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Bounded Arithmetic and Provably Total Functions.

Recall some systems:

- PV - Induction on polynomial time predicates (Cook 1975)
- I∆0 - Induction on linear time hierarchy predicates (Parikh, 1971).
- Ω1 - Totality of xlog x (“smash” function, #)
- T k

2 -Induction on Σb
k-predicates, at k-th level of polynomial time

hierarchy.
T 1

2 - Induction on NP predicates. (Buss 1985)
- Sk

2 -Length or polynomial induction on Σb
k-predicates. [ibid]

PV 4 S1
2 ⊆ T 1

2 4 S2
2 ⊆ T 2

2 4 S3
2 ⊆ · · · · · · I∆0 + Ω1.

Sk+1
2 is ∀Σb

k+1-conservative over T k
2 .

Analogy (weak): Sk
2 ≈ IΣk and (polynomial time)≈(primitive recursive).
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Provably total functions.
Theory Graph (Multi)Function class

S1
2 Σb

1-defined P, polynomial time functions
T 1

2 Σb
1-defined PLS, polynomial local search multifunctions.

Sk
2 Σb

k-defined PΣb
k−1 functions.

T k
2 Σb

k-defined PLSΣb
k−1 multifunctions.

Sk+1
2 Σb

k-defined PLSΣb
k−1 multifunctions.

T 2
2 Σb

1-defined Colored PLS. (Kraj́ıček-Skelley-Thapen, 2006)
T k

2 Σb
1-defined Herbrand analysis (Pudlák, 2006).

” ” k-turn games (Skelley-Thapen, 200?).
T 2

2 Σb
1-defined Iterated PLS (Arai, 200?)

T k
2 Σb

i-defined Πb
k-PLS with Πb

i−1-goal (1 ≤ i ≤ k) - (this talk)

(P:Buss 1985. PLS: Buss-Kraj́ıček 1994).
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Polynomial Local Search (PLS) problems.

(Johnson-Papadimitriou-Yannakakis, 1988). A PLS problem defines a total
multifunction f with polynomial time graph f(x) = y. It has:

- A set F (x) := {s : F (x, s)} of feasible points ≤ t(x),
- An initial point i(x) ∈ F (x).
- A cost function c(x, s).
- A neighborhood function N(x, s).
- F , N , c, i and t are polynomial time.
- For all s ∈ F (x), N(x, s) ∈ F (x) and

either N(x, s) = s or c(N(x, s)) < c(s).
- If s ∈ F (x) and N(x, s) = s, then y = (s)1 is a value of f(x).

f(x) = y holds if and only if s ∈ F (x) and N(x, s) = s and (s)1 = y.

Algorithm: Start with s = i(x) and iterate N . Is in PSPACE.
Open question: Are PLS problems in P?
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Πp
k-PLS — relativizing PLS

(PLSΠ
p
k has F, c,N, i in PΠ

p
k.)

Πp
k-PLS has F ∈ Πp

k, but N , c, i are polynomial time.
Πp

k-PLS problems by definition satisfy (α)-(δ):

(α) ∀x∀s(F (x, s)→ |s| ≤ d(|x|)), d a polynomial.

(β) ∀x(F (x, i(x))).

(γ) ∀x∀s(F (x, s)→ F (x,N(x, s))).

(δ) ∀x∀s(N(x, s) = s ∨ c(x,N(x, s)) < c(x, s)).

Defines a multifunction f(x) = y by:

f(x) = y ⇔ (∃s ≤ 2d(|x|))[F (x, s) ∧N(x, s) = s ∧ y = (s)1].

Same algorithm applies, and is still in PSPACE.
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Πp
k-PLS with Πp

g-goal G

A Πp
k-PLS problem with Πp

g-goal G(x, s) satisfies the additional property:

(ε) ∀x∀s(G(x, s)↔ [F (x, s) ∧N(x, s) = s]).

The graph of the multifunction can now be defined by

f(x) = y ⇔ (∃s ≤ 2d(|x|))[G(x, s) ∧ y = (s)1],

so f has a Σb
g+1-definition.

Formalized Πp
k-PLS problems: The predicates F and G are given by Πb

k-
and Πb

g-formulas, N, i, c are polynomial time functions, and the base theory
S1

2 proves conditions (α)-(ε).

Formalized Πp
k-PLS problems are called Πb

k-PLS problems.
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Existence of solutions to Πb
k-problems

Thm 1. Let P be a Πb
k-PLS problem. Then T k+1

2 proves that, for all x,
P(x) has a solution:

∀x∃s(F (x, s) ∧N(x, s) = s),

or
∀x∃s(G(x, s)).

This is a Σb
k+1- (resp., Σb

g+1-) definition of a multifunction.

Pf. Use Σb
k+1-minimization to find the least c0 satisfying

∃s ≤ 2d(|x|)(c0 = c(x, s) ∧ F (x, s)).
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Exact characterization of Σb
i-definable functions of T k+1

2 .

Main Thm 2 Let 0 ≤ g ≤ k and A(x, y) ∈ Σb
g+1. Suppose

T k+1
2 ` (∀x)(∃y)A(x, y).

Then there is a Πb
k-PLS problem P with Πb

g-goal G such that S1
2 proves

∀x∀s(G(x, s)→ A(x, (s)1)).

Note that the conclusion is provable in S1
2, but T k+1

2 is needed to prove the
existence of s.

For k = g = 0, states that the Σb
1-definable functions of T 1

2 are in PLS.
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Why formalization in S1
2 is important (#1)

Consider a total multifunction defined by (∀x)(∃y ≤ t)A(x, y), where
A ∈ ∆b

0. Here is a Πp
1-PLS search problem for it:

- Initial function: i(x) = 0.

- Cost function: c(x, y) = t− y.

- Neighborhood function: N(x, y) =
{
y if A(x, y) or y ≥ t(x)
y + 1 otherwise.

- Feasible set: F (x, y) ⇔ [A(x, y) ∨ (∀y′ < y)(¬A(x, y′))] ∧ y ≤ t(x).

- Goal: G(x, y) ⇔ A(x, y) ∧ y ≤ t(x).

This is a correct Πp
1-PLS problem independently of provability in T k+1

2 . But
it is not formalizable in S1

2, so is not a Πb
1-PLS problem.
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Thm 2’s proof strategy: Fix k ≥ 0.

Defn Let A(~c) ∈ Σb
k+1. WitA(u,~c) is a Πb

k-formula that states u codes
values for the outermost existential quantifiers of A(~c) making A(~c) true.

Witnessing Lemma. If T k+1
2 proves a sequent

Γ −→ ∆

of Σb
k+1-formulas with free variables ~c, then there is a multifunction f defined

by a Πb
k-PLS problem such that

S1
2 ` Wit∧Γ(u,~c) ∧ y = f(〈u,~c〉)→Wit∨∆(y,~c).

Proof is by induction on length of a free-cut free proof. Part of the
proof requires finding a Πb

k-PLS problem for determining the truth of a
Πb

k-formula.
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Tools for proving the Witnessing Lemma include the following.

Πb
k-PLS problems:

- are closed under polynomial time operations

- closed under composition

- are closed under “pseudoiteration”: exponentially long, polynomial space
bounded iteration that preserves a Πb

k-property. (Needed to handle
induction inferences.)

- can decide the truth of Πb
k-properties. (Needed to handle ∀ ≤:right

inferences.)

For deciding truth of Πb
k-formulas, see next page ...
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Determining truth of a Πb
k-formula

Lemma Let A(x) = (∃y≤t)B(y, x) ∈ Σb
k, with B ∈ Πb

k−1. There is

a Πb
k-PLS problem PA that explicitly determines the truth of A(x) by

computing

PA(x) =
{
〈0, t+ 1〉 if ¬A(x)
〈1, i〉 if i≤t is the least value s.t. B(i, x).

Pf. Define initial function i(x) := 〈0, 0〉. Define

N(x, 〈0, i〉) =
{
〈0, i+ 1〉 if ¬B(i, x), i ≤ t.
〈1, i〉 otherwise

N(x, s) = s for all other s.

For k > 1, determining ¬B(i, x) involves calling PB, a Πb
k−1-PLS problem.

Then define F (x, 〈0, i〉)⇔ i≤t+ 1 ∧ (∀j<i)(¬B(j, x)) and
F (x, 〈1, i〉)⇔ i≤t ∧B(i, x) ∧ (∀j<i)(¬B(j, x)).
F (x, s) is false for all other s. Note F ∈ Πb

k.
Cost function c(x, 〈j, i〉) = t+ 1− i.
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Skolemization: A stronger version of Πb
k-PLS witnessing

Skolemization: For a Boolean combination of formulas, create equivalent
prenex form by the following procedure. Find all outermost blocks of
quantifiers not yet processed. Bring out all universal ones first, then all
existential ones. Repeat until in prenex form. Then Skolemize with terms.

Example: If F is ∀y∃zF0(y, z), then (γ) is Skolemized as follows:

Recall (γ) is: ∀x, s(F (x, s)→ F (x,N(x, s))).

Prenex form: ∀x, s, y2∃y1∀z1∃z2(F0(x, s, y1, z1)→ F0(x, s, y2, z2)).

Skolem form: ∀x, s, y2, z1(F0(x, s, r(x, s, y2), z2)→ F0(x, s, y1, t(x, s, y2, z1))).

where r and t are terms (over the language 0, S,+, ·, .−,MSP that allows
simple fixed-length sequence coding.) r and t are polynomial time.
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Defn A Πb
k-PLS problem with Πb

g goal is formalized in Skolem form provided
the functions N , c, and i are defined by terms, the formulas F and G are
“strict” formulas (with no sharply bounded quantifiers in front of bounded
quantifiers, etc.) and provided S1

2 proves all the conditions (α)-(δ) plus

(ε′) ∀x∀s(G(x, s)→ [F (x, s) ∧N(x, s) = s])

(ε′′) ∀x∀s([F (x, s) ∧N(x, s) = s]→ G(x, s))

in Skolem form using terms as Skolem functions.

Thm If P is formalized in Skolem form, it is also formalized in the usual
form.

Pf. This is trivial.
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Exact characterization revisited, Skolemized form

Main Thm 3. Let 0 ≤ g ≤ k and A(x, y) ∈ Σb
g+1. Suppose

T k+1
2 ` (∀x)(∃y)A(x, y).

Then there is a Πb
k-PLS problem P with Πb

g-goal G which is formalized in
Skolem form such that S1

2 proves a Skolemization of:

∀x∀s(G(x, s)→ A(x, (s)1)).
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The proof of the theorem is similar to before, but much more delicate.

One potential problem. For A ∈ Πb
k, k ≥ 2, the formula

A→ A ∧A

may not be provable in Skolem form by S1
2.

This is needed to handle (implicit) contractions in the free-cut free T i
2-proof.

Solution: Use PA, the Πb
k-PLS problem that determines the truth of A.

The formula
A(x) ∧ y = PA(x)→ A(x) ∧A(x)

is provable in Skolem form by S1
2.

15



A separation conjecture

We can set up a “generic” Skolemized Πb
k-PLS problem with Πb

0-goal as
follows: Adjoin a new predicate symbol for G and a new predicate symbol
F0 for the sharply bounded subformula of F , and adjoin new functions
symbols which are used as Skolem functions for the Πb

k-PLS problem’s
defining conditions.

Then, the Skolemized definition of the Πb
k-PLS problem can be expressed

as a single ∀∆b
0-formula.

Encoding the new functions and predicates by a single new predicate α,
we can encode this ∀∆b

0-formula as a single ∀∆b
0-formula ∀xΨ(x, α).
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Consider the formula

∀xΨ(x)→ ∀x∃y≤x(y = N(x, y) ∧G(x, y)).

By the relativized version of the main theorems, it is provable in T k+1
2 (α).

On the other hand, by the conjectured properness of the bounded arithmetic
and polynomial time hierarchies, we expect this is not provable in T k

2 (α).

This gives a single ∀Σb
1(α)-formula that is known to be provable in T k+1

2 (α)
but conjectured to not be provable by T k

2 (α).

Why formalization in S1
2 is important (#2). Since the Skolem functions

are polynomial time (in fact, are given by simple terms), they can be
conservatively added to S1

2, T k
2 , etc., and can be used freely in induction

axioms. Thus, it is reasonable to allow T k+1
2 (α) use the new predicate α

freely in induction axioms.
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Conjectured separation for constant depth propositional proofs

By using the Paris-Wilkie translation, we get a conjectured separation for
bounded depth propositional proof systems. The Paris-Wilkie translation
converts existential and universal quantifiers to OR’s and AND’s, and atomic
formulas to either True or False or, for α(t), to a propositional variable pt.

A depth k Tait system has sequents of formulas of depth k, where depth
is measured by alternations of AND’s and OR’s. (Poly)logarithmic depth
fanin at the bottom level counts as a 1/2 depth. The T k+1

2 (α) proof of
Thm 1 translates to a depth k − 1 proof by the Paris-Wilkie translation
(after several careful transformations).

The end result gives, for each x ∈ N, a set Ξk of sequents of literals
such that Ξk is known to have depth k − 1 Tait-style refutations, but is
conjectured to not have depth k − 11

2 depth refutations.
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Some open problems

1. Can depth k propositional proofs be separated from depth k − 1 proofs,
for low depth tautologies?

2. Is there a non-uniform version of the witnessing theorems for T k
2 that

will apply to depth k − 1
2 propositional proofs?

3. Are there good analogues of Thms 2 or 3 for fragments of Peano
arithmetic?

Advertisements:
- Problem session (Beckmann, Buss, and ? — today at 2:00.)
- Friday at 9:00am, Arnold will speak on related material?
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Happy Birthday, Stan!
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