
PROOF COMPLEXITY IN ALGEBRAIC SYSTEMS

AND BOUNDED DEPTH FREGE SYSTEMS WITH

MODULAR COUNTING

S. Buss, R. Impagliazzo, J. Kraj́ıček, P. Pudlák,
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Abstract. We prove a lower bound of the form NΩ(1) on the degree of polynomials
in a Nullstellensatz refutation of the Countq polynomials over Zm, where q is a prime
not dividing m. In addition, we give an explicit construction of a degree NΩ(1) design
for the Countq principle over Zm. As a corollary, using Beame et al. (1994) we obtain
a lower bound of the form 2NΩ(1)

for the number of formulas in a constant-depth
Frege proof of the modular counting principle CountNq from instances of the counting
principle CountMm .

We discuss the polynomial calculus proof system and give a method of converting
tree-like polynomial calculus derivations into low degree Nullstellensatz derivations.

Further we show that a lower bound for proofs in a bounded depth Frege system in
the language with the modular counting connective MODp follows from a lower bound
on the degree of Nullstellensatz proofs with a constant number of levels of extension
axioms, where the extension axioms comprise a formalization of the approximation
method of Razborov (1987), Smolensky (1987) (in fact, these two proof systems are
basically equivalent).

Introduction

A propositional proof system is intuitively a system for establishing the validity of propo-
sitional tautologies in some fixed complete language. The formal definition of propositional
proof system is that it is a polynomial time function f which maps strings over an alphabet Σ
onto the set of propositional tautologies (Cook & Reckhow 1979). Any string π for which
f(π) = τ is called an f -proof of τ . Although this definition seems a little counterintuitive
at first, it covers ordinary propositional proof systems T ; namely, let fT map π to τ if π is
a valid proof of τ in the proof system T , otherwise map π to some fixed tautology.

The efficiency of a proof system f can be measured by the length-of-proofs function

sf (τ) := min{|π| : f(π) = τ},

where |π| is the length of the string π. It is a fundamental open problem of mathematical logic
and computational complexity theory to show that sf (τ) cannot be bounded by a polynomial
in the length of τ , for any f . By Cook & Reckhow (1979) this is equivalent to showing that
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NP 6= coNP . Despite extensive research (see the expository articles Buss (1995b), Kraj́ıček
(1996), Pudlak (1995a), Kraj́ıček (1997) or the monograph Kraj́ıček 1995), no non-trivial
lower bounds for sf are known, even for the usual text-book proof systems based on a finite
number of axiom schemes and inference rules (a Frege system in the established terminology).

The proof systems discussed in this paper can be arranged in two hierarchies; one consist-
ing of traditional propositional proof systems (i.e., fragments of Frege systems) and the other
of algebraic proof systems (i.e., fragments of the equational theory of rings). We present here
an overview of these systems; formal definitions will be given later.

Fragments of Frege systems considered in this paper are:

Bounded depth Frege. This is a Frege system where the lines are limited to be constant-depth
formulas over the basis of unrestricted fan-in AND, OR and NOT operations. This system
corresponds to the circuit complexity class AC0 (in the sense that lines in polynomial size
bounded depth Frege proofs are representable by AC0-formulae), which is known not to be
able to express properties involving counting or modular counting.

Bounded depth Frege with counting axioms modulo m. This is bounded depth Frege with the
addition of substitution instances of the family of tautologies CountNm where N 6≡ 0 (mod m),
which expresses the impossibility of partitioning a set of N objects into groups of size m
if N is not divisible by m. This adds some ability to use reasoning involving counting
modulo m, which is not possible for bounded depth Frege systems.

Bounded depth Frege with MODm gates. Here we add into the basis for bounded depth
Frege a new connective MODm computing whether the sum of its inputs is divisible by m.
This (apparently) gives more power for modular reasoning than just adding counting axioms
modulo m since concepts defined in terms of modular counting can then be used to define
yet more complicated concepts.

Unrestricted Frege Systems. Lines in an unrestricted Frege proof can be arbitrary Boolean
formulas over any fixed complete basis, e.g., ∧,¬. Any Frege system can polynomially sim-
ulate any other Frege system (Reckhow 1976). Frege systems correspond to the complexity
class NC1 in the same sense as bounded depth Frege systems corresponded above to AC0.

As we already mentioned, no superpolynomial lower bounds on the length-of-proofs func-
tion for unrestricted Frege systems are known. Such bounds, however, are known for reso-
lution (Tseitin 1968, Haken 1985, Urquhart 1987, Chvatal & Szemeredi 1988, Bonet et al.
1995, Kraj́ıček 1994b), bounded depth Frege, with and without counting axioms modulo m
(Ajtai 1988, Bellantoni et al. 1992, Kraj́ıček 1994a, Kraj́ıček et al. 1995, Pitassi et al. 1993,
Ajtai 1990, Beame & Pitassi 1993, Riis 1993, Ajtai 1994, Beame et al. 1994, Riis 1994), and
for cutting planes (Bonet et al. 1995, Kraj́ıček 1994b, Pudlak 1995b). The survey Urquhart
(1995) discusses many of these superpolynomial lower bounds.

The second hierarchy comprises algebraic proof systems. Let Λ be a fixed (commutative)
ring, usually Zm (integers modulo m) for some integer m. Instead of adding modular reason-
ing to propositional logic, the hierarchy here starts with almost pure equational reasoning
and increases the ability to do logical arguments involving “case analysis”. In each of the
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following systems, we try to derive consequences from a system of polynomial equations
pi(~x) = 0 using equational reasoning. To enforce the variables having values 0 or 1, the
systems always have as axioms the equations x2

i − xi = 0 for each variable xi.

Nullstellensatz (Beame et al. 1994). A Nullstellensatz proof of a polynomial g from polyno-
mials f1, . . . , fk consists of polynomials pi, rj such that

∑
i pifi +

∑
j rj(x

2
j −xj) = g. In other

words, the proof is concrete evidence that the ideal generated by given polynomials fi and
the axioms (x2

j − xj) contains g, and so every 0-1 solution to the system fi(~x) = 0 is also a
0-1 solution to g(~x) = 0. Here we insist that each pi, rj is represented explicitly by its vector
of coefficients, so that proof size is determined by the largest degree.

Polynomial calculus (sometimes also called “Gröbner proofs” (Clegg et al. 1996)). This is
a proof system that allows equational reasoning by adding two previously deduced polyno-
mials or multiplying a previously deduced polynomial by another polynomial. As above,
polynomials must be explicitly given as vectors of coefficients, which again means that size
is determined by the degree. This system obviously includes the Nullstellensatz system.

Nullstellensatz with extension axioms (introduced in this paper). Here we supplement the
Nullstellensatz system with additional equations in new variables that implicitly define a low
degree approximation to the product of a set of polynomials. A proof is then a Nullstellensatz
refutation from the original equations and additional extension equations.

Equational logic. The same reasoning is allowed as in the polynomial calculus; the difference
is that the polynomial equations deduced are allowed to be represented as algebraic formulas
over the variables. To show that two representations are equal must be done explicitly in
the proof, using the ring laws. Equational logic over any (fixed) finite field is equivalent to
unrestricted Frege systems.

In this paper we do the following:

(1) Prove an exponential lower bound for constant-depth Frege proofs in the de Morgan
language of the counting modulo q principle CountNq from instances of the counting

modulo m principle (non-existence of a polynomial size proof was shown in Ajtai (1994),
Beame et al. (1994), Riis (1994)). Our proof is based on giving a lower bound on the
degree of certain Nullstellensatz refutations.

(2) Investigate the relation between polynomial calculus proofs and Nullstellensatz proofs.

(3) Prove a tight connection between the lengths of constant-depth Frege proofs with
MODp gates and the lengths of Nullstellensatz refutations with extension axioms.

These problems are motivated by three sources: (a) the line of research in complexity of
proof systems conducted so far, (b) the relationship between provability in bounded arith-
metic and short constant-depth Frege proofs, and (c) facts from Boolean complexity. We
refer the reader to Kraj́ıček (1995) for detailed explanation of the first two topics and here
we remark only on the third one.

A lower bound for a proof system working with formulas from a class C seems to be
possible only after a Boolean complexity lower bound is established for the class C. It should



4 S. Buss et al.

be stressed, however, that there is no provable relationship between the two problems, so
each particular case requires a new idea. For example, all lower bounds for bounded depth
Frege systems and their extensions utilize techniques developed for proving lower bounds for
the class AC0 (in particular, extensions of the switching lemmas of Hastad (1989)). Since a
lower bound for the class AC0[p] of constant-depth circuits with the MODp gate is known
by Razborov (1987), Smolensky (1987), it is natural to try to modify this technique to obtain
a lower bound for bounded depth Frege systems in the language with MODp. So far, no one
has succeeded in this; nonetheless, the circuit complexity lower bounds provide hope for
success in finding lower bounds for the analogous proof systems.

After the preliminary version of this paper circulated the following developments occured.
Exponential lower bounds for constant-depth Frege proofs of the onto version of the pigeon-
hole principle PHPm

n from instances of the counting modulo m principle Countm are shown
in Beame & Riis (1996). They are obtained via a reduction to Nullstellensatz proofs for
this principle similar to Theorem 2.4. For proving the Nullstellensatz bound, a substantially
developed variant of the degree reduction technique from Section 3 is used. The first (un-
conditional) lower bounds for the polynomial calculus are established in Razborov (1996).
Namely, it is shown there that every polynomial calculus proof of PHPm

n must have degree
Ω(n) over any ground field.

The paper is organized as follows. In Section 1 we recall the definitions of the system
F (MODa) and of the formulas CountNa . In Section 2 we define two algebraic proof systems,
the Nullstellensatz system and the polynomial calculus system. The new lower bound NΩ(1)

for the Nullstellensatz proof system related to proofs of CountNq is given in Section 3. It

improves upon Beame et al. (1994) where a lower bound of the form ω(1) was proved. In
Section 4 we discuss the use of designs for proving lower bounds for Nullstellensatz proofs,
and give a second, design-based proof of the NΩ(1) lower bound; in this section we also
prove Ω(N) lower bound for the case of characteristic zero. In Section 5 we make several
observations on Nullstellensatz proofs and polynomial calculus proofs: we prove an analogue
of cut-elimination, we give a constructive proof of completeness and we prove that tree-
like polynomial calculus proofs can be converted into Nullstellensatz proofs without a large
increase in degree. A proof-theoretic modification of the approximation method of Razborov
(1987), Smolensky (1987) is defined in Section 6. We show there that the logarithm of the
length-of-proofs function sT , where T is the system of bounded depth Frege with MODp gates
is equivalent, up to a polynomial, to the minimal possible degree of polynomials required for
a refutation in the Nullstellensatz system with constantly many levels of extension axioms.

1. The counting principles

Let F be a fixed Frege proof system in the language {TRUE,¬,∨} (∨ is binary, and other
connectives ∧,→ and ≡ are used as abbreviations for their defining formulas) with finitely
many axiom schemes and modus ponens as the only rule of inference. We follow Kraj́ıček
(1995) in the definitions of F (MODa) and CountNa .
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Definition 1.1. Let a ≥ 2 be a fixed integer, and let 0 ≤ i ≤ a − 1. Then MODa,i are
propositional connectives of unbounded arity with the intuitive meaning

MODa,i(p1, . . . , pk) is true iff |{j : pj is true}| ≡ i (mod a).

We extend the Frege system F to the language including the MODa,i connectives by adding
the following axiom schemes (called the MODa axioms):

1. MODa,0(∅), where ∅ is the empty set of formulas (k = 0),

2. ¬MODa,i(∅), for i = 1, . . . , a − 1,

3. MODa,i(φ1, . . . , φk, φk+1) ≡ [(MODa,i(φ1, . . . , φk) ∧ ¬φk+1)∨ (MODa,i−1(φ1, . . . , φk) ∧
φk+1)] for i = 0, . . . , a − 1, where k ≥ 0 and i − 1 is taken modulo a.

The system F (MODa) is the system F whose language is extended by the connectives
MODa,i, i = 0, . . . , a − 1, and which is augmented by the above axioms.

The depth of a formula φ is defined as follows:

1. If φ = TRUE or φ = pi then depth(φ) := 0.

2. If φ = (¬ψ) then depth(φ) := depth(ψ) + 1.

3. If φ = MODa,i(ψ1, . . . , ψk) then depth(φ) := max1≤j≤k depth(ψj) + 1.

4. If φ = η(ψ1, . . . , ψm), where m ≥ 2, η is a formula containing no connective other than
the disjunction, and ψ1, . . . , ψm already do not begin with a disjunction then

depth(φ) := max
1≤j≤m

depth(ψj) + 1.

Notice that this is just the ordinary definition of the depth if we rewrite φ with unbounded
arity disjunctions. The depth of a proof is the maximal depth of formulas appearing in the
proof. The size of a proof is the number of inferences. This differs from the usual convention
of defining the “size” of a Frege proof to equal the number of symbols in the proof as we did
with the length-of-proof function in the introduction. However, the number of symbols in
the proof certainly bounds from above the size as we have defined it, and the lower bounds
we obtain on the size are therefore also lower bounds on the number of symbols. For Frege
system and its bounded depth subsystems it holds that the minimal size of a proof of a
formula is proportional to the minimal number of different formulas that must occur in any
proof of the formula (see Buss (1995b) or Kraj́ıček (1995), Lemma 4.4.6).

Next we define tautologies CountNa over the basis {¬,∨} that express a modulo a counting
principle:
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Definition 1.2. Let N 6≡ 0 (mod a), N ≥ a. For an a-element subset e of [N ] =
{1, . . . , N}, let pe be a propositional variable. Let e ⊥ f denote the condition e 6= f ∧ e∩f 6=
∅. The formulas CountNa are formed from atoms pe as follows:

CountNa :=
∨
e⊥f

(pe ∧ pf ) ∨ ∨
v∈[N ]

∧
e3v

¬pe.

(The notation “e 3 v” means the conjunction is taken over all e such that v ∈ e).

The intuitive meaning of CountNa is that [N ] can not be partitioned into a-element subsets:
CountNa is false if and only if {e : pe = 1} is a partition of all N elements.

An instance of CountNa is any formula obtained from CountNa by substituting arbitrary
formulas for the pe’s. Let q1, . . . , qk be all prime factors of a. By Beame et al. (1994),
Theorem 1.2, the formula CountNa follows from instances of formulas CountMqi

, and every

CountNqi
follows from instances of some CountMa , where follows means having polynomial size

constant-depth F -proofs. Thus we may confine our attention to the provability of formulas
CountNq with q a prime.

The main result of Ajtai (1994), Beame et al. (1994), Riis (1994) is that constant-depth
Frege proofs of CountNq from instances of CountMm , where q is a prime not dividing m,
require superpolynomial size. These bounds were barely superpolynomial; Theorem 3.4
below improves them to exponential.

2. Algebraic proof systems

Algebraic proof systems are proof systems which manipulate polynomials over a ring. By
translating propositional formulas φ(p1, . . . , pn) in the language {TRUE,¬,∨} into algebraic
expressions φ∗(x1, . . . , xn) over Z, an algebraic proof system can serve as a propositional proof
system. The definition of φ∗ is quite straightforward: we translate the truth-value TRUE
to 0, variables pi to xi, ¬φ to 1 − φ∗, and φ ∨ ψ to φ∗ · ψ∗ (for technical reasons we switch
in this paper the customary roles of 0 and 1, both for inputs and outputs). Moreover, every
formula φ in the language of F (MODp), where p is a prime, translates into an algebraic term
over Fp if we additionally translate MODp,i(φ1, . . . , φk) to (φ∗

1 + · · · + φ∗
k − (k − i))p−1 (cf.

Smolensky 1987).

2.1. The Nullstellensatz system. A formula φ in the language of F (MODp) is a tauto-
logical consequence of a set of formulas ψ1, . . . , ψk iff in characteristic p the polynomial φ∗ is
identically zero on all 0-1 solutions to ψ∗

1 = · · · = ψ∗
k = 0. By Hilbert’s Nullstellensatz this

is equivalent to the property that φ∗ is in the ideal

〈ψ∗
1, . . . , ψ

∗
k, x

2
1 − x1, . . . , x

2
n − xn〉 ⊆ Fp[x1, . . . , xn]

generated by polynomials ψ∗
1, . . . , ψ

∗
k, x

2
1 −x1, . . . , x

2
n −xn. This, in turn, is equivalent to the

existence of polynomials P1, . . . , Pk, R1, . . . , Rn ∈ Fp[x̄] such that the Nullstellensatz identity∑
i

Piψ
∗
i +

∑
j

Rj(x
2
j − xj) = φ∗
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holds. We note that in the general version of Nullstellensatz it is necessary to work in an
algebraically closed field and take a radical of the ideal of polynomials. In our special case
it is not needed due to the presence of the polynomials x2

j − xj. We give a direct proof of
the relevant case of Hilbert’s Nullstellensatz as Theorem 5.2 below.

We define the Nullstellensatz proof system for a general commutative ring mostly to cover
the case of rings Zm for composite m. This is still a sound proof system. However, in the
presence of divisors of 0 it is complete only as a refutation system and not as a proof system.

Definition 2.1. Let Λ be a commutative ring. A Nullstellensatz proof of a polynomial g
from polynomials f1, . . . , fk ∈ Λ[x1, . . . , xn] is a (k + n)-tuple of polynomials

P1, . . . , Pk, R1, . . . , Rn

such that the identity ∑
i

Pifi +
∑
j

Rj(x
2
j − xj) = g

holds in Λ[x1, . . . , xn]. The degree of the proof is

max
{
max

i
(deg(Pi) + deg(fi)), max

j
(deg(Rj) + 2)

}
.

A Nullstellensatz refutation of f1, . . . , fk is a Nullstellensatz proof of some non-zero con-
stant in the ring Λ from f1, . . . , fk.

Note that the degree of a Nullstellensatz proof provides an upper bound on the maximal
degree of all participating polynomials, and that this bound is tight when Λ is an integral
domain. Accordingly, it is convenient to measure the size of a Nullstellensatz proof by its
degree rather than by the total number of symbols. In particular, when our underlying
ring Λ is a field, we can (and will) assume w.l.o.g. that all Nullstellensatz refutations are
normalized so that the right-hand side is equal to 1.

The definition of degree is based on the degrees of polynomials Pi and Rj. However,
for Nullstellensatz refutations one can ignore the degrees of the latter polynomials. More
specifically, we have the following easy

Lemma 2.2. Suppose that there is a Nullstellensatz proof

P1, . . . , Pk, R1, . . . , Rn

of g from f1, . . . , fk, and let d = maxi(deg(Pi) + deg(fi)). Then there is another proof

P1, . . . , Pk, R
′
1, . . . , R

′
n

of g from f1, . . . , fk of degree at most max{d, deg(g)}. In particular, if g is a constant (i.e.,
we have a Nullstellensatz refutation), then the degree of the new proof is at most d, and if
k = 0 (i.e., g belongs to the ideal generated by (x2

j −xj)), then this degree is at most deg(g).
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Proof. We start with the last claim. Suppose that g belongs to the ideal generated by
polynomials (x2

j − xj) and that g 6= 0. Then g can not be multilinear and thus must contain
a monomial of the form x2

jxj1 . . . xjr . Replacing this monomial by xjxj1 . . . xjr , we obtain
another polynomial g′ and, obviously, g − g′ has a Nullstellensatz derivation from x2

j − xj of
degree at most deg(g). Since the sum of degrees of all monomials appearing in g′ is strictly
less than for g, we can argue by induction on this sum.

The general claim follows from this partial case applied to the polynomial g−∑
i Pifi. 2

Instead of translating the CountNq tautologies into an algebraic term, it is more convenient

to follow Beame et al. (1994) and represent (the negation of) CountNq by the following set of
polynomials.

Definition 2.3 (Beame et al. 1994). Assume that N ≥ q. An (N, q)-polynomial system
is the following system of polynomial equations in variables xe where e ranges over q-element
subsets of [N ]:

(v)
∑

e3v xe = 1,

one for each v ∈ [N ], and

(e, f) xe · xf = 0,

one for each e ⊥ f .
Let Qv denote the polynomial (

∑
e3v xe) − 1 and let Qe,f denote the polynomial xe · xf .

Any solution of the (N, q)-system in any field must be necessarily a 0-1 solution and the
set {e : xe = 1} would form a total partition of [N ] into q-element sets. Hence the (N, q)-
system has no solution in any field if N 6≡ 0 (mod q). The link between Nullstellensatz
refutations of Qv, Qe,f and constant-depth F -proofs of CountNq from instances of CountMm
(even for composite m) is the following theorem of Beame et al. (1994). We indicate how to
modify the proof of the theorem as it is not stated there in exactly this form.

Theorem 2.4 (Beame et al. 1994). Let q ≥ 2 be a prime and m ≥ 2 be an integer not
divisible by q. Denote by d(N) the minimum value d such that there is a Nullstellensatz
refutation of polynomials Qv, Qe,f over Zm of degree d. Let ` ≥ 1 be a constant. Then there
is ε > 0 such that for almost all N 6≡ 0 (mod q) the following holds:

In every depth ` Frege proof of CountNq from instances of the formulas {CountMm :

M 6≡ 0 (mod m)} at least N ε·d(Nε) different formulas must occur.

Proof. Assume on the contrary that such proofs of CountNq of size at most N s(N) exist

for infinitely many N 6≡ 0 (mod q). By Theorem 3.5 and Lemma 4.5 of Beame et al. (1994)

then d(N) = O(s(NO(1))). Hence for suitable ε > 0, ε · d(N ε) ≤ s(N).
Theorem 3.5 in Beame et al. (1994) has an additional assumption that s(N) = N o(1).

The only place in its proof where this is used is to fulfill the hypothesis of Lemma 3.7 that
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s(N) ≤ N ε` , some ε` > 0 depending on ` only. Hence by choosing ε above small enough we
get ε · N ε ≤ N ε ≤ N εd as well. 2

By the remarks after Definition 1.1, Theorem 2.4 immediately implies that any depth `
Frege proof of CountNq from instances of the formulas {CountMm : M 6≡ 0 (mod m)} has also

size at least N ε·d(Nε) for some ε > 0.

2.2. The polynomial calculus. A basic proof system for ideal membership is equational
logic based on axioms of commutative rings with identity and of a given characteristic.
The lines in an equational proof are equations between terms in the language of rings with
constants for all elements of the ground ring. The axioms are instances of the ring identities
and identity laws; the inference rules of equational logic are

t1 = s1 . . . tk = sk

f(t̄) = f(s̄)
,

one for every k-ary function symbol f . In the ring language these are just the two rules

t1 = s1 t2 = s2

t1 + t2 = s1 + s2

and
t1 = s1 t2 = s2

t1 · t2 = s1 · s2

.

Note that it is important to distinguish between an axiom and an axiom schema. E.g.
consider a group presented by a finite set of equations E. Then we consider not only the
equations from E, but also all instances of the axiom schemas of group theory, i.e., instances
of the associativity law and laws for inverse elements.

The size of an equational logic proof is defined to equal the number of inferences in the
proof. Equational logic over any fixed field Fp is polynomially equivalent with full Frege
systems, meaning that a proof in one system can be translated into a proof in the other
system with only a polynomial increase in size. It is proved in Reckhow (1976) that all Frege
proof systems in all complete languages are polynomially equivalent (equational logic is just
one of them).1 In fact, also bounded depth subsystems of F (MODp) and bounded depth
subsystems of equational logic over Fp (measuring the depth of terms) correspond to each
other.

Equational logic is thus too strong and we consider also a weaker proof system.

A monomial is a product of variables, and a polynomial in this context is a linear combi-
nation of monomials (over the underlying ring). We introduce this definition to distinguish
polynomials as terms of a particular form. Of course, a term is equivalent to a polynomial;
the only difference is that a term is not explicitly written out as a linear combination of
monomials, and that the latter expression might be substantially longer than the original
term.

1Reckhow actually proved the polynomial equivalence of all Frege systems when proof size is measured in
terms of the number of symbols in the proof; however, his results hold also for proof size measured in terms
of the number of inferences.
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The polynomial calculus is an algebraic proof system in which each line of the proof
is a polynomial. This system has also been called the sequential ideal generation sys-
tem (Impagliazzo 1995) and the Gröbner proof system (Clegg et al. 1996).

Definition 2.5. A polynomial calculus proof is a directed acyclic graph; each line (node)
in the proof is a polynomial over a fixed ring (e.g., Fp). The rules of inference are:

f g

f + g
and

f

f · g ,

where f and g are arbitrary polynomials. These two rules are called addition and multi-
plication, respectively. For polynomials f1, . . . , fk, g, a polynomial calculus proof of g from
f1, . . . , fk is a proof in which initial polynomials are among f1, . . . , fk and the final poly-
nomial is g. The degree of the proof is the maximum of the degrees of the polynomials
appearing in the proof.

An interesting observation about the polynomial calculus was made in Impagliazzo
(1995), Clegg et al. (1996). It is shown there that for any fixed d there is a polynomial
time algorithm deciding whether g has a degree d proof from f1, . . . , fk, and if such a proof
exists the algorithm constructs it.

Despite various syntactic conditions in the definition of the polynomial calculus, the
property of having a low degree proof can be characterized in a syntax-free manner, at least
for the case when the underlying ring is Fp. The characterization uses the notion of semantic
derivations introduced in Kraj́ıček (1994b).

For a polynomial f ∈ Fp[x1, . . . , xn] denote by V (f) the variety

{ā ∈ {0, 1}n : f(ā) = 0}.

Theorem 2.6. Let f1, . . . , fk, g ∈ Fp[x̄], and let d1, d2 be the minimal numbers that are
greater or equal than max{maxi deg(fi), deg(g)} and have the following two properties.

1. There is a degree d1 polynomial calculus proof of g from fi, (x
2
j − xj).

2. There is a sequence V1, . . . , V` of subsets of {0, 1}n such that

(a) Every Vt is either {0, 1}n, or one of V (fi), or Vt ⊇ Vr ∩ Vs for some r, s < t.

(b) V` = V (g).

(c) Every Vt has the form V (h) for some polynomial h of degree at most d2.

Then

d2 ≤ d1 ≤ (2p − 1)d2.
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Proof. Given a polynomial calculus proof, replace every polynomial h in the proof with
the set V (h). This shows d2 ≤ d1.

In the opposite direction assume that V1, . . . , V` satisfy the assumptions above; in partic-
ular, let Vt = V (ht) for some degree d2 polynomial ht. W.l.o.g. we can assume that ht = 0
if Vt = {0, 1}n, ht = fi if Vt = V (fi), and h` = g. We show by induction on t that ht can be
derived from fi, (x

2
j − xj) by a polynomial calculus proof of degree at most (2p − 1)d2.

This is clear when Vt is one of the initial sets, so suppose that Vt ⊇ Vr ∩ Vs for some
r, s < t. First we derive from hr, hs the polynomials gr = hp−1

r and gs = hp−1
s : they represent

the same sets Vr, Vs but have the additional property that they are 0-1 valued. Then we
derive

h′
t = ht(1 − (1 − gr)(1 − gs)) = ht(gr + gs − grgs).

Since Vt ⊇ Vr ∩ Vs, h′
t(ā) = ht(ā) for every ā ∈ {0, 1}n. Hence h′

t − ht belongs to the ideal
generated by (x2

j − xj) and by Lemma 2.2 can be derived from them via a Nullstellensatz
proof (which can be treated as a special case of a polynomial calculus proof) of degree at
most deg(h′

t) ≤ (2p − 1)d2. 2

3. Improved lower bound for Nullstellensatz

In this section we prove a lower bound of the form NΩ(1) on the degree of Nullstellensatz
refutations of the (N, q)-system over Zm, N 6≡ 0 (mod q), q a prime not dividing m. This
improves upon Beame et al. (1994) where it was shown that the degree of such refutations
cannot be bounded by a constant independent of N . As a consequence, we improve the
barely superpolynomial lower bound for bounded depth Frege with counting axioms from
Ajtai (1994), Beame et al. (1994), Riis (1994) to exponential (Theorem 3.4 below).

We note that for this application we only need to prove the bound on the degree for
fields Fp. This is seen as follows: as we noted at the end of Section 1, instances of the
Countm principle follow from instances of the Countp principles, p all prime divisors of m.
By Beame et al. (1994), Theorem 3.5, to show a lower bound for constant-depth Frege proofs
of Countq from these counting principles Countp it is enough to refute the existence of small
(p, q, `,M)-generic systems (parameters `,M as in that theorem) for all primes p dividing m.
The non-existence of such generic systems follows by Beame et al. (1994), Lemma 4.5 from
lower bounds for the Nullstellensatz refutations of the (N, q)-system over all Fp. But since
our technique (as well as the one from Beame et al. 1994) for proving lower bounds on the
degree of Nullstellensatz refutations applies with the same success to arbitrary rings Zm, we
consider at once this more general case.

First we should introduce some more notation. Let IN denote the ideal generated in
Zm[x̄e] by all Qe,f with e ⊥ f , and all (x2

e − xe). A monomial xe1 · · · xet in variables of the
(N, q)-system will be abbreviated by xE, where E = {e1, . . . , et} (strictly speaking, E can
be a multiset, but in the presence of axioms (x2

e − xe) this is inessential).
Now we recall (and slightly modify) a lemma saying that for Nullstellensatz refutations

of the (N, q)-system the relevant monomials occur only as coefficients of axioms Qv and,
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moreover, correspond to partial q-partitions not containing v (we already saw in Lemma 2.2
that the degrees of Rj are inessential for general Nullstellensatz proofs). We give a direct
combinatorial proof. However, we note the lemma corresponds to the algebraic fact that the
factor ring Zm[x̄e]/IN is a free Zm-module, and the monomials xE, where E runs over all
partial q-partitions of [N ] (i.e., all e ∈ E are pairwise different and disjoint), form a basis of
this module.

Lemma 3.1 (Beame et al. 1994). Assume that∑
v∈[N ]

Pv · Qv = c (mod IN),

where Pv ∈ Zm[x̄e], d = maxv deg(Pv) + 1 and c ∈ Zm is a constant. Then:

1. there exist polynomials P ′
v, with deg(P ′

v) ≤ d − 1 such that if a monomial xE occurs
in P ′

v with a non-zero coefficient then E is a partial q-partition of [N ] − {v} and∑
v∈[N ]

P ′
v · Qv = c (mod IN),

2. in addition there exist polynomials P ′
e,f with deg(P ′

e,f ) ≤ d − 2 such that in Zm[x̄e]∑
v∈[N ]

P ′
v · Qv +

∑
e⊥f

P ′
e,f · Qe,f = c.

Proof. Let P ′
v be the result of first removing multiple edges from every E, xE a monomial

of Pv, and then removing from Pv all monomials xE where E is not a partition or v ∈ ⋃
E.

Then ∑
v∈[N ]

P ′
v · Qv =

∑
v∈[N ]

Pv · Qv = c (mod IN),

since for v ∈ e
xeQv = (x2

e − xe) +
∑
f3v
f 6=e

xexf .

To prove the second part, note that
∑

P ′
v · Qv − c is multilinear. Express it as a linear

combination of polynomials Qe,f and x2
e − xe. Since Qe,f are multilinear monomials, we

can make their linear combination multilinear at the expense of changing the coefficients
of x2

e − xe. Now the coefficients of x2
e − xe have to be 0 as their ideal contains no non-

zero multilinear polynomial. Finally, obtain polynomials P ′
e,f from the coefficients of Qe,f

by removing all monomials of degree at least (d − 1); they have to cancel since Qe,f are
homogeneous of degree 2. 2

Theorem 3.2. Let q ≥ 2 be a prime not dividing a (fixed) integer m. Any Nullstellen-
satz refutation of the (N, q)-system over Zm for N 6≡ 0 (mod q) must have degree at least

Ω
(
N1/ log2(m+q)

)
.
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The proof of Theorem 3.2 is based on the following lemma:

Lemma 3.3. Suppose we have a Nullstellensatz refutation of degree 2d for the ((m+q)N, q)-
system over Zm, where q,m are as above and N 6≡ 0 (mod q). Then there exists a Null-
stellensatz refutation of degree d for the (N, q)-system over Zm.

Proof of Theorem 3.2 from Lemma 3.3. Lemma 3.3 immediately implies that (N, q)-

system requires refutations of degree 2i = Ω
(
N1/ log2(m+q)

)
for N = (m + q)i, i ≥ 1 (the

base case is just the fact that there is no degree one refutation of (N, q)-system over Zm for
N > q, N 6≡ 0 (mod q)). To bridge the gaps between the values of N which are not of this
form we make a restriction corresponding to a partial q-partition (i.e., we substitute 0’s and
1’s for all variables involving some vertices); thus we obtain a refutation of (M, q)-system
from a refutation of (N, q)-system for M < N , M ≡ N (mod q), with no increase of the
degree. 2

Proof of Lemma 3.3. By Lemma 3.1 it is equivalent to reduce any Nullstellensatz
refutation of ((m+q)N, q)-system of degree 2d modulo I(m+q)N to a Nullstellensatz refutation
of (N, q)-system of degree d modulo IN .

Let S be a domain of (m+q)N vertices. The variables xe of the Nullstellensatz refutation
are indexed by unordered q-tuples e ⊆ S. Suppose that∑

v

Pv · Qv = c (mod I(m+q)N),

where deg(Pv) ≤ 2d − 1, c ∈ Zm and c 6= 0. By Lemma 3.1, we may assume that all
monomials in Pv are indexed by partial q-partitions E of S − {v}.

Fix a permutation Next on S all of whose cycles have length m+q (equivalently, partition
the vertices into N cyclically ordered blocks of size m + q each). For a given vertex v, let
v0 = v, vi+1 = Next(vi), . . . , so that vm+q = v0. Let v−i = vm+q−i so that (v−i)i = v0. Let
Orbit(v) = {v1, v2, . . . , vm+q}. For V ⊆ S, we denote V i = {vi : v ∈ V } and Orbit(V ) =⋃

v∈V Orbit(v). Intuitively, the orbit of a set of vertices contains all the elements of the blocks
intersecting the set.

Given the refutation on S of degree 2d we will construct a Nullstellensatz refutation on
a set T with N elements of degree d. The elements w ∈ T are indexed by the cycles of Next.
Respectively, the Nullstellensatz variables xe′ over T are indexed by (unordered) sets e′ of q
such cycles.

Now V will range over all selections of one element from each cycle, i.e., sets satisfying
|V | = N , Orbit(V ) = S. For each V we define a function ρV mapping each q-tuple e ⊆ S to
a q-tuple e′ ⊆ T , 0, or 1. This naturally extends to a unique homomorphism ρV mapping the
polynomials over (the variables defined by q-tuples in) S to polynomials over T , and we will
make sure that ρV maps the ideal I(m+q)N into the ideal IN corresponding to the domain T .

The mapping ρV is defined as follows. If e ⊆ V j for some j ∈ {1, . . . , m}, then
Orbit(e) consists of q cycles and we put ρV (e) = Orbit(e); call such edges cross-edges. If
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e = {vm+1, . . . , vm+q} for some v ∈ V , then put ρV (e) = 1; call such edges inner-edges.
Otherwise put ρV (e) = 0.

Inspection shows that for every V and v,

ρV (Qv) =

{
QOrbit(v) if v ∈ V 1 ∪ . . . ∪ V m

0 if v ∈ V m+1 ∪ . . . ∪ V m+q,

and for every V and e ⊥ f , either ρV (Qe,f ) = 0 or ρV (Qe,f ) = QρV (e),ρV (f). The latter fact in
particular implies ρV (I(m+q)N) ⊆ IN . Hence for every particular V we have a Nullstellensatz
refutation

ρV

(∑
v

Pv · Qv

)
= c (mod IN),

and summing over all V , we have

∑
V

ρV

(∑
v

Pv · Qv

)
=

∑
w

P ′
w · Qw = c(m + q)N (mod IN)

with w running over all vertices in T . Notice that this is a Nullstellensatz refutation as
(m + q)N is invertible in Zm and, therefore, the right-hand side does not equal 0. We need
to prove that this equation modulo IN can be rearranged so that deg(P ′

w) ≤ d− 1. Hence it
is sufficient to show that for every v and every monomial xE in Pv either

(A) for every V , ρV (xE · Qv) can be written modulo IN as P · QOrbit(v), for some P with
deg(P ) ≤ d − 1, or

(B)
∑

V ρV (xE ·Qv) = 0 (in which case xE can be simply removed from Pv without changing
the value of the sum).

Suppose that ρW (xE ·Qv) 6∈ IN for some W . Then in particular (cf. the proof of Lemma 3.1)
xE may not contain two cross-edges (w.r.t. W ) with intersecting but different orbits, or an
edge whose orbit contains v.

If E contains cross-edges with only d − 1 different orbits, then ρV (xE) has only d − 1
distinct variables, and (A) is satisfied.

In the remaining case E contains d cross-edges with disjoint orbits, and each other edge
in E intersects an orbit of at most one of them (for inner edges this is trivial). In this case
there exists a cross-edge e ∈ E whose orbit is disjoint from the orbits of all other edges in
E and also does not contain v. Fix such a cross-edge e in E. We prove that (B) is satisfied,
i.e.,

∑
V ρV (xE · Qv) = 0.

Every V can be written as a disjoint union of X = Orbit(e) ∩ V and Y = V \ Orbit(e).
If Xj = e for some j ∈ {1, . . . , m}, then ρX∪Y (e) = Orbit(e), otherwise ρX∪Y (e) = 0. Thus
for a fixed Y , ρX∪Y (xE) has the same value for X = e−1, . . . , e−m, and is 0 otherwise. The
same is true for ρX∪Y (xE ·Qv), since v 6∈ Orbit(e), and hence ρX∪Y (Qv) does not depend on
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X. Thus every non-zero term ρV (xE ·Qv) will actually get counted m times, which leads to
the calculation∑

V

ρV (xE · Qv) =
∑
Y

∑
X

ρX∪Y (xE · Qv) =
∑
Y

m∑
j=1

ρ(e−j)∪Y (xE · Qv) ≡ 0 (mod m).

This finishes the proof that the degree of the new Nullstellensatz proof modulo IN is at most
d. 2

Theorems 2.4, 3.2, and the remarks on the reducibility of CountNq to CountNa made at
the end of Section 1, have the following corollary.

Theorem 3.4. Let m,n ≥ 2 be fixed integers such that there is a prime factor q of n which
is not a prime factor of m. Then the size of any constant-depth F -proof of CountNn from

instances of the axiom schema CountMm is at least 2NΩ(1)
.

4. Design-based lower bounds

We now introduce the combinatorial notion of designs (cf. Beame et al. 1995, Clegg et al.
1996) which can be used for proving lower bounds on the degree of Nullstellensatz proofs.
We’ll give two applications of designs: first, we give an alternative proof of Theorem 3.2,
and second, we give a linear lower bound for the degree of Nullstellensatz refutations of the
(N, q)-systems in characteristic zero.

Definition 4.1. Let Λ be any commutative ring, and let N ≥ q ≥ 2 be arbitrary. Let
MN,q be the set of all partial q-partitions of [N ]. An (N, q)-design of degree d over Λ is a
function

s : MN,q → Λ

such that:

1. s(∅) = 1.

2. For any E with less than d classes and for any v /∈ ⋃
E:

s(E) =
∑
e3v

e∩(∪E)=∅

s(E ∪ {e}).

Lemma 4.2. Let N ≥ q ≥ 2 be such that N 6≡ 0 (mod q), and let N
q

> d ≥ 1 be arbitrary.

If there is an (N, q)-design of degree d over some ring Λ, then the (N, q)-system has no
Nullstellensatz refutation over Λ of degree at most d.

Proof. Suppose Pv are polynomials of degree at most (d − 1) satisfying property 1 of
Lemma 3.1. Assume

Pv =
∑
E

aE,vxE,

where E ranges over partial q-partitions of [N ], aE,v ∈ Λ. Summing the coefficients in the
conclusion of Lemma 3.1 implies
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1.
∑

v a∅,v = −c,

2.
∑

v/∈(∪E) aE,v =
∑

e∈E

∑
w∈e aE\{e},w, for 1 ≤ |E| ≤ d.

Define the function
Ai :=

∑
|E|=i

s(E) · ( ∑
v/∈(∪E)

aE,v).

Then
A0 = s(∅) · (−c) = −c

and
Ai+1 =

∑
|E|=i+1

s(E) · ( ∑
v/∈(∪E)

aE,v) =
∑

|E|=i+1

s(E) · (∑
e∈E

∑
w∈e

aE\{e},w) =

∑
|F |=i

∑
w/∈(∪F )

∑
e3w

e∩(∪F )=∅

s(F ∪ {e}) · aF,w =
∑
|F |=i

∑
w/∈(∪F )

s(F ) · aF,w = Ai.

For this computation we use property 2 of Definition 4.1 for F , i.e., we need i < d. So,
Ad = −c 6= 0. But that contradicts the fact that deg(Pv) ≤ d − 1 and so aE,v = 0 for all
|E| ≥ d, which would imply that Ad = 0. 2

We note that if Λ is a field, the converse statement to the last lemma also holds. In fact,
this is a special case of a general transformation (essentially a linear algebra duality) which
can be applied to any Nullstellensatz system.

We now give a re-proof of Theorem 3.2 by constructing appropriate designs. Fix m and
q as in the previous section. We construct the design by a similar construction as we used in
the first proof of Theorem 3.2. By a slight alteration of this proof we are able to carry the
induction step from d to 2d+1 rather than 2d, however this only improves the multiplicative
constant in the final result, not the exponent.

Lemma 4.3. Let N ≥ 1 and N 6≡ 0 (mod q). If there is a design of degree d on N nodes,
then there is a design of degree 2d + 1 on (m + q)N nodes.

Proof. For this proof we use the notation of the proof of Lemma 3.3. Let s be a degree
d design on T . We can assume w.l.o.g. that s(E) = 0 whenever |E| > d. Let V as before
be a selection of nodes, one from each block. We define a degree d design sV on S by the
following construction.

First we define a partial mapping V (E) from partial q-partitions on S to partial q-
partitions on T . If all edges in E are either cross-edges or inner-edges, and, moreover, the set
{Orbit(e) : e is a cross-edge in E} is a partial partition, we let V (E) equal this partition. In
all other cases V (E) is undefined. In other words, V (E) is defined if and only if ρV (xE) 6∈ IN ,
and in that case ρV (xE) = xV (E).

Next, we let

sV (E) =

{
s(V (E)) if V (E) is defined
0 otherwise.

Claim 1: sV is a degree d design on S. Furthermore, suppose that for some E and v 6∈ ⋃
E

at least one of the following conditions holds:
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1. |V (E)| < d or V (E) is undefined,

2. v is in a block which intersects a cross-edge of E.

Then the design condition holds for v and E.

The claim is easily proved by inspection. 2

Definition 4.4. s+ is defined by summing all possible sV ’s as follows. Let c = (m + q)N

(the number of possible V ’s). Then

s+(E) = c−1
∑
V

sV (E),

where c−1 is the multiplicative inverse of c modulo m.

Claim 2: Suppose that there is a cross-edge e in E such that no other edge in E intersects
any of the q blocks that e intersects. Then s+(E) = 0.

To prove the claim, we argue by symmetry. Namely, for each V such that V (E) is defined,
there are exactly m− 1 other sets W of representatives agreeing with V on the blocks which
e does not intersect, and such that W (E) is also defined. By symmetry, sW (E) = sV (E)
for all these W ’s. Summing these m values therefore equals 0 modulo m. Since this can be
done for every V , s+(E) = 0. 2

Claim 3: s+ is a degree 2d + 1 design on S.

Proving the claim will suffice to prove Lemma 4.3. The condition for s∅ is satisfied by
our choice of c.

Consider any partial partition E on S of degree at most 2d and any v not in any member
of E. W.l.o.g. we can assume that V (E) is defined for at least one V , and we (arbitrarily)
choose one such V . In the following cases the design condition is satisfied by the previous
claims:

(1) If the block of v intersects some cross-edge of E, then s+ satisfies the design condition
for v and E since it is a linear combination of designs that satisfy this design condition by
Claim 1.

(2) If |V (E)| < d, then the same is true for all W ’s for which W (E) is defined, and the
design condition is again satisfied by Claim 1.

(3) If the block of v intersects some inner-edge (and hence contains it), then we show
that there exists an edge satisfying the condition of Claim 2 or one of (1) and (2) holds. If
(2) is false, E has at least d cross-edges with non-intersecting blocks. Blocks of each other
edge intersect with at most one of the d cross-edges (otherwise V (E) is not a partition), and
since E has at most 2d edges, either (1) holds or we use Claim 2 to conclude that the design
condition is satisfied.

It remains to consider the situation when the block containing v does not intersect any
edge of E, and V (E) has exactly d edges for each V (this is the case not covered by the
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previous proof). Let W range over all selections of representatives from the blocks not
containing v, and let Wi = W ∪ vi. By symmetry, sWi(E) = sW (E) is independent of i.
Therefore,

s+(E) =
∑
W

m+q∑
i=1

sWi(E) = (m + q)
∑
W

sW (E).

Define ej = {v−j, v−j+1, . . . , vq−j−1} for 0 ≤ j < q; note that by our assumption on the
design s, these q edges are the only edges e 3 v for which sWi(E ∪ {e}) might be non-zero,
since otherwise Wi(E ∪ {e}) > d (if defined at all). Moreover, sWi(E ∪ {ej}) = sW (E) if
i = −m − 1 − j (i.e., when ej is an inner-edge of Wi) and 0 otherwise. Thus,

q−1∑
j=0

s+(E ∪ {ej}) =
∑
W

m+q∑
i=1

q−1∑
j=0

sWi(E ∪ {ej}) = q
∑
W

sW (E)

which is equal to s+(E) modulo m.
That completes the proof of the claim and Lemma 4.3. 2

Lemma 4.3 immediately implies the following theorem, which, in turn, implies Theo-
rems 3.2 and 3.4 by Lemma 4.2:

Theorem 4.5. For any N > 0, there is a degree d = Ω
(
N1/ log2(m+q)

)
design on [N ].

Proof. By induction on N . The base case is just the fact that there is a degree zero design
on N < q nodes; the gaps between the induction steps are again easily filled by restrictions.

2

As a second application of designs, we use Lemma 4.2 to prove a stronger lower bound
in characteristic zero (this does not seem to have a proof-theoretic corollary so far). In the
proof we simply make the value of the design equal for all partitions of the same size, and
choose this value inductively so that the design condition is satisfied.

Theorem 4.6. Let N ≥ q ≥ 2 such that N 6≡ 0 (mod q) be arbitrary. Then every Null-
stellensatz refutation of the (N, q)-system over Q must have degree bigger than bN

q
c.

Proof. We let sE = s|E|, where the values s0, s1, . . . , sbN
q
c are defined inductively as

follows:

s0 := 1,

st+1 := st ·
(
N − tq − 1

q − 1

)−1

.

This function satisfies the properties required from a design as long as N − tq − 1 ≥ q − 1
(i.e., N

q
> t), as

(
N−tq−1

q−1

)
is the number of partitions extending some fixed partition E of

cardinality t by one class containing a fixed element v ∈ ([N ] \ ⋃
E).

The lower bound then follows by Lemma 4.2. 2
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5. Cut-elimination and completeness for algebraic systems

For the rest of the paper we assume that our underlying ring Λ is always a finite field Fp for
some fixed prime p.

In this section, we shall prove an analogue of the cut-elimination theorem, and then
use this to give a constructive proof of the completeness theorem for the Nullstellensatz
and polynomial calculus systems and to prove that tree-like polynomial calculus proofs can
be transformed into Nullstellensatz proofs with only a small increase in degree. Another
accessible account of the completeness of the Nullstellensatz system is given in the survey
Pitassi (1996).

What we mean by an analogue of cut-elimination is the following. Suppose F is a set
of polynomials over Fp and there is a derivation, D1, of h from F ∪ g and there is another
derivation, D2, from F ∪ {1 − gp−1}. Then there ought to be a derivation of h from just
F . Indeed there is such a derivation; the theorems below give bounds on the degree of the
derivation of h from F in terms of the degrees of D1 and D2.

We shall make two changes to the polynomial calculus proof system in order to make
Theorem 5.1 easier to state and prove. Firstly, instead of counting the number of lines
(polynomials) in a polynomial calculus derivation, we count the number of addition inferences
in the proof. We call the number of addition inferences in a derivation the A-size of the
derivation. Note that the total number of inferences is at most three times the A-size plus
one, and the sole reason for using A-size instead of number of steps is to simplify the counting
in the proof below.

Secondly, instead of adjoining polynomials x2 − x as initial polynomials, we would like
to confine our attention to multilinear polynomials from the very beginning as this is a
canonical way to represent (Fp-valued) functions on {0, 1}n. Let Mult(f) denote the unique
multilinear polynomial equal to f modulo the ideal generated by (x2

i − xi). For example,
Mult(x2y + xy2) = 2xy. Notice that Mult(f) = Mult(g) if and only if f and g represent the
same function on {0, 1}n, and that Mult(f) = 0 iff f belongs to the ideal generated by all
(x2

i − xi) (Smolensky 1987).
We define the multilinear polynomial calculus proof system similarly to the polynomial

calculus with the exception that it operates only with multilinear polynomials, and the
multiplication rule is modified accordingly to that:

f

Mult(f · g)
,

where f and g are arbitrary multilinear polynomials. Notice that every (ordinary) polyno-
mial calculus proof of a multilinear polynomial from a set of multilinear polynomials can
be transformed into a multilinear polynomial calculus proof simply by applying the opera-
tor Mult to every line. Also, the multilinear polynomial calculus proof system is clearly a
subsystem of semantic derivations from Theorem 2.6 and, therefore, it can be simulated by
ordinary polynomial calculus. To simplify the notation, we omit the operator Mult through-
out the rest of this section whenever this can not create confusion. Thus, expressions like
g · h or 1 − gp−1 actually mean Mult(g · h) and Mult(1 − gp−1), respectively.
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Theorem 5.1.

(1) Let F be a set of multilinear polynomials. Suppose there are multilinear polynomial
calculus (resp., Nullstellensatz) derivations D0 and D1 of h from F ∪ {g} and from
F ∪ {1− gp−1}, respectively, where g, h are some multilinear polynomials. Let D0 and
D1 both have degree less than or equal to d. Then there is a multilinear polynomial
calculus (or Nullstellensatz, respectively) derivation D of h from F such that the degree
of D is less than or equal to d+(p−1) ·deg(g). For the multilinear polynomial calculus
case, the A-size of D is at most the sum of the A-sizes of D0 and D1.

(2) Let F = {fi(~x, y)}i be a set of multilinear polynomials in the variables ~x, y. Let
F0 = {fi(~x, 0)}i and F1 = {fi(~x, 1)}i. Suppose D0 and D1 are multilinear polyno-
mial calculus (or Nullstellensatz) refutations of F0 and F1, respectively, both of degree
at most d. Then there is a multilinear polynomial calculus (or Nullstellensatz, re-
spectively) refutation of F with degree at most d + 1. For the multilinear polynomial
calculus case, the A-size of D is at most the sum of the A-sizes of D0 and D1 plus one.

(3) Let F be a set of multilinear polynomials and g, h be some multilinear polynomials such
that for all 0 ≤ c < p, there are multilinear polynomial calculus (resp., Nullstellensatz)
derivations Dc of h from F ∪ {c − g}. Suppose also that each Dc has degree less
than or equal to d. Then there is a multilinear polynomial calculus (or Nullstellensatz,
respectively) derivation D of h from F such that the degree of D is less than or equal
to d + (p− 1) · deg(g). For the multilinear polynomial calculus case, the A-size of D is
at most the sum of the A-sizes of the Dc’s plus (p − 1).

Proof. We’ll just give the proofs for the multilinear polynomial calculus; they are identical
(or even easier) for the Nullstellensatz system.

(1) If either g does not appear in D0 or 1−gp−1 does not appear in D1, then the theorem
is trivially true. So suppose both do appear in the derivation. Modify the derivation D0 by
multiplying every line in D0 by the polynomial 1 − gp−1: the line g simplifies to just 0, so
it can be removed from the derivation; the initial polynomials f ∈ F become (1 − gp−1)f ,
each of which can be derived in one step. The last line, h, becomes (1 − gp−1)h. Thus we
obtain a derivation D′

0 of (1 − gp−1)h. Similarly, multiplying every line in D1 by g results
in a derivation D′

1 of gh. Combining D′
0 and D′

1, by first multiplying gh by gp−2 and then
adding gp−1h and (1 − gp−1)h yields the desired derivation of h from F . Note that D′

0 and
D′

1 have A-sizes strictly less than the A-sizes of D0 and D1, since at least one addition
inference involving g (respectively, 1 − gp−1) was removed when forming D′

0 (respectively,
D′

1). Therefore, D satisfies the desired degree bound and A-size bound.

(2) This can be obtained as a corollary to (1); however, it is more interesting to give a
direct proof. First form a derivation D′

1 of y from yF1 = {yfi(~x, 1)}i, by multiplying every
polynomial in D1 by y. Now Mult(yf(~x, 1)) is the same polynomial as Mult(yf(~x, y)) since
they represent the same functions on 0-1-inputs (more generally, on all inputs where y is
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either 0 or 1). Thus D′
1 is a derivation of y from yF , and by adding members of F to

the beginning, it becomes a derivation of y from F . By a dual argument, we also have a
derivation D′

0 of (1 − y) from F . Now combine D′
0 and D′

1 with a single addition inference
to form the desired refutation of F .

(3) For each c < p, form the polynomial

gc =
∏

0≤i<p
i6=c

(i − g).

Note that Mult(gc ·(c−g)) = 0. Then multiply each derivation Dc by gc to get a derivation D′
c

of gch from F . Finally, note that Mult(
∑

c gc) = −1, so the derivations D′
c can be combined

to get a derivation of h from F . 2

Remark: Theorem 5.1(2) gives a constructive proof of Hilbert’s Nullstellensatz when the
polynomials x2 − x are available for every variable x. This is equivalent to the completeness
of the Nullstellensatz system and the polynomial calculus system. We shall do a little better
and prove a stronger version of completeness for these systems:

Theorem 5.2.

(1) If F is a set of polynomials with no 0-1 solutions, then there is a Nullstellensatz refutation
from F .

(2) If g is a tautological consequence of F , then there is a Nullstellensatz proof of g from F .

Proof. To prove part (1), proceed by induction on the number of variables used in F .
Theorem 5.1(2) is exactly what is needed for the induction step.

To prove part (2), suppose g is a polynomial which is zero for all 0-1 assignments that
make every member of F zero. By already proven part (1), there is a proof of 1 from
F ∪ {1 − gp−1}. Multiplying this proof by g, one obtains a proof of g from F . 2

Recall that a proof is tree-like if every line in the proof is a hypothesis of at most one
inference, and that the height of a tree-like proof is the height of its proof-tree (cf. Kraj́ıček
1995). At the end of this section we show how to convert tree-like (multilinear) polynomial
calculus proofs into Nullstellensatz proofs with only a modest increase in degree. To illustrate
the general idea, we begin with the comparatively easy case of low height proofs.

Theorem 5.3. Let p ≥ 2 be a prime, x1, . . . , xn variables and let f1, . . . , fk, g ∈ Fp[x̄] be
multilinear.

(1) If there is a degree d Nullstellensatz proof over Fp of g from f1, . . . , fk, then there is also
a tree-like multilinear polynomial calculus proof over Fp of g from f1, . . . , fk of degree
at most d and of height at most dlog2 ke + 1.
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(2) If there is a tree-like multilinear polynomial calculus proof over Fp of g from f1, . . . , fk

that has degree d and height h, then there is a degree (p − 1)(h + 1)d Nullstellensatz
proof over Fp of g from f1, . . . , fk.

Proof. (1) Assume that there is a Nullstellensatz proof∑
i

Pifi +
∑
j

Rj(x
2
j − xj) = g

of degree d. This immediately gives a degree d multilinear polynomial calculus proof which
just computes the sum

∑
i Pifi arranged in the form of an almost balanced binary tree.

(2) By induction on the height h. The base case h = 0 is obvious. If h ≥ 1 and g is
inferred by the addition rule, the inductive step is also obvious. Finally, if g is inferred from
some g′ by the multiplication rule, then, by inductive assumption, g′ has a Nullstellensatz
proof of degree at most (p − 1)hd. Now we simply multiply this proof by g(g′)p−2 (which
gives us a proof of g(g′)p−1), apply the last part of Lemma 2.2 to get a Nullstellensatz proof
of the polynomial g − g(g′)p−1 (note that Mult(g − g(g′)p−1) = 0) and sum these two proofs
together to get the required Nullstellensatz proof of g. 2

Now we use Theorem 5.1(1) for extending this result to the case of tree-like polynomial
calculus proofs that do not necessarily have low height.

Theorem 5.4. Let P be a tree-like (multilinear or regular) polynomial calculus derivation
of a multilinear polynomial g from a set F of multilinear polynomials. Let P have degree d
and have A-size S. Then there is a Nullstellensatz derivation of g from F of degree O(d log S).

A corollary to Theorem 5.4 is that non-treelike polynomial calculus refutations cannot in
general be converted into tree-like polynomial calculus refutations with only a small increase
in the degree. This is because of the “house-sitting” tautologies of Clegg et al. (1996) which
have polynomial size, constant degree polynomial calculus refutations, but for which any
Nullstellensatz refutation requires degree Ω(

√
n).2

Proof of Theorem 5.4. It will suffice to prove the theorem for the more general
case of the multilinear polynomial calculus. The basic idea of the proof is to apply the
1
3
-2
3

trick to a tree-like derivation. We’ll use induction on S to prove that any degree d, A-
size S multilinear polynomial calculus derivation D can be converted into a degree Cpd log S
Nullstellensatz derivation where C = 2/(log 3 − 1).3 This is obvious for S = 1. For S > 1,
use the Brent-Spira trick to find a line h in the derivation D such that h is derived with S1

addition inferences, where S/3 ≤ S1 ≤ (2S)/3. Consider the subderivation D1 of D ending
with h; also, let D2 be the derivation of g from F ∪ {h} which is obtained by removing the
subderivation D1 from D.

2The design of Clegg et al. (1996) can be modified to work for all values of p (actually for all rings), see
Buss (1995a). The polynomials used for the house-sitting principle are all of degree 1 or 2.

3We write log S to mean max{1, log2 S}.
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Applying the induction hypothesis to D1, we know that there is a Nullstellensatz deriva-
tion D′

1 of h from F of degree at most d′ = Cpd log(2S/3). Likewise, there is a Null-
stellensatz derivation of g from F ∪ {h} also with degree at most d′. It is easy to modify
D′

1 to obtain a Nullstellensatz derivation D′′
1 of g from F ∪ {1 − hp−1} of degree at most

d′′ = d′ + (p − 2)deg(h) + deg(g): namely, multiply the derivation D′
1 by hp−2 and then

add (1 − hp−1) and finally multiply the derivation by g. Combining D′′
1 and D′

2 using The-
orem 5.1(1), we get a Nullstellensatz refutation of degree at most d′′ + (p − 1)deg(h). Since
both deg(g) and deg(h) are at most d, the degree is bounded by

d′′ + (p − 1)deg(h) ≤ d′ + 2(p − 1)d

≤ Cpd log(2S/3) + 2pd

= Cpd log S + 2pd − Cpd(log 3 − 1)

= Cpd log S.

That completes the proof of Theorem 5.4. 2

6. Nullstellensatz with extension polynomials

Our aim in this section is to reduce the problem of proving lower bounds for constant-depth
F (MODp)-proofs to a question about degrees in Nustellensatz. We define extension polyno-
mials and we show that the degree of Nullstellensatz proofs with these polynomials is related
to the size of constant-depth F (MODp)-proofs (see Theorem 6.7). The idea behind these
polynomials is to replace bounded depth formulas, which are apriori polynomials of large
degree, by polynomials of small degree. We use the same method as in the boolean com-
plexity (Razborov 1987, Smolensky 1987) with the difference that instead of the random bits
we use for approximation generic bits called in our framework extension variables. The ex-
tension polynomials then simply express soundness of the approximation, and every formula
becomes equivalent to a low-degree polynomial modulo the ideal generated by the extension
polynomials. In this way we can reduce the question of proving lower bounds for bounded
depth Frege systems with MODp gates to proving lower bounds for Nullstellensatz refuta-
tions. However, we have to add to the initial polynomials unknown in advance extension
polynomials, and this makes the task of proving lower bounds for Nullstellensatz refutations
harder. In particular, current methods apparently cannot be applied to such systems.

Since we will not consider any longer algebraic proof systems other than Nullstellensatz,
we introduce a handy notation that simplifies later presentation.

Definition 6.1. Let f1, . . . , fk, g be polynomials over Fp with variables

x1, . . . , xn, r1, . . . , rm.

Then
f1, . . . , fk `d g
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denotes the fact that g has a Nullstellensatz proof from f1, . . . , fk of degree at most d, where
we automatically include as initial polynomials all (x2

i − xi) (cf. Definition 2.1) and all
(rp

j − rj).

The translation φ∗ used in the following lemma was defined at the beginning of Section
2.

Lemma 6.2. Let Γ be a set of polynomials, and let f, g and fi’s and gi’s be polynomials
over Fp. Then

(1) If f and g represent the same function on Fp then `deg(f−g) (f − g). In particular,
`p·deg(f) (fp − f) for arbitrary f .

(2) If Γ `d (1 − f)g and Γ `d (1 − g)f then Γ `d (f − g).

(3) Let φ(p1, . . . , pk) = MODp,i(p1, . . . , pk), and assume that Γ `d (fj − gj) for j = 1, . . . , k.
Then

Γ `d′ φ∗(f̄) − φ∗(ḡ),

where d′ = d + (p − 2) · max{maxj deg(fj), maxj deg(gj)}.
(4) Let φ(p1, p2) = (p1 ∨ p2), and assume that Γ `d1 (f1 − g1), Γ `d2 (f2 − g2), where

d1 ≥ max{deg(f1), deg(g1)}, d2 ≥ max{deg(f2), deg(g2)}.
Then

Γ `d1+d2 φ∗(f̄) − φ∗(ḡ).

Proof. (1) Similarly to Lemma 2.2.

(2) Obvious.

(3,4) We prove both statements simultaneously. Write out the algebraic term φ∗(x1 +
y1, . . . , xk + yk) in the polynomial form φ∗(x̄) + φ′(x̄, ȳ), where every monomial in φ′ has at
least one occurrence of y’s. Substituting gj for xj and (fj − gj) for yj, we find

φ∗(f̄) − φ∗(ḡ) = φ′(g1, . . . , gk, f1 − g1, . . . , fk − gk).

Now, every monomial in the right-hand side has an explicit occurrence of (fj − gj) for some
j and thus can be derived from Γ using Γ `d (fj − gj). It is easy to see that in both cases
the derivation of φ∗(f̄)− φ∗(ḡ) obtained by summing up over all monomials in φ′ meets the
required degree bound. 2

Definition 6.3. The degree deg(φ) of a formula φ is defined inductively as follows:

1. deg(TRUE) := 0.
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2. deg(pi) := 1.

3. deg(¬φ) := deg(φ).

4. deg(MODp,i(φ1, . . . , φk)) := (p − 1) · maxj deg(φj).

5. deg(φ ∨ ψ) := deg(φ) + deg(ψ).

The meaning of this definition is that deg(φ) provides an upper bound on the degree of φ∗,
and this bound is “effective” in the sense that if ψ is a subformula of φ, then deg(ψ) ≤ deg(φ).

The following is a crucial definition.

Definition 6.4. Let ḡ = g1, . . . , gm be polynomials over Fp and let h ≥ 1 be a fixed
number. Take new variables riu, i = 1, . . . ,m and u = 1, . . . , h not occurring in any of gj.

The polynomials Ei,ḡ:
gi · Πu≤h(1 − ∑

j≤m

rjugj),

one for each i ≤ m, are called extension polynomials of accuracy h corresponding to ḡ. The
variables riu are called extension variables corresponding to ḡ.

Note that in accordance with Definition 6.1 variables riu are treated differently than
variables xi for which we have x2

i − xi among the initial polynomials.
To motivate this definition consider the polynomial

f(x̄, r̄) = 1 − Πu≤h(1 − ∑
j≤m

rjugj).

If
∧

i(gi = 0) then f(x̄, r̄) = 0. On the other hand, if f(x̄, r̄) = 0 then Πu≤h(1−∑
j≤m rjugj) =

1 and thus, assuming that all extension polynomials corresponding to ḡ are zero, necessarily∧
i(gi = 0). Hence the equation f(x̄, r̄) = 0 of degree at most h · (1+maxi deg(gi)) represents

the condition
∧

i(gi = 0) of a possibly much bigger degree
∑

i deg(gi) modulo the additional
assumption E1,ḡ = . . . = Em,ḡ = 0.

Definition 6.5. Let E be a set of extension polynomials. We call the set E leveled if:

1. All variables occurring in E are either x-variables or extension variables of some poly-
nomial in E .

2. If E contains some extension polynomial, Ei,g1,...,gm , then E must contain all companion
extension polynomials E1,ḡ, E2,ḡ, . . . , Em,ḡ.

3. E can be decomposed into levels E = E1

.∪ . . .
.∪ E` in such a way that for any

polynomial Ei,g1,...,gm ∈ Ej its companion polynomials E1,ḡ, E2,ḡ, . . . , Em,ḡ also belong
to Ej, and extension variables corresponding to ḡ do not occur in any other polynomial
from E1

.∪ . . .
.∪ Ej. The minimal ` for which such a decomposition is possible is called

the depth of E .
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Theorem 6.6. Let f1, . . . , fk, g be polynomials from Fp[x1, . . . , xn], and let E be any leveled
set of extension polynomials. If g has a Nullstellensatz proof from f1, . . . , fk, E then it has
one from f1, . . . , fk alone as well.

Proof. First we prove a claim:

Claim: Let {E1,ḡ, . . . , Em,ḡ} ⊆ E. For any assignment ā to variables of g1, . . . , gm there
is an assignment b̄ to the extension variables of Ei,ḡ such that Ei,ḡ(ā, b̄) = 0 for all 1 ≤ i ≤ m.

If all gi(ā) = 0 then set riu arbitrarily. Otherwise let gi0(ā) 6= 0 for some i0. Put riu := 0
if i 6= i0 or u > 1, and ri01 := (gi0(ā))−1.

From the claim it follows that g is zero on any 0-1 assignment satisfying all fi (as that
assignment can be extended, level by level, to a satisfying assignment for E). By Theorem
5.2, this is equivalent to the existence of a Nullstellensatz proof of g from f̄ . 2

Now we are ready to formulate the main result of this section.

Theorem 6.7. Let φ1, . . . , φk be (constant-depth) F (MODp)-formulas in variables
x1, . . . , xn. Let d0 be the maximal degree of φi’s, ` be any fixed constant bigger than the
depth of any φi and h ≥ 1 be an arbitrary parameter.

(1) If there exists a depth-` F (MODp)-refutation of φ1, . . . , φk which has length S, then there
exists a leveled set E of extension polynomials with accuracy h such that |E| ≤ SO(1),
the depth of E is at most ` + C for some absolute constant C, and φ∗

1, . . . , φ
∗
k, E has a

Nullstellensatz refutation of degree (d0 + log S)(h + 1)O(1).

(2) If there exists a leveled set E of extension polynomials with accuracy h such that
φ∗

1, . . . , φ
∗
k, E has a Nullstellensatz refutation of some degree d, then there exists a

leveled set E ′ of extension polynomials with accuracy 1 whose cardinality and depth
are at most the cardinality and depth of E , and such that φ∗

1, . . . , φ
∗
k, E ′ also has a

Nullstellensatz refutation of the same degree d.

(3) If there exists a leveled set E of extension polynomials with accuracy 1 of depth ` and
cardinality S such that φ∗

1, . . . , φ
∗
k, E has a Nullstellensatz refutation of some degree d,

then there exists a depth-`′ F (MODp)-refutation of φ1, . . . , φk that has length (S +n+
k)O(d0+d). Here `′ is some absolute constant depending only on `.

Proof. We begin with easier parts (2), (3).

(2) Substitute in the Nullstellensatz refutation of φ∗
1, . . . , φ

∗
k, E zeros to all extension

variables riu if u > 1. This transforms extension polynomials with accuracy h ≥ 1 into
extension polynomials with accuracy h = 1.

(3) What we basically need for this part is a formalization of the proof of Theorem
6.6 in the bounded depth fragment of F (MODp). For this purpose, let π be a Nullstellen-
satz refutation of φ∗

1, . . . , φ
∗
k, E with the specified parameters. For every extension variable
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r appearing in π introduce p propositional variables r0, r1, . . . , r(p−1), where ri expresses
the fact r = i. Let the set of axioms Ext say that for any such r exactly one variable
among r0, r1, . . . , r(p−1) takes value TRUE. For a polynomial f(x1, . . . , xn, r̄) let us denote by
f̃(p1, . . . , pn, r̄0, r̄1, . . . , r̄(p−1)) an F (MODp)-formula expressing the fact f(x1, . . . , xn, r̄) = 0.
Writing f as a sum of monomials yields f̃ of constant depth and size (S + n)O(d) for every
f appearing in the refutation π.

Now we transform π into an F (MODp) refutation of φ̃∗
1, . . . , φ̃

∗
k,Ext, Ẽ . This refutation

has constant depth (independent of `) and length (S + n)O(d); it is constructed simply by
simulating in F (MODp) the process of reducing the left-hand side of π to the polynomial
form.

Next we observe that φ̃∗ has a short F (MODp)-proof from φ(p1, . . . , pn) easily constructed
by induction on the logical complexity of φ. If φ is one of φi’s, the depth of this proof is
O(1) (as φi’s have constant depth), and its length is at most nO(d0). Similarly, for any
extension polynomial Ei,ḡ = gi · (1 − ∑

j≤m rjgj) from E , the formula Ẽi,ḡ has a constant-
depth F (MODp)-proof from Ext and

E ′
i,ḡ = g̃i ∨

 ∧
j1 6=j2

(r0
j1
∨ r0

j2
) ∧

p−1∨
c=1

m∨
j=1

(g̃
(c)
j ∧ r

(c−1)
j )

 ,

where c−1 is the multiplicative inverse modulo p and we denoted (for typographical reasons)

gj − c by g
(c)
j . Indeed, gi = 0 obviously implies Ei,ḡ = 0.

∧
j1 6=j2(r

0
j1
∨ r0

j2
) says that at most

one of rj’s is different from 0, and if we additionally know that gj = c, rj = c−1 for some
j, c, then this already suffices to conclude that Ei,ḡ = 0. It is easy to see that this informal
argument can be formalized in F (MODp), and the length of the resulting proof is at most
(S + n)O(d).

Let E ′ be the set of all formulas E ′
i,ḡ corresponding to extension polynomials from E . Com-

bining things together, we have a constant-depth F (MODp)-refutation of φ1, . . . , φk,Ext, E ′

which has length (S + n + k)O(d0+d), and we only should get rid of the axioms Ext, E ′. For
doing that we will show how to substitute constant-depth formulas for propositional vari-
ables rc in such a way that after this substitution Ext, E ′ will have short F (MODp)-proofs.
We will proceed level by level, and for extension variables corresponding to different blocks
of polynomials from the same level the substitution will be constructed in parallel. Since
we have only constantly many (namely, `) levels and after performing substitutions at every
particular level the depth of the proof grows at most linearly, and its length grows at most
polynomially, the final proof will still have constant depth (depending only on `) and length
(S + n + k)O(d0+d).

Hence, it is sufficient to treat just one group of axioms from E ′ that in general has the
form

ψ0
i ∨

 ∧
j1 6=j2

(r0
j1
∨ r0

j2
) ∧

p−1∨
c=1

m∨
j=1

(ψc
j ∧ r

(c−1)
j )

 .

Here ψc
j are constant-depth formulae obtained from g̃

(c)
j by substitutions from the previous
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levels; this implies that for every fixed j there is a short F (MODp)-proof that exactly one of

ψ0
j , ψ

1
j , . . . , ψ

(p−1)
j is true.

Let

r0
j := (¬ψ0

1) ∨ . . . ∨ (¬ψ0
j−1) ∨ ψ0

j ,

and

rc
j := (¬r0

j ) ∧ ψ
(c−1)
j (c ≥ 1).

Then F (MODp) easily proves that (¬ψ0
i ) implies that exactly one of r0

1, . . . , r
0
m is false

(namely, the one corresponding to the minimal i with this property). But if r0
j (and hence

ψ0
j ) is false, the disjunction

∨p−1
c=1(ψ

c
j ∧ r

(c−1)
j ) is clearly satisfied. So, our substitution has all

the required properties, and this completes the proof of part (3).

(1) For this part we have to formalize the argument from the motivating remark after
Definition 6.4 in the Nullstellensatz system. Since the resulting proof turns out to be some-
what lengthy and technical, this is convenient to split it into a sequence of independent
lemmas. We begin with the following crucial definition.

Definition 6.8. For any F (MODp)-formula φ(p̄) and h ≥ 1 define a polynomial φap, called
the approximation of φ with accuracy h, as follows.

1. If φ = TRUE then φap := 0.

2. If φ = pi then φap := xi.

3. If φ = (¬ψ) then φap := 1 − ψap.

4. If φ = MODp,i(ψ1, . . . , ψk) then φap := (ψap
1 + · · · + ψap

k − (k − i))p−1.

5. If φ = η(ψ1, . . . , ψm), where m ≥ 2, η is a formula containing no connective other than
the disjunction, and ψ1, . . . , ψm already do not begin with a disjunction, then

φap := Πu≤h( 1 − ∑
j≤m

rju(¬ψj)
ap ),

where rju are the extension variables corresponding to the polynomials

(¬ψ1)
ap, . . . , (¬ψm)ap.

The peculiar occurrences of the negation sign in the approximation of a disjunction
are due to the fact that the truth-value TRUE is represented in polynomial rings by zero
rather than by one. Note also that the first four items in this definition are identical to the
corresponding items in the definition of φ∗, the set of all extension polynomials introduced
by item 5 is leveled, and its depth is at most the depth of φ.
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Lemma 6.9. Let φ1 =
∨

i∈I1 ξi and φ2 =
∨

i∈I2 ξi be two F (MODp)-formulas that are (arbi-
trarily bracketed) disjunctions of some ξi’s not beginning with a disjunction. Let h ≥ 1 and
let d = 3h(1 + maxi deg(ξap

i )). Then

E `d (φ1 ∨ φ2)
ap − φap

1 · φap
2 ,

where E is the set of extension polynomials corresponding to sets {(¬ξi)
ap | i ∈ I1},

{(¬ξi)
ap | i ∈ I2} and {(¬ξi)

ap | i ∈ I1 ∪ I2}.

Proof. Put fi := (¬ξi)
ap. We want to find a Nullstellensatz proof of

Πu(1 − ∑
I1∪I2

riufi) − Πu(1 − ∑
I1

r′iufi)(1 − ∑
I2

r′′iufi)

from E .

Claim 1: For any v ≤ h:

E `d′ (
∑
I1

r′ivfi)Πu(1 − ∑
I1∪I2

riufi),

where d′ = (h + 1) (1 + maxi deg(fi)).

To prove the claim sum all extension axioms Ei,f̄ , i ∈ I1, multiplied by r′iv, where f̄ =
{(¬ξi)

ap | i ∈ I1 ∪ I2}.
Claim 2: E `d (1 − φap

1 φap
2 )(φ1 ∨ φ2)

ap.

The polynomial to be proved from E is of the form∑
[(

∑
I1

r′iu1
fi) · . . . · (

∑
I1

r′iu`
fi) · (

∑
I2

r′′iv1
fi) · . . . · (

∑
I2

r′′ivm
fi)] · [Πu(1 − ∑

I1∪I2

riufi)],

where ` + m ≥ 1 and `,m ≤ h. Hence Claim 2 follows from Claim 1.

Claim 3: For all v ≤ h

E `d′′ (
∑

I1∪I2

rivfi) · Πu[(1 − ∑
I1

r′iufi)(1 − ∑
I2

r′′iufi)],

where d′′ := (2h + 1)(1 + maxi deg(fi)).

By (the proof of) Claim 1

E `d′ (
∑
I1

rivfi) · Πu(1 − ∑
I1

r′iufi)

and
E `d′ (

∑
I2\I1

rivfi) · Πu(1 − ∑
I2

r′′iufi).
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Hence
E `d′′ (

∑
I1

rivfi) · Πu[(1 − ∑
I1

r′iufi)(1 − ∑
I2

r′′iufi)]

and
E `d′′ (

∑
I2\I1

rivfi) · Πu[(1 − ∑
I1

r′iufi)(1 − ∑
I2

r′′iufi)].

The claim follows by adding the last two equations.
The next claim is proved analogously to Claim 2.

Claim 4: E `d (1 − (φ1 ∨ φ2)
ap)(φap

1 · φap
2 ).

The lemma now follows from Claims 2 and 4, and from Lemma 6.2(2). 2

The next lemma provides an upper bound on deg(φap) and is proved by an easy induction
on `.

Lemma 6.10. Let φ be an F (MODp)-formula of depth `, and let φap be its approximating
polynomial of accuracy h ≥ 1. Then

deg(φap) ≤ (` + 1) · (max{p − 1, h}`).

Lemma 6.11. For any F (MODp)-formula φ(p1, . . . , pk) of depth ` and any formulas
ψ1, . . . , ψk,

E `d φ∗(ψap
1 , . . . , ψap

k ) − (φ(ψ1, . . . , ψk))
ap,

where d = deg(φ) · 3h
(
1 + (` + 1) · (max{p − 1, h}`) · maxi deg(ψap

i )
)

and E is the set of

extension polynomials with accuracy h corresponding to all disjunctions in φ(ψ1, . . . , ψk).

Proof. By induction on the complexity of φ, using Lemma 6.2(3,4) and Lemma 6.9 for the
inductive step. For the application of the latter lemma notice that if η(ψ1, . . . , ψk) =

∨
i∈I ξi,

where η is a subformula of φ, then deg(ξap
i ) ≤ (` + 1) · (max{p − 1, h}`) · maxi deg(ψap

i ) by
Lemma 6.10. 2

Lemma 6.12. For any axiom scheme φ(p1, . . . , pk) of F (MODp) and any formulas ψ1, . . . , ψk,

E `d (φ(ψ1, . . . , ψk))
ap,

where d := (h+1)O(1) ·maxi deg(ψap
i ) and E is the set of extension polynomials with accuracy

h corresponding to all disjunctions in φ(ψ1, . . . , ψk). The constant assumed in the term
(h + 1)O(1) depends only on the chosen formalization of F (MODp).

Proof. An easy inspection shows that both the degree and the depth of all axiom schemes
of F (MODp) are bounded by some absolute constant (notice that the system F itself has
only finitely many axiom schemes). By Lemma 6.11,

E `d φ∗(ψap
1 , . . . , ψap

k ) − (φ(ψ1, . . . , ψk))
ap,
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where d = (h + 1)O(1) · maxi deg(ψap
i ). On the other hand, φ is a tautology, hence φ∗ is

identically 0 on {0, 1}k and has therefore a Nullstellensatz proof `dφ
φ∗ of some degree dφ.

Again, it is easy to see that all dφ are bounded by some absolute constant which gives us

E ′ `(h+1)O(1) φ∗,

where E ′ is the set of extension polynomials corresponding to all η(p1, . . . , pk). Now we only
have to substitute ψap

i for pi and substract the previous proof. 2

After all this preliminary work is done, we can finish the proof of part (1) in Theorem
6.7. Firstly, it is well-known that every Frege proof of length S can be transformed into a
tree-like Frege proof of length SO(1) and height O(log S) (see e.g. Kraj́ıček (1995), Lemma
8.4.8). This transformation works also for F (MODp)-formulas, and, moreover, the depth of
the proof (as defined in Section 1) gets increased only by an absolute additive constant under
this transformation. Let π be a tree-like F (MODp)-refutation of φ1, . . . , φk that has depth
` + O(1), length SO(1) and height O(log S).

Let E be all extension polynomials corresponding to approximations with accuracy h ≥ 1
of all disjunctions occurring (as subformulas) in π. Clearly, E is leveled, its depth is at most
` + O(1) and |E| ≤ SO(1).

By induction on the number of inferences above a formula φ in π show that

φ∗
1, . . . , φ

∗
k, E `(d0+h(φ))(h+1)O(1) φap,

where h(φ) is the height of the subderivation ending with φ. For φ one of φi this follows
from Lemma 6.11 (with ψi = pi). If φ is an axiom of F (MODp) then the claim follows from
Lemmas 6.12 and 6.10. Finally, the claim is preserved for φ’s obtained by modus ponens:
use Lemmas 6.9, 6.10.

The proof of Theorem 6.7 is thus complete. 2

Consider in particular typical (and the most interesting) case when k = nO(1) and d0 =
O(1). Then φ1, . . . , φk have constant-depth quasipolynomial size F (MODp)-refutation if and
only if there exists a Nullstellensatz refutation of φ∗

1, . . . , φ
∗
k, E that has degree (log n)O(1),

where E is a leveled constant-depth quasipolynomial size set of extension polynomials with
any prescribed accuracy h chosen from the interval 1 ≤ h ≤ (log n)O(1).

Note that the simulation of Theorem 6.7 is valid also for unbounded depth Frege systems
vs. unbounded depth leveled sets of extension polynomials. Parts (1) and (2) apply literally.
For part (3) note that the extension variables can be defined using the extension rule of
Extended Frege systems. It is well-known (cf. Cook & Reckhow (1979)) that the presence of
the extension rule affects the minimal number of lines in a Frege proof by at most a constant
factor.

Our next result shows that it is possible to eliminate one block of extension polynomials
at the expense of a polynomial increase in degree.
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Theorem 6.13. Assume

Γ, {gi(1 − (
∑
j

rjgj)) | i} `d 1,

where Γ is a set of polynomials. Then

Γ `p(p−2)d2+3d 1.

Proof. Assume∑
f∈Γ

Pff +
∑

i

P ′
igi(1 − (

∑
j

rjgj)) +
∑

i

Ri(x
2
i − xi) +

∑
j

R′
j(r

p
j − rj) = 1

is a degree d Nullstellensatz refutation. Denote by S the sum
∑

j rjgj and by T the sum
S + S2 + . . . Sp−1. Multiplying the identity above by T yields a degree pd Nullstellensatz
proof of T : ∑

f∈Γ

(PfT )f +
∑

i

(RiT )(x2
i − xi) +

∑
j

(R′
jT )(rp

j − rj) = T,

where the second term cancels out by Lemma 6.2(1).
Substitute 0 for rj with j 6= i and gp−2

i for ri. This increases the degree by a factor of
(p − 2)d at most. Then S becomes gp−1

i which is an idempotent and thus T becomes just
(p − 1)gp−1

i . Multiplying the resulting equation by (p − 1)gi and using Lemma 6.2(1) again
yields

Γ `p(p−2)d2+d gi

for all i. Hence
Γ `p(p−2)d2+2d gi(1 − ∑

j

rjgj)).

Substituting this into the original Nullstellensatz proof yields

Γ `p(p−2)d2+3d 1.

2

Since there are examples showing that bounded depth Frege with MODp gates is strictly
stronger than Nullstellensatz, it is not possible in general to eliminate all extension axioms
without too big increase of the degree. One such example is the weak pigeonhole principle
PHP 2n

n Paris et al. (1988), Beame et al. (1995), and another example, the “house-sitting
tautologies” of Clegg et al. (1996) was already mentioned in Section 5: it separates the
polynomial calculus from the Nullstellensatz system.

We conclude by observing that it is possible to introduce extension polynomials in an
unstructured way, i.e., with no implicit stratification into levels. This appears to be more
akin to the fusion method in Boolean complexity, cf. Razborov (1989), Wigderson (1993).



Algebraic proof systems and Frege systems 33

Define an unstructured extension polynomial of accuracy h corresponding to g1, . . . , gh to be
the polynomial ∏

u≤h

(gu − ru),

where all ru are different and none of them occurs in any gv (but they may occur arbitrarily
in other extension polynomials). The next theorem shows that, on the one hand, this
unstructured version is at least as strong as the structured one, and, on the other hand,
the analogue of Theorem 6.6 still holds true provided the set E is not too big.

Theorem 6.14.

(1) For every extension polynomial Ei,ḡ of accuracy h there exists an unstructured extension
polynomial E ′

i,ḡ of the same accuracy h such that

E ′
i,ḡ `d Ei,ḡ,

where d = (ph + 1) · maxj deg(gj) + h.

(2) Let f1, . . . , fk, g be polynomials from Fp[x1, . . . , xn], and let E be any set of unstructured
extension polynomials with accuracy h such that |E| < eh/p. If g has a Nullstellensatz
proof from f1, . . . , fk, E then it has one from f1, . . . , fk alone as well.

Proof. (1) Let
fiu = 1 − ∑

j≤m
j 6=i

rjugj (u ≤ h),

then Ei,ḡ = gi · ∏
u≤h(fiu − riugi). Consider the unstructured extension polynomial

E ′
i,ḡ =

∏
u≤h

(fiug
p−2
i − riu).

Then, clearly,
E ′

i,ḡ `d gi ·
∏
u≤h

(fiug
p−1
i − riugi).

On the other hand, gi ·∏u≤h(fiug
p−1
i − riugi) represents the same function as Ei,ḡ. Hence we

can apply Lemma 6.2(1) to finish the proof.

(2) Assign to all r-variables random values from Fp. Then for every fixed assignment
to x-variables, every extension polynomial from E gets a non-zero value with probability(
1 − 1

p

)h ≤ e−h/p. Thus, every fixed assignment to x-variables can be extended to an as-
signment reducing all polynomials from E to zero. Therefore, if this assignment makes all
f1, . . . , fk zero, then g gets the value zero as well. 2

Note that a bound to the number of unstructured extension polynomials must be a priori
present as otherwise the proofs could be unsound. For example, 2h unstructured extension
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polynomials
∏

u≤h(εu − ru), (ε1, . . . , εh) ∈ {0, 1}h do not have common 0-1 zeros and thus
entail 1 = 0 (in degree h). Define a proof system UENS (Unstructured Extended NS) as a
system whose proofs are NS-proofs with less than eh/p unstructured extension polynomials.
UENS is complete (as NS is so) and sound by the previous theorem. By the remark after
Theorem 6.7, every Extended Frege (EF) proof of size S can be transformed into a degree
(log S)O(1) UENS-proof. Amazingly, it is not known whether the converse simulation of
UENS by EF takes place, and the reason is that we do not know how to derandomize the
soundness proof of UENS (Theorem 6.14(2)). In fact, UENS is one of the extremely rare
examples of a propositional proof system that does not allow a “straightforward” simulation
by EF, and this makes understanding its exact power an interesting open problem.
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