
Characterising Definable Search Problems in

Bounded Arithmetic via Proof Notations

Arnold Beckmann∗

Department of Computer Science
Swansea University

Swansea SA2 8PP, UK
a.beckmann@swansea.ac.uk

Samuel R. Buss†

Department of Mathematics
University of California, San Diego

La Jolla, CA 92093-0112, USA
sbuss@math.ucsd.edu

October 23, 2009

Abstract

The complexity class of Πp
k-Polynomial Local Search (PLS) prob-

lems with Πp
` -goal is introduced, and is used to give new characterisa-

tions of definable search problems in fragments of Bounded Arithmetic.
The characterisations are established via notations for propositional
proofs obtained by translating Bounded Arithmetic proofs using the
Paris-Wilkie-translation. For ` ≤ k, the Σb

`+1-definable search prob-
lems of Tk+1

2 are exactly characterised by Πp
k-PLS problems with Πp

` -
goals. These Πp

k-PLS problems can be defined in a weak base theory
such as S1

2, and proved to be total in Tk+1
2 . Furthermore, the Πp

k-PLS
definitions can be Skolemised with simple polynomial time functions.
The Skolemised Πp

k-PLS definitions give rise to a new ∀Σb
1(α) principle

conjectured to separate Tk2(α) from Tk+1
2 (α).

1 Introduction

Bounded Arithmetic in the form introduced by the second author [Bus86]
denotes a collection of theories of arithmetic which have a strong connection
to computational complexity. An important goal in Bounded Arithmetic
is to give good descriptions of the functions that are definable in a certain
theory by a certain class of formulas. For the sake of simplicity of this intro-
duction, we will concentrate only on the Bounded Arithmetic theories Si2.
These theories are given as first order theories of arithmetic in a language
which suitably extends that of Peano Arithmetic, where induction is re-
stricted in two ways. First, logarithmic induction is considered which only
∗Supported in part by EPSRC grant EP/D03809X/1.
†Supported in part by NSF grant DMS-0700533.

1

inducts over a logarithmic part of the universe of discourse.

ϕ(0) ∧ (∀x)(ϕ(x) → ϕ(x+ 1)) → (∀x)ϕ(|x|) .

Here, |x| denotes the length of the binary representation of the natural num-
ber x, which defines a kind of logarithm on natural numbers. As in these
theories exponentiation will not be a total function, this is a proper restric-
tion. Second, the properties which can be inducted on, must be described
by a suitably restricted (“bounded”) formula. The class of formulas used
here are the Σb

i -formulas which exactly characterise Σp
i , that is, properties

of the i-th level of the polynomial time hierarchy of predicates. The main
axioms of the theory Si2 are the instances of logarithmic induction for Σb

i

formulas.
Let a (multi-)function f be called Σb

j -definable in Si2, if its graph can
be expressed by a Σb

j -formula ϕ, such that the totality of f , which renders
as (∀x)(∃y)ϕ(x, y), is provable from the Si2-axioms in first-order logic. The
main results characterising definable (multi-)functions in Bounded Arith-
metic are the following.

• Buss [Bus86] characterised the Σb
i -definable functions of Si2 as FPΣp

i−1 ,
the i-th level of the polynomial time hierarchy of functions.

• Kraj́ıček [Kra93] characterised the Σb
i+1-definable multi-functions of

Si2 as the class FPΣp
i [wit,O(log n)] of multi-functions which can be

computed in polynomial time using a witness oracle from Σp
i , where

the number of oracle queries is restricted to O(log n) many (n being
the length of the input).

• Buss and Kraj́ıček [BK94] characterised the Σb
1-definable multi-

functions of S2
2 as projections of solutions to polynomial local search

problems. This result extends to higher levels as well: the Σb
i−1-

definable multi-functions of Si2 are exactly the projections of solutions
to problems from PLSΣp

i−2 , which is the class of polynomial local search
problems relativised to Σp

i−2-oracles.

• Pollett [Pol99] showed that the Σb
j+1-definable multi-functions in Si2

for j > i are exactly FPΣp
j [wit,O(1)].

The characterisation of the Σb
i -definable functions of Sk+1

2 for 0 < i < k
turned out to be more difficult, but recently some advances have been made.
Kraj́ıček, Skelley, and Thapen [KST07] characterised the Σb

1-definable func-
tions of S3

2 in terms of coloured PLS problems, and the Σb
1-definable func-

tions of S4
2 in terms of a kind of reflection principle, and also in terms of

a kind of recursion called verifiable recursion. Subsequently, Skelley and
Thapen [ST07] characterised the Σb

1-definable functions of Sk+1
2 , for all

2

k ≥ 2, in terms of a combinatorial principle for k-turn games. An ear-
lier, more complex, game characterisation of the same functions was given
by Pudlák [Pud06] using a combinatorial analysis of Herbrand disjunctions,
which has been improved later by the same author [Pud07].

In this article we will provide characterisations for all pairs of bounded
formula class Σb

`+1 and theory Sk+2
2 , for ` < k, in terms of generalisations of

PLS problems which we call Πb
k-PLS problems with Πb

` -goals. We will define
the new complexity classes in Section 3. An instance of a Πb

k-PLS problems
with Πb

` -goals will consist, on input a, of a polynomially bounded set of fea-
sible solutions of complexity Πb

k and a goal set of complexity Πb
` , an initial

value function computing a feasible solution, a cost function computing the
cost of a feasible solution, and a neighbourhood function computing from
a given feasible solution another feasible solution (its neighbour), such that
either the computed neighbour is identical to the original solution, or the
neighbour is of lower cost — these functions have to be polynomial time
computable. The goal set has to satisfy that it consists of exactly those
feasible solutions for which the neighbourhood function is the identity. An
important requirement will be that these conditions are provable in a weak
theory like S1

2, as without such requirements we can easily construct for any
total function f given by (∀x)ϕ(x, f(x)) with ϕ polynomial time computable
and polynomially bounded (that is, for any (x, y) with ϕ(x, y), |y| is poly-
nomial in |x|), a Πb

1-PLS problem with goal ϕ — some of the requirements
will then depend on the totality of the function and can thus only be proved
in a theory which already proves the totality of the function.

The new characterisations have been obtained during a research visit of
the first author at the second author’s institution in autumn 2007. Prior
to this visit, these new characterisations had been partially guessed based
on recent results about obtaining the above-mentioned known character-
isations of definable functions via notations for propositional proofs and
cut-reduction [AB09]. Then, during the research visit, two different proofs
for the new characterisations have been obtained, one extending the idea
of notations for propositional proofs, and the other based on witnessing
arguments.

Witnessing arguments form the dominant method for characterising de-
finable (multi-)functions in Bounded Arithmetic. For example, the above-
mentioned known characterisation of definable (multi-)functions in Bounded
Arithmetic all have been proven by specially tailored witnessing arguments.
The new characterisation based on witnessing arguments will be reported in
a different place [BB08].

In this article, we present the new characterisations based on proof no-
tations, that is, via notations for propositional proofs which are obtained
by translating first order proofs and applying cut-reduction. We will com-
pare this approach with the above-mentioned witnessing argument at the

3

end of this introduction after we have given an idea of how the new char-
acterisations based on proof notations work. First, we briefly describe the
general idea of proof notations as presented in [AB09], which will also be
one half of the idea for the new characterisations. Suppose (∀x)(∃y)ϕ(x, y),
describing the totality of some multi-function, is provable in some Bounded
Arithmetic theory. Fix a particularly nice formal proof P of this. Given
a ∈ N we want to describe a procedure which finds some b such that ϕ(a, b)
is true (a is some canonical term in the language of Bounded Arithmetic with
value a.) Invert the proof P of (∀x)(∃y)ϕ(x, y) to a proof of (∃y)ϕ(x, y),
where x is now a free variable of the proof, then substitute a for all occur-
rences of x. This yields a proof of (∃y)ϕ(a, y). Now we want to translate
this proof to propositional logic. The propositional translation used here
is well-known in proof-theoretic investigations; the translation has been de-
scribed by Tait [Tai68], and later was independently discovered by Paris and
Wilkie [PW85]. In the Bounded Arithmetic world it is known as the Paris-
Wilkie translation. As these translations in general produce exponential size
formulas and proofs, we cannot directly work with the resulting objects, but
have to use notations for them. Applying cut-reduction appropriately to no-
tations of propositional proofs, we obtain a proof with all cut-formulas of (at
most) the same logical complexity as ϕ. It should be noted that a notation
h(a) for this proof can be computed in time polynomial in |a| (cf. [AB09].)

The general local search problem which finds a witness for (∃y)ϕ(a, y) can
now be characterised as follows. Its instance is given by a. The set of possible
solutions are those notations of a suitable size which denote derivations of a
suitable cut-rank (cut-rank is the maximal level of cut-formulas occurring in
the derivation). Furthermore, they must satisfy that the formula which they
derive is equivalent to (∃y)ϕ(a, y) ∨ ψ1 ∨ · · · ∨ ψl, where all ψi are of
low complexity and false. An initial solution is given by h(a). A neighbour
to a solution h is a solution which denotes an immediate subderivation of
the derivation denoted by h, if this exists, and h otherwise. The cost of a
notation is the height of the proof-tree represented by the notation. The
search task is to find a notation in the set of solutions which is a fixed point
of the neighbourhood function. Obviously, a solution to the search task
must exist. In fact, any solution of minimal cost has this property. Now
consider any solution to the search problem. It must have the property that
none of the immediate subderivations is in the solution space. This can only
happen if the last inference derives (∃y)ϕ(a, y) from a true statement ϕ(a, b)
for some b ∈ N. Thus b is a witness to (∃y)ϕ(a, y), and we can output b as
a solution to our original witnessing problem.

This approach works fine if the difference between the complexity of in-
duction and the level of definability we are interested in is not too big. For
the known characterisations mentioned above, things can be arranged such
that, depending on the complexity of logarithmic induction present in the
Bounded Arithmetic theory we started with, and the level of definability, we

4

obtain local search problems defined by functions of some level of the poly-
nomial time hierarchy, and different bounds to the cost function [AB09].
For example, if we start with the Σb

i -definable functions of Si2, we obtain a
local search problem defined by properties in FPΣb

i−1 , where the cost func-
tion is bounded by |a|O(1). Thus, by following the canonical path through
the search problem which starts at the initial value and iterates the neigh-
bourhood function until reaching a solution, we obtain a path of polynomial
length, which describes a procedure in FPΣb

i−1 to compute a witness.
For the new characterisations however, the complexity of induction is

much bigger than the level of definability, Σb
j versus Σb

i with j >> i say.
The above-described strategy would deal with this difference by applying
an appropriate number of cut-reductions (j + 1− i). But if j + 1− i is too
big, too many cut-reductions would have to be applied, resulting in a search
space which explodes: the search space would contain too many objects
as well as objects of too big size (iterated exponentiation in input length.)
In such a situation the solution will be to apply a maximal number of cut-
reductions such that the search space does not explode, and then change the
above-described local search problem so that a feasible solution still contains
a notation for derivation as above, but now the complexity of ψj does not
necessarily match that of ϕ but can be bigger. This is compensated by
accompanying the notation with an auxiliary search problem for determining
the truth of ψj . In other words, a feasible solution in the overall search
problem contains a notation h and a position s in an auxiliary search problem
for a formula ψ which is related to h. A solution to the auxiliary search
problem for ψ will determine the truth of ψ, and allow us to choose an
appropriate immediate subderivation of h to continue the overall search
problem. Overall, we end up with search problems where the set of feasible
solutions has high computational complexity (due to the assertion that all ψj
are false) but, e.g., the neighbourhood function is still of low computational
complexity (due to the use of the auxiliary search problems.) For example,
we obtain for the Σb

1-definable multi-functions of Sk+2
2 that the set of feasible

solutions has complexity Πp
k, but the neighbourhood function, cost function

and initial value function are polynomial time computable — this defines an
instance of the above-mentioned Πb

k-PLS problems.
An important property of our characterisation is that the Πb

k-PLS con-
ditions that the functions and predicates have to satisfy, are provable in
S1

2. Furthermore, these conditions can be written in a prenex form which
can be Skolemised with simple polynomial time computable functions, such
that the resulting conditions are still provable in S1

2. This has several con-
sequences: First, we obtain a much stronger algorithmic description of the
Σb
`+1-definable functions, as Πb

k-PLS problems with Πb
` -goals in Skolem form,

in which all conditions are given as ∀Πb
1 conditions. Second, using the

description in Skolem form we can define search principles classes based

5

on some generic principle (involving second order symbols representing the
functions and predicates that make up a Πb

k-PLS problem with Πb
` -goal in

Skolem form) which can be seen to characterise the ∀Σb
`+1-consequences of

Tk+1
2 . This, third, leads to the conjecture that the generic principle sepa-

rates relativised theories, i.e. Tk+1
2 (α) from Tk

2(α).
It is worth mentioning at this point that there are connections between

the approach described here and the approach considered in [ST07]. The
main similarity is that [ST07] also makes use of a translation of Tk+1

2 proofs
into exponential sized propositional proofs of some special purpose proposi-
tional proof systems which are described by polynomial time relations.

To come back to a comparison between the proof notation approach
to the new characterisations presented here, and the witnessing arguments
given in [BB08], the difference between them goes beyond obtaining the same
results with two different methods. The layout of the witnessing argument is
such that its inductive formulation has to incorporate the cut-reduction part
of the proof notation argument. This in particular means that the witnessing
argument directly deals with sequents of formulas as complex as induction
formulas, where the notation argument directly deals with sequents of for-
mulas of one level below that. So, on one hand the witnessing argument is
direct but more involved, whereas for the notation argument it takes a while
to set up the necessary machinery (mainly by repeating parts of [AB09]),
but after that is pretty straightforward. Both approaches have in common
that they use auxiliary search problems to determine the truth of formulas.
The difference between the two approaches becomes even more visible when
it comes to refinements of the results by Skolemising properties of the re-
sulting search problems. While this is a technical but straightforward task
for proof notations, it is more involved for the witnessing argument which
needs to prove a stronger Skolemisation result due to its inductive layout
and higher formula complexities.

The next section will briefly introduce Bounded Arithmetic in a way
suitable for our proof-theoretic investigations. Section 3 defines the search
problem classes of Πb

k-polynomial local search, and their generalisations.
Sections 4 and 5 review necessary definitions and results on notations and
cut-reduction in general, and for Bounded Arithmetic in particular, from
[AB09]. Section 6 then introduces the auxiliary search problems to deter-
mine the truth of formulas. This is followed by the section defining the search
problems which come from proofs in Bounded Arithmetic, and stating our
main result concerning the characterisation of definable multi-functions in
terms of Πb

k-PLS. The next two sections deal with a strengthening of our
main results by showing that the conditions for Πb

k-PLS problems extracted
from Bounded Arithmetic proofs can be Skolemised with simple, polyno-
mial time computable Skolem-functions. In the final section we will use
the Skolemised Πb

k-PLS problems to define ∀Σb
1(α)-sentences which we con-

6

jecture to separate relativised Bounded Arithmetic theories Sk+1
2 (α) from

Sk+2
2 (α).

2 Bounded Arithmetic

We introduce Bounded Arithmetic very briefly, and in a slightly nonstan-
dard way which better suits our proof-theoretic investigations. The reader
interested in the general theory of Bounded Arithmetic is kindly referred to
the literature [Bus86].

The standard model for Bounded Arithmetic is N, the set of natural
numbers. For a ∈ N let |a| denote the length of the binary representation
of a.

Definition 2.1 (Language of Bounded Arithmetic). We define the language
LBA of Bounded Arithmetic as in [Bus86] with a few additional symbols for
polynomial time computable functions:

LBA = {S,+,×, | · |,#,=,≤} ∪ {ca : a∈N} ∪ {2|·|, ·−,min, pair, (·)1, (·)2}

To explain the meaning of these symbols we briefly indicate their interpreta-
tion in the standard model N: {=,≤} denote the binary relations “equality”
and “less than or equal”. ca for a∈N denotes a constant with standard in-
terpretation cNa = a. We will often write a instead of ca, and 0 for c0. S,
| · | and 2|·| are unary function symbols whose standard interpretations are
given by the successor function, | · |N : a 7→ |a|, and 2|·|

N
: a 7→ 2|a|. +, ×,

·−, min and # are binary function symbols whose standard interpretation
are addition, multiplication, ·−N : a, b 7→ max(a−b, 0), minimisation, and
#N : a, b 7→ 2|a|·|b|. pair, (·)1, (·)2 define some feasible pairing function like
the Cantor pairing function with corresponding projections.

Atomic formulas are of the form s = t or s ≤ t where s and t are terms.
Literals are expressions of the form A or ¬A where A is an atomic formula.
Formulas are built up from literals by means of ∧ , ∨ , (∀x), (∃x). The
negation ¬C for a formula C is defined via de Morgan’s laws. Negation
extends to sets of formulas in the usual way by applying it to their members
individually. A → B is an abbreviation of ¬A ∨ B.

Let FV(A) denote the free variables occurring in formula A. With Ax(t)
we denote the result of replacing all free occurrences of the variable x in A
by t. Similar definitions are used for substitution into terms.

Definition 2.2 (BASIC). With a valid disjunction of literals we mean a
disjunction A of literals such that A is true in N under any assignment. Let
BASIC denote a set of valid disjunctions of literals which is sufficient to
define the non-logical symbols in LBA. More precisely, we consider the set
BASIC to be the natural reformulation of the axioms BASIC from [Bus86]

7

into a set of disjunctions of literals, extended by suitable axioms defining
the new symbols. We assume that the following axioms are included:

(pair(a, b))1 = a (pair(a, b))2 = b

(c)1 ≤ c (c)2 ≤ c
a, b ≤ t → pair(a, b) ≤ B(t) for some LBA-term B

min(a, b) = a ∨ min(a, b) = b min(a, b) = min(b, a)
a ≤ b → min(a, b) = a min(a, b) = a → a ≤ b
a ·− a = 0 (S a) ·− (S b) = a ·− b
a ≤ b → a ·− b = 0 a ·− b = 0 → a ≤ b

Definition 2.3 (Bounded Quantification). Bounded quantifiers are intro-
duced as follows: (∀x ≤ t)A denotes (∀x)Ax(min(x, t)), (∃x ≤ t)A denotes
(∃x)Ax(min(x, t)), where x may not occur in t.

Our introduction of bounded quantifiers is a bit nonstandard. It has
the advantage that already the usual cut-reduction procedure gives optimal
results. The more standard abbreviation of bounded quantification, where
e.g. (∃x≤ t)A denotes (∃x)(x ≤ t ∧ A), would need a modification of cut-
reduction to produce optimal bounds, as two logical connectives are to be
removed for one bounded quantifier. Nevertheless, the two kind of abbrevia-
tions are equivalent over a weak base theory like Buss’ BASIC (c.f. [Bus86])
assuming that this base theory includes some standard axiomatisation of
min using ≤ like a ≤ b → min(x, y) = x and min(a, b) = min(b, a). Also,
either way makes use of a nonlogical symbol (“≤” versus “min”).

Another approach to formalise bounded quantifiers is followed in [Bus86],
where bounded quantifiers are treated as new logical symbols, not as abbre-
viations, and have their own, new kind of inference rules.

Definition 2.4 (Bounded Formulas). The set ∆0 of bounded LBA-formulas
is the set of LBA-formulas consisting of literals and being closed under ∧ ,
∨ , (∀x≤ t), (∃x≤ t).

We now define a delineation of bounded formulas. The literature some-
times distinguishes between “strict” or “prenex” versions versus more liberal
ones. We do not want to make such a distinction here to keep the focus on
our proof-theoretic investigations, and define the classes only in their re-
stricted form.

Definition 2.5. The set sΣb
i is the smallest subset of bounded LBA-formulas

that is closed under taking subformulas and that contains all formulas of the
form

(∃x1 ≤ t1)(∀x2 ≤ t2) · · · (Qxi ≤ ti)(Qxi+1 ≤ |ti+1|)A(~x) ,

8

with Q and Q being of the corresponding alternating quantifier shape and
A being quantifier free. A and the ti’s may involve variables not mentioned
here.

Let sΠb
i be the set

{¬ϕ : ϕ ∈ sΣb
i

}
, and let sΣb

∞ be
⋃
d<∞ sΣb

d.

Definition 2.6 (Rank). The rank of a formula ϕ, rk(ϕ), is defined as the
minimal k such that ϕ ∈ sΣb

k ∪ sΠb
k, if such a k exists, and ∞ otherwise.

Definition 2.7. Let Ind(A, z, t) denote the expression

Az(0) ∧ (∀z ≤ t)(A → Az(z + 1)) → Az(t) .

We will base our definition of Bounded Arithmetic theories on a different
normal form of induction than usually considered in the literature.

Definition 2.8. Let Ti
2 denote the theory consisting of (universal closures

of) formulas in BASIC and of (universal closures of) formulas of the form
Ind(A, z, 2|t|) with A ∈ sΣb

i , z a variable, and t an LBA-term.
Let S1

2 denote the theory consisting (of universal closures) of formulas in
BASIC and (of universal closures) of formulas of the form Ind(A, z, |t|) with
A ∈ sΣb

1 , z a variable and t an LBA-term.

Our versions of Ti
2 and S1

2 are different from the standard versions as for
example defined in [Bus86]. They are adapted to suit the proof-theoretic
investigations we want to pursue. Nevertheless, they are equivalent in that
the sets of consequences are the same. This follows from the fact that the
restricted form of induction as defined in Definition 2.7 implies the usual
form, because the following can be proven from BASIC alone:

Ind(A(min(t, z)), z, 2|t|) → Ind(A(z), z, t) .

Definition 2.9. Let Σb
i (Πb

i) be the set of formulas ϕ such that there exist
ψ ∈ sΣb

i (resp. ψ ∈ sΠb
i) with S1

2 ` ϕ ↔ ψ.
Let ∆b

1 be the set of formulas ϕ such that there exist formulas σ ∈ sΣb
1

and π ∈ sΠb
1 with S1

2 ` (ϕ ↔ σ) ∧ (ϕ ↔ π).

3 Πp
k-Polynomial Local Search

A binary relation R ⊆ N × N is called polynomially bounded iff there is a
polynomial p such that (x, y) ∈ R implies |y| ≤ p(|x|). R is called total if
for all x there exists a y with (x, y) ∈ R.

Definition 3.1 (Total and Definable Search Problems). Let R ⊆ N×N be a
polynomially bounded, total relation. The (total) search problem associated
with R is this: Given input x ∈ N, return a y ∈ N such that (x, y) ∈ R.
R is called Σb

`+1-definable in Tk+1
2 if there exists a Πb

` -formula ϕ(x, y) (∆b
1 if

` = 0) and an LBA-term t(x), both with all free variables shown, such that
(x, y) ∈ R iff N � ϕ(x, y), and such that Tk+1

2 ` (∀x)(∃y ≤ t(x))ϕ(x, y).

9

Definition 3.2 (Πp
k-PLS Problems with Πp

` -Goal). A Πp
k-Polynomial Lo-

cal Search (PLS) problem with Πp
` -goal, for k ≥ ` ≥ 0, is a tuple L =

(F,G,N, c, i) consisting of, for a given input x, a set F (x) of feasible solu-
tions with a polynomial bound d, a goal set G(x), a neighbourhood func-
tion N(x, s) mapping a configuration s to another configuration, a function
c(x, s) computing the cost of a configuration s, and a function i(x) com-
puting an initial feasible solution, such that the following properties are
satisfied: the functions N , c and i are polynomial time computable, F ∈ Πp

k

and G ∈ Πp
` , and the following five conditions are satisfied:

(∀x, s)(s ∈ F (x) → |s| ≤ d(|x|)) (3.1)
(∀x)(i(x) ∈ F (x)) (3.2)
(∀x, s)(s ∈ F (x) → N(x, s) ∈ F (x)) (3.3)
(∀x, s)(N(x, s) = s ∨ c(x,N(x, s)) < c(x, s)) (3.4)
(∀x, s)(s ∈ G(x) ↔ (N(x, s) = s ∧ s ∈ F (x))) (3.5)

The search task is, for a given input x, to find some s with s ∈ G(x).

Usually, the polynomial bound to F , d, is thought to be understood from
the context and not explicitely mentioned. If we want to make it explicit
we sometimes write L = (d, F,G,N, c, i). We have introduced F and G as
sets. When we focus on their complexity or their definability in Bounded
Arithmetic, we treat “s ∈ F (a)” etc. as relations in s, a.

Without any further requirements, Πp
k-PLS problems with Πp

` -goals do
not say much about the complexity of the underlying search task. For ex-
ample, let R be a polynomial time computable, total relation with poly-
nomial bound p, defining a total search problem. Then we can define a
Πp

1-PLS problem with goal R as follows: Let T (x) be 2p(|x|). A feasible
solution s∈F (x) is given if s<T (x) ∧ R(x, s), or, in case s=T (x)+s′, if
|s′|≤p(|x|) ∧ (∀y<s′)(x, y)/∈R; the initial value is T (x); the neighbourhood
function takes an s and outputs s if s < T (x), or, in case s=T (x)+s′, pro-
duces T (x)+s′+1 if |s′+1|≤p(|x|) ∧ (x, s′)/∈R, and s′ otherwise; and the
cost of an s is computed as 2T (x) ·−s for s ≥ T (x), and 0 otherwise. The
problem with this definition is that its condition (3.3) cannot be proven only
if one can already prove that R defines a total search problem.

To formulate a Πp
k-PLS local search principle so as to guarantee the

totality of a search problem without actually presupposing it, we have to
ensure that the conditions (3.1)–(3.5) have “simple” proofs. We make this
precise in the next definition by requiring that they are provable in S1

2.

Definition 3.3 (Formalised Πp
k-PLS Problems with Πp

` -Goals). A Πp
k-PLS

problem with Πp
` -goal is formalised in S1

2 provided the functions N , c, and i
are Σb

1-definable in S1
2, the predicate F is given by a Πb

k-formula, the pred-
icate G is given by a Πb

` -formula (∆b
1 if ` = 0), and the defining conditions

(3.1)–(3.5) are provable in S1
2.

10

A Πp
k-PLS problem with Πp

` -goal which is formalised in S1
2 will be called

a Πb
k-PLS problem with Πb

` -goal (with superscript “b” instead of “p”.)

The direction “←” in condition (3.5) of a Πb
k-PLS problem with Πb

` -
goal is inessential, dropping it would result in an equivalent class of search
problems. To make this more precise, let us denote with Πb

k-PLS’ prob-
lems with Πb

` -goals the class of search problems which are defined simi-
lar to Πb

k-PLS problems with Πb
` -goals, with the only difference that in

(3.5) equivalence “↔” is replaced by implication “→”. To see that Πb
k-

PLS’ problems with Πb
` -goals are equivalent to Πb

k-PLS problems with Πb
` -

goals, first observe that any Πb
k-PLS problem with Πb

` -goal is also a Πb
k-PLS’

problem with Πb
` -goal. Secondly, we can transform any Πb

k-PLS’ problem
with Πb

` -goal L′ = (d′, F ′, G′, N ′, c′, i′) into a Πb
k-PLS problem with Πb

` -
goal L = (d, F,G,N, c, i) which solves L′, in the following way: Let T (x)
be 2d

′(|x|). We set d to 2d′, and i(x) as T (x)+i′(x). Let s∈F (x) if either
s<T (x) ∧ s∈G(x), or, in case s=T (x)+s′, if s′∈F ′(x). Set N(x, s) to be s
if s<T (x), or, in case s=T (x)+s′, to be T (x)+N ′(x, s′) if N ′(x, s′) 6=s′, and
s′ otherwise. Finally, define c(x, s) to be 0 if s<T (x), and 1+c′(x, s′) in case
s=T (x)+s′.

Theorem 3.4. Let k ≥ ` ≥ 0. The Πb
k-PLS problems with Πb

` -goals are
Σb
`+1-definable search problems in Tk+1

2 .

Proof. Let L = (F,G,N, c, i) be a Πb
k-PLS problem with Πb

` -goal. Let x be
given. The set A := {c(x, s) : s ∈ F (x)} is non-empty by (3.2), and can be
expressed by a Σb

k+1 formula. Tk+1
2 proves minimisation for Σb

k+1-formulas,
thus, arguing in Tk+1

2 , we can choose some minimal c ∈ A. Pick s ∈ F (x)
with c(x, s) = c, and let s′ := N(x, s). Then s′ ∈ F (x) by (3.3). By
construction c(x, s′) ≥ c(x, s), hence (3.4) shows s′ = N(x, s) = s. Hence,
(3.5) shows s ∈ G(x).

That {(x, s) : s ∈ G(x)} can be described by some Πb
` formula is clear by

definition.

The converse of the last theorem is also true and forms one of our main
results in this article. It will be proven in Section 7.2.

Theorem 3.5. Let 0 ≤ ` ≤ k. The Σb
`+1-definable total search problems in

Tk+1
2 can be characterised by Πb

k-PLS problems with Πb
` -goals. This charac-

terisation satisfies in addition that the goal formula is syntactically identical
to the Πb

` -subformula of the original Σb
`+1-formula.

3.1 Search Problem Classes

Definition 3.2 gives rise to search principles expressed by one formula
PiPLS(d, F,G,N, c, i) in second order parameters d, F,G,N, c, i, which is

11

defined as

(3.1) ∧ (3.2) ∧ (3.3) ∧ (3.4) ∧ (3.5) → (∀x)(∃y)G(x, y) .

By choosing appropriate substitutions for the parameters, this generic for-
mula can be used to define syntactic search problem classes which charac-
terise the ∀Σb

`+1-consequences of Tk+1
2 : Let PiPLS(k, `) be the set of all

formulas obtained by replacing in PiPLS(d, F,G,N, c, i), d by some polyno-
mial, N, c, i by polynomial time computable functions (represented by their
Σb

1-definition in S1
2), F by some formula in Πb

k, and G by some formula in Πb
` .

The proof of Theorem 3.4 shows that each formula in PiPLS(k, l) is provable
in Tk+1

2 . A converse is also true and can be shown using Theorem 3.5.

Corollary 3.6. Over S1
2, the theories PiPLS(k, l) and Tk+1

2 have the same
∀Σb

`+1-consequences.

Proof. We already argued for one inclusion. We still have to show that if
Tk+1

2 proves (∀x)ϕ(x) with ϕ ∈ Σb
`+1, then this formula also follows from a

formula in PiPLS(k, l) over S1
2.

Applying Theorem 3.5 we obtain a formalised Πp
k-PLS problem with

goal formula identical to ϕ. Consider the formula PiPLS(d, F,G,N, c, i) in
PiPLS(k, l) coming from this characterisation. The conditions (3.1)–(3.5)
are now provable in S1

2, so over S1
2 we immediately obtain (∀x)ϕ(x) from

PiPLS(d, F,G,N, c, i).

In Sections 8 and 9, we will see that a strengthening of Theorem 3.5
can also be proven, in which the conditions (3.1)–(3.5) will be transformed
into some canonical Skolem form, see Corollary 9.8. This will reduce the
complexity of the search principle class to match the complexity of the goal
formulas. In particular we will obtain a set of ∀Σb

1 formulas characterising
the ∀Σb

1-consequences of the theories Tk+1
2 , for k ≥ 0, see Corollary 10.2.

4 Notation Systems for Formulas and Proofs

In this section we review notation systems for propositional formulas and
proofs, and cut-reduction for them from [AB09]. They provide the basic
machinery for dealing with search problems based on proof notations.

4.1 Proof Systems

We begin with an abstract definition of proof systems, which will be at the
heart of several derivation systems considered later.

Definition 4.1 (Notation System for Formulas). A notation system for for-
mulas is a triple 〈F ,≈, rk〉 where F is a set (of formulas), ≈ an equivalence
relation on F (identity between formulas), and rk: P(F)×F → N a function
(rank). Here, P(F) denotes the power set of F .

12

We always write C-rk(A) instead of rk(C, A). With ≈Γ we denote the
set {G : (∃F ∈ Γ)(G ≈ F)}.
Definition 4.2. A proof system S over 〈F ,≈, rk〉 is given by a set of
formal expressions called inference symbols (syntactic variable I), and for
each inference symbol I an ordinal |I| ≤ ω, a sequent ∆(I) and a family of
sequents (∆ι(I))ι<|I|.

Proof systems may have inference symbols of the form CutC for C ∈ F ;
these are called “cut inference symbols” and their use will (in Definition 4.4)
be measured by the C-cut-rank.

Notation 4.3. By writing . . .∆ι . . . (ι < I)
(I)

∆
we declare I as an infer-

ence symbol with |I| = I many hypotheses, with conclusion ∆(I) = ∆, and

ι-th hypothesis ∆ι(I) = ∆ι for ι < I. If |I| = n we write ∆0 ∆1 . . . ∆n−1

∆
instead of . . .∆ι . . . (ι < I)

∆
.

S-quasi derivations, to be defined next, are (infinite) terms built up from
inference symbols. An S-quasi derivation will always have the form of an
inference symbol I, followed by “(”, followed by a sequence of length |I|
of S-quasi derivations, followed by “)”. For example, the simplest S-quasi
derivations are given as I() in case I is an inference symbol with |I| = 0.
We will write a sequence of the form (d0, . . . , dn−1) as (dι)ι<n.

Definition 4.4 (Inductive definition of S-quasi derivations). If I is an
inference symbol of S, and (dι)ι<|I| is a sequence of S-quasi derivations,
then d := I(dι)ι<|I| is an S-quasi derivation with end-sequent

Γ(d) := ∆(I) ∪
⋃
ι<|I|

(Γ(dι) \ ≈∆ι(I)) ,

last inference last(d) := I, subderivations d(ι) := dι for ι < |I|, height

hgt(d) := sup {hgt(dι) + 1: ι < |I|} ,
size (provided S has inference symbols of finite arity only)

sz(d) := (
∑
ι<|I|

sz(dι)) + 1 ,

and cut-rank

C-crk(d) := sup({C-rk(I)} ∪ {C-crk(dι) : ι < |I|}) .
Here we define C-rk(I), the cut-rank of I, to be C-rk(C) + 1 if I is of the
form I = CutC with C 6∈ C, and to be 0 otherwise.

13

Definition 4.5. d `≈ Γ is defined as Γ(d) ⊆ ≈Γ.

A translation of first order proofs into propositional ones, like the Paris-
Wilkie translation, usually comes in two steps: First, first order formulas are
translated into propositional ones; Second, first order proofs are translated
into propositional proofs. In the next subsection, we introduce notation
systems for propositional formulas of the type obtained by the Paris-Wilkie
translation of first order formulas. The subsequent section defines our propo-
sitional proof system. Then, Subsection 4.4 describes polynomial-size no-
tations for exponential-size propositional proofs that are obtained by the
translation of first order proofs.

4.2 Notations for Propositional Formulas

Translating first order formulas into propositional ones via the Paris-Wilkie
translation PW transforms a bounded quantifier of the form (∀x ≤ t(a))ϕ(x)
into the propositional formula

∧
i≤t(a)Nϕ(i)PW. The length of this propo-

sitional formula is exponential in |a|, thus we need notation systems for
such propositional formulas which allow us to deal with them in a feasible
way. The next definition collects all necessary ingredients and properties of
notation systems for propositional formulas.

Definition 4.6. We define ¬ as a function on the symbols {>,⊥,∧,∨} in
the following way: ¬(>) = ⊥, ¬(⊥) = >, ¬(

∧
) =

∨
, and ¬(

∨
) =

∧
.

Definition 4.7. A notation system 〈F , tp, ·[·],¬, rk,≈〉 for (infinitary)
propositional formulas is a notation system 〈F ,≈, rk〉 for formulas together
with functions tp: F → {>,⊥,∧,∨}, ·[·] : F × N → F , and ¬ : F →
F , called outermost connective, subformula, and negation, respectively,
such that tp(¬(f)) = ¬(tp(f)), ¬(f)[n] = ¬(f [n]), C-rk(f) = C-rk(¬f),
C-rk(f [n]) < C-rk(f) for f /∈ C and n < | tp(f)|, and f ≈ g implies
tp(f) = tp(g), f [n] ≈ g[n], ¬(f) ≈ ¬(g) and C-rk(f) = C-rk(g).

In the previous definition, the obvious idea behind f [n] for f ∈ F and
n ∈ N is that it denotes the n-th subformula of f . But observe that the
situation we are describing is a bit more general. It does not exclude non-
wellfounded notation systems, which may contain a notation f for which
0 < | tp(f)| continues to hold for f [0], f [0][0], etc. ad infinitum. The cut-
elimination results summarised in the following are still valid also in such a
situation.

4.3 Propositional Proofs

The propositional proof system we are concerned with is directly based on
notation systems for propositional formulas. There is of course a propo-
sitional proof system for (usual) propositional formulas in the background

14

which is obtained by unfolding notations for propositional formulas into
(usual) propositional formulas. This background proof system is not nec-
essary for our technical developments, therefore we omit it. The interested
reader will find a more detailed discussion in [AB09].

Definition 4.8. Let F = 〈F , tp, ·[·],¬, rk,≈〉 be a notation system for
propositional formulas. The (propositional) proof system SF over F is the
proof system over F which is given by the following set of inference symbols.
(AxA)

A for A ∈ F with tp(A) = >
. . . C[n] . . . (n ∈ N)

(
∧
C)

C
for C ∈ F with tp(C) =

∧
C[i]

(
∨i
C)

C
for C ∈ F with tp(C) =

∨
and i ∈ N

C ¬C(CutC) ∅ for C ∈ F with tp(C) ∈ {>,∧}
∅(Rep) ∅

Abbreviations
For tp(C) ∈ {⊥,∨} let C ¬C(CutC) ∅ denote ¬C C(Cut¬C) ∅

4.4 Notations for Propositional Proofs and Cut-Elimination

The translation of first order proofs in Bounded Arithmetic into the propo-
sitional proof system defined in Definition 4.8 may generate proofs of ex-

ponential size. E.g., an application of ϕ(min(x, t(a)))
(∀)

(∀x ≤ t(a))ϕ(x)
is translated

into ϕ(0)PW . . . ϕ(t(a)N)PW

(
∧

)
(∀x ≤ t(a))ϕ(x)PW

which may have exponentially in |a|
many premises. Thus, besides notations for propositional formulas, we also
need notations for propositional proofs obtained by translation in order to
be able to deal with them in a feasible way. The necessary ingredients for
this are collected in the next definition.

Definition 4.9. Let F be a notation system for formulas, and SF the
propositional proof system over F from Definition 4.8.

A notation system H = 〈H, tp, ·[·],Γ, crk, o, |·|〉 for SF is a set H of
notations and functions tp: H → SF , ·[·] : H × N → H, Γ : H → Pfin(F),
crk : P(F) × H → N, and o, |·| : H → N \ {0} called denoted last inference,
denoted subderivation, denoted end-sequent, denoted cut-rank, denoted height
and size, such that C-crk(h[n]) ≤ C-crk(h), tp(h) = CutC implies C-rk(C) <
C-crk(h) for C /∈ C, o(h[n]) < o(h) for n < | tp(h)|, and the following local

15

faithfulness property holds for h ∈ H:

∆(tp(h)) ⊆ ≈Γ(h) and ∀ι < | tp(h)| h[ι] `≈ Γ(h),∆ι(tp(h)) .

We observe that the size function in the last definition is not denoted.
The idea is that it measures the size of the notation, not of the denoted
proof. The size function will be important later when we try to measure the
effect which cut-elimination has on notations, to identify those cases where
the effect is feasible, i.e. does not lead to an exponential blow-up typical for
cut-elimination on (regular) proofs.

The next definition gives the canonical propositional translation of proof
notations into propositional proofs. The observation following this definition
states the connection between key structural functions for notations and for
connected propositional derivations.

Definition 4.10. Let H = 〈H, tp, ·[·],Γ, crk, o, |·|〉 be a notation system
for SF . The interpretation [[h]] of h ∈ H is inductively defined as the
following SF -derivation:

[[h]] := tp(h)([[h[ι]]])ι<| tp(h)|

Observation 4.11. We make use of the functions defined in Definition 4.4.
For h ∈ H we have

last([[h]]) = tp(h)
[[h]](ι) = [[h[ι]]] for ι < | tp(h)|
Γ([[h]]) ⊆ ≈Γ(h)

We explained in the introduction of this paper that our characterisa-
tion of definable search problems in Bounded Arithmetic will be based on
translating Bounded Arithmetic proofs into propositional ones, and apply-
ing cut-reduction to the resulting propositional proofs. Thus, we also have
to add to our notation system for propositional logic some notations for
cut-reduction on propositional proofs. This can be done very uniformly, as
presented in the next definition. Our approach following [AB09] is based on
Mints’ continuous cut-elimination procedure [Min78] in its technical smooth
presentation by Buchholz [Buc91, Buc97] and utilises notations for certain
operators of propositional proofs. Readers interested in a fuller account
of this situation are kindly referred to [AB09]. The intuition behind the
notations for operators for cut-reduction are as follows:

• The symbol IkC denotes an inversion operator which satisfies: If h `≈
Γ, C and tp(C) =

∧
then IkCh `≈ Γ, C[k], C-crk(IkCh) ≤ C-crk(h) and

o(IkCh) ≤ o(h).

16

• The symbol RC denotes a one-cut-reduction operator which satis-
fies: If h0 `≈ Γ, C, h1 `≈ Γ,¬C and tp(C) ∈ {>,∧}, then
RCh0h1 `≈ Γ, C-crk(RCh0h1) ≤ max{C-crk(h0), C-crk(h1), C-rk(C)}
and o(RCh0h1) ≤ o(h0) + o(h1).

• The symbol E denotes a highest-cut-elimination operator which sat-
isfies: If h `≈ Γ then Eh `≈ Γ and C-crk(Eh) ≤ C-crk(h) ·− 1 and
o(Eh) < 2o(h).

Definition 4.12. The notation system CH for cut-elimination on H is given
by the set of terms CH which are inductively defined by

• H ⊂ CH,

• h ∈ CH, C ∈ F with tp(C) =
∧

, k < ω ⇒ IkCh ∈ CH,

• h0, h1 ∈ CH, C ∈ F with tp(C) ∈ {>,∧} ⇒ RCh0h1 ∈ CH,

• h ∈ CH ⇒ Eh ∈ CH,

where I,R,E are new symbols, and functions tp: CH → SF , ·[·] : CH ×
N → CH, Γ : CH → Pfin(F), crk : P(F) × CH → N, o : CH → N \ {0} and
|·| : CH → N defined by recursion on the complexity of h ∈ CH:

• If h ∈ H then all functions are inherited from H.

• h = IkCh0: Let Γ(h) := {C[k]}∪ (Γ(h0)\≈{C}), C-crk(h) := C-crk(h0),
o(h) := o(h0), and |h| := |h0|+ 1.

Case 1. tp(h0) ∈ {∧D : D ≈ C}. Then let tp(h) := Rep, and h[0] :=
IkCh0[k].

Case 2. Otherwise, let tp(h) := tp(h0), and h[i] := IkCh0[i].

• h = RCh0h1: Let I := tp(h1). We define Γ(h) := (Γ(h0) \ ≈{C}) ∪
(Γ(h1) \ ≈{¬C}), C-crk(h) := max{C-crk(h0), C-crk(h1), C-rk(C)},
o(h) := o(h0) + o(h1), and |h| := |h0|+ |h1|+ 1. For tp(h) and h[i] we
consider the following two cases:

Case 1. ∆(I) ∩ ≈{¬C} = ∅: Then let tp(h) := I, and h[i] :=
RCh0h1[i].

Case 2. Otherwise, ∆(I)∩≈{¬C} 6= ∅. Since tp(C) ∈ {>,∧} and no
inference symbol I ′ of SF has D ∈ ∆(I ′) with tp(D) = ⊥, we must
have tp(C) =

∧
. Thus I =

∨k
D for some k ∈ N and D ≈ ¬C. Then

let tp(h) := CutC[k] and h[0] := IkCh0, h[1] := RCh0h1[0].

• h = Eh0: Let Γ(h) := Γ(h0), C-crk(h) := C-crk(h0) ·− 1, o(h) :=
2o(h0) − 1, and |h| := |h0|+ 1.

17

Case 1. tp(h0) = CutC : Then let tp(h) := Rep and
let h[0] := RCEh0[0]Eh0[1] if tp(C) ∈ {>,∧},
let h[0] := R¬CEh0[1]Eh0[0] if tp(C) /∈ {>,∧}.
Case 2. Otherwise, let tp(h) := tp(h0), and h[i] := Eh0[i].

It has been shown in [AB09] that the notation system for cut-elimination
on H is a notation system in the sense of Definition 4.9.

4.5 Size Bounds of Notations for Cut-Elimination

Notation systems for propositional formulas and proofs will, as we will
see later, be feasible in situations related to definable search problems of
Bounded Arithmetic. We will now analyse the feasibility of notations for
cut-reduction on propositional proofs, by studying the size of notations for
cut-reduction. We will just state the necessary definitions and results, more
details including full proofs can be found in [AB09].

Definition 4.13. H is called bounded if |h[i]| ≤ |h| for all h ∈ H, i < | tp(h)|.
Definition 4.14. We define a “size function” ϑ : N → N by induction on
the inductive definition of CH as follows.

• For h ∈ H we set ϑ(h) = |h|.
• ϑ(IkCh) = ϑ(h) + 1

• ϑ(RCh0h1) = max{|h0|+1+ϑ(h1) , ϑ(h0)+1}
• ϑ(Eh) = o(h)(ϑ(h) + 2)

Proposition 4.15. If H is bounded then for every h ∈ CH we have |h| ≤
ϑ(h).

Theorem 4.16. If H is bounded, h ∈ CH and i < | tp(h)|, then ϑ(h) ≥
ϑ(h[i]).

Definition 4.14, Proposition 4.15 and Theorem 4.16 together show that
cut-reduction can behave feasibly on proof notations. E.g., assume that we
have a proof notation h(a) depending on some parameter a — such a nota-
tion may originate from a first order proof of a universal statement (∀x)ϕ(x),
where we inverted the outermost universal quantifier and substituted the
constant a for the new free variable x, thus considering a proof of ϕ(a) for
a ∈ N — such that o(h(a)) and |h(a)| are polynomial in |a|. Applying cut-
reduction once to h(a) gives a propositional proof in which all subproofs can
be denoted by a notation of size polynomial in |a|: Consider a subproof h′

of Eh(a) which is given by the path i1, . . . , ik, i.e. h′ = Eh(a)[i1] · · · [ik]. By

18

Proposition 4.15, |h′| ≤ ϑ(h′), and by Theorem 4.16, ϑ(h′) ≤ ϑ(Eh(a)). By
Definition 4.14, the latter can be computed to

ϑ(Eh(a)) = o(h(a)) · (ϑ(h(a))+2) = o(h(a)) · (|h(a)|+2)

which is polynomial in |a|.

In the next section we will define concrete notation systems for proposi-
tional formulas and proofs based on translating Bounded Arithmetic accord-
ing to the Paris-Wilkie translation. Together with the results from this sec-
tion they provide the concrete machinery for characterising definable search
problems via proof notations.

5 Notations based on Bounded Arithmetic

We start by defining a notation system for propositional formulas obtained
by translating the language of Bounded Arithmetic according to the Paris-
Wilkie translation, as given in [AB09].

Let FBA be the set of closed formulas in ∆0. We define the outermost
connective function on FBA by

tp(A) :=


> A true literal
⊥ A false literal∧

A is of the form A0 ∧ A1 or (∀x)B∨
A is of the form A0 ∨ A1 or (∃x)B ,

and the subformula function on FBA × N by

A[n] :=


A A literal
Amin(n,1) A is of the form A0 ∧ A1 or A0 ∨ A1

Bx(n) A is of the form (∀x)B or (∃x)B .

To define a suitable rank function on FBA, we first define an auxil-
iary rank function rk’. Let C be a subset of FBA, and A in FBA. We
define C-rk’(A) by induction on the complexity of A. If A ∈ C ∪ ¬C, let
C-rk’(A) := −1. For A /∈ C ∪ ¬C, C-rk’(A) is defined as follows:

• Let C-rk’(A) := 1 + max{C-rk’(B), C-rk’(C)} in case A = B ∧ C or
A = B ∨ C.

• If A = (∀x)B or A = (∃x)B, let C-rk’(A) := 1 + C-rk’(B).

Using the auxiliary rank function rk′, we define the C-rank of A, denoted
C-rk(A), by C-rk(A) := max{0, C-rk’(A)}. Observe that sΣb

i -rk(A) ≤
sΣb

i+1-rk(A) + 1. If C is the set of quantifier-free formulas, and ϕ ∈ sΣb
∞,

19

then the rank of ϕ as defined in Section 2 is the same as C-rk(ϕ), i.e. C-rk(ϕ)
computes the minimal k such that ϕ ∈ sΣb

k ∪ sΠb
k.

The negation function for the notation system is the same as defined for
LBA. Intensional equality is defined in the following way: For t a closed term
its numerical value tN ∈ N is defined in the obvious way. Let→1

N denote the
rewriting relation on LBA-terms and LBA-formulas obtained from{

(t, tN) : t a closed term
}

.

Let ≈N denote the reflexive, symmetric and transitive closure of →1
N. For

example, (∀x)((3 + 1) · x = 1 + 5) ≈N (∀x)(4 · x = 6).

Proposition 5.1. The system 〈FBA, tp, ·[·],¬, rk,≈N〉 which we have just
defined forms a notation system for formulas in the sense of Definition 4.7.

Let ≈N
k denote the restriction of ≈N to expressions of depth ≤ k. In a

feasible Gödel numbering, like the one defined in [Bus86], the Gödel number
for ca has size proportional to |a|. Thus, for each k, the relation ≈N

k is
a polynomial time predicate. We will always assume that FBA implicitly
contains such a constant k without explicitly mentioning it. All formulas and
terms used in FBA are thus assumed to obey the abovementioned restriction
on depth. We will come back to this restriction at relevant places. The next
observation already makes use of this assumption.

Observation 5.2. All relations and functions in FBA are polynomial time
computable.

Definition 5.3. Let BA∞ denote the propositional proof system over FBA

according to Definition 4.8.

Definition 5.4. The finitary proof system BA? is the proof system over
〈∆0,≈N, rk〉 which is given by the following set of inference symbols.

(Ax∆) if
∨

∆ ∈ BASIC∆

A0 A1(
∧
A0∧A1

)
A0 ∧A1

Ak(
∨k
A0∨A1

)
A0 ∨A1

Ax(y)(
∧y

(∀x)A)
(∀x)A

Ax(t)
(
∨t

(∃x)A)
(∃x)A

¬F, Fy(y + 1)
(INDy,t

F) ¬Fy(0), Fy(2|t|)

¬F, Fy(y + 1)
(INDy,n,i

F) ¬Fy(n), Fy(n+ 2i)
C ¬C(CutC) ∅ for C ∈ ∆0 with C atomic or tp(C) =

∧
where in case (

∨k
A0∨A1

) we have that k ∈ {0, 1}, and in case (INDy,n,i
F) that

n, i ∈ N.

20

According to Definition 4.4, BA?-quasi derivations h are equipped with
functions Γ(h) denoting the endsequent of h, hgt(h) denoting the height of
h, and sz(h) denoting the size of h.

In the following we will not need the cut-rank function which comes with
BA?-quasi derivations, but we will need a more general cut-rank function
gcrk, which will also bound the rank of induction formulas.

Definition 5.5. Let h be a BA?-quasi derivation, h = Ih0 · · ·hn−1. We
define

C-gcrk(h) := sup({C-grk(I)} ∪ {C-gcrk(hi) : i < n})
where C-grk(I), the generalised cut-rank of I, is C-rk(C) + 1 if I is of the
form CutC , INDy,t

C or INDy,n,i
C for C /∈ C, and 0 otherwise.

Observe that sΣb
i -gcrk(h) ≤ sΣb

i+1-gcrk(h)+1, which immediately follows
from sΣb

i -gcrk(I) ≤ sΣb
i+1-gcrk(I) + 1.

Definition 5.6 (Inductive definition of ~x : h and BA?-derivations). For ~x a
finite list of disjoint variables and h = Ih0 · · ·hn−1 a BA?-quasi-derivation
we inductively define the relation ~x : h that h is a BA?-derivation with free
variables among ~x as follows.

• If ~x, y : h0 and I ∈ {∧y
(∀x)A, INDy,t

F , INDy,n,i
F } for some A,F, t, n, i, and

FV(t) ∪ FV(Γ(Ih0)) ⊂ {~x} then ~x : Ih0.

• If ~x : h0 and FV((∃x)A),FV(t) ⊆ {~x} then ~x :
∨t

(∃x)Ah0.

• If ~x : h0, ~x : h1 and FV(C) ⊆ {~x} then ~x : CutCh0h1.

• If FV(∆) ⊆ {~x} then ~x : Ax∆,

• If ~x : h0, ~x : h1 and I =
∧
A0∧A1

with FV(A0 ∧A1) ⊂ {~x} then
~x : Ih0h1.

• If ~x : h0 and I =
∨k
A0∨A1

with FV(A0 ∨A1) ⊂ {~x} then ~x : Ih0.

We call a BA?-derivation h closed, if ∅ : h.

Definition 5.7. For h a BA?-derivation, y a variable and t a closed term
of Bounded Arithmetic we define the substitution h(t/y) inductively by set-
ting (Ih0 · · ·hn−1)(t/y) to be I(t/y)h0(t/y) · · ·hn−1(t/y) if I is not of the
form

∧y
(∀x)A, INDy,t

F , or INDy,n,i
F with the same variable y, and Ih0 · · ·hn−1

otherwise.
Substitution for inference symbols is defined by setting

Ax∆(t/y) = Ax∆(t/y)∧
A0∧A1

(t/y) =
∧

(A0∧A1)(t/y)

∨k
A0∧A1

(t/y) =
∨k

(A0∧A1)(t/y)∧z
(∀x)A(t/y) =

∧z
((∀x)A)(t/y)

∨t′

(∃x)A(t/y) =
∨t′(t/y)

((∃x)A)(t/y)

INDz,t′

F (t/y) = INDz,t′(t/y)
F (t/y) INDz,n,i

F (t/y) = INDz,n,i
F (t/y)

21

The next Lemma shows the substitution property for BA?-derivations.
The strange looking “⊆” instead of the expected equality comes from the fact
that a substitution may make formulas equal which are not equal without
the substitution.

Lemma 5.8. Assume ~x : h and let y be a variable and t a closed term, then
~x \ {y} : h(t/y) and moreover Γ(h(t/y)) ⊆ (Γ(h))(t/y).

We will now define the ingredients for a notation system HBA for BA∞

according to Definition 4.9. The interpretation [[h]] for h ∈ HBA according to
Definition 4.10 formalises a translation of closed BA?-derivations into BA∞,
which is called an embedding.

Let HBA be the set of closed BA?-derivations. For each h ∈ HBA we
define the denoted last inference tp(h) as follows: Let h = Ih0 · · ·hn−1,

tp(h) :=



AxA if I = Ax∆, where A is the
“least” true literal in ∆∧

A0 ∧A1
if I =

∧
A0 ∧A1∨k

A0 ∨A1
if I =

∨k
A0 ∨A1∧

(∀x)A if I =
∧y

(∀x)A∨tN

(∃x)A if I =
∨t

(∃x)A

Rep if I = INDy,t
F

Rep if I = INDy,n,0
F

CutFy(n+2i) if I = INDy,n,i+1
F

CutC if I = CutC

For each h ∈ HBA and j ∈ N we define the denoted subderivation h[j] as
follows: Let h = Ih0 · · ·hn−1. If j ≥ | tp(h)| let h[j] := Ax0=0. Otherwise,
assume j < | tp(h)| and define

h[j] :=



hmin(j,1) if I =
∧
A0 ∧A1

h0 if I =
∨k
A0 ∨A1

h0(j/y) if I =
∧y

(∀x)A

h0 if I =
∨t

(∃x)A

INDy,0,|t|N
F h0 if I = INDy,t

F

h0(n/y) if I = INDy,n,0
F

INDy,n,i
F h0 if I = INDy,n,i+1

F and j = 0

INDy,n+2i,i
F h0 if I = INDy,n,i+1

F and j = 1
hj if I = CutC

The denoted end-sequent function on HBA is given by Γ. The size
function |·| on HBA is given by |h| := sz(h). We define the denoted cut-
rank function for h ∈ HBA to be C-crk(h) := C-gcrk(h). We observe

22

that C-crk(h[ι]) ≤ C-crk(h) for ι < | tp(h)|, and that C-rk(C) < C-crk(h)
if tp(h) = CutC and C /∈ C.

To define the denoted height function we need some analysis yielding an
upper bound to the log of the lengths of inductions which may occur during
the embedding (we take the log as this bounds the height of the derivation
tree which embeds an application of induction). Let us first assume m is
such an upper bound, and let us define the denoted height om(h) of h relative
to m: For a BA?-derivation h = Ih0 · · ·hn−1 we define

om(h) :=


om(h0) + i+ 1 if I = INDy,n,i

F

om(h0) +m+ 1 if I = INDy,t
F

1 + supi<n om(hi) otherwise

Observe that om(h) > 0 (in particular, o(Ax∆) = 1).
To fill the gap of providing a suitable upper bound function of BA?-

derivations we first need to fix monotone bounding terms for any term
in LBA.

Bounding Terms for Language and Proofs

For a term t we define a term bd(t) which represents a monotone function
with the following property: If FV(t) = {~x} then

(∀~n) t~x(~n)N ≤ bd(t)~x(~n)N

The precise definition of bd(t) is not essential here, we can for example
use the meta-function σ from [Bus86, p.77], or the explicit definition given
in [AB09].

For h ∈ HBA, the bounding term bd(h) is intended to bound any variable
which occurs during the embedding of h. Then, the term |bd(h)| will bound
the length of any induction which occurs during the embedding of h. This
situation is related to the notion proofs restricted by parameter variables as
defined in [Bus86, Section 4.5], where proofs are transformed in such a way
that bounds to inductions and quantification only depend on the parameter
variables of the proof — then the above mentioned bounding term bd(h) can
simply be obtained by collecting all such bounds and taking their maximum.
Let h = Ih0 · · ·hn−1 be in HBA. Let max(n1, . . . , nk) denote the maximal
value amongst {n1, . . . , nk}, where we set max() = 0. We define

bd(h) :=



max(bd(h0(bd(t)/y)), bd(t)) if I =
∧y

(∀x≤t)A
max(bd(h0), bd(t)) if I =

∨t
(∃x)A

max(bd(h0(2| bd(t)|/y)), 2| bd(t)|) if I = INDy,t
F

max(bd(h0(n+ 2i/y)), n+ 2i) if I = INDy,n,i
F

max(bd(h0), . . . ,bd(hn−1)) otherwise.

Now we define for h ∈ HBA the denoted height function o(h) as o|bd(h)|(h).

23

Theorem 5.9. The just defined system 〈HBA, tp, ·[·],Γ, crk, o(·), | · |〉 forms
a notation system for BA∞ in the sense of Definition 4.9. Furthermore,
HBA is bounded in the sense of Definition 4.13.

A proof of this Theorem can be found in [AB09]. The fact that HBA is
bounded is easily observed by inspection.

Observation 5.10. We assume that we have fixed a k ∈ N bounding depths
of formulas and terms as explained in the remark on page 20, and some
feasible Gödel numbering like the one in [Bus86]. Then, the following re-
lations and functions are polynomial time computable (when interpreted as
relations and functions on the corresponding Gödel numbers of syntactical
objects): the finitary proof system BA?, the set of BA?-quasi derivations and
the functions h 7→ Γ(h), h 7→ hgt(h), and h 7→ sz(h) denoting the endse-
quent, the height and the size for a BA?-quasi derivation h; the bounding
term t 7→ bd(t) for terms t occurring in FBA and the relations bd(h) ≤ m on
HBA × N; the set HBA and the functions h 7→ tp(h), h, i 7→ h[i], h 7→ Γ(h),
m,h 7→ om(h) and h 7→ |h|.

We now provide a connection between BA?/HBA and the theories of
Bounded Arithmetic as defined in Section 2. This step also includes some
proof normalisation which is similar to known ones in the literature, for
example free cut-elimination in [Bus86] or partial cut-elimination in [Bec03].

Theorem 5.11 (Partial Cut-elimination). Assume Tj
2 ` ϕ with ϕ ∈ ∆0 and

FV(ϕ) ⊆ {x}. Then, there is some BA?-derivation h such that FV(h) ⊆
{x}, Γ(h) = {ϕ}, sΣb

j -gcrk(h) = 0 and o(h(a/x)) = |a|O(1).

A proof of the last theorem can be found in [AB09].

5.1 Complexity Notions for BA?

In order to describe local search problems based on proof notations we need
some notions describing key complexity properties of BA? proof notations.
Again, we will just state the necessary definitions and results, more details
including full proofs can be found in [AB09].

Definition 5.12. We extend the definition of bounding terms bd(h) from
HBA to CHBA by induction on h ∈ CHBA in the following way:

• If h ∈ HBA then the definition of bd(h) is inherited from the definition
of bd(h) on HBA.

• bd(IkCh0) := bd(h0).

• bd(RCh0h1) := max{bd(h0),bd(h1)}.
• bd(Eh0) := bd(h0).

24

Lemma 5.13. Let h ∈ CHBA.

1. bd(h[j]) ≤ bd(h) for all j.

2. If tp(h) =
∨k
C then k ≤ bd(h).

Definition 5.14. For h a BA?-derivation or h ∈ CHBA, we define the set of
decorations of h, deco(h), by induction on h. deco(h) will be a finite set of
LBA-terms and formulas in ∆0. Let h = Ih0 · · ·hn−1, where I ranges over
BA? ∪ {IkC ,RC ,E}. We define

deco(h) := deco(I) ∪
⋃
i<n

deco(hi)

where

deco(I) := ∆(I) for I = Ax∆,
∧
A0∧A1

,
∨k
A0∨A1

deco(
∧y

(∀x)A) := {(∀x)A, y}
deco(

∨t
(∃x)A) := {(∃x)A, t}

deco(INDy,t
F) := {F,¬Fy(0), Fy(2|t|), y, t}

deco(INDy,n,i
F) := {F,¬Fy(n), Fy(n+ 2i), y, cn}

deco(CutC) := {C}
deco(IkC) := {C,C[k], ck}

deco(RC) := {C}
deco(E) := ∅ .

Observation 5.15. We have Γ(h) ⊆ deco(h).

Definition 5.16. Let Φ be a set of LBA-terms and formulas in ∆0, and
let K ∈ N be a size parameter. With ΦK we denote the set obtained by
enlarging Φ by the set {ci : 0 ≤ i ≤ K} and the set of formulas and terms
which result from formulas and terms in Φ by substituting constants from
{ci : 0 ≤ i ≤ K} for some (possibly none, possibly all) of the free variables.

Lemma 5.17. Let Φ be a set of LBA-terms and formulas in ∆0, such that
Φ ∩∆0 is closed under negation and taking subformulas. Let j,K ∈ N and
y be a variable.

1. If j ≤ K and C ∈ Φ ∩∆0, then C[j] ∈ ΦK .

2. If h ∈ BA? with deco(h) ⊆ Φ, and j ≤ K, then deco(h(j/y)) ⊆ ΦK .

3. ∆(tp(h)) ⊆ deco(h)bd(h) with the subscript understood in the sense of
Definition 5.16.

25

4. If h ∈ CHBA with deco(h) ⊆ Φ and j ≤ K, then deco(h[j]) ⊆
Φmax{K,bd(h)}.

Lemma 5.18. For h ∈ CHBA we have that the cardinality of Γ(h) is bounded
above by 2 · sz(h).

6 Searching for Truth

As explained in the introduction, the definition of search problems based on
proof notations has to deal with properties whose computational complexity
is too complicated to decide them directly. Therefore, instead of deciding
them, we will replace them by some canonical search problem which deter-
mines their truth. This section will provide the definition and basic prop-
erties for such canonical search problems. In the next subsection we will
present some general notation for tuples and sequences which will also be
useful in later sections when we discuss the Skolemisation of prenex formulas
that arise from search problems. The subsequent subsection then introduces
canonical search problems for properties in sΠb

k.

6.1 Notations for Tuples and Sequences

In order to have succinct notations for prenex formulas and for our discussion
of Skolemisation, we introduce formal tuples, and in particular tuples of
variables and quantifiers, and tuple quantification for tuples of variables.
These tuples are formed and used on the meta level, they are not available
in LBA.

At the end of the section we will also introduce sequence coding which
will be available within LBA. Sequences will be used to define various func-
tions and relations related to search problems.

Definition 6.1 (General Tuples). A tuple of length k is an expression of the
form [t1, . . . , tk] with ti some formal expression. We will use the letter t as a
meta-variable for general tuples. We will use subscripts of the form ti only
to denote the i-th element ti of t. Let [t1, . . . , tk]d` denote [t1, . . . , tmin(k,`)].

Definition 6.2 (Tuples of Variables). A tuple of variables of length k is an
expression of the form [z1, . . . , zk] with zi being a formal variable in LBA.
We will use the letter z (possibly with superscripts) as a meta-variable for
tuples of variables. zi and zd` are defined as for general tuples.

Definition 6.3 (Tuples of Quantifiers). A tuple of quantifiers of length k
is an expression of the form [Q1, . . . , Qk] with Qi ∈ {∃,∀}. We will use
the letter Q (possibly with super-scripts) as a meta-variable for tuples of
quantifiers.

Let Q = [Q1, . . . , Qk] be a tuple of quantifiers of length k. The expression
¬Q denotes the tuple [¬Q1, . . . ,¬Qk] where ¬∀ denotes ∃, and ¬∃ denotes

26

∀. The expression ∀k denotes the tuple [∀, . . . ,∀] of length k. The expression
∀∃k denotes the tuple [∀,∃,∀,∃, . . .] of length k. The expression ∃∀k denotes
the tuple ¬∀∃k.
Definition 6.4 (Tuple Quantification). Let Q = [Q1, . . . , Qk] be a tuple of
quantifiers of length k, and z = [z1, . . . , zk] a tuple of variables of length k.
The expression (Qz)β denotes the formula

(Q1z1)(Q2z2) · · · (Qkzk)β .

We now fix a coding of sequences of numbers of fixed length. As the
length of sequences will always be fixed on the meta-level, we can choose a
sequence coding based on a feasible pairing function. In principle we could
define a concrete pairing function which does not use the #-function, but the
mere existence will suffice for our investigations. This definition of sequence
coding may however play a role in investigations of fragments of bounded
arithmetic which do not include the #-function, but we do not pursue these
here.

Let us remind that a feasible pairing function a, b 7→ pair(a, b) with
projection functions c 7→ (c)1 and c 7→ (c)2 are fixed in LBA which satisfy
(pair(a, b))1 = a and (pair(a, b))2 = b and some natural bounding conditions
like (c)i ≤ c and a, b ≤ t → pair(a, b) ≤ B(t) for some LBA-term B.

Definition 6.5 (Sequence Coding). We use pairing to define sequences of
fixed length by letting 〈 〉 = 0, and 〈a1, . . . , ak+1〉 = pair(a1, 〈a2, . . . , ak+1〉)
with corresponding projections pi. The projection function pi picks out the
i-th element of a sequence; that is, pi(〈a1, . . . , ak〉) = ai.

We use s (possibly with superscripts) as meta-variables to denote se-
quences. For sequences denoted by s, we often write si to denote the i-th
element, pi(s), of s. We also use well-known list notation for sequences. The
empty sequence of length 0 is denoted by 〈 〉. If s is a sequence of length l,
then 〈a | s〉 denotes the sequence of length l + 1 given by 〈a | s〉 = pair(a, s).
We also use expressions of the form 〈a, b, c | s〉 = 〈a | 〈b | 〈c | s〉〉〉, and
〈a, b, c〉 = 〈a, b, c | 〈 〉〉, etc.

We also define the application of the projection function pi to formal
tuples t = [t1, . . . , tk] to denote the application of pi to each of the elements
of t, that is, pi(t) = [pi(t1), . . . ,pi(tk)].

6.2 Canonical Search Problems for Properties in sΠb
k

In this subsection we define a canonical search problem for each formula
in sΣb

∞. The canonical search problem will be used to determine the truth
of the formula. To define the search space for a formula ϕ, we need an upper
bound to all values which may occur as quantified values in the evaluation
of ϕ. The next definition provides the necessary requirements which we will
need for such upper bounds.

27

Definition 6.6 (Strict Upper Bounds). Let ϕ be of the form (Qz)β for some
quantifier-free β, Q = [Q1, . . . , Qk] and z = [z1, . . . , zk]. An LBA-term D is
called a strict upper bound (s.u.b.) for ϕ if its free variables are amongst those
of ϕ, and if it satisfies the following properties: Let Qi := [Qi+1, . . . , Qk] and
zi := [zi+1, . . . , zk]. For all 1 ≤ i ≤ k with Qi = ∀,

S1
2 ` (∀z1) · · · (∀zi−1)

(
(∀zi < D)(Qizi)β → (∀zi)(Qizi)β

)
,

and for all i with Qi = ∃,

S1
2 ` (∀z1) · · · (∀zi−1)

(
(∃zi)(Qizi)β → (∃zi < D)(Qizi)β

)
.

Definition 6.7. For ϕ ∈ sΣb
∞ we can define the canonical s.u.b. Dϕ for ϕ

inductively as follows:

• If ϕ is quantifier free, then let Dϕ := 0.

• If ϕ is of the form (∀x ≤ t)ψ or (∃x ≤ t)ψ, then let Dϕ be the term
max{bd(t) + 1, Dψ(x/bd(t))}.

We observe that Dϕ represents a monotone function in its variables.
Thus, Dϕ is a s.u.b. in the sense of Definition 6.6, which can be shown
immediately by induction on the complexity of ϕ.

Notation 6.8. Let 0k denote the sequence of length k consisting only of
zeros.

Let ϕ be a formula in sΣb
∞ and ~a a list of variables such that FV(ϕ) ⊆

{~a}. Let D = D(~a) be a s.u.b. for ϕ. We define the canonical search problem
SDϕ for ϕ whose aim is to determine the truth value for ϕ. SDϕ is defined
similar to a Πb

k-PLS problem with Πb
` -goal from Definition 3.2, but instead of

a goal set, SDϕ has an answer set ADϕ of low computational complexity which
determines the truth of ϕ: For a solution s to the search problem, ϕ is true
iff s ∈ Aϕ. The answer set will later be used to define the neighbourhood
function for Πb

k-PLS problems, which have to be of low complexity. The
idea to determine the truth of ϕ of, say, the form (∃x < D)ψ(x) is to
successively “search” for the truth of ψ(0), ψ(1),. . . , ψ(D−1). If any of these
intermediate searches are successful, the overall search will be successful and
will yield a value d (usually the first such) for which ψ(d) produces success;
otherwise the overall search will yield a value D indicating that none of the
intermediate searches were successful.

We start by defining the configuration space and cost function which
only depend on rank of formulas and not on their actual form.

Definition 6.9 (Configuration Space). Let k ≥ 0 and D ≥ 1. The config-
uration space Ck,D is the set of all sequences of length k of elements ≤ D,

28

i.e. {〈u1, . . . , uk〉 : u1, . . . , uk ≤ D}. The cost function cD can be defined on
all sequences as

cD(〈uk, . . . , u1〉) :=
k∑
i=1

(D ·− ui)(D + 1)(i−1)

It has the properties that 0 ≤ cD(s) < (D + 1)k for all s ∈ Ck,D, and that
cD(s1) > cD(s2) if s1 is smaller than s2 w.r.t. the lexicographical order on
tuples on Ck,D.

Definition 6.10. The canonical search problem SDϕ of ϕ, given by the sys-
tem (CDϕ , F

D
ϕ , A

D
ϕ , N

D
ϕ , c

D
ϕ), consists of a configuration space CDϕ , a set of

feasible solutions FDϕ which is a subset of the configuration space, an an-
swer set ADϕ which is a subset of the configuration space, a neighbourhood
function ND

ϕ which maps configurations to configurations, and a cost func-
tion cDϕ defined for configurations. The goal of the search problem is to find
some s ∈ FDϕ with ND

ϕ (s) = s.
The defined sets and functions all implicitly depend on the parameters

~a of ϕ. We will usually not mention D as it is understood from the context.
The configuration space CDϕ is Crk(ϕ),D from the previous definition, and

the cost function cDϕ is the cost function cD from the previous definition with
domain restricted to CDϕ .

The set of feasible solutions Fϕ, the neighbourhood function Nϕ and
the answer set Aϕ also implicitly include parameter variables ~a. They are
defined by induction on the complexity of ϕ.

If ϕ is in sΣb
0 ∪ sΠb

0 we define

Fϕ := {〈 〉}
Nϕ(〈 〉) := 〈 〉
〈 〉 ∈ Aϕ :⇔ ϕ

Let ϕ be in sΣb
k+1\sΠb

k+1 of the form (∃x)ψ. ψ has (potentially) one free
variable in addition to ϕ which is x. Thus, when defining F , N and A in
the following, their first argument will denote the value for this additional
parameter. We will make this dependency explicit by writing ψx in the
index of F , N , A, resp. We define

Fϕ := {〈d | s〉 ∈ Cϕ : s ∈ Fψx(d) ∧ (∀x < d)¬ψ(x)}

Nϕ(〈d | s〉) :=


〈d |Nψx(d, s)〉 if d < D ∧ Nψx(d, s) 6= s

〈d | s〉 if d < D ∧ Nψx(d, s) = s ∈ Aψx(d)〈
d+ 1 | 0k〉 if d < D ∧ Nψx(d, s) = s /∈ Aψx(d)
〈d | s〉 if d = D

〈d | s〉 ∈ Aϕ ⇔ d < D

29

For ϕ ∈ sΠb
k+1 \ sΣb

k+1 we define

Fϕ := F¬ϕ

Nϕ(s) := N¬ϕ(s)
Aϕ := Cϕ \A¬ϕ

The latter choices imply for ϕ of the form (∀x)ψ that

Fϕ := {〈d | s〉 ∈ Cϕ : s ∈ Fψx(d) ∧ (∀x < d)ψ(x)}

Nϕ(〈d | s〉) :=


〈d |Nψx(d, s)〉 if d < D ∧ Nψx(d, s) 6= s

〈d | s〉 if d < D ∧ Nψx(d, s) = s /∈ Aψx(d)〈
d+ 1 | 0k〉 if d < D ∧ Nψx(d, s) = s ∈ Aψx(d)
〈d | s〉 if d = D

〈d | s〉 ∈ Aϕ ⇔ d = D assuming s ∈ Cψ

Definition 6.11. Let ϕ ∈ sΣb
∞, and let SDϕ = (Cϕ, Fϕ, Aϕ, Nϕ, cϕ) be the

canonical search problem for ϕ. Let k be the rank of ϕ. We extend the
definition of Fϕ, Aϕ and Nϕ to sequences of length ` > k in the obvious
way:

〈u1, . . . , u`〉 ∈ Fϕ :⇐⇒ 〈u1, . . . , uk〉 ∈ Fϕ
〈u1, . . . , u`〉 ∈ Aϕ :⇐⇒ 〈u1, . . . , uk〉 ∈ Aϕ

and if Nϕ(〈u1, . . . , uk〉) = 〈v1, . . . , vk〉 then

Nϕ(〈u1, . . . , u`〉) := 〈v1, . . . , vk, uk+1, . . . , u`〉 .

To explain the previous two definitions let us calculate Fϕ for ϕ of rank
k > 0: For k = 1 and ϕ ≡ (∃x)β(x) we have 〈u | s〉 ∈ Fϕ ≡ (∀x<u)¬β(x). If
k = 2 and ϕ ≡ (∃x)(∀y)β(x, y) then 〈u, v | s〉 ∈ Fϕ has the form

(∀x<u)(∃y)¬β(x, y) ∧ (∀y<v)β(u, y) .

If k = 3 and ϕ ≡ (∃x)(∀y)(∃z)β(x, y, z) we have that 〈u, v, w | s〉 ∈ Fϕ is of
the form

(∀x<u)(∃y)(∀z)¬β(x, y, z) ∧ (∀y<v)(∃z)β(u, y, z) ∧ (∀z<w)¬β(u, v, z) .

For the general case assume ϕ ≡ (∃x)(∀y)ψ(x, y). Then 〈u, v | s〉 ∈ Fϕ
has the form

(∀x<u)(∃y)¬ψ(x, y) ∧ (∀y<v)ψ(u, y) ∧ s ∈ Fψxy(u, v)

30

(0, 0) (0, D)

(D, 0) (D,D)

Cϕ:

Nψ(d1)(e1) 6= e1

(d1, e1) (d1, e1+1)

(d2, e2)
Nψ(d2)(e2) = e2 ∈ Aψ(d2)

(d3, e3)

(d3 + 1, 0)

Nψ(d3)(e3) = e3 /∈ Aψ(d3)

(D, e4)

Nϕ

Nϕ

Nϕ

Nϕ Nϕ Nϕ

Figure 1: The canonical search problem Sϕ = (Cϕ, Fϕ, Aϕ, Nϕ, cϕ) for ϕ
in sΣb

2 \ sΠb
2 of the form (∃x)ψ(x), and D a strict upper bound for ϕ. The

configuration space Cϕ is a grid consisting of all points 〈d, e〉 with 0 ≤ d ≤ D
and 0 ≤ e ≤ D. Nϕ is defined for all points on the grid. Its behaviour at
〈d, e〉 depends on the behaviour of the canonical search problem for Sψx(d) =
Sψ(d), in particular on Nψx(d, e) = Nψ(d)(e) and Aψx(d) = Aψ(d).

31

Observation 6.12. Let ϕ ∈ sΣb
∞, and let k be the rank of ϕ according

to Definition 2.6. Let Sϕ = (Cϕ, Fϕ, Aϕ, Nϕ, cϕ) be the canonical search
problem for ϕ. Then, Cϕ, Aϕ, Nϕ and cϕ are polynomial time computable,
and Fϕ is in the level Πp

k of the polynomial time hierarchy. More precisely,
we observe that s ∈ Cϕ(a), s ∈ Aϕ(a) and Nϕ(a, s) = s′ can be defined
by sΣb

0-formulas, cϕ(a, s) can be defined by LBA-terms, and s ∈ Fϕ(a) is
equivalent to a sΠb

k-formula in BASIC.

Proposition 6.13. Let ϕ ∈ sΣb
∞ \ sΣb

1 ∪ sΠb
1, D an s.u.b. for ϕ, and let

SDϕ = (CDϕ , F
D
ϕ , A

D
ϕ , N

D
ϕ , c

D
ϕ) be the canonical search problem for ϕ. The

following is provable in BASIC. Assume ND
ϕ (s) = s, then either s1 = D, or

s1 < D and s2 = D.

Proof. It is enough to consider ϕ of the form (∃x)(∀y)ψ(x, y), as ND
¬ϕ(s) =

ND
ϕ (s). Let s = 〈d, e | s′〉 and assume ND

ϕ (s) = s and d 6= D, then we
have to show d < D and e = D. The definition of ND

ϕ implies d < D

and 〈e | s′〉 ∈ AD(∀y)ψ(x,y)(d). By definition of AD(∀y)ψ(d,y) the latter shows
e = D.

Corollary 6.14. Let SDϕ = (CDϕ , F
D
ϕ , A

D
ϕ , N

D
ϕ , c

D
ϕ) be the canonical search

problem for a formula ϕ ∈ sΣb
∞, and D an s.u.b. for ϕ. Then, the following

are provable in BASIC:

1. If rk(ϕ) ≥ 2, Nϕ(s) = s, and either tp(ϕ) =
∨

and s ∈ Aϕ, or
tp(ϕ) =

∧
and s /∈ Aϕ, then s2 = D.

2. If rk(ϕ) ≥ 1, Nϕ(s) = s, and either tp(ϕ) =
∨

and s /∈ Aϕ, or
tp(ϕ) =

∧
and s ∈ Aϕ, then s1 = D.

Proof. For both 1. and 2., it is enough to consider the case tp(ϕ) =
∨

as
the “either. . . or” cases are equivalent due to the definition of Aϕ. For 1. we
observe that the definition of s ∈ Aϕ implies s1 < D. Thus, s2 = D by the
previous Proposition. In case 2. the definition of s /∈ Aϕ implies s1 6< D,
hence s1 = D.

The next proposition validates that canonical search problems correctly
determine truth.

Proposition 6.15. Let ϕ ∈ sΣb
∞, and let Sϕ = (Cϕ, Fϕ, Aϕ, Nϕ, cϕ) be the

canonical search problem for ϕ. The following is provable in S1
2:

Nϕ(s) = s ∧ s ∈ Fϕ ⇒ (ϕ ⇔ s ∈ Aϕ)

Proof. The proof is by induction on the rank of ϕ. It is enough to consider
ϕ of the form (∃x)ψ(x), because the assertion is trivial for ϕ of rank 0,
and for ϕ of the form (∀x)ψ(x) we can use Nϕ = N¬ϕ, Fϕ = F¬ϕ, and
Aϕ = Cϕ \A¬ϕ.

32

We argue in S1
2. Let s = 〈d | s′〉 and assume Nϕ(s) = s ∈ Fϕ. Assume

first d < D, hence s ∈ Aϕ. We will show ψ(d), which implies ϕ. By definition
of Nϕ we have Nψx(d, s′) = s′ and s′ ∈ Aψx(d). The definition of Fϕ shows
s′ ∈ Fψx(d). If rk(ϕ) = 1 we have s′ = 〈 〉. Thus, s′ ∈ Aψx(d) implies
〈 〉 ∈ Aψ(d), hence ψ(d). For rk(ϕ) > 1 we obtain by induction hypothesis
ψ(d) iff s′1 = D. As s1 = d < D, Proposition 6.13 shows s′1 = s2 = D. Hence
ψ(d).

Now assume d = D, hence s /∈ Aϕ. We have (∀x < D)¬ψ(x) by definition
of Fϕ. As D is s.u.b. for ϕ, the latter shows (∀x)¬ψ(x) (this is the only place
where we need S1

2). Hence ¬ϕ.

The final proposition states that canonical search problems have the
properties of search problems.

Proposition 6.16. Let Sϕ = (Cϕ, Fϕ, Aϕ, Nϕ, cϕ) be the canonical search
problem for a formula ϕ ∈ sΣb

∞ of rank k. The following can be proven
in S1

2.

1. 0k ∈ Fϕ.

2. If s ∈ Fϕ, then Nϕ(s) ∈ Fϕ
3. If Nϕ(s) = s′ and s 6= s′, then cϕ(s′) < cϕ(s).

Proof. The first and third assertion follow immediately from the defini-
tions, and can be proven already in BASIC. The proof of the second
assertion is by induction on the rank of ϕ. The non-trivial cases are
that ϕ is of the form (∃x)ψ(x), and that s = 〈d | s′〉 and Nϕ(s) 6= s. If
Nϕ(s) = 〈d |Nψx(d, s′)〉 the assertion follows immediately from induction
hypothesis. In case Nϕ(s) =

〈
d+ 1 | 0k〉 the assertion follows using Propo-

sition 6.15 to ensure (∀x<d+1)ψ(x).

7 Search problems defined by proof notations

We are now ready to put things together: We first define a general local
search problem based on proof notations which will be used in Subsection 7.2
to provide the characterisation of Σb

`+1-definable search problems in Tk+1
2 in

terms of Πb
k-PLS problems with Σb

` -goals.

7.1 Parameterised Local Search Problems based on Proof
Notations

Let us start by describing the idea for computing witnesses using proof trees.
Assume we have a Tk+1

2 -proof of a formula (∃y)ϕ(y) in Σb
`+1 and we want to

compute an n such that ϕ(n) is true — in case we are interested in definable
search problems, such a situation is obtained from a proof of (∀x)(∃y)ϕ(x, y)

33

by inverting the universal quantifier to some a ∈ N. Assume further, we have
applied some proof theoretical transformations to obtain a BA∞ derivation
d0 of (∃y)ϕ(y) with sΣb

0-crk(d0) ≤ k. Then we can define a path through
d0, represented by sub-derivations d1, d2, d3 . . . , such that

• dj+1 = dj(ι) for some ι ∈ | last(dj)|
• Γ(dj) = (∃y)ϕ(y),Γj where all formulae A ∈ Γj are false and in sΣb

k ∪
sΠb

k.

Such a path must be finite as hgt(dj) is strictly decreasing. Say it ends with
some d`. In this situation we must have that last(d`) =

∨k
(∃y)ϕ(y) and that

ϕ(k) is true. Hence we found our witness.
The path which we have just described can be viewed as the canonical

path through a related local search problem. Before explaining this, let us
fix the notion of a local search problem.

Definition 7.1. An instance of a local search problem consists of a set F
of possible solutions, a goal set G which is a subset of F , an initial value
d ∈ F , a cost function c : F → N, and a neighbourhood function N : F → F
which satisfy that c(N(d)) < c(d) if N(d) 6= d, and that d ∈ G iff d ∈ F and
N(d) = d. A solution to a local search problem, called a local optimum, is
any d ∈ G.

Observe that the ingredients of a local search problem guarantee the
existence of a local optimum, by starting with the initial value and iterat-
ing the neighbourhood function (this defines the canonical path through the
search problem.)

Now we define a local search problem whose canonical path is the one
described above. The set F of possible solutions is defined as the set of
all BA∞-derivations d which have the properties that sΣb

0-crk(d0) ≤ k, and
that all formulae A ∈ Γ(d)\{(∃y)ϕ(y)} are false and in sΣb

k ∪ sΠb
k. The cost

of a possible solution d ∈ F is given by the height hgt(d) of the proof tree
d. We have already fixed some initial value d0 ∈ F . The neighbourhood
function N : BA∞ → BA∞ is defined by case distinction on the shape of
last(d) for d ∈ F :

• last(d) = AxA cannot occur as all atomic formulae in Γ(d) are false by
definition of F .

• last(d) =
∧
A0 ∧A1

, then A0 ∧ A1 must be false, hence some of A0, A1

must be false. Let N(d) := d(0) if A0 is false, and d(1) otherwise.

• last(d) =
∨k
A0 ∨A1

, then A0 ∨ A1 must be false, hence both A0, A1

must be false. Let N(d) := d(0).

• last(d) =
∧

(∀x)A(x). As (∀x)A(x) is false there is some i such that A(i)
is false. Let N(d) := d(i).

34

• last(d) =
∨k

(∃x)A(x). If (∃x)A(x) is different from (∃y)ϕ(y) then
(∃x)A(x) must be false; let N(d) := d(0). Otherwise, if ϕ(k) is false
let N(d) = d(0), and if it is true let N(d) = d. Observe that in the
very last case we found our witness.

• last(d) = CutC . If C is false let N(d) := d(0), otherwise let N(d) :=
d(1).

Obviously, this defines a local search problem according to Definition 7.1.
As remarked above, a local optimal solution to the search problem allows
us to determine a witness.

The previous description covers the main idea for defining search prob-
lem via proof notations. It is not exactly the version we are looking for, as
we want to have neighbourhood functions which are polynomial time com-
putable, but the one that we describe above has to decide sΣb

k−1-formulas
(in case of a cut) and maintain in some way the promise that the endsequent
of elements in F consists of false formulas besides (∃y)ϕ(y). The adjustment
we have to make is to incorporate the canonical search problems for decid-
ing formulas from the previous section, instead of deciding them. We also
have to store promised witnesses for false sΠb

k formulas in the endsequent of
derivations, in order to obtain the optimal complexity for the set of feasible
solutions, which is sΠb

k. We do this by extending the set of possible solutions
in the forthcoming Definition 7.3 to triples of the form 〈d, f, s〉, where d de-
notes a BA∞-derivations as above, f stores witnesses of ∀ quantifiers, and
s is a position in a potential canonical search problems for deciding some
formula related to the last inference of d.

In the next definition we fix some canonical choice function for the outer-
most quantifier of a sharply bounded formula. This is followed by the formal
definition of parameterised local search problems, given as the adjustment
of the local search problem described above.

Definition 7.2. Let ε denote the following choice function: For ψ ∈ sΠb
0 ,

let ε(ψ) = j for the smallest j such that ψ[j] is false, and let ε(ψ) = 0 if such
a j cannot be found (including that ψ /∈ sΠb

0 and ψ[j] is not defined etc).

Definition 7.3. We define a local search problem L which is parameterised
by

• complexity levels `, k with 0 ≤ ` ≤ k, denoting the formula classes sΣb
`

and sΣb
k,

• a BA?-derivation h̄ which is used to define an initial value function
h• : N→ CHBA, mapping a 7→ ha := Eh̄(a/x),

• a formula (∃y)ϕ(x, y) ∈ sΣb
`+1,

such that S1
2 proves, for a ∈ N,

35

• Γ(ha) ⊆ {(∃y)ϕ(a, y)},
• sΣb

0-crk(ha) ≤ k,

• o(ha) = 2|a|
O(1)

,

• ϑ(ha) = |a|O(1).

We denote such a parametrisation by L = 〈`, k, h̄, (∃y)ϕ(x, y)〉.
An instance of L is given by a ∈ N which defines the following functions

and relations of a local search problem:

• Let Φ be deco(h̄) together with the closure of deco(h̄) ∩ ∆0 under
negation and taking subformulas.

• Da := bd(ha) + 1 defines a strict upper bound for all formulas in
Φmax(a,bd(ha)) in the sense of Definition 6.6.

• The (finite) set of potential configurations C̃(a) consists of those pairs
(h, f) of h ∈ CHBA and f : A→ {0, . . . , Da − 1} for some finite subset
A of FBA, which satisfy:

1. Γ(h) \ {(∃y)ϕ(a, y)} ⊂ sΣb
k ∪ sΠb

k,

2. dom f consists of all ψ ∈ Γ(h) with tp(ψ) =
∧

and ψ /∈ sΠb
0 ,

3. sΣb
0-crk(h) ≤ k,

4. o(h) ≤ o(ha),

5. bd(h) ≤ bd(ha),

6. ϑ(h) ≤ ϑ(ha),

7. deco(h) ⊆ Φmax(a,bd(ha)).

• The set of configurations is given by

C(a) := {d : d < Da} ∪
{
〈h, f, s〉 : (h, f) ∈ C̃(a) and s ∈ Ck,Da

}
.

• The initial value function is given by i(a) :=
〈
ha, ∅, 0k

〉
.

• The cost function is defined as

c(a, 〈h, f, s〉) := o(h) · (Da + 1)k + c(s)

and
c(a, d) := 0

for d < Da.

36

• The neighbourhood function is defined by case distinction as follows:
for d < Da let N(a, d) := d;
for tp(h) = Axψ let N(a, 〈h, f, s〉) := 〈h, f, s〉;
for tp(h) = Rep let N(a, 〈h, f, s〉) :=

〈
h[0], f r, 0k

〉
, where f r denotes

the restriction of f to Γ(h[0]) — similar in future cases;
for tp(h) =

∧
ψ let

N(a, 〈h, f, s〉) :=

{〈
h[f(ψ)], f r, 0k

〉
if ψ /∈ sΠb

0 ,〈
h[ε(ψ)], f r, 0k

〉
if ψ ∈ sΠb

0 ,

for tp(h) =
∨i
ψ let N(a, 〈h, f, s〉) be defined as

〈
h[0], f r, 0k

〉
if ψ ∈ sΣb

0 ,〈
h, f,Nψ[i](s)

〉
if ψ /∈ sΣb

0 , Nψ[i](s) 6= s,〈
h[0], f ′, 0k

〉
if ψ /∈ sΣb

0 , Nψ[i](s) = s, s /∈ Aψ[i]

and f ′ = (f ∪ {ψ[i] 7→ s1})r if ψ /∈ sΣb
1

or f ′ = f r if ψ ∈ sΣb
1 ,

〈h, f, s〉 if ψ /∈ sΣb
0 , ψ 6= (∃y)ϕ(a, y),

Nψ[i](s) = s, s ∈ Aψ[i],

i if ψ = (∃y)ϕ(a, y), Nϕ(a,i)(s) = s, s ∈ Aϕ(a,i) ,

for tp(h) = Cutψ let N(a, 〈h, f, s〉) be defined as

〈h, f,Nψ(s)〉 if Nψ(s) 6= s,〈
h[1], f r, 0k

〉
if Nψ(s) = s, s ∈ Aψ,〈

h[0], f ′, 0k
〉

if Nψ(s) = s, s /∈ Aψ
and f ′ = (f ∪ {ψ 7→ s1})r if ψ /∈ sΠb

0

or f ′ = f r if ψ ∈ sΠb
0 .

• The set of feasible solutions F (a) is given by those 〈h, f, s〉 which
satisfy

– 〈h, f, s〉 ∈ C(a) and tp(h) 6= Axψ;

– for all ψ ∈ Π := dom(f) we have that ψ[f(ψ)] is false;

– for ψ ∈ Σ := Γ(h) \ ({(∃y)ϕ(a, y)} ∪Π) we have that ψ is false;

– tp(h) = Cutψ implies s ∈ Fψ;

– tp(h) =
∨i
ψ implies s ∈ Fψ[i];

together with those d < Da such that ϕ(a, d) holds.

• The goal set G(a) := {d < Da : ϕ(a, d)} ⊂ F (a).

37

We will now argue that the relations and functions defined above define
a Πb

k-PLS problem with Πb
` -goal according to Definition 3.2. One of the

main considerations for this is to see that the computational complexity of
the involved relations and functions fall into the right classes, in particular,
that the set of configurations and the neighbourhood function are polyno-
mial time computable. This is not difficult to see once we understood how
notations for derivations are coded: any h ∈ CHBA is a term of inference
symbols, and each inference symbol is given by its decoration consisting of
formulas and terms and numbers — the formulas and terms have to come
from Φ, and the numbers are bounded by max(a,bd(ha)). Thus, a natural
feasible Gödel numbering of such terms, as defined in [Bus86], will give us a
suitable set of codes on which all necessary functions are easy to compute, as
they all are either performing syntactic checks according to inference sym-
bols and their decoration, or evaluating (in the case of feasible solutions)
formulas in Φ (which is a finite set) under a numerical substitution.

Proposition 7.4. The local search problem L from Definition 7.3, param-
eterised by 〈Φ, `, k, h, (∃y)ϕ(x, y)〉, provides a Πb

k-PLS problem with Πb
` -goal

according to Definition 3.2.

Proof. As shown in [AB09] the functions a 7→ i(a) = ha, a 7→ bd(ha),
a 7→ o(ha), a 7→ ϑ(ha), and a 7→ deco(ha) are polynomial time computable.
Furthermore, the relations CHBA, sΣb

0-crk(h) ≤ k, bd(h) ≤ m and deco(h) ⊆
Φm are polynomial time computable, and once bd(h) ≤ m is established we
also can compute o(h) ≤ m′ and then o(h) in polynomial time. Hence
c ∈ FP. Also, the functions tp(h) and h[i] are polynomial time computable
on CHBA. Using Observation 6.12, this shows that N is polynomial time
computable, because the case distinction which defines N depends only on
essentially finitely many Nψ: Each such ψ is obtained from a formula in Φ
(which is a finite set) by substituting constants for free variables.

To check that F ∈ Πb
k we look at the critical cases — here we use, similar

to the case above, that the definition of F depends essentially only on finitely
many Nψ. “d ∈ F (a)”, for d < Da, is a Πb

l -property. The definition of
“(h, f, s) ∈ F (a)” has three critical entries: Observe that Σ ∪ Π ⊆ Γ(h) ⊆
deco(h) ⊆ Φbd(ha), hence for ψ ∈ Π the condition “ψ[f(ψ)] is false” is a
Πb
k−1-property, and for ψ ∈ Σ the condition “ψ is false” is a Πb

k-property;
the condition “s ∈ Fψ” for ψ of rank≤ k is Πb

k according to Observation 6.12.
That “s ∈ G(a)” is in Πb

` is obvious by definition.
So it remains to show that the properties (3.1)-(3.5) of Definition 3.2

do hold. For (3.1), (∀x, s)(s ∈ F (x) → |s| ≤ d(|x|)), we observe that
if (h, f) ∈ C̃(a), then h is a term built up from inference symbols, the
length of the term, i.e. the number of inference symbols, is ϑ(h) ≤ ϑ(ha) =
|a|O(1), and each occurring inference symbol is decorated with expressions
from deco(h) ⊆ Φmax(a,bd(ha)) and |bd(ha)| = |a|O(1). Thus, the polynomial

38

bound d can be found assuming a feasible Gödel numbering as in [Bus86].
Property (3.2), (∀x)(i(x) ∈ F (x)), is obvious. The last one, (3.5),

(∀x, s)(s ∈ G(x) ↔ (N(x, s) = s ∧ s ∈ F (x)))

also follows from the definition. For this, observe that for “←” the premise
of the implication N(x, s) = s ∧ s ∈ F (x) implies that s cannot be of
the form 〈h, f, s〉: Assume it is, then either tp(h) = Axψ which would imply
ψ ∈ Γ(h) and ψ true, or tp(h) =

∨i
ψ, ψ 6= (∃y)ϕ(a, y), Nψ[i](s) = s, s ∈ Aψ[i],

and s ∈ F (x) implies s ∈ Fψ[i], thus Proposition 6.15 shows ψ[i], hence ψ,
is true; both times we get a contradiction to the fact implied by s ∈ F (a)
that all formulas in Γ(h) \ {(∃y)ϕ(a, y)} are false.

Property (3.3)

(∀x, s)(s ∈ F (x) → N(x, s) ∈ F (x))

follows by case distinction according to the definition N(x, s), using the
corresponding properties for canonical search problems as shown in Propo-
sition 6.16. For example, consider the case that s = 〈h, f, s〉 ∈ F (x) with
tp(h) =

∧
ψ and ψ /∈ sΠb

0 . Then N(a, s) =
〈
h[f(ψ)], f r, 0k

〉
and we have

to show that (h[f(ψ)], f r) ∈ C̃(a). Let j = f(ψ), then h[j] `≈ Γ(h), ψ[j]
thus obviously Γ(h[j]) ⊂ sΣb

k ∪ sΠb
k. As tp(ψ) =

∧
and ψ ∈ sΣb

∞, it
follows that tp(ψ[j]) 6= ∧

, thus dom f r satisfies the property under 2.
We compute sΣb

0-crk(h[j]) ≤ sΣb
0-crk(h) ≤ k, o(h[j]) < o(h) ≤ o(ha),

bd(h[j]) ≤ bd(h) ≤ bd(ha) by Lemma 5.13, 1., ϑ(h[j]) ≤ ϑ(h) ≤ ϑ(ha)
by Theorem 4.16, and that deco(h) ⊆ Φmax(a,bd(ha)), j = f(ψ) ≤ bd(ha)
and bd(h) ≤ bd(ha) imply deco(h[j]) ⊆ (Φmax(a,bd(ha)))max(bd(ha),bd(h)) =
Φmax(a,bd(ha)) by Lemma 5.17, 4.

Other interesting cases occur when s = 〈h, f, s〉 ∈ F (x) with tp(h) =
∨i
ψ,

ψ /∈ sΣb
0 and Nψ[i](s) = s. If s /∈ Aψ[i] and ψ /∈ sΣb

1 , then N(a, s) =〈
h[0], f ′, 0k

〉
and f ′ = (f ∪ {ψ[i] 7→ s1})r. The condition 〈h[0], f ′〉 ∈ C̃(a)

can be shown as before. If ψ[i] ∈ dom(f ′) we also have to show that ψ[i][s1]
is false. s can be written as 〈d | s′〉 because rk(ψ) ≥ 2. As s ∈ F (x) we
have s ∈ Fψ[i] by definition of F (x), which implies s′ ∈ Fψ[i][d] by definition
of Fψ[i]. By assumptions we also have Nψ[i](s) = s and s /∈ Aψ[i]. As
tp(ψ[i]) =

∧
, s /∈ Aψ[i] shows d < Da, hence both Nψ[i](s) = s and s /∈ Aψ[i]

together with the definition of Nψ[i] show Nψ[i][d](s′) = s′ and s′ /∈ Aψ[i][d].
Now we can conclude using Proposition 6.15 that ψ[i][d] is false.

If s ∈ Aψ[i] and ψ 6= (∃y)ϕ(a, y), then N(x, s) = s and there is nothing
to show.

Finally, if s ∈ Aψ[i] and ψ = (∃y)ϕ(a, y), then N(x, s) = i and we have
to show that i < Da and that ϕ(a, i) is true. Lemma 5.13, 2., shows that
i < bd(h), thus i < bd(ha) ≤ Da. Again, s ∈ F (x) implies s ∈ Fψ[i]. Thus
the assumptions Nψ[i](s) = s and s ∈ Aψ[i] together with Proposition 6.15
show that ψ[i] is true, that is ϕ(a, i) is true.

39

Finally, Property (3.4)

(∀x, s)(N(x, s) = s ∨ c(x,N(x, s)) < c(x, s))

also follows immediately from the definitions. Because, for s = (h, f, s) with
N(x, s) = (h′, f ′, s′) 6= s, either h′ = h[j] for some j, and then o(h′) < o(h),
or h′ = h and s′ = Nψ(s) 6= s and then c(s′) < c(s) using Proposition 6.16.

7.2 Σb
`+1-definable search problems in Tk+1

2 for ` ≤ k

Let 0 ≤ ` ≤ k and assume that Tk+1
2 ` (∀x)(∃y)ϕ(x, y) with (∃y)ϕ(x, y) ∈

sΣb
`+1, ϕ ∈ sΠb

` . Inverting the (∀x) quantifier we also obtain Tk+1
2 `

(∃y)ϕ(x, y). By partial cut-elimination, Theorem 5.11, we obtain some BA?-
derivation h such that FV(h) ⊆ {x}, Γ(h) = {(∃y)ϕ(x, y)}, sΣb

k+1-gcrk(h) =
0, and o(h(a/x)) = |a|O(1).

Let Φ be deco(h) together with the closure of deco(h) ∩∆0 under nega-
tion and taking subformulas. Then L = 〈Φ, `, k, h, (∃y)ϕ(x, y)〉 defines a
local search problem according to Definition 7.3, because the following are
provable in S1

2:

• Γ(ha) = Γ(Eh(a/x)) = Γ(h(a/x)) ⊆ Γ(h)(a/x) = {(∃y)ϕ(a, y)}, where
we used Lemma 5.8 for “⊆”;

• sΣb
0-crk(ha) = sΣb

0-crk(Eh(a/x)) = sΣb
0-crk(h(a/x)) ·− 1

= sΣb
0-gcrk(h(a/x)) ·− 1 = sΣb

0-gcrk(h) ·− 1

≤ (sΣb
k+1-gcrk(h) + k + 1) ·− 1 = k ,

using the properties mentioned directly after Definition 5.5 for “≤”;

• o(ha) = o(Eh(a/x)) = 2o(h(a/x)) − 1 = 2|a|
O(1)

;

• ϑ(ha) = ϑ(Eh(a/x)) = o(h(a/x)) · (ϑ(h(a/x)) + 2)

= |a|O(1) · (|h(a/x)|+ 2) = |a|O(1) · (|h|+ 2) = |a|O(1) ;

• deco(ha) = deco(Eh(a/x)) = deco(h(a/x)) ⊆ Φa, where we have used
Lemma 5.17, 2. for the last inclusion.

By Proposition 7.4, this defines a search problem in Πb
k-PLS with Πb

` -goal.
Thus we have proven Theorem 3.5, that the Σb

`+1-definable total search
problems in Tk+1

2 can be characterised by Πb
k-PLS problems with Πb

` -goals.
Together with Theorem 3.4 we obtain a full characterisation of the Σb

`+1-
definable total search problems in Tk+1

2 :

Corollary 7.5. Let 0 ≤ ` ≤ k. The Σb
`+1-definable total search problems in

Tk+1
2 are exactly characterised by Πb

k-PLS problems with Πb
` -goals.

40

8 Skolemising Search for Truth

In the remaining sections we will strengthen our results by showing that the
properties (3.1)–(3.5) of the Πb

k-PLS problems extracted from Tk+1
2 -proofs

according to Theorem 3.5 can be written in a prenex form which can be
skolemised by simple polynomial time functions, provably in S1

2.

Notation 8.1. We use α, β,. . . to range over formulas in Σb
0 .

Definition 8.2 (Prenex forms). ψ is called a prenex form of ϕ iff ψ has the
shape (Qz)β for some β ∈ Σb

0 , such that BASIC ` ϕ ↔ ψ.

Definition 8.3 (Simple Skolemisation). Let (Qz)β(x, z) with β ∈ Σb
0 be a

prenex form for ϕ(x), where z = [z1, . . . , zk] and Q = [Q1, . . . , Qk]. Let f be
some function symbol. We say that

(∀x)(ϕ(x) → ϕ(f(x)))

admits simple Skolem functions iff there are polynomial time computable
functions f1, . . . , fk such that

(∀x)(∀kz)(β(x, t1, . . . , tk) → β(f(x), t′1, . . . , t
′
k))

is provable in S1
2, where

ti :=

{
zi if Qi = ∃
fi(x, z1, . . . , zi) otherwise

t′i :=

{
fi(x, z1, . . . , zi) if Qi = ∃
zi otherwise

The main result of this section will be to fix a suitable prenex form for
s ∈ Fϕ in such a way that the canonical prenex form of

(∀s)(s ∈ Fϕ → Nϕ(s) ∈ Fϕ) (8.1)

admits simple Skolem functions — we explain later what we mean by a
canonical prenex form. In the next subsection we fix a suitable prenex form
for s ∈ Fϕ; that it enjoys the above mentioned property will be shown later
in Theorem 8.5.

8.1 A suitable prenex form for s ∈ Fϕ

Formulas have many prenex forms. We will now pick a suitable one for the
formula s ∈ Fϕ. Remember that we defined the application of the projection
function pi to formal tuples t = [t1, . . . , tk] as pi(t) = [pi(t1), . . . ,pi(tk)].

41

Theorem 8.4. Let ϕ be a strict formula of rank k, and D a s.u.b. for
ϕ. Then there is a sΣb

0-formula γϕ such that the following are provable in
BASIC:

1. s ∈ Fϕ ⇔ (∀∃kz)γϕ(s, z).

2. (∀s)(∀kz1)(∀kz2)
(∧

1≤i,j≤k pj(z1
i) = pj(z2

i) ∧ γϕ(s, z1) → γϕ(s, z2)
)

.

3. (∀kz)γϕ(0k, z).

4. If k ≥ 1 and ϕ ≡ (∃∀kz)β(z), then

γϕ(s, z) → (pk(z1) < s1 → ¬β(pk(z)))

Here, pk(z) denotes [pk(z1), . . . ,pk(zk)].

5. If k ≥ 2 and ϕ ≡ (∃∀kz)β(z), then

γϕ(s, z) → (pk−1(z1) < s2 → β(s1, pk−1(zdk−1)))

Observe that pk−1(zdk−1) denotes [pk−1(z1), . . . ,pk−1(zk−1)].

Proof. The definition and proof are by induction on k. If k = 0 let γϕ be
the formula 0 = 0. All properties are obviously satisfied.

For k > 0 and ϕ ≡ (∀x)β(x) we define γϕ(s, z) to be the same as γ¬ϕ(s, z).
For k = 1 and ϕ ≡ (∃x)β(x) we have 〈u〉 ∈ Fϕ ≡ (∀x<u)¬β(x). Let

γϕ(〈u〉 , x) be the formula

(p1(x)<u → ¬β(p1(x)))

Again it is easy to see that all properties are satisfied.
Although the general inductive case is for k ≥ 2 already, we write out the

cases for k = 2 and k = 3 explicitly, to make the definition of γϕ more clear.
The mentioning of “ ∧ 0 = 0” in the following case is to suit the general
inductive case. Let k = 2 and ϕ ≡ (∃x)(∀y)β(x, y). Then 〈u, v〉 ∈ Fϕ has
the form

(∀x<u)(∃y)¬β(x, y) ∧ (∀y<v)β(u, y) .

Let γϕ(〈u, v〉 , x, y) be the formula

(p2(x)<u → ¬β(p2(x),p2(y)))
∧ (p1(x)<v → β(u,p1(x)))
∧ 0 = 0 .

If k = 3 and ϕ ≡ (∃x)(∀y)(∃z)β(x, y, z) we have that 〈u, v, w〉 ∈ Fϕ is of
the form

(∀x<u)(∃y)(∀z)¬β(x, y, z) ∧ (∀y<v)(∃z)β(u, y, z) ∧ (∀z<w)¬β(u, v, z) .

42

Let γϕ(〈u, v, w〉 , x, y, z) be the formula

(p3(x)<u → ¬β(p3(x),p3(y),p3(z)))
∧ (p2(x)<v → β(u,p2(x),p2(y)))
∧ (p1(z)<w → ¬β(u, v, p1(z))) .

For all cases considered so far it is easy to verify that the assertions 1.–
6. are satisfied. We have explicitly written out case k = 3 to stress the
dependency of quantifiers: It will be crucial for our later developments that
the 3rd conjunct uses “z” and not “x” as a naive inductive continuation
might suggest.

For the general inductive case we assume ϕ ≡ (∃x)(∀y)ψ(x, y), ψ ≡
(∃∀kz)β(x, y, z) and rk(ψ) = k ≥ 0. Then 〈u, v | s〉 ∈ Fϕ has the form

(∀x<u)(∃y)¬ψ(x, y) ∧ (∀y<v)ψ(u, y) ∧ s ∈ Fψxy(u, v)

⇔ (∀x)(∃y)(∀∃kz)(x<u → ¬β(x, y, z))

∧ (∀y)(∃∀kz)(y<v → β(u, y, z))

∧ ((∀∃kz)γψxy(u, v, s, z)
⇔ (∀x)(∃y)(∀∃kz)γϕ(〈u, v | s〉 , x, y, z)

where we define γϕ(〈u, v | s〉 , x, y, z) to be the formula

(pk+2(x)<u → ¬β(pk+2(x),pk+2(y),pk+2(z)))
∧ (pk+1(x)<v → β(u,pk+1(x), pk+1(y),pk+1(zdk−1)))
∧ γψxy(u, v, s, z) .

This choice of γϕ obviously satisfies all assertions.

8.2 A simple Skolemisation for (∀s)(s ∈ Fϕ → Nϕ(s) ∈ Fϕ)

Now that we have fixed prenex forms for s ∈ Fϕ, we choose a suitable prenex
form of (∀s)(s ∈ Fϕ → Nϕ(s) ∈ Fϕ) in a canonical way:

(∀s)(s ∈ Fϕ → Nϕ(s) ∈ Fϕ)

⇔ (∀s)
(

(∀∃kz)γϕ(s, z) → (∀∃k z̄)γϕ(Nϕ(s), z̄)
)

⇔ (∀s)(∀z̄1)(∃z1)(∀z2)(∃z̄2)(∀z̄3)(∃z3) · · ·
(
γϕ(s, z) → γϕ(Nϕ(s), z̄)

)
The latter is the prenex form which we fix.

Theorem 8.5. Let ϕ be a strict formula of rank k, and D a s.u.b for ϕ.
The prenex form which we fixed for (∀s)(s ∈ Fϕ → Nϕ(s) ∈ Fϕ) admits
simple Skolem functions.

43

Proof. We have to show that there are polynomial time computable func-
tions

f1(s, z1), f2(s, z1, z2), f3(s, z1, z2, z3), . . .

such that

(∀s, z1, z2, z3, . . .)(
γϕ(s, f1(s, z1), z2, f3(s, z1, z2, z3), z4, . . .)

→ γϕ(Nϕ(s), z1, f2(s, z1, z2), z3, f4(. . . , z4), . . .)
)
.

(8.2)

In the following we suppress the argument s from the Skolem functions. The
Skolem functions may also depend on further parameters of ϕ which we also
do not mention. We say that the i-th slice of f1(z1) (f2(z1, z2), f3(z1, z2, z3),
. . . respectively) is chosen canonically if pi(f1(z1)) = pi(z1) (pi(f2(z1, z2)) =
pi(z2), pi(f3(z1, z2, z3)) = pi(z3), . . . respectively.) Choosing the i-th slice of
f1, f2, f3, . . . canonically implies that

pi([f1(z1), z2, f3(z1, z2, z3), z4, . . .])
= pi([z1, z2, z3, z4, . . .])
= pi([z1, f2(z1, z2), z3, f4(z1, z2, z3, z4), . . .])

We now define the Skolem functions and prove (8.2) by induction on k.
If k = 0 there is nothing to show. If k = 1 and ϕ ≡ (∃x)β(x) we choose

the first slice of f1 canonically. Then (8.2) is equivalent to

(∀u, x)(γϕ(〈u〉 , f1(x)) → γϕ(Nϕ(〈u〉), x))

⇔ (∀u, ū, x)
(
Nϕ(〈u〉) = 〈ū〉 ∧ (p1(x) < u → ¬β(p1(x)))

→ (p1(x) < ū → ¬β(p1(x)))
)

The non-trivial case is when Nϕ(〈u〉) = 〈ū〉, ū = u+1 and p1(x) = u. By
definition of Nϕ this implies ¬β(u), hence (8.2) follows.

For the inductive case we consider ϕ ≡ (∃x)(∀y)ψ(x, y) with ψ(x, y) ≡
(∃∀kz)β(x, y, z) and k ≥ 0. Then (8.2) is equivalent to

(∀u, v, ū, v̄, s, s̄, z1, z2, . . .)(
Nϕ(〈u, v | s〉) = 〈ū, v̄ | s̄〉
∧ (pk+2(f1(z1))<u

→ ¬β(pk+2([f1(z1), z2, f3(z1, z2, z3), z4, . . .])))
∧ (pk+1(f1(z1))<v → β(u,pk+1([f1(z1), z2, f3(. . .), . . .])))
∧ γψxy(u, v, s, f3(z1, z2, z3), z4, . . .)

→ (pk+2(z1)<ū → ¬β(pk+2([z1, f2(z1, z2), z3, f4(. . .), . . .])))
∧ (pk+1(z1)<v̄ → β(ū,pk+1([z1, f2(z1, z2), z3, . . .])))
∧ γψxy(ū, v̄, s̄, z3, f4(z1, z2, z3, z4), . . .)

)
(8.3)

44

Let u, v, ū, v̄, s, s̄, z1, z2, z3, . . . be given with Nϕ(〈u, v | s〉) = 〈ū, v̄ | s̄〉.
The possible cases for Nϕ are that Nϕ(〈u, v | s〉) = 〈u, v | s〉 which is trivial,
or that Nϕ(〈u, v | s〉) 6= 〈u, v | s〉, in which case we distinguish the following
three sub-cases according to the definition of Nϕ:

1. Nψxy(u, v, s) = s′ 6= s, thus

Nϕ(〈u, v | s〉) =
〈
u, v | s′〉 .

2. Nψxy(u, v, s) = s and s ∈ Aψxy(u, v), thus

Nϕ(〈u, v | s〉) =
〈
u, v + 1 | 0k

〉
.

3. Nψxy(u, v, s) = s and s /∈ Aψxy(u, v), thus

Nϕ(〈u, v | s〉) =
〈
u+ 1, 0 | 0k

〉
.

As Nψxy and Aψxy are polynomial time computable, and u, v, ū, v̄, s, s̄
are parameters to all Skolem functions, we can define the Skolem functions
by case distinction according to the above three cases.

Case 1. We have ū = u, v̄ = v, s̄ = s′. By induction hypothesis there are
f3, f4, . . . such that

γψxy(u, v, s, f3(z1, z2, z3), z4, . . .)
→ γψxy(u, v, s′, z3, f4(z1, z2, z3, z4), . . .)

where the functions do not yet depend on z1, z2. By Definition 8.4, 2. this
still holds if we modify slice k + 1 and k + 2 of f3, f4, We choose slices
k + 1 and k + 2 of f1, f2, f3, f4, . . . canonically. Then (8.3) turns into

(pk+2(z1)<u → ¬β(pk+2([z1, z2, z3, . . .])))
∧ (pk+1(z1)<v → β(u,pk+1([z1, z2, z3, . . .])))
∧ γψxy(u, v, s, f3(z1, z2, z3), z4, . . .)

→ (pk+2(z1)<u → ¬β(pk+2([z1, z2, z3, . . .])))
∧ (pk+1(z1)<v → β(u,pk+1([z1, z2, z3, . . .])))
∧ γψxy(u, v, s′, z3, f4(z1, z2, z3, z4), . . .)

which is obviously satisfied using the induction hypothesis.

Case 2. We have ū = u, v̄ = v + 1, and s̄ = 0k. Observe that
γψxy(u, v+1, 0k, . . .) is always true by Theorem 8.4, 3. We choose slice k+2
of the Skolem functions canonically. Thus, (8.3) follows from

(pk+1(f1(z1)) < v → β(u,pk+1([f1(z1), z2, f3(. . .), . . .])))
∧ γψxy(u, v, s, f3(z1, z2, z3), z4, . . .)

→ (pk+1(z1) < v + 1 → β(u,pk+1([z1, f2(z1, z2), z3, . . .])))
(8.4)

45

If pk+1(z1) 6= v choose all slices of Skolem functions canonically, then
(8.4) is obviously satisfied.

Now assume pk+1(z1) = v. If k = 0 we choose all slices of Skolem
functions canonically. Then (8.4) is equivalent to β(u, v) which is satisfied,
because we have by construction ofNϕ that s ∈ Aβ(x,y)xy(u, v), which implies
that β(u, v) is true.

If k ≥ 1, we choose Skolem functions in the following way:

pk+1(f2(z1, z2)) = s1

pk−1(f3(z1, z2, z3)) = pk+1(z3) pk+1(f4(. . . , z4)) = pk−1(z4)
pk−1(f5(. . . , z5)) = pk+1(z5) pk+1(f6(. . . , z6)) = pk−1(z6) . . .

and all other slices canonically. Assuming the antecedent of (8.4) we have
to show β(u, v, s1,pk+1(z3),pk−1(z4),pk+1(z5), . . .).

If k = 1, the definition of Nϕ shows s ∈ A(∃z)β(x,y,z)(u, v), which by
construction implies that β(u, v, s1) is true.

In case k ≥ 2 we obtain from Theorem 8.4, 5 that

γψxy(u, v, s, t) → (pk−1(t1) < s2 → β(u, v, s1,pk−1(tdk−1)))

for t = [f3(z1, z2, z3), z4, f5(. . .), . . .]. Together with the antecedent of (8.4)
this implies

pk−1(f3(z1, z2, z3)) < s2 → β(u, v, s1, pk−1([f3(z1, z2, z3), z4, . . .])) .

By our choice of Skolem functions the latter simplifies to

pk+1(z3) < s2 → β(u, v, s1,pk+1(z3),pk−1(z4),pk+1(z5), . . .) .

As s ∈ Aψxy(u, v) and tp(ψ) =
∨

we have s2 = D by Corollary 6.14, thus
β(u, v, s1, pk+1(z3), pk−1(z4),pk+1(z5), . . .) is satisfied.

Case 3. We have ū = u + 1, v̄ = 0 and s̄ = 0k. Observe that the formula
γψxy(u+ 1, 0, 0k, . . .) is always true by Theorem 8.4, 3. Thus, (8.3) follows
from

(pk+2(f1(z1)) < u → ¬β(pk+2([f1(z1), z2, f3(. . . , z3), . . .])))
∧ γψxy(u, v, s, f3(z1, z2, z3), z4, . . .)
→ (pk+2(z1) < u+ 1 → ¬β(pk+2([z1, f2(z1, z2), z3, . . .])))

(8.5)

If pk+2(z1) 6= u choose all slices of Skolem functions canonically, then
(8.5) is obviously satisfied.

Now assume pk+2(z1) = u. We choose Skolem functions in the following
way:

pk+2(f2(z1, z2)) = v

pk(f3(z1, z2, z3)) = pk+2(z3) pk+2(f4(. . . , z4)) = pk(z4)
pk(f5(. . . , z5)) = pk+2(z5) pk+2(f6(. . . , z6)) = pk(z6) . . .

46

and all other slices canonically. Assuming the antecedent of (8.5) we thus
have to show ¬β(u, v, pk+2(z3), pk(z4),pk+2(z5), . . .).

If k = 0, the definition of Nϕ shows s /∈ Aβ(x,y)(u, v) which by construc-
tion implies that ¬β(u, v) is true.

In case k ≥ 1 we obtain from Theorem 8.4, 4 that

γψxy(u, v, s, t) → (pk(t1) < s1 → ¬β(u, v, pk(t)))

for t = [f3(z1, z2, z3), z4, f5(. . .), . . .]. Together with the antecedent of (8.5)
this implies

pk(f3(z1, z2, z3)) < s1 → ¬β(u, v,pk([f3(z1, z2, z3), z4, . . .])) .

By our choice of Skolem functions the latter simplifies to

pk+2(z3) < s1 → ¬β(u, v, pk+2(z3), pk(z4),pk+2(z5), . . .) .

As s /∈ Aψxy(u, v) and tp(ψ) =
∨

we have s1 = D by Corollary 6.14, thus
the latter implies ¬β(u, v, pk+2(z3),pk(z4),pk+2(z5), . . .).

Definition 8.6. Let ϕ be a strict formula of rank k, and D a s.u.b. for ϕ.
We extend γϕ from Definition 8.4 to sequences of length ` > k in the obvious
way:

γϕ(〈u1, . . . , u`〉 , z) :⇐⇒ γϕ(〈u1, . . . , uk〉 , z) .

9 Skolemising Πb
k-PLS Conditions

We have seen in Proposition 7.4 that the local search problem L parame-
terised by 〈Φ, `, k, h, (∃y)ϕ(x, y)〉 defines a Πb

k-PLS problem with Πb
` -goal.

In this section, we are going to show that the Πb
k-PLS conditions (3.1)-(3.5)

for L can be skolemised by simple polynomial time Skolem functions. For
the rest of this section, we assume the parametrisation for L is fixed.

Definition 9.1. For each strict formula we fix a notation of its syntactic
form. Let k = rk(ψ) and choose βψ(z1, . . . , zk) ∈ sΣb

0 ∪ sΠb
0 such that the

following holds: If tp(ψ) =
∨

then ψ ≡ (∃∀kz)βψ(z); if tp(ψ) =
∧

then
ψ ≡ (∀∃kz)βψ(z). Further parameters to ψ may be denoted as convenient.

We are now going to fix a suitable prenex form of s ∈ F (a), which will
then be used to show that the Πb

k-PLS conditions (3.1)-(3.5) admit simple
Skolem functions.

47

First, let us bring the formula s ∈ F (a) into a more readable form:
s ∈ F (a) is equivalent to[

s <Da ∧ ϕ(a, s)
]

∨
[
s ≥ Da ∧ s = 〈h, f, s〉 ∧ s ∈ C(a) ∧ tp(h) 6= Axψ

∧ (∀σ)
((

σ = 〈1, ψ, ν〉 ∧ Cond1(s, ψ, ν) → ¬ψ[f(ψ)]
)

∧ (σ = 〈2, ψ, ν〉 ∧ Cond2(s, ψ, ν) → ¬ψ)
∧ (σ = 〈3, ψ, ν〉 ∧ Cond3(s, ψ, ν) → s ∈ Fψ

))]
using the following abbreviations:

• Cond1(〈h, f, s〉 , ψ, ν) expresses

ν = rk(ψ) ∧ ψ ∈ dom(f)

• Cond2(〈h, f, s〉 , ψ, ν) expresses

ν = rk(ψ) ∧ ψ ∈ Γ(h) \ (dom(f) ∪ {(∃y)ϕ(a, y)})
• Cond3(〈h, f, s〉 , ψ, ν) expresses

ν = rk(ψ) ∧
(

tp(h) = Cutψ ∨
(

tp(h) =
∨i
χ ∧ ψ = χ[i]

))
To increase readability, we have used additional informal parameters as in
“s = 〈h, f, s〉”, which, when making everything formal, would have to be
replaced by appropriate projections, e.g. “h” by “p1(s)” etc.

The occurrence of ν is currently superfluous but will play a role later.
The conditions s ∈ C(a) and Cond1 to Cond3 are obviously polynomial time
computable and thus can be expressed by sharply bounded formulas. Thus,
their exact shape is irrelevant for determining a suitable prenex form. The
evaluation of formulas ¬ψ[f(ψ)] and ¬ψ can be expressed because each ψ
has to be a numerical substitution of a formula from Φ which is a finite set.

We continue to determine a suitable prenex form of s ∈ F (a). Using the
suitable prenex form which we have fixed for s ∈ Fψ in Section 8, and the
notation fixed in Definition 9.1, we transform s ∈ F (a) equivalently into[
s < Da ∧ (∀∃`z)βϕ(a, s, z)

]
∨
[
s ≥ Da ∧ s = 〈h, f, s〉 ∧ s ∈ C(a) ∧ tp(h) 6= Axψ ∧ (∀σ)

(
(
σ = 〈1, ψ, ν〉 ∧ Cond1(s, ψ, ν) → ¬((∀∃νz)βψ(z)[f(ψ)]

))
∧ (σ = 〈2, ψ, ν〉 ∧ Cond2(s, ψ, ν) → ¬(∃∀νz)βψ(z)

)
∧ (σ = 〈3, ψ, ν〉 ∧ Cond3(s, ψ, ν) → (∀∃νz)γψ(s, z)

))]
.

48

This is equivalent to
(∀σ)(∀∃kz)Ψ(a, s, σ, z) (9.1)

for Ψ(a, s, σ, z) expressing[
s < Da ∧ βϕ(a, s,p`(zd`))

]
∨
[
s ≥ Da ∧ s = 〈h, f, s〉 ∧ s ∈ C(a) ∧ tp(h) 6= Axψ
∧ (σ = 〈1, ψ, ν〉 ∧ Cond1(s, ψ, ν) → ¬βψ(f(ψ), pν−1(zdν−1))

)
∧ (σ = 〈2, ψ, ν〉 ∧ Cond2(s, ψ, ν) → ¬βψ(pν(zdν))

)
∧ (σ = 〈3, ψ, ν〉 ∧ Cond3(s, ψ, ν) → γψ(s, zdν)

)]
.

All these equivalences are provable in BASIC. The prenex form (9.1) is the
one we fix for s ∈ F (a).

We have implicitly used several independent quantifiers, i.e. we are read-
ing z as [z1, . . . , zk] where each variable zi consists of k “slices” p1(zi), . . . ,
pk(zi). Slice i is used for formulas of rank i. As Da is an s.u.b. for all
formulas we have to consider, we may assume w.l.o.g. that the slices in each
zi are strictly bounded by Da, and that quantification and Skolem functions
also respect this. We could enforce this by adding further conditions to Ψ,
but we refrain from doing so as it only makes the exposition less clear.

Based on the above prenex form of s ∈ F (a), we now consider the Πb
k-

PLS conditions (3.1)-(3.5) for the fixed parameterised local search problem
L, and we show that they have prenex forms which admit simple Skolem
functions, provable in BASIC. We start with the simplest case first.

9.1 Πb
k-PLS condition (3.4)

Condition (3.4) of a Πb
k-PLS problem in general has the form

(∀a, s)(N(a, s) 6= s → c(a,N(a, s)) < c(a, s)) .

As N and c are polynomial time functions, this condition is equivalent to a
sΠb

1-formula, so there is nothing to show.

9.2 Πb
k-PLS condition (3.2)

This condition has the form

(∀a)(i(a) ∈ F (a))

which, as we just showed, is equivalent to

(∀a, σ)(∀∃kz)Ψ(a, i(a), σ, z)

The latter obviously follows from the following stronger form:

(∀a, σ)(∀kz)Ψ(a, i(a), σ, z) (9.2)

49

Theorem 9.2. (9.2) is provable in BASIC.

Proof. We argue in BASIC. Let a, σ, z be given, and assume σ = 〈j, ψ, ν〉.
By definition, i(a) =

〈
ha, ∅, 0k

〉
. The definition of L shows that

〈
ha, ∅, 0k

〉 ∈
C(a) and that tp(ha) 6= Axψ. We observe that Cond1(s, ψ, ν) and
Cond2(s, ψ, ν) are false as Γ(ha) ⊆ {(∃y)ϕ(a, y)}. For j = 3 we observe
that s = 0k and γψ(0k, zdrk(ψ)) is true by Theorem 8.4, 3 and Definition 8.6.
Hence Ψ(a,

〈
ha, ∅, 0k

〉
, σ, z) is true.

9.3 Πb
k-PLS condition (3.1)

This condition has the form

(∀a, s)(s ∈ F (a) → |s| ≤ d(|a|))
which can be transformed equivalently over BASIC in the following way:

(∀a, s)(s ∈ F (a) → |s| ≤ d(|a|))
⇔ (∀a, s)[(∀σ)(∀∃kz)Ψ(a, s, σ, z) → |s| ≤ d(|a|)]
⇔ (∀a, s)(∃σ)(∃∀kz)[Ψ(a, s, σ, z) → |s| ≤ d(|a|)]

The latter obviously follows from the following stronger form:

(∀a, s, σ)(∀kz)[Ψ(a, s, σ, z) → |s| ≤ d(|a|)] (9.3)

Theorem 9.3. (9.3) is provable in BASIC.

Proof. We argue in BASIC. Let a, s, σ, z be given with Ψ(a, s, σ, z). If s < Da

then obviously |s| ≤ d(|a|) by definition of d. Otherwise, s ≥ Da, and
we obtain s ∈ C(a) by definition of Ψ. Again we obtain |s| ≤ d(|a|) by
construction of d as indicated in the proof of Proposition 7.4.

9.4 Πb
k-PLS condition (3.3)

This condition has the form

(∀a, s)(s ∈ F (a) → N(a, s) ∈ F (a)) .

Using the prenex form fixed in (9.1), this formula can be transformed equiv-
alently over BASIC in the following way:

(∀a, s)(s ∈ F (a) → N(a, s) ∈ F (a))

⇔ (∀a, s)[(∀σ)(∀∃kz)Ψ(a, s, σ, z) → (∀σ̄)(∀∃k z̄)Ψ(a,N(a, s), σ̄, z̄)
]

⇔ (∀a, s, σ̄, z̄1)(∃σ, z1)(∀z2)(∃z̄2)(∀z̄3)(∃z3)(∀z4) · · ·[
Ψ(a, s, σ, z1, z2, . . .) → Ψ(a,N(a, s), σ̄, z̄1, z̄2, . . .)

] (9.4)

Formula (9.4) is the prenex form which we fix for Condition (3.3).

50

Theorem 9.4. The prenex formula (9.4) admits simple Skolem functions.

Proof. We have to show that there are polynomial time functions

hσ(a, s, σ, z1), h1(a, s, σ, z1), h2(a, s, σ, z1, z2), h3(a, s, σ, z1, z2, z3), . . .

such that S1
2 proves

(∀a, s, σ, z1, z2, z3, z4, . . .)[
Ψ(a, s, hσ(a, s, σ, z1), h1(a, s, σ, z1), z2, h3(. . . , z3), z4, . . .)
→ Ψ(a,N(a, s), σ, z1, h2(. . . , z2), z3, h4(. . . , z4), . . .)

] (9.5)

In the following we suppress the arguments a, s from the Skolem functions.
We say that hσ(σ, z1) (resp., h1(σ, z1), h2(σ, z1, z2), . . .) is chosen canoni-
cally if hσ(σ, z1) = σ (resp., h1(σ, z1) = z1, h2(σ, z1, z2) = z2,)

Let a, s, σ, z1, z2, z3, . . . be given. We consider cases according to the
definition of N(a, s).

Let us start with some simple cases. Let s =
〈
h, f, 0k

〉
, ψ /∈ sΠb

0 and
N(a, s) =

〈
h[f(ψ)], f r, 0k

〉
with tp(h) =

∧
ψ and 0 < ν := rk(ψ) ≤ k.

If σ 6= 〈2, ψ[f(ψ)], ν−1〉 or Cond2(N(a, s), ψ[f(ψ)], ν−1) is false, then
choosing Skolem functions canonically obviously satisfies (9.5). So assume
σ = 〈2, ψ[f(ψ)], ν−1〉 and Cond2(N(a, s), ψ[f(ψ)], ν−1) is true. Choose
hσ(. . .) = 〈1, ψ, ν〉 and all other Skolem functions canonically. Then
Cond1(s, ψ, ν) is satisfied, and (9.5) is equivalent to

¬βψ(f(ψ),pν−1([z1, . . . , zν−1])) → ¬βψ[f(ψ)](pν−1([z1, . . . , zν−1]))

which is obviously true.
Another simple case is if s = 〈h, f, s〉 and N(a, s) = 〈h, f,Nψ(s)〉

with tp(h) = Cutψ, ν := rk(ψ) and Nψ(s) 6= s. If σ 6= 〈3, ψ, ν〉 or
Cond3(N(a, s), ψ, ν) is false, then choosing Skolem functions canonically
obviously satisfies (9.5). So assume σ = 〈3, ψ, ν〉 and Cond3(N(a, s), ψ, ν) is
true. Choose hσ canonically. As Cond3(s, ψ, ν) is obviously satisfied, (9.5)
is equivalent to

γψ(s, h1(σ, z1), z2, h3(. . .), . . .) → γψ(Nψ(s), z1, h2(σ, z1, z2), z3, . . .) .

Choosing h1, h2, . . . according to Theorem 8.5 will satisfy this implication.

We now list all non-trivial cases. In all other cases not mentioned here,
choosing canonical Skolem functions immediately proves the assertion, as
above. Let s = 〈h, f, s〉, then the following cases in the definition of F (a, s)
have to be considered:

1. N(a, s) =
〈
h[ε(ψ)], f r, 0k

〉
with tp(h) =

∧
ψ and ψ ∈ sΠb

0 .

2. N(a, s) =
〈
h[0], f ′, 0k

〉
with tp(h) =

∨i
ψ, ψ /∈ sΣb

1 , Nψ[i](s) = s,
s /∈ Aψ[i] and f ′ = (f ∪ {ψ[i] 7→ s1})r.

51

3. N(a, s) = i with tp(h) =
∨i

(∃y)ϕ(a,y), Nϕ(a,i)(s) = s and s ∈ Aϕ(a,i).

4. N(a, s) =
〈
h[1], f r, 0k

〉
with tp(h) = Cutψ, ψ /∈ sΠb

0 , Nψ(s) = s and
s ∈ Aψ.

5. N(a, s) =
〈
h[0], f ′, 0k

〉
with tp(h) = Cutψ, ψ /∈ sΠb

0 , Nψ(s) = s,
s /∈ Aψ, and f ′ = (f ∪ {ψ 7→ s1})r.

We will now study these cases one by one, thereby considering only
critical sub-cases; for all other sub-cases the canonical choices for Skolem
functions will already satisfy (9.5).

Case 1. N(a, s) =
〈
h[ε(ψ)], f r, 0k

〉
with tp(h) =

∧
ψ and ψ ∈ sΠb

0 . If
σ = 〈2, ψ[ε(ψ)], 0〉 such that Cond2(N(a, s), ψ[ε(ψ)], 0) is true, we choose
hσ(σ, . . .) = 〈2, ψ, 0〉 and all other Skolem functions canonically. Then (9.5)
is equivalent to ¬βψ → ¬βψ[ε(ψ)] which is satisfied by definition of ε(ψ), cf.
Definition 7.2.

Case 2. N(a, s) =
〈
h[0], f ′, 0k

〉
with tp(h) =

∨i
ψ, ψ /∈ sΣb

1 , Nψ[i](s) = s,
s /∈ Aψ[i] and f ′ = f r ∪ {ψ[i] 7→ s1}. In this case we have that ψ is
of the form (∃∀νz)βψ(z) with ν ≥ 2. Assume σ = 〈1, ψ[i], ν−1〉 and
Cond1(N(a, s), ψ[i], ν−1). Let j := s1, then f ′(ψ[i]) = j.

If ν = 2 then s /∈ Aψ[i] implies ¬ψ[i][j], thus ¬βψ[i][j]. In this situation,
the conclusion of (9.5) is of the form ¬βψ[i][j] which is true. Hence, any
choice of Skolem functions will satisfy (9.5).

Now assume ν > 2. Choose hσ(σ, . . .) = 〈3, ψ[i], ν−1〉 and all other
Skolem functions canonically. Cond3(s, ψ[i], ν−1) is obviously satisfied, thus
(9.5) is equivalent to

γψ[i](s, z1, z2, . . .) → ¬βψ[i][j](t)

with t = pν−2([z1, z2, z3, . . .]). Assume γψ[i](s, z1, z2, . . .). Theorem 8.4,
5, shows, as rk(ψ[i]) = ν−1 and tp(ψ[i]) =

∧
, that pν−2(z1) < s2 →

¬βψ[i](s1, t). As Nψ[i](s) = s, s /∈ Aψ[i] and tp(ψ[i]) =
∧

, we have s2 = Da

by Corollary 6.14, 1. Hence the latter implies ¬βψ[i](s1, t) which is the same
as ¬βψ[i][j](t).

Case 3. N(a, s) = i with tp(h) =
∨i

(∃y)ϕ(a,y), Nϕ(a,i)(s) = s and s ∈ Aϕ(a,i).
We have that ϕ(a, i) is of the form (∀∃`z)βϕ(a,i)(z).

If ` = 0 then s ∈ Aϕ(a,i) implies ϕ(a, i), which is the same as βϕ(a,i). This
implies the succedent of (9.5), which is of the form βϕ(a, i).

If ` > 0, choose hσ(σ, . . .) = 〈3, ϕ(a, i), `〉 and all other Skolem functions
canonically. Cond3(s, ϕ(a, i), `) is obviously satisfied, thus (9.5) is equivalent
to

γϕ(a,i)(s, z1, z2, . . .) → βϕ(a,i)(t)

52

with t = p`([z1, z2, z3, . . .]). Assume γϕ(a,i)(s, z1, z2, . . .). As rk(ϕ) = `
and tp(ϕ) =

∧
, Theorem 8.4, 4, shows p`(z1) < s1 → βϕ(a,i)(t). As

Nϕ(a,i)(s) = s, s ∈ Aϕ(a,i) and tp(ϕ(a, i)) =
∧

, we have s1 = Da by Corol-
lary 6.14, 2. Hence the latter implies βϕ(a,i)(t).

Case 4. N(a, s) =
〈
h[1], f r, 0k

〉
with tp(h) = Cutψ, Nψ(s) = s and s ∈ Aψ.

We have that ψ ≡ (∀∃νz)βψ(z) for ν = rk(ψ). Assume σ = 〈2,¬ψ, ν〉 and
Cond2(N(a, s),¬ψ, ν) is true.

If ν = 0 choose Skolem functions arbitrarily. Then, the conclusion of
(9.5) is equivalent to βψ, which is satisfied because s ∈ Aψ already implies
ψ which is the same as βψ.

Now assume ν > 0, and choose hσ(σ, . . .) = 〈3, ψ, ν〉 and all other Skolem
functions canonically. Cond3(s, ψ, ν) is obviously satisfied. Then (9.5) is
equivalent to

γψ(s, z1, z2, . . .) → βψ(t)

with t = pν([z1, z2, z3, . . .]). Assume γψ(s, z1, z2, . . .). As rk(ψ) = ν and
tp(ψ) =

∧
, Theorem 8.4, 4, shows pν(z1) < s1 → βψ(t). By assumption

Nψ(s) = s, s ∈ Aψ and tp(ψ) =
∧

, so s1 = Da by Corollary 6.14, 2. Hence
βψ(t) follows.

Case 5. N(a, s) =
〈
h[0], f ′, 0k

〉
with tp(h) = Cutψ, ψ /∈ sΠb

0 , Nψ(s) = s,
s /∈ Aψ, and f ′ = (f ∪ {ψ 7→ s1})r. We have that ψ ≡ (∀∃νz)βψ(z) for
ν = rk(ψ), and ν > 0. Let j := s1.

If ν = 1, the assumption s /∈ Aψ implies ¬ψ[s1] which is ¬βψ[j]. Now
the critical case is σ = 〈1, ψ, 1〉, when the conclusion of (9.5) has the form
¬βψ[f(ψ)] which is the same as ¬βψ[j] and satisfied. Arbitrary choices for
Skolem functions will satisfy (9.5).

Now assume ν > 1. The critical case now is that σ = 〈1, ψ, ν〉 and
that Cond1(N(a, s), ψ, ν) is true, that is ψ ∈ dom(f ′), and f ′(ψ) = j by
definition. Choose hσ(σ, . . .) = 〈3, ψ, ν〉 and all other Skolem functions
canonically. Cond3(s, ψ, ν) is obviously satisfied. Then (9.5) is equivalent
to

γψ(s, z1, z2, . . .) → ¬βψ[j](t)

with t = pν−1([z1, z2, z3, . . .]), as j = f(ψ). Assume γψ(s, z1, z2, . . .). As
tp(ψ) =

∧
and rk(ψ) = ν, Theorem 8.4, 5, shows pν−1(z1) < s2 →

¬βψ(s1, t). As Nψ(s) = s, s /∈ Aψ and tp(ψ) =
∧

, we have s2 = Da by Corol-
lary 6.14, 1. Hence ¬βψ(s1, t) follows, which is the same as ¬βψ[j](t).

9.5 Πb
k-PLS condition (3.5)

Condition (3.5) can be divided into two parts which we consider indepen-
dently:

(∀a, s)(s ∈ G(a) → (N(a, s) = s ∧ s ∈ F (a))) (9.6)

53

and

(∀a, s)((N(a, s) = s ∧ s ∈ F (a)) → s ∈ G(a)) (9.7)

The goal set G(a) is given as the set of all s < Da with ϕ(a, s). Using
the prenex form fixed for ϕ according to Definition 9.1, and the prenex form
fixed for s ∈ F (a) in (9.1), formula (9.6) can be transformed equivalently as
follows, provably in BASIC:

(∀a, s)(s ∈ G(a) → (N(a, s) = s ∧ s ∈ F (a))
)

⇔ (∀a, s)(s < Da ∧ (∀∃`z)βϕ(a, s,p`(z))

→ N(a, s) = s ∧ (∀σ)(∀∃k z̄)Ψ(a, s, σ, z̄)
)

⇔ (∀a, s)(∀σ)(∀z̄1)(∃z1)(∀z2)(∃z̄2) · · ·(
s < Da ∧ βϕ(a, s,p`([z1, z2, . . .]))
→ N(a, s) = s ∧ Ψ(a, s, σ, z̄1, z̄2, . . .)

)
.

The latter assertion obviously follows from the following stronger one:

(∀a, s, σ, z1, z2, z3, . . .)
(
s < Da ∧ βϕ(a, s,p`([z1, z2, . . .]))

→ N(a, s) = s ∧ Ψ(a, s, σ, z1, z2, . . .)
)
.

(9.8)

We show that (9.8) is provable in S1
2.

Theorem 9.5. S1
2 proves (9.8).

Proof. We argue in S1
2. Let a, s, σ, z1, z2, z3, . . . be given, and assume s < Da

and βϕ(a, s,p`([z1, z2, . . .])). Hence, N(a, s) = s by definition of N , and
Ψ(a, s, σ, z1, z2, . . .) by definition of Ψ.

We now turn to condition (9.7). Instead of working directly with this
condition we split it into two according to whether s < Da or not, and
simplify the resulting conditions according to their meaning.

(∀a, s)((N(a, s) = s ∧ s < Da ∧ s ∈ F (a)) → s ∈ G(a)) (9.9)

and

(∀a, s)((N(a, s) = s ∧ s ≥ Da → s /∈ F (a))) (9.10)

We observe that (9.9) and (9.10) together imply (9.7) in BASIC.
We consider conditions (9.9) and (9.10) in turn. The former is straight

forward to deal with. We transform (9.9) equivalently as follows, provable

54

in BASIC:

(∀a, s)((N(a, s) = s ∧ s < Da ∧ s ∈ F (a)) → s ∈ G(a)
)

⇔ (∀a, s)(N(a, s) = s ∧ s < Da ∧ (∀σ)(∀∃kz)Ψ(a, s, σ, z)

→ (∀∃`z̄)βϕ(a, s,p`(z̄))
)

⇔ (∀a, s)(∀z̄1)(∃σ)(∃z1) (∀z2)(∃z̄2) (∀z̄3)(∃z3) (∀z4)(∃z̄4) . . .(
N(a, s) = s ∧ s < Da ∧ Ψ(a, s, σ, z1, z2, z3, . . .)
→ βϕ(a, s,p`([z̄1, z̄2, z̄3, . . .]))

)
.

The latter is the prenex form which we fix for (9.9). We now show that this
prenex form admits simple Skolem functions.

Theorem 9.6. The prenex form fixed for (9.9) admits simple Skolem func-
tions.

Proof. We have to show that there are polynomial time functions

hσ(a, s, z1), h1(a, s, z1), h2(a, s, z1, z2), h3(a, s, z1, z2, z3), . . .

such that the following is provable in S1
2:

(∀a, s, z1, z2, z3, z4, . . .)
(
N(a, s) = s ∧ s < Da

∧ Ψ(a, s, hσ(a, s, z1), h1(a, s, z1), z2, h3(. . . , z3), . . .)
→ βϕ(a, s,p`([z1, h2(a, s, z1, z2), z3, h4(. . . , z4), . . .]))

)
.

(9.11)

We argue in S1
2. Let a, s, z1, z2, z3, z4, . . . be given with N(a, s) = s and

s < Da. Choose hσ(. . .) = 0, and all other Skolem functions canonically.
Assume Ψ(a, s, 0, z1, z2, z3, z4 . . .), then βϕ(a, s,p`([z1, z2, z3, z4, . . .])) follows
by definition of Ψ(a, s, 0, 0, z1, z2, z3, z4 . . .) as s < Da.

We now turn to condition (9.10) to transform it into a suitable prenex
form. This is not at all obvious because the canonical prenex form does not
admit simple Skolem functions. The premise of the implication is of low
complexity and can be ignored for the prenex form and later the Skolemi-
sation. The only relevant part is the formula “s/∈F (a)”. First, we double
this part to the formula “s/∈F (a) ∨ s/∈F (a)” to obtain two independent sets
of quantifiers. This step is inessential and could have been incorporated al-
ready in the prenex form that we fixed for “s/∈F (a)”. In the second step, we
pull out quantifiers, but not in the canonical way (that is those of the same
level at the same time, putting universal before existential ones.) Instead,
we first pull out the first (∃,∀) quantifier pair of the first “s/∈F (a)”, followed
by the first (∃,∀) pair of the second “s/∈F (a)”. Then comes the second (∃,∀)
pair of the first “s/∈F (a)”, followed by the second (∃,∀) pair of the second
“s/∈F (a)”, and so on. As “s/∈F (a)” is of rank k, we produce in this way

55

a prenex formula of rank 2k, where the canonical prenex form would be
of rank k. Thus, we transform (9.10) equivalently as follows, provable in
BASIC, where the very last equivalence just renames variables:

(∀a, s)((N(a, s) = s ∧ s ≥ Da → s /∈ F (a))
)

⇔ (∀a, s)((N(a, s) = s ∧ s ≥ Da → s /∈ F (a) ∨ s /∈ F (a))
)

⇔ (∀a, s)(N(a, s) = s ∧ s ≥ Da → (∃σ1)(∃∀kz1)¬Ψ(a, s, σ1, z1)

∨ (∃σ2)(∃∀kz2)¬Ψ(a, s, σ2, z2)
)

⇔ (∀a, s)(∃σ1, σ2)(∃z1
1)

(∀z1
2)(∃z2

1) (∀z2
2)(∃z1

3) (∀z1
4)(∃z2

3) · · ·(
N(a, s) = s ∧ s ≥ Da → ¬Ψ(a, s, σ1, z1

1 , z
1
2 , z

1
3 , . . .)

∨ ¬Ψ(a, s, σ2, z2
1 , z

2
2 , z

2
3 , . . .)

)
⇔ (∀a, s)(∃σ1, σ2)(∃z1

1)
(∀z1

2)(∃z2
2) (∀z2

3)(∃z1
3) (∀z1

4)(∃z2
4) · · ·(

N(a, s) = s ∧ s ≥ Da → ¬Ψ(a, s, σ1, z1
1 , z

1
2 , z

1
3 , . . .)

∨ ¬Ψ(a, s, σ2, z2
2 , z

2
3 , z

2
4 , . . .)

)
.

The latter is the prenex form which we fix for (9.10). We now show that
this prenex form admits simple Skolem functions.

Theorem 9.7. The prenex form fixed for (9.10) admits simple Skolem func-
tions.

Proof. We have to show that there are polynomial time functions

hσ
1
(a, s), hσ

2
(a, s),

h1(a, s), h2(a, s, z2), h3(a, s, z2, z3), h4(a, s, z2, z3, z4), . . .

such that the following is provable in S1
2:

(∀a, s, z2, z3, z4, . . .)
(
N(a, s) = s ∧ s ≥ Da

→ ¬Ψ(a, s, hσ
1
(a, s), h1(a, s), z2, h3(a, s, z2, z3), . . .)

∨ ¬Ψ(a, s, hσ
2
(a, s), h2(a, s, z2), z3, h4(. . . , z4), . . .)

)
.

(9.12)

We argue in S1
2. Let a, s, z2, z3, z4, . . . be given with N(a, s) = s and

s ≥ Da. Then N(a, s) = s implies by definition of N that s = 〈h, f, s〉,
tp(h) =

∨i
ψ, ν := rk(ψ[i]) > 0, Nψ[i](s) = s, s ∈ Aψ[i] and ψ 6≡ (∃y)ϕ(a, y).

Choose hσ
1
(a, s) = 〈2, ψ, ν+1〉, hσ2

(a, s) = 〈3, ψ[i], ν〉, pν+1(h1(a, s)) = i,

pν(hj(. . . , zj)) = pν+1(zj) pν+1(hj(. . . , zj)) = pν(zj)

for j = 2, . . . , k, and all remaining slices canonically. Let

t := [pν+1(z2), pν(z3),pν+1(z4),pν(z5), . . .]

56

then we have

pν+1([h1(a, s), z2, h3(a, s, z2, z3), . . .]) = [i, t1, t2, t3, . . .] (9.13)
pν([h2(a, s, z2), z3, h4(. . . , z4), . . .]) = [t1, t2, t3, . . .] (9.14)

Now, (9.12) is equivalent to

¬Ψ(a, s, 〈2, ψ, ν+1〉 , h1(a, s), z2, h3(a, s, z2, z3), . . .)
∨ ¬Ψ(a, s, 〈3, ψ[i], ν〉 , h2(a, s, z2), z3, h4(. . . , z4), . . .)

⇔ βψ(pν+1([h1(a, s), z2, h3(a, s, z2, z3), . . .]))
∨ ¬γψ[i](s, h2(a, s, z2), z3, h4(. . . , z4), . . .)

⇔ βψ(i, tdν) ∨ ¬γψ[i](s, h2(a, s, z2), z3, h4(. . . , z4), . . .) (9.15)

using (9.13) for the last equivalence. To show the last statement (9.15), as-
sume γψ[i](s, h2(a, s, z2), z3, h4(. . . , z4), . . .). As tp(ψ[i]) =

∧
and rk(ψ[i]) =

ν, Theorem 8.4, 4, shows

pν(h2(. . . , z2)) < s1 → βψ[i](tdν)

using (9.14). Now, Nψ[i](s) = s, s ∈ Aψ[i] and tp(ψ[i]) =
∧

show s1 = Da

by Corollary 6.14, 2. Hence, the latter implies βψ[i](tdν) which is the same
as βψ(i, tdν).

The next Corollary summarises the results obtained in this section.

Corollary 9.8. Let 0 ≤ ` ≤ k. The Σb
`+1-definable total search problems

in Tk+1
2 can be characterised by some Πb

k-PLS problems with Πb
` -goals, such

that conditions (3.1)–(3.5) have prenex forms (over BASIC) which admit
simple Skolem functions.

10 A Proposed Hard Principle for Tk
2

The separation problem of Bounded Arithmetic, i.e. the question whether
the hierarchy of Bounded Arithmetic theories is strict or not, is one of the
central problems in this area, due to the connections of Bounded Arith-
metic theories to complexity classes. There are several ways to approach
the separation question. One path which is followed in current research,
is by studying relativised theories. Relativised Bounded Arithmetic theo-
ries can be obtained by adding one unspecified set variable α to the lan-
guage of Bounded Arithmetic, which counts as a new atomic formula and
is allowed in sΣb

k(α)-formulas and in induction formulas. Relativised sep-
arations have been obtained between all relativised Bounded Arithmetic
theories [KPT91, Bus95, Zam96, Jeř09], the goal in current research is to

57

improve the separations, ultimately to find ∀Σb
1(α) principles which sepa-

rate the theories, or even ∀Πb
1(α) principles — ∀Πb

1 is the complexity of
consistency statements.

In this section we will derive, for each k, a generic ∀Σb
1(α) principle from

the results of the previous sections, and show that it gives rise to a class
of ∀Σb

1 formulas which characterise the ∀Σb
1 consequences of Tk+1

2 . The
generic form of the principle is therefore conjectured to separate Tk+1

2 (α)
from Tk

2(α). Such generic principles are well-known in the literature. We
will briefly discuss later the relation of the principle which we will define
here to the game principles defined in [ST07].

Fix k ≥ 0. The Skolemisation of the Πb
k-PLS conditions from the previ-

ous section forms the basis for the generic ∀sΣb
1(α)-principle which we will

denote by Pk. We replace the polynomial time functions and predicates in
the Skolemised versions of (3.1)-(3.5) from the previous section by new func-
tion and predicate symbols in the following way: Let N, c, i be new function
symbols which will be used for the neighbourhood function, the cost func-
tion, and the initial value function respectively. Let G,F ′ be new relation
symbols, where G is binary and is used for the goal set, and F ′ is k+2-ary
and represents Ψ(a, s, σ, z1, z2, . . . , zk) from the prenex form (9.1) fixed for
s ∈ F (a) in the previous section. Let b be a parameter, and let a = p1(b),
a1 = p1(p2(b)) and a2 = p2(p2(b)). We assume Da = a1, and that a2 serves
as a bound for all quantifiers. The Skolemised versions of (3.1)-(3.5) read as
follows — strictly speaking, (3.1)SK below is not the Skolemisation of (3.1),
but a reformulation and adaptation to the current setting, as the original
(3.1) is unsuitable. We take b as a parameter to these formulas, from which
a, a1 and a2 can be computed.

(3.1)SK i(a) < a2 ∧ (∀s < a2)(N(a, s) < a2)

(3.2)SK (∀σ, z1, . . . , zk < a2)F ′(a, i(a), σ, z1, . . . , zk)

(3.3)SK (∀s, σ, z1, . . . , zk < a2)

(F ′(a, s, hσ(a, s, σ, z1), h1(a, s, σ, z1), z2, h3(a, s, σ, z1, z2, z3), . . .)

→ F ′(a,N(a, s), σ, z1, h2(a, s, σ, z1, z2), z3, h4(. . . , z4), . . .))

(3.4)SK (∀s < a2)(N(a, s) = s ∨ c(a,N(a, s)) < c(a, s))

(3.5a)SK (∀s, z1, z2, . . . , zk < a2)(N(a, s) = s ∧ s < a1

∧ F ′(a, s, 0, z1, z2, z3, . . .) → G(a, s))

(3.5b)SK (∀s, z2, . . . , zk, zk+1 < a2)(N(a, s) = s ∧ s ≥ a1

→ ¬F ′(a, s, gσ,1(a, s), g1(a, s), z2, g3(a, s, z2, z3), . . .)

∨ ¬F ′(a, s, gσ,2(a, s), g2(a, s, z2), z3, g4(. . . , z4), . . .))

58

where hσ, h1, h2, . . . and gσ,1, gσ,2, g1, g2, . . . are further function symbols
representing polynomial time Skolem functions. We have used only one
direction of the equivalence in the Skolemisation of (3.5), as we only need this
one to prove the principle Pk. This direction comes in two parts, (3.5a)SK

and (3.5b)SK.
Let X be the list of new function and predicate symbols, that is

X = G,F ′, N, c, i, hσ, h1, h2, . . . , gσ,1, gσ,2, g1, g2, . . .

Observe that (3.1)SK-(3.5b)SK are all sΠb
1(X)-formulas. Then the principle

Pk(X) is given by the ∀sΣb
1(X)-formula obtained from

(∀b)(a1 < a2 ∧ (3.1)SK ∧ · · · ∧ (3.5b)SK → (∃s < a)G(a, s)) (10.1)

by turning the independent bounded existential quantifiers into one using
the pairing function and its bound B(z). We observe that the shape of Pk
depends on k.

Theorem 10.1. Tk+1
2 (X) ` Pk(X)

Proof. The proof is similar to that of Theorem 3.4. We argue in Tk+1
2 (X).

Let b be given, Let a = p1(b), a1 = p1(p2(b)) and a2 = p2(p2(b)). Assume
that a1 < a2, and that (3.1)SK-(3.5b)SK are satisfied. Let s ∈ F (b) denote
the formula

s < a2 ∧ (∀σ<a2)(∀z1<a2)(∃z2<a2) · · ·F ′(a, s, σ, z1, z2, . . . , zk) .

Consider the set X := {c(a, s) : s < a2 ∧ s ∈ F (b)}. This set can be
described by some sΣb

k+1(X)-formula. By (3.1)SK and (3.2)SK we have
c(a, i(a)) ∈ X. As Tk+1

2 (X) proves minimisation for sΣb
k+1(X)-properties,

we can find some c ∈ X which is minimal in X. Choose s < a2 and s ∈ F (b)
with c = c(a, s).

As (3.3)SK is derived from the Skolemisation of a prenex form for (3.3),
we obtain s ∈ F (b) → N(a, s) ∈ F (b). ThusN(a, s) ∈ F (b). AlsoN(a, s) <
a2 by (3.1)SK, hence c(a,N(a, s)) ∈ X. As c is minimal in X we obtain
c(a, s) = c ≤ c(a,N(a, s)). Hence with (3.4)SK

N(a, s) = s .

As (3.5b)SK is derived from the Skolemisation of a prenex form for one
part of (3.5), we obtain

N(a, s) = s ∧ s ≥ a1 → s /∈ F (b) .

As N(a, s) = s and s ∈ F (b) we thus have

s < a1 .

59

Also, (3.5a)SK is derived from the Skolemisation of a prenex form for
another part of (3.5). Here we obtain

N(a, s) = s ∧ s < a1 ∧ s ∈ F (b) → G(a, s) .

Hence we have G(a, s). Altogether this shows s < a1 ∧ G(a, s).

By choosing appropriate substitutions for the parameters, this generic
formula can be used to define syntactic search problem classes which char-
acterise the ∀Σb

1-consequences of Tk+1
2 : Let PiPLSSK(k) be the set of all

formulas obtained by replacing in Pk(X), the list of function and predicate
symbols X by polynomial time computable functions and relations (i.e.,
their definitions in S1

2.) Note that PiPLSSK(k) is a Skolemized version of
the principle PiPLS(k, 0) defined in Section 3. The last theorem shows that
each formula in PiPLSSK(k) is provable in Tk+1

2 . A converse is also true
and can be shown using the results from Section 9. The next Corollary is a
refinement of Corollary 3.6.

Corollary 10.2. Over S1
2, the theories PiPLSSK(k) and Tk+1

2 have the same
∀Σb

1-consequences.

Proof. We already argued for one inclusion. We still have to show that if
Tk+1

2 proves (∀x)ϕ(x) with ϕ ∈ Σb
1 , then this formula also follows from a

formula in PiPLSSK(k) over S1
2.

By Theorem 3.5 and the strengthening in Section 9, we obtain a for-
malised Πp

k-PLS problem with goal formula identical to ϕ, whose condition
(3.1)–(3.5) have prenex forms which can be Skolemised as described in Sec-
tion 9, and be proven in S1

2. Let X be the list of polynomial time computable
functions and predicates coming from this characterisation.

Let Da be an s.u.b. for the search problem, and d the polynomial bound
on the feasible solutions. W.l.o.g. we may assume that d also bounds all
occurring σ, i.e., all triples 〈i, ψ, ν〉 with i ≤ 3, ν ≤ k, and ψ an instance
of a formula in the set of decorations obtained from the original Tk+1

2 -proof
of (∀x)ϕ(x), by substituting free variables with constants for values < Da.
Let E(a) be 2d(|a|). Then let b be pair(a,pair(a1, a2)), for a1 = Da and
a2 = B(B(. . . B(Da + E(a)) . . .)), k iterations of B (here, B is the term
giving a bound on the size of pairs: x, y < z → pair(x, y) < B(z).) We
define

N ′(a, s) =

{
N(a, s) if s<E(a) ∧ N(a, s)<E(a)
E(a) otherwise

c′(a, s) =


c(a, s) + 2 if s < E(a)
1 if s > E(a)
0 if s = E(a)

60

Let X ′ be X in which N , resp. c, has been replaced by N ′, resp. c′.
Consider the formula Pk(X ′) in PiPLSSK(k) defined by X ′. Given an input
a, we choose an instance b for Pk(X ′) as described above. Then it is easy
to show that the strengthenings of the formalised Πp

k-PLS problem proved
in Section 9 imply

a1 < a2 ∧ (3.1)SK ∧ · · · ∧ (3.5b)SK

in S1
2, from which we immediately obtain ϕ(a) over S1

2 assuming Pk(X ′).
We briefly discuss some cases for the above: (3.1)SK follows immediately

from the definitions. (3.2)SK follows immediately from the related case in
Section 9. Same for (3.4)SK.

To show (3.3)SK let s, σ, z1, . . . , zk < a2 such that

F ′(a, s, hσ(a, s, σ, z1), h1(. . .), z2, . . .) .

Thus Ψ(a, s, hσ(a, s, σ, z1), h1(. . .), z2, . . .) which implies by Theorem 9.4
Ψ(a,N(a, s), σ, z1, h2(a, s, σ, z1, z2), z3, h4(. . . , z4), . . .). Theorem 9.3 shows
that s,N(a, s) < E(a). Thus, N ′(a, s) = N(a, s) and we obtain
F ′(a,N ′(a, s), σ, z1, h2(. . .), . . .). The cases (3.5a)SK and (3.5b)SK are simi-
lar.

We observe that similar generic principles can be defined for the ∀Σb
`+1-

consequences of Tk+1
2 .

As the principle PiPLSSK(k) characterises all ∀Σb
1 consequences of Tk+1

2 ,
we conjecture that its generic version Pk(X) defined in (10.1) will separate
Tk

2(X) from Tk+1
2 (X).

Conjecture 10.3. Tk
2(X) 0 Pk

By applying standard techniques using bit-graphs of functions and cod-
ing different relations into one, the principle Pk can be transformed into a
principle which depends on only one relation variable α. The resulting prin-
ciple is still a ∀sΣb

1(α) sentence conjectured to separate Tk
2(α) from Tk+1

2 (α).
The formula Pk can also be transformed into a propositional princi-

ple conjectured to provide exponential separations between constant-depth
propositional proof systems, by using well-known connections between
Bounded Arithmetic and constant-depth propositional proof systems via
the Paris-Wilkie translation. There are different ways to view the resulting
propositional principle. One way is to read it as a polynomial size set of
clauses, where each clause is a logarithmic size set of literals.

We do not go into more depth on these constructions, as they are dis-
cussed in detail in the related paper [BB08]. The interested reader is kindly
referred to that exposition.

61

We finish this section by comparing our approach to the characterisa-
tion of the ∀Σb

`+1-consequences of Tk+1
2 to the results in [ST07]. The game

principles GIk from [ST07] and the principle PiPLSSK(k + 1) defined here
both characterise the ∀Σb

1 consequences of Tk+2
2 over S1

2. From this we
immediately obtain that they are reducible to each other under the canon-
ical reduction of total Σb

1 search problems as discussed e.g. in [ST07]: Let
A = (∀x)(∃y)ϕ(x, y) and B = (∀u)(∃v)ψ(u, v) be two total Σb

1 search prob-
lems, then we call A reducible to B, in symbols A ≤ B, if there are two
polynomial time computable functions f and g, such that for any x, if v is a
solution to B on input f(x), i.e. ψ(f(x), v), then g(x, v) is a solution to A on
input x, i.e. ϕ(x, g(x, v)). The results of [ST07] show that for any formula
A in PiPLSSK(k + 1), there is an instance B in GIk with A ≤ B, provable
in S1

2. In the other direction, using the results obtained here, we obtain that
for any B in GIk, there is a formula A in PiPLSSK(k + 1) with B ≤ A,
provable in S1

2. An inspection of the proof of Corollary 10.2 shows that in
the latter case the reducing functions are given by the identity for f and
a projection to the last component of the second argument (which codes,
using the pairing function, the values of several existential quantifiers into
one) for g. It is also possible to give a simple direct reduction from the GIk
principle to an instance of Pk+1 by a construction that directly matches the
combinatorial structure of GIk. It is not clear whether there is a similarly
simple direct reduction from Pk+1 to GIk.

References

[AB09] Klaus Aehlig and Arnold Beckmann. On the computational com-
plexity of cut-reduction, 2009. Accepted for publication, DOI
10.1016/j.apal.2009.06.004.

[BB08] Arnold Beckmann and Samuel R. Buss. Polynomial local search in
the polynomial hierarchy and witnessing in fragments of bounded
arithmetic. Technical Report CSR15-2008, Department of Com-
puter Science, Swansea University, December 2008.

[Bec03] Arnold Beckmann. Dynamic ordinal analysis. Arch. Math. Logic,
42:303–334, 2003.

[BK94] Samuel R. Buss and Jan Kraj́ıček. An application of Boolean
complexity to separation problems in bounded arithmetic. Proc.
London Math. Soc. (3), 69(1):1–21, 1994.

[Buc91] Wilfried Buchholz. Notation systems for infinitary derivations.
Archive for Mathematical Logic, 30:277–296, 1991.

[Buc97] Wilfried Buchholz. Explaining Gentzen’s consistency proof within
infinitary proof theory. In Computational logic and proof theory

62

(Vienna, 1997), volume 1289 of Lecture Notes in Comput. Sci.,
pages 4–17. Springer, Berlin, 1997.

[Bus86] Samuel R. Buss. Bounded arithmetic, volume 3 of Studies in Proof
Theory. Lecture Notes. Bibliopolis, Naples, 1986.

[Bus95] Samuel R. Buss. Relating the bounded arithmetic and the polyno-
mial time hierarchies. Annals of Pure and Applied Logic, 75:67–77,
1995.

[Jeř09] Emil Jeřábek. Approximate counting by hashing in bounded arith-
metic. Journal of Symbolic Logic, 74(3):829–860, 2009.

[KPT91] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti. Bounded arith-
metic and the polynomial hierarchy. Annals of Pure and Applied
Logic, 52:143–153, 1991.

[Kra93] Jan Kraj́ıček. Fragments of bounded arithmetic and bounded
query classes. Trans. Amer. Math. Soc., 338(2):587–598, 1993.

[KST07] Jan Kraj́ıček, Alan Skelley, and Neil Thapen. NP search prob-
lems in low fragments of bounded arithmetic. J. Symbolic Logic,
72(2):649–672, 2007.

[Min78] Grigori E. Mints. Finite investigations of transfinite derivations.
Journal of Soviet Mathematics, 10:548–596, 1978. Translated from:
Zap. Nauchn. Semin. LOMI 49 (1975). Cited after Grigori Mints.
Selected papers in Proof Theory.Studies in Proof Theory. Bibliopo-
lis, 1992.

[Pol99] Chris Pollett. Structure and definability in general bounded arith-
metic theories. Ann. Pure Appl. Logic, 100(1-3):189–245, 1999.

[Pud06] Pavel Pudlák. Consistency and games—in search of new combi-
natorial principles. In Logic Colloquium ’03, volume 24 of Lect.
Notes Log., pages 244–281. Assoc. Symbol. Logic, La Jolla, CA,
2006.

[Pud07] Pavel Pudlák. Fragments of bounded arithmetic and the lengths
of proofs, 2007. Preprint.

[PW85] J. Paris and A. Wilkie. Counting problems in bounded arithmetic.
In A. Dold and B. Eckmann, editors, Methods in Mathematical
Logic (Proceedings Caracas 1983), number 1130 in Lecture Notes
in Mathematics, pages 317–340. Springer, 1985.

[ST07] Alan Skelley and Neil Thapen. The provable total search problems
of bounded arithmetic, 2007. Preprint.

63

[Tai68] William W. Tait. Normal derivability in classical logic. In J. Bar-
wise, editor, The Syntax and Semantics of Infinitatry Languages,
number 72 in Lecture Notes in Mathematics, pages 204–236.
Springer, 1968.

[Zam96] Domenico Zambella. Notes on polynomially bounded arithmetic.
Journal of Symbolic Logic, 61:942–966, 1996.

64

