i is ui,
and in the second case, u∗

i is ui. Let C(`) be the set of clauses in Γ which
contain `, and enumerate this set as C(`) = {Ci1 , . . . , Cip}. Here p = p(`)
is the number of clauses that contain `. Then, the clause u∗

i vi is derived as
shown in Figure 3. Note in particular, that the derivation of u∗

i vi includes
the derivations of the clauses ci1 , . . . , cip .

Lemma 2 Let τ be a depth-first traversal of R and 1 ≤ i ≤ k. Then at
most one of the clauses uivi and ui vi can appear in τ before the clause yvk.

The proof of the lemma is almost obvious. Suppose uivi appears in
the traversal before ui vi. This means that uiv1···vi−1 also appears in the
traversal before ui vi. Hence, since yvk is in the sub-derivation rooted at
uiv1···vi−1 and ui vi is not, it follows that yvk precedes ui vi in the traversal.
A similar argument applies if ui vi precedes uivi in the traversal. 2

We define a partial truth assignment ατ as follows.

ατ (xi) =




T if uivi precedes yvk in τ
F if ui vi precedes yvk in τ
∗ otherwise

where T , F , and ∗ represent the values True, False, and “undefined”. The
third situation arises when neither clause precedes yvk in τ . The partial
assignment ατ induces a (partial) truth assignment on literals in the obvious
way, and ατ satisfies Γ provided every Ci ∈ Γ contains at least one literal
that is set to True by ατ .

Lemma 3 The traversal τ is regular if and only if ατ satisfies Γ.

To prove the lemma, first suppose ατ satisfies Γ. Then each clause Cj

in Γ contains some literal ` such that ατ (`) = T . Letting, u∗
i equal ui or ui,

6

respectively, if ` is xi or xi, this means u∗
i vi is traversed in τ before yvk.

Therefore, since Cj is one of the clauses containing `, the unit clause cj is
also traversed before yvk.

It follows, that if ατ satisfies Γ, then every cj is traversed before yvk.
This suffices to make the traversal τ regular.

Now suppose ατ does not satisfy Γ. Let Cj be a clause in Γ that is not
made true by ατ . By Lemma 2, this means that there is no u∗

i vi which
is traversed before yvk which has the unit clause cj in its sub-derivation.
Therefore, cj is traversed after yvk. This ensures that τ is not a regular
traversal since y is used as a resolution variable both to derive the clause
v1v2···vk from yvk, and to derive cj , and since cj is in the sub-derivation
rooted at yvk. 2

Lemma 3 shows that if R has a regular traversal, then Γ is satisfiable. On
the other hand, if α is a satisfying assignment for Γ, then it is straightforward
to construct a traversal τ such that ατ = α.

That completes the proof of the theorem.

Acknowledgements. I thank Philip Hertel, Jan Hoffmann, Toni Pitassi,
and Allen Van Gelder for useful discussions on this problem, and the referee
for further comments.

References

[1] M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi, Minimum
propositional proof length is NP-hard to linearly approximate, Journal of
Symbolic Logic, 66 (2001), pp. 171–191. A shorter extended abstract ap-
peared in Mathematical Foundations of Computer Science (MFCS’98),
Springer-Verlag Lecture Notes in Computer Science #1450, 1998, pp.
176-184.

[2] M. Alekhnovich and A. A. Razborov, Resolution is not automatiz-
able unless W [P] is tractable, in Proc. 42nd IEEE Conf. on Foundations
of Computer Science (FOCS), 2001, pp. 210–219.

[3] F. Bacchus, P. Hertel, T. Pitassi, and A. Van Gelder, Clause
learning can effectively p-simulate general propositional resolution, in
Proc. 23rd AAAI Conf. on Artificial Intelligence (AAAI 2008), AAAI
Press, 2008, pp. 283–290.

7

[4] P. Beame, H. A. Kautz, and A. Sabharwal, Towards understand-
ing and harnessing the potential of clause learning, J. Artificial Intelli-
gence Research, 22 (2004), pp. 319–351.

[5] S. R. Buss and J. Hoffmann, The NP-hardness of finding a directed
acyclic graph for regular resolution, Theoretical Computer Science, 396
(2008), pp. 271–276.

[6] S. R. Buss, J. Hoffmann, and J. Johannsen, Resolution trees with
lemmas: Resolution refinements that characterize DLL-algorithms with
clause learning, Logical Methods of Computer Science, 4 (2008). Issue
4, Article 13.

[7] J. Hoffmann, Finding a tree structure in a resolution proof is NP-
complete, Theoretical Computer Science, 410 (2009), pp. 2295–2300.

[8] K. Iwama, Complexity of finding short resolution proofs, in Mathemat-
ical Foundations of Computer Science 1997, I. Pŕıvara and P. Ruzicka,
eds., Lecture Notes in Computer Science #1295, Springer-Verlag, 1997,
pp. 309–318.

[9] K. Iwama and E. Miyano, Intractibility of read-once resolution, in
Proceedings of the Tenth Annual Conference on Structure in Complex-
ity Theory, Los Alamitos, California, 1995, IEEE Computer Society,
pp. 29–36.

[10] S. Szeider, NP-completeness of refutability by literal-once resolution,
in Automated Reasoning: First International Joint Conference, (IJ-
CAR), Springer Verlag, 2001, pp. 168–181.

[11] A. Van Gelder, Pool resolution and its relation to regular resolution
and DPLL with clause learning, in Logic for Programming, Artificial In-
telligence, and Reasoning (LPAR), Lecture Notes in Computer Science
Intelligence 3835, Springer-Verlag, 2005, pp. 580–594.

8

