An Improved Separation of Regular Resolution

from Pool Resolution and Clause Learning
(Extended Abstract)

Maria Luisa Bonet* and Sam Buss**

! Lenguajes y Sistemas Informaticos, Universidad Politécnica de Catalufia,
Barcelona, Spain bonet@lsi.upc.edu
2 Department of Mathematics, University of California, San Diego, La Jolla, CA
92093-0112, USA sbuss@math.ucsd.edu

Abstract. We prove that the graph tautology principles of Alekhnovich,
Johannsen, Pitassi and Urquhart have polynomial size pool resolution
refutations that use only input lemmas as learned clauses and without
degenerate resolution inferences. These graph tautology principles can
be refuted by polynomial size DPLL proofs with clause learning, even
when restricted to greedy, unit-propagating DPLL search.

1 Introduction

DPLL algorithms with clause learning have been highly successful at solving real-
world instances of satisfiability (SAT), especially when extended with techniques
such as clause learning, restarts, variable selection heuristics, etc. The basic
DPLL procedure without clause learning or restarts is equivalent to tree-like
resolution. The addition of clause learning makes DPLL considerably stronger.
In fact, clause learning together with unlimited restarts is capable of simulating
general resolution proofs [12]. However, the exact power of DPLL with clause
learning but without restarts is unknown. This question is interesting both for
theoretical reasons and for the potential for better understanding the practical
performance of DPLL with clause learning.

Beame, Kautz, and Sabharwal [3] gave the first theoretical analysis of DPLL
with clause learning. Among other things, they noted that clause learning with
restarts simulates full resolution. Their construction required the DPLL algo-
rithm to ignore some contradictions, but this was rectified by Pipatsrisawat and
Darwiche [12] who showed that SAT solvers which do not ignore contradictions
can also simulate resolution. (See [2] for the bounded width setting.)

[3] also studied DPLL clause learning without restarts. Using “proof trace
extensions”, they were able to show that DPLL with clause learning and no
restarts is strictly stronger than any “natural” proof system strictly weaker than

* Supported in part by grant TIN2010-20967-C04-02.
** Supported in part by NSF grants DMS-0700533 and DMS-1101228, and by a grant
from the Simons Foundation (#208717 to Sam Buss)

resolution. Here, a natural proof system is one in which proofs do not increase
in length when variables are restricted to constants. However, the proof trace
method and the improved constructions of [9, 7] have the drawback of introducing
extraneous variables and clauses, and using contrived resolution refutations.

There have been two approaches to formalizing DPLL with clause learning as
a static proof system rather than as a proof search algorithm. The first approach
was pool resolution with a degenerate resolution inference [16,9]. Pool resolution
requires proofs to have a depth-first regular traversal similarly to the search space
of a DPLL algorithm. Degenerate resolution allows resolution inferences in which
the hypotheses may lack occurrences of the resolution literal. Van Gelder [16]
argued that pool resolution with degenerate resolution inferences simulates a
wide range of DPLL algorithms with clause learning. He also gave a proof, based
on [1], that pool resolution with degenerate inferences is stronger than regular
resolution, using extraneous variables similar to proof trace extensions.

The second approach [7] is the proof system regWTRI that uses a “partially
degenerate” resolution rule called w-resolution, and clause learning of input lem-
mas. [7] showed that regWRTI exactly captures non-greedy DPLL with clause
learning. By “non-greedy” is meant that contradictions may need to be ignored.

It remains open whether any of DPLL with clause learning, pool resolution,
or the regWRTI proof system can polynomially simulate general resolution. One
approach to answering these questions is to try to separate pool resolution (say)
from general resolution. So far, however, separation results are known only for
the weaker system of regular resolution; namely, Alekhnovitch et al. [1], gave an
exponential separation between regular resolution and general resolution based
on two families of tautologies, variants of the graph tautologies GT’ and the
“Stone” pebbling tautologies. Urquhart [15] subsequently gave a related sepa-
ration.? In the present paper, we call the tautologies GT' the guarded graph
tautologies, and henceforth denote them GGT instead of GT’.

The obvious next question is whether pool resolution (say) has polynomial
size proofs of the GGT tautologies or the Stone tautologies. The main result of
the present paper resolves the first question by showing that pool resolution does
indeed have polynomial size proofs of the graph tautologies GGT. Our proofs
apply to the original GGT principles, without the use of extraneous variables in
the style of proof trace extensions; and our refutations use only the traditional
resolution rule, not degenerate resolution inferences or w-resolution inferences.
In addition, we use only learning of input clauses; thus, our refutations are also
regWRTI proofs (and in fact regRTI proofs) in the terminology of [7]. As a
corollary of the characterization of regWRTT by [7], the GGT principles have
polynomial size refutations that can found by a DPLL algorithm with clause
learning and without restarts (under the appropriate variable selection order).

It is still open if there are polynomial size pool resolution refutations for the
Stone principles. A much more ambitious project would be to show that pool

3 Huang and Yu [10] also gave a separation of regular resolution and general resolution,
but only for a single set of clauses. Goerdt [8] gave a quasipolynomial separation of
regular resolution and general resolution.

resolution or regWRTT can simulate full resolution, or that DPLL with clause
learning and without restarts can simulate full resolution. It is far from clear
that this holds, but, if so, our methods may represent a step in that direction.

The first idea for constructing our pool resolution or regRTT proofs might be
to try to follow the regular refutations of the graph tautology clauses GT,, as
given by [14,5,17]: however, these refutations cannot be used directly since the
transitivity clauses of GT,, are “guarded” in the GGT,, clauses and this yields
refutations which violate the regularity /pool property. So, the second idea is that
the proof search process branches as needed to learn transitivity clauses. This
generates additional clauses that must be proved: to handle these, we develop
a notion of “bipartite partial order” and show that the refutations of [14,5,17]
can still be used in the presence of a bipartite partial order. The tricky part is
to be sure that exactly the right set of clauses is derived by each subproof.

Our refutations of the GGT,, tautologies can be modified so that they are
“greedy” and “unit-propagating”. This means that, at any point in the proof
search process, if it is possible to give an “input” refutation of the current clause,
then that refutation is used immediately. The greedy and unit-propagating con-
ditions correspond well to actual implemented DPLL proof search algorithms
which backtrack whenever a contradiction can be found by unit propagation (c.f.,
[9]). The paper concludes with a short description of a greedy, unit-propagating
DPLL clause learning algorithm for GGT,,.

For space reasons, only the main constructions for our proofs are included
in this extended abstract. Complete proofs are in the full version of the paper
available at the authors’ web pages and at http://arxiv.org/abs/1202.2296.

2 Preliminaries and Main Results

Propositional variables range over the values True and Fualse. The notation T
expresses the negation of x. A literal is either a variable z or a negated variable Z.
A clause C'is a set of literals, interpreted as the disjunction (V) of its members.

Definition 1. The various forms of resolution take two premise clauses A and
B and a resolution literal x, and produce a new clause C called the resolvent.

A B
C

It is required that T ¢ A and x ¢ B. The different forms of resolution are:

Resolution rule. Here A:= A’V x and B:= B'V T, and C is A’V B’.

Degenerate resolution rule. [9,16] If x € A and T € B, we apply the resolution
rule to obtain C. If A contains x, and B doesn’t contain T, then the resolvent
C is B. If A doesn’t contain x, and B contains T, then the resolvent C is A.
If neither A nor B contains the literal x or T, then C is the lesser of A or B
according to some tiebreaking ordering of clauses.

w-resolution rule. [7] Here C := (A\{x})V (B\{Z}). If the literal x ¢ A (resp.,
T ¢ B), then it is called a phantom literal of A (resp., B).

A resolution derivation of a clause C' from a set I’ of clauses is a sequence
of clauses that derives C from the clauses of F' using resolution. Degenerate and
w-resolution derivations are defined similarly. A refutation of F is a derivation
of the empty clause. A refutation is tree-like if its underlying graph is a tree.
A resolution derivation is regular provided that, along any path in the directed
acyclic graph, each variable is resolved at most once and provided that no vari-
able appearing in the final clause is used as a resolution variable.

Resolution is well-known to be sound and complete; in particular, C' is a
consequence of F iff there is a derivation of some C’ C C from F.

We define pool resolution using the conventions of [7], who called this concept
“tree-like regular resolution with lemmas”. The idea is that any clause appearing
in the proof is a learned lemma and can be used freely from then on.

Definition 2. The postorder ordering < of the nodes in a tree T is defined so
that if w is a node of T, v a node in the subtree rooted at the left child of u, and
w a node in the subtree rooted at the right child of u, then v <p w < wu.

Definition 3. A pool resolution proof from a set of initial clauses F' is a res-
olution proof tree T that fulfills the following conditions: (a) each leaf is labeled
either with a clause of F' or with a clause (called a “lemma”) that appears earlier
in the tree in the < ordering; (b) each internal node is labeled with a clause
and a literal, and the clause is obtained by resolution from the clauses labeling
the node’s children, by resolving on the given literal; (¢) the proof tree is reqular;
(d) the root is labeled with the conclusion clause (the empty clause in the case of
a pool refutation).

The notions of degenerate pool resolution proof and pool w-resolution proof are
defined similarly. Note that [16,9] defined pool resolution to be the degenerate
pool resolution system, so our notion of pool resolution is more restrictive than
theirs. (Our definition is equivalent to the one in [6], however.)

A “lemma” in part (a) of Definition 3 is called an input lemma if it is derived
by input subderivation, namely by a subderivation in which each inference has
at least one hypothesis which is a member of F or is a lemma.

The various graph tautologies, sometimes also called “ordering principles”
use a size parameter n > 1, and variables z; ; with ¢, j € [n] and i # j, where
[n] = {0,1,2,...,n—1}. A variable z; ; will intuitively represent the condition
that ¢+ < j with < intended to be a total, linear order. We thus adopt the
convention that z; ; and T;; are the identical literal. This identification makes
no essential difference to the complexity of proofs of the tautologies, but reduces
the number of literals and clauses, and simplifies definitions.

The following tautologies are based on Krishnamurthy [11]. These tautolo-
gies, or similar ones, have also been studied by [14,5,1,4,13,17].

Definition 4. Let n > 1. Then GT,, is the following set of clauses:

(ap) The clauses \/;; xj, for each value i < n.
~vp) The transitivity clauses T ; := T; ; VT, V Tk for all distinct i, j, k in [n].
1] 3Js N Js)

Note that the clauses T5 j x, T} %, and T} ; ; are identical.

The next definition is from [1] who used the notation GT/,. They used par-
ticular functions r and s for their lower bound proof, but since our upper bound
proof does not depend on the details of » and s we leave them unspecified. We
require that r(i, j, k) # s(4,j, k) and that the set {r(¢, 7, k), s(i,5,k)} & {i,7,k}.
W.lo.g., r(i,j, k) =r(j, k,i) = r(k,i,J), and similarly for s.

Definition 5. Let n > 1, and let (i, j,k) and s(i,j,k) be functions mapping
[n)3 — [n] as above. The guarded graph tautology GGT,, consists of:

(ap) The clauses \/; ,; xj;, for each value i < n.
(vg) The guarded transitivity clauses T; j .V s and T j 1.V Ty s, for all distinct
i,7,k in [n], where r = r(i,j, k) and s = s(i, 5, k).

Theorem 1. The guarded graph tautology principles GGT,, have polynomial
size pool resolution refutations.

Theorem 2. The guarded graph tautology principles GGT,, have polynomial
size, tree-like regular resolution refutations with input lemmas.

A consequence of Theorem 2 is that the GGT,, clauses can be shown unsatisfi-
able by non-greedy polynomial size DPLL searches using clause learning. This
follows via Theorem 5.6 of [7]. Even better, we can improve the constructions
of Theorems 1 and 2 to show that the GGT,, principles can be refuted also by
greedy, unit-propagating polynomial size DPLL searches with clause learning.

Definition 6. Let R be a tree-like regular resolution (or w-resolution) refutation
with input lemmas from the initial clauses I'. Let C' be a clause in R. Define
I'(C) to be I' plus every clause D < C'in R that is derived by an input subproof.
Define C* to be the set of literals that occur as a literal (or as a literal or phantom
literal) in any clause on the path from C down to the root of R.

The refutation R 1is greedy and unit-propagating provided that, for each
clause C of R, if there is an input derivation from I'(C) of some clause C' C CF
which does not resolve on any literal in CT, then C is derived in R by such a
derivation.

Note that, as proved in [3], the condition that there is a input derivation from
I'(C) of some C’ C C* which does not resolve on literals in C't is equivalent to
the condition that if all literals of CT are set false then unit propagation yields a
contradiction from I'(C). (In [3], these are called “trivial” proofs.) This justifies
the terminology “unit-propagating”.

Theorem 3. The guarded graph tautology principles GGT,, have greedy, unit-
propagating, polynomial size, tree-like, regular w-resolution refutations with input
lemmas.

A similar theorem holds for greedy, unit-propagating pool resolution refutations
with degenerate resolution inferences.

Theorem 4. There are DPLL search procedures with clause learning which are
greedy, unit-propagating, but do not use restarts, that refute the GGT,, clauses
in polynomial time.

3 Proof of Main Theorems

The following theorem is an important ingredient of our upper bound proof.

Theorem 5. (Stalmarck [14], Bonet-Galesi [5], Van Gelder [17]) The sets GT,,
have reqular resolution refutations P, of polynomial size O(n?).

The refutations P, can be modified to give refutations of GGT,, by first
deriving each transitive clause Tj ;. from the two guarded transitivity clauses
of (7). This however destroys the regularity property, and in fact no polynomial
size regular refutations exist for GGT,, [1].

As usual, a partial order on [n] is an antisymmetric, transitive relation binary
relation on [n]. We shall be mostly interested in “partial specifications” of partial
orders: partial specifications are not required to be transitive.

Definition 7. A partial specification, 7, of a partial order is a set of ordered
pairs T C [n] X [n] which are consistent with some (partial) order. The minimal
partial order containing T is the transitive closure of T. We write i <, j to denote
(1,7) € T, and write i <% j to denote that (i, j) is in the transitive closure of T.

The T-minimal elements are the i’s such that j <. i does not hold for any j.

We are primarily interested in particular kinds of partial orders, called “bi-
partite” partial orders, which do not have any chain of inequalities © < y < z.

Definition 8. A bipartite partial order is a binary relation m on [n] with disjoint
domain and range. The set of m-minimal elements is denoted M.

Figure 1 shows an example. The bipartiteness of 7 arises from the fact that M,
and [n] \ M, partition [n] into two sets. Note that if ¢ <, j, then i € M, and
j & M. In addition, M, contains the isolated points of .

Definition 9. Let 7 be a specification of a partial order. The bipartite partial
order m that is associated with 7 is defined by letting i <, j hold for precisely
those © and j such that i is T-minimal and 1 <% j.

It is easy to check that 7 is a bipartite partial order. The intuition is that
m retains only the information about whether ¢ <X j for minimal elements 7, and
forgets the ordering that 7 imposes on non-minimal elements. (See Fig. 1.)

Definition 10. Let w be a bipartite partial order on [n]. Then GT , is the set
of clauses containing:

(o) The clauses \/j# xj i, for each value i € M.

(B) The transitivity clauses T; j := T; j VT k V Tk, for all distinct i, j, k in M.
(Vertices i, 4, k" in Fig. 2 show an example.)

(v) The transitivity clauses T; ;1 for all distinct 4, j, k such that i,j € My and
i Az k and j <; k. (As shown in Fig. 2.)

6 10 7 8 9 11

o1 e
Fig. 1. Example of a partial specification of a partial order (left) and the associated
bipartite partial order (right).

(] \ My: b I k 03

M,: i [K °

Fig. 2. A bipartite partial order 7 is pictured, with the ordered pairs of m shown as
directed edges. (For instance, j < k holds.) The nodes ¢, j, k shown are an example of
nodes used for a transitivity axiom T; ; V Zjk V Tk, of type (7). The nodes i, j, k" are
an example of the nodes for a transitivity axiom of type (3).

GTy , is satisfiable if 7 is nonempty, for example by the assignment that sets
xj,; true for some fixed j ¢ M, and every ¢ € M., and sets all other variables
false. However, there is no assignment which satisfies GT ,, and is consistent
with 7. This fact is proved by the regular derivation P, of Lemma 1.

Definition 11. For 7 a bipartite partial order, the clause (\/T) is defined by

(\/ﬁ) = {Ti; i <z 7}

Lemma 1. Let 7 be a bipartite partial order on [n]. Then there is a regular
derivation Pr of (\VT) from the set GTx .

The only variables resolved on in Py are the following: the variables x; ; such
that i,5 € My, and the variables x; 1, such that k ¢ My, i € My, and i A k.

Lemma 1 implies that if 7 is the bipartite partial order associated with a
partial specification 7 of a partial order, then the derivation P, does not resolve
on any literal whose value is set by 7. This is proved by noting that if i <, 7,
then j ¢ M.

If 7 is empty, M, = [n] and there are no clauses of type (7). In this case,
GTy,y, is identical to GT,,, and Py is the refutation of GT,, of Theorem 5.

Lemma 1 is proved similarly to Theorem 5, taking care to resolve on variables
in the correct order. The proof is left to the full version of the paper.

Proof (of Theorem 1). We will construct a series of “LR partial refutations”,
denoted Ry, Ry, Ra,...; this process eventually terminates with a pool refutation
of GGT,,. The terminology “LR partial” indicates that the refutation is being
constructed in left-to-right order, with the left part of the refutation properly

formed, but with many of the remaining leaves being labeled with bipartite
partial orders instead of with valid learned clauses or initial clauses from GGT,,.

An LR partial refutation R is a tree with nodes labeled with clauses that
form a correct pool resolution proof, except possibly at the leaves (the initial
clauses). Furthermore, it must satisfy the following conditions.

a. R is a tree. The root is labeled with the empty clause. Each non-leaf node
in R has a left child and right child; the clause labeling the node is derived
by resolution from the clauses on its two children.

b. For C a clause occurring in R, define 7(C) to be the set of ordered pairs
(i,7) such that T; ; € C*. Note that C C CT by definition. In many cases,
7(C') will be a partial specification of a partial order, but this is not always
true. For instance, if C is a transitivity axiom, 7(C) has a 3-cycle and is not
consistent as a specification of a partial order.

c. Leaves of R are flagged as “finished” or “unfinished”.

d. Each finished leaf L is labeled with either a clause from GGT,, or a clause
that occurs to the left of L in the postorder traversal of R.

e. For an unfinished leaf labeled with clause C, the set 7(C) is a partial spec-
ification of a partial order. Furthermore, letting m be the bipartite partial
order associated with 7(C), the clause C' is equal to (\/7).

Property e. is crucial for avoiding degenerate resolution inferences, and is a
novel part of our construction. As shown below, each unfinished leaf, labeled with
a clause C' = (\/7), will be replaced by a derivation S. The derivation S often will
be based on P, and thus might be expected to end with exactly the clause C;
however, some of the resolution inferences needed for P, might be disallowed
by the pool property. So S will instead be a derivation of a clause C’ such that
C C C" C C*. The condition ¢’ C C7 is required because any literal z € C'\ C
will be handled by modifying the refutation R by propagating x downward in R
until reaching a clause that already contains z. The condition C’ C C* ensures
that such a clause exists. The fact that C’ DO C means that enough literals are
present for the derivation to use only (non-degenerate) resolution inferences —
indeed our constructions will pick C' so that it contains the literals that must be
present for use as resolution literals.

The construction begins by letting Ry be the “empty” refutation, containing
just the empty clause. Of course, this clause is an unfinished leaf, and 7(0) = 0.

Assume R; has been already constructed, with C' the leftmost unfinished
clause. R;y1 will be formed by replacing C' by a refutation S of some clause C”
such that C C ¢’ C C+.

We need to describe the (LR partial) refutation S. By e., C' is (\/7). The
intuition is that we would like to let S be the derivation P, of C from Lemma 1.
The first difficulty with this is that P, is dag-like, and the L R-refutation is
intended to be tree-like. This difficulty, however, can be circumvented by just
expanding P, which is regular, into a tree-like regular derivation with lemmas by
the simple expedient of using a depth-first traversal of P,. The second, and more
serious, difficulty is that P, is a derivation from GT,,, not GGT,; namely, Py

uses the transitivity clauses of GT,, instead of the guarded transitivity clauses
of GGT,,. These transitivity clauses T; ; are handled one at a time treating
them, as needed, with four separate cases. Case (i) requires no change to Pr;
cases (#1) and (iit) require a small change; and case (iv) abandons the subproof Py
and instead “learns” the transitivity clause.

By the remark made after Lemma 1, no literal in CT is used as a resolution
literal in Pky.

(?) If an initial transitivity clause of P, already appears earlier in R; (that is,
to the left of C), then it is already learned, and can be used freely in P;.

In the remaining cases (i1)-(iv), the transitivity clause T; ; ; is not yet learned.
Let the guard variable for T; ; be z, s, so r = r(i,j, k) and s = s(3, j, k).

(#) Suppose case (1) does not apply and that the guard variable z, s or its
negation T, s is a member of Ct. The guard variable thus is used as a
resolution variable somewhere along the branch from the root to clause C.
Then, as just argued above, Lemma 1 implies that z, s is not resolved on
in Pr. Therefore, we can add the literal x, s or T, s (respectively) to the clause
T; ;1 and to every clause on any path below T; ;j until reaching a clause
that already contains that literal. This replaces T; ; with one of the initial
clauses T j 1 V @y, s or Tj j 1, VZp s of GGT,,. By construction, it preserves the
validity of the resolution inferences of R; as well as the regularity property.
Note this adds the literal z, s or &, s to the final clause C” of the modified Py.
This maintains the property that C C C' C CT.

(77) Suppose case (1) does not apply and that z, s is not used as a resolution
variable anywhere below T; ;1 in Py and is not a member of C*. In this
case, Py is modified so as to derive the clause T; ; from the two GGT,,
clauses T; j 1 V s and T; j 1 V T s by resolving on x, .. This maintains the
regularity of the derivation. And, henceforth Tj ; will be learned.

If all of the transitivity clauses in P, can be handled by cases (i)-(i4), then we
use P, to define R;y;. Namely, let P, be the derivation P, as modified by the
applications of cases (i) and (#4). The derivation P, is regular and dag-like, so
we can recast it as a tree-like derivation S with lemmas, by using a depth-first
traversal of P.. The size of S is linear in the size of P/, since the only new clauses
in S are clauses which are repeated as lemmas and, as an overestimate, there are
at most two lemmas per clause in P.. The final line of S is the clause C’, namely
C plus the literals introduced by case (ii). The derivation R;1 is formed from R;
by replacing the clause C with the derivation S of C’, and then propagating each
new literal x € ¢’ \ C downward, adding x to clauses below S until reaching a
clause that already contains x. Since S contains no unfinished leaf, R;; 1 contains
one fewer unfinished leaves than R;.

On the other hand, if even one transitivity axiom 7} ; » in Py is not covered
by the above three cases, then case (iv) must be used instead. This introduces a
completely different construction to form S:

(tv) Let T; ;1 be any transitivity axiom in P, that is not covered by cases (4)-
(#7). The guard variable z, s is used as a resolution variable in P, somewhere
below T ; r; in general, this means we cannot use resolution on z, , to derive
T; j,, while maintaining the pool property. Hence, Py is no longer used, and
we instead form S with a short left-branching path that “learns” T; ;. This
will generate two or three new unfinished leaf nodes. Since unfinished leaf
nodes in a LR partial derivation must be labeled with clauses from bipartite
partial orders, it is also necessary to attach short derivations to these unfin-
ished leaf nodes to make the unfinished leaf clauses of S' correspond correctly
to bipartite partial orders. These unfinished leaf nodes are then kept in R;11
to be handled at later stages. There are separate constructions depending
on whether T; ; 1, is a clause of type (5) or (7); some of the details are given
below.

First suppose T; ;1 is of type (v), and thus Z; appears in C. (Refer to
Fig. 2.) Let z, s be the guard variable for the transitivity axiom T; ;. The
derivation S will have the form

- Si. - .
Ti,j,k; Ty s n,j,k) Trs 1. DLt
T - Ti i Tt b Tt (s 52~ e
1,5,k 4,59 Liky TT-[jk;jR(3)] oLt
Tijs Tjok> T=[jksj R(3)] Tjis Tjk T=[jk;iR(j)]

Lk T-[jk]
The notation 7 denotes the disjunction of the negations of the literals in
7 omitting the literal T; ;. We write “R(j)” to indicate literals x; o such that
J == L. (The “R(j)” means “range of j”.) Thus 7_f;x;;r(;) denotes the clause
containing the negations of the literals in 7, omitting Z;, and any literals Z;
such that j <z £. The clause T_[;.;r(;) is defined similarly, and the notation
extends in the obvious way.

The upper leftmost inference of .S is a resolution inference on the variable z, ;.
Since T; j, is not covered by either case (i) or (i), the variable x,, does not
appear in or below clause C' in R;. Thus, this use of z, s as a resolution variable
does not violate regularity. Furthermore, since T; ;1 is of type (), we have
iAr(0)]s JAw(0)is 1Ar(c)k, and kA (cyi. Thus the literals z; ; and z; do not
appear in or below C| so they also can be resolved on without violating regularity.

Let C; and C5 be the final clauses of S; and S3, and let C[be the clause
below C; and above C. The set 7(C2) is obtained by adding (j,4) to 7(C), and
similarly 7(C}) is 7(C) plus (¢, 7). Since T; ;i is type (v), we have i,j € M.
Therefore, since 7(C) is a partial specification of a partial order, 7(Cy) and
7(Cy) are also both partial specifications of partial orders. Let w2 and 71 be the
bipartite orders associated with these two partial specifications (respectively).
We will form the subproof S; so that it contains the clause (\/71) as its only
unfinished clause. This will require adding inferences in S; which add and remove
the appropriate literals. The first step of this type already occurs in going up
from C; to C; since this has removed T;; and added T; j, reflecting the fact
that j is not mi-minimal and thus z;; € m but z;; ¢ 1. Similarly, we will
form Sy so that its only unfinished clause is (\/72).

b [] 12 k ® /3

1

¢ J
—% —

() Tjks Tiytn, Tjoiy T (b) Tj k, Tiey, Tjyiy T

Fig. 3. The partial orders for the fragment of Sz shown in (1).

The situation for the subproof S5 is shown in Fig. 3, which shows an extract
from Fig. 2: the edges shown in part (a) of the figure correspond to the literals
in the final line Cy of S5. Recall that literals 7; ¢ such that j <. ¢ are omitted
from the last line of S. (Correspondingly, the edge from 4 to ¢; is omitted
from Fig. 3.) Cy may not correspond to a bipartite partial order as it may not
partition [n] into minimal and non-minimal elements; thus, Cy may not qualify
to be an unfinished node of R;;1. (An example of this in Fig. 3(a) is that
J =7(Co) @ =7(Cy) {2, corresponding to T;; and Z; ¢, being in Cy.) The bipartite
partial order o associated with 7(C2) is equal to the bipartite partial order that
agrees with 7 except that each i <, ¢ condition is replaced with the condition
J <, £. (This is represented in Fig. 3(b) by the fact that the edge from i to £
has been replaced by the edge from j to £5. Note that the vertex ¢ is no longer
a minimal element of my; that is, i ¢ M,,.) We wish to form S5 to be a regular
derivation of the clause T; i, T-[jr;ir(;) from the clause (\/72).

The subproof of S, for replacing T; ¢, in T with T; ¢, in 7 is

Sé '..;..'restong

- = - o 1
LjisLilas Lly,j LjkrLjlarLjyisT (1)

= = = —k
TjksLilys Lgiy T

where T 18 T_[jr;iR(j);ito]- The part labeled “rest of Sp” will handle similarly the
other literals ¢ such that ¢ <, £ and j A ¢. The final line of S} is T ; s,. This is
a GT,, axiom, not a GGT,, axiom; however, it can be handled by the methods of
cases (4)-(¢4). Namely, if T} ; ¢, has already been learned by appearing somewhere
to the left in R;, then S is just this single clause. Otherwise, let the guard
variable for T} ; ¢, be x,/ o. If z,/ & is used as a resolution variable below Tj ; ¢,,
then replace T ; ¢, with T} ; ¢, V @ o Or T} 40, V Tpr s, and propagate the x,. o
or T, ¢ to clauses down the branch leading to T} ; ¢, until reaching a clause that
already contains that literal. Finally, if =,/ s has not been used as a resolution
variable in R; below C, then let S} consist of a resolution inference deriving (and
learning) T ; ¢, from the clauses Tj; ¢,, Trr s and T ; ¢, Ty o

To complete the construction of Ss, the inference (1) is repeated for each
value of ¢ such that i <, ¢ and j £, £. The result is that So has one unfinished
leaf clause, and it is labelled with the clause (\/72).

We next describe the subproof S; of S. The situation is shown in Fig. 4. As
in the formation of Sy, the final clause C in S; may need to be modified in order
to correspond to the bipartite partial order m which is associated with 7(Cq).
First, note that the literal Z;; is already replaced by T;; in the final clause

3l 123 k ® /3

7

i J

— — — —x — — — —x%
(@) Ti ks Tjyog Tiyjs T (b) Ti ks Tiog, Ty T

Fig. 4. The partial orders for the fragment of S; shown in (2).

of S7. The other change that is needed is that, for every ¢ such that j <, ¢
and i A ¢, we must replace T; ¢ with T; ¢ since we have j A, £ and i <, /.
Vertex ¢3 in Fig. 4 is an example of a such a value £. The ordering in the final
clause of S is shown in part (a), and the desired ordered pairs of 7; are shown
in part (b). Note that j is no longer a minimal element in 7.

The replacement of T;,, with T; ., is effected by the following inference,
letting T now be T_ ;. r(i);j¢s]-

Si '..5_.-restof5’1

_ _ 9
Ti,js Tjlss Lls,i Tiky Tibgy Tigy T (2)

= = = %
LikyLj s> Lig,T

The “rest of S1” will handle similarly the other literals ¢ such that j <, ¢
and ¢ A £. Note that the final clause of S is the transitivity axiom T; ; ;.
The subproof 5] is formed in the same way that S} was formed above. Namely,
depending on the status of the guard variable x, ¢ for T} ; ¢, , one of the following
is done: (¢) the clause T; j ¢, is already learned and can be used as is, or (i¢) one of
Ty g OF Ty o is added to the clause and propagated down the proof, or (iii) the
clause Tj j ¢, is inferred using resolution on z,s o and becomes learned.

To complete the construction of Si, the inference (2) is repeated for each
value of ¢ such that j <, ¢ and i £, £. The result is that S; has one unfinished
leaf clause, and it corresponds to the bipartite partial order .

That completes the construction of the subproof S for the subcase of (iv)
where T; ; 1, is of type (7). Now suppose T; ; is of type (8). (For instance, the
values i, j, k" of Fig. 2.) In this case the derivation S will have the form

T j ks Trs ik Trs 53.. -
T jk Tij> Ti k> T-[jR(i),kR(iU5)] Sy oo
Ting> Tk TR KR(U7) Ti g Thyjs T-[jR(iOK))] S5, o
Ting> TLRGOK) Tjis T-[iR(j)]
™

where ;. is the guard variable for T; ;. We write [T_[jr(ink)] to mean the
negations of literals in 7 omitting any literal Z;, such that i <. £ and k£ < £.
Similarly, 7_[;r(i),kr(iuj) indicates the negations of literals in 7, omitting the
literals =; ¢ such that ¢ <, £ and the literals Zy ¢ such that ¢ < £ or j <, £.

Note that the resolution on x, used to derive T; ; does not violate reg-
ularity, since otherwise T ; would have been covered by case (ii). Likewise,
the resolutions on x; j, ;%, and z; do not violate regularity since Tj ; is of
type (6).

The subproofs S3, S4, and S5 are handled similarly to the way the subproofs
S1 and S; were handled above, albeit with some extra complications in the Sy
case. The detailed constructions are in the full version of the paper.

Once some R; has no unfinished clauses, we have the desired pool refutation.
We claim that the process stops after polynomially many stages.

To prove this, recall that R;; is formed by handling the leftmost unfinished
clause using one of cases (7)-(iv). In the first three cases, the unfinished clause
is replaced by a derivation based on P,. Since P, has size O(n?), this means
that the number of clauses in R;11 is at most the number of clauses in R; plus
O(n?). Also, by construction, R;,1 has one fewer unfinished clauses than R;. In
case () however, R;11 is formed by adding up to O(n) many clauses to R; plus
adding either two or three new unfinished leaf clauses. However, case (i) always
causes at least one transitivity axiom T; ;1 to be learned. Therefore, case (iv) can
occur at most 2(33) = O(n?) times. Consequently at most 3-2(%) = O(n®) many
unfinished clauses are added throughout the entire process. It follows that the
process stops with R; having no unfinished clauses for some i < 6(%) = O(n?).
Therefore there is a pool refutation of GGT,, with O(n®) lines.

By inspection, each clause in the refutation contains O(n?) literals. This
is because the largest clauses are those corresponding to (small modifications
of) bipartite partial orders, and because bipartite partial orders can contain at
most O(n?) many ordered pairs. Furthermore, the refutations P, for the graph
tautology GT,, contain only clauses of size O(n?). Q.E.D. Theorem 1

The proofs of Theorems 2 and 3 are left to the full version of the paper,
but use similar methods. Theorem 4 follows from the algorithm implicit in the
proof of Theorem 3. The following gives a sketch of the algorithm for DPLL
search with clause learning which always succeeds in finding a refutation of the
GGT,, clauses. At each point in the DPLL search procedure, there is a partial
assignment 7, and the search algorithm must do one of the following:

(1) If unit propagation yields a contradiction, then learn a clause T; ; if possi-
ble, and backtrack.

(2) Otherwise, if there are any literals in the bipartite partial order 7 associated
with 7 which are not assigned a value, branch on one of these literals to set
its value.

(3) Otherwise, determine whether there is a clause T; ; ; which is used in the
proof P, whose guard literals are resolved on in P,. (See Lemma 1.) If not,
do a DPLL traversal of P,, eventually backtracking from the assignment 7.

(4) Otherwise, let T; ; x block Py from being traversed, and branch on its vari-
ables in the order given in the above proof. From this, learn the clause 7 ; 1.

Acknowledgements. We thank J. Hoffmann and J. Johannsen for a correction
to an earlier version of the proof of Theorem 2, and A. Van Gelder, A. Beckmann,
and T. Pitassi for encouragement, suggestions, and comments.

References

10.

11.

12.

13.

14.

15.

16.

17.

Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separa-
tion between regular and general resolution. Theory of Computation 3(4), 81-102
(2007)

. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many

restarts and and bounded-width resolution. Journal of Artificial Intelligence Re-
search 40, 353-373 (2011)

Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. J. Artificial Intelligence Research 22, 319-351 (2004)
Beckmann, A., Buss, S.R.: Separation results for the size of constant-depth propo-
sitional proofs. Annals of Pure and Applied Logic 136, 30-55 (2005)

Bonet, M.L., Galesi, N.: A study of proof search algorithms for resolution and
polynomial calculus. In: 40th Annual IEEE Symp. on Foundations of Computer
Science. pp. 422-431. IEEE Computer Society (1999)

Buss, S.R.: Pool resolution is NP-hard to recognise. Archive for Mathematical Logic
48(8), 793-798 (2009)

Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolu-
tion refinements that characterize DLL-algorithms with clause learning. Logical
Methods of Computer Science 4, 4:13(4:13), 1-18 (2008)

Goerdt, A.: Regular resolution versus unrestricted resolution. STAM Journal on
Computing 22(4), 661-683 (1993)

Hertel, P., Bacchus, F., Pitassi, T., Van Gelder, A.: Clause learning can effectively
p-simulate general propositional resolution. In: Proc. 23rd AAAT Conf. on Artificial
Intelligence (AAAT 2008). pp. 283-290. AAAIT Press (2008)

Huang, W., Yu, X.: A DNF without regular shortest consensus path. STAM Journal
on Computing 16(5), 836-840 (1987)

Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22(3), 253—
275 (1985)

Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning sat solvers as
resolution engines. Artificial Intelligence 172(2), 512-525 (2011)

Segerlind, N., Buss, S.R., Impagliazzo, R.: A switching lemma for small restrictions
and lower bounds for k-DNF resolution. STAM Journal on Computing 33(5), 1171—
1200 (2004)

Stalmarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta
Informatica 33(3), 277-280 (1996)

Urquhart, A.: A near-optimal separation of regular and general resolution. STAM
Journal on Computing 40(1), 107-121 (2011)

Van Gelder, A.: Pool resolution and its relation to regular resolution and DPLL
with clause learning. In: Logic for Programming, Artificial Intelligence, and Reason-
ing (LPAR 2005). pp. 580-594. Lecture Notes in Computer Science 3835, Springer-
Verlag (2005)

Van Gelder, A.: Preliminary report on input cover number as a metric for propo-
sitional resolution proofs. In: Theory and Applications of Satisfiability Testing -
SAT 2006. pp. 48-53. Lecture Notes in Computer Science 4121, Springer Verlag
(2006)

