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Fundamental problems for computer science include separating
time classes from space classes, e.g.,

L = P? and P = PSpace?

(L is log space; P is polynomial time.)
And, whether nondeterminism helps computation, e.g.,

P = NP?

Our primary successful tool for separating classes is diagonalization.

This talk: Limits of diagonalization for “L versus NP?”
Specifically: Alternation trading proofs as iterated diagonalization.
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Towards separating logarithmic space (L) from non-deterministic
polynomial time (NP).

L ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime.

Space hierarchy gives: L 6= PSpace.
Time hierarchy gives: P 6= ExpTime.
No other separations are known.

A series of results, especially since Fortnow [1997], has proved
some lower bounds for the time complexity of sublinear space
algorithms for Satisfiability (Sat) and thus for NP problems.

This talk discusses upper bounds on the lower bounds that can be
obtained by present techniques of “alternation trading”.

Sam Buss Alternation Trading Proofs



Introduction
Bounds on DTS proofs

Bounds for time/space tradeoffs

NP and Satisfiability
Alternation trading proofs
Lower bounds

Barriers to separating L, P and NP include:

Oracle results: [Baker-Gill-Solovay, 1975] There are oracles
collapsing the classes, so any proof of separation must not
relativize.

Natural proofs: [Razborov-Rudich, 1997] Cryptographic
assumptions imply that certain constructive separations are not
possible.

Algebrization: [Aaronson-Wigderson, 2008] Proofs must not
relativize to algebraic extensions of oracles.
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Present talk: Bounds on the power of alternation-trading proofs
for separating L and NP.

Alternation-trading proofs involve iterating the restricted space
methods of Nepomnjasci [1970] together with simulations:
essentially a sophisticated version of diagonalization.

Best alternation-trading results obtained so-far state that Sat is
not computable in simultaneous time nc and space nǫ for certain
values of c > 1 and of ǫ > 0. (But, not all such values!)

Theme: Better simulation methods give better diagonalization
proofs for separating complexity classes.
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Satisfiability

Definition (Satisfiability – Sat)

An instance of satisfiability is a set of clauses.
Each clause is a set of literals.
A literal is a negated or nonnegated propositional variable.
Satisfiability (Sat) is the problem of deciding if there is a truth
assignment that sets at least one literal true in each clause.

Thm: Satisfiability is NP-complete.

Conjecture: Satisfiability is not polynomial time. (P 6= NP.)
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Why is Satisfiability important?

1. Satisfiability is NP-complete.

2. Many other NP-complete problems are many-reducible to Sat

in quasilinear time, that is, time n · (log n)O(1).

3. For a given non-deterministic machine M, the question of
whether M(x) accepts is reducible to Sat in quasilinear time.
[sharpened Cook-Levin theorem].

Thus Sat is a “canonical” and natural non-deterministic time
problem. Lower bounds on algorithms for Sat imply into the same
lower bounds for many other NP-complete problems.
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We always use the Random Access Memory (RAM) model for
computation.
“DTime”/“NTime” = Deterministic/Nondeterministic time.

Theorem (Schnorr’78; Pippenger-Fischer’79; Robson’79,’91;
Cook’88)

There is a c > 0 so that, for any language L ∈ NTime(T (n)),
there is a quasi-linear time, many-one reduction to instances of

Sat of size T (n)(logT (n))c . In fact, each symbol of the instance

of Sat is computable in polylogarithmic time (logT (n))c .

Corollary

If Sat ∈ DTime(nc), then NTime(nd ) ⊂ DTime(nc·d+o(1)).

The factor no(1) hides logarithmic factors.
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Definition

Let c ≥ 1. DTS(nc) is the class of problems solvable in
simultaneous deterministic time nc+o(1) and space no(1).

A series of results by Kannan [1984], Fortnow [1997],
Lipton-Viglas, van Melkebeek, Williams, and others gives:

Theorem (R. Williams, 2007)

Let c < 2 cos(π/7) ≈ 1.8019. Then Sat /∈ DTS(nc).

In this talk, we review these results and discuss a proof of their
optimality relative to currently known proof techniques.
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Nepomnjasci’s method

Definition

b(∃nc)dDTS(ne)

denotes the class of problems taking inputs of length nb+o(1),
existentially choosing nc+o(1) bits, keeping in memory a total of
nd+o(1) bits (using time nmax{c,d}+o(1)) which are passed to a
deterministic procedure that uses time ne+o(1) and space no(1).

Theorem (by method of Nepomnjasci, 1970)

bDTS(nc) ⊆ b(∃nx)max{b,x}(∀n0)bDTS(nc−x ).

Proof next page....
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b
DTS(nc) ⊆ b(∃nx)x(∀n0)bDTS(nc−x), for x ≥ b

Proof idea: Split the nc time computation into nx many blocks.
Existentially guess the memory contents (apart from the input) at
each block boundary (using nx+o(1) bits),
then universally choose one block to verify correctness (using
O(log n) = no(1) universal choices),
and simulate that block’s computation (in nc−x time).

nx blocks, each nc−x steps

Space no(1)

. + input size nb.

nc total run time
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Alternation trading proofs [Williams]

An alternation trading proof is a proof that Sat /∈ DTS(nc), for
some fixed c ≥ 1. It is a proof by contradiction, based on deducing

1
DTS(na) ⊆ 1

DTS(nb)

for some a > b, from the assumption that Sat ∈ DTS(nc).

The lines of an alternation trading proof are of the form

1(∃na1)b2(∀na2)b3 · · · bk (Qnak )bk+1DTS(nak+1).

There are two kinds of inferences: “speedup” inferences that add
quntifiers and reduce run time (based on Nepomnjascii) and
“slowdown” inferences that remove a quantifier and increase run
time (based on the S-P-F-R-C theorem)....
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The rules of inferences for alternation trading proofs are:

Initial speedup: (x ≤ a)

1
DTS(na) ⊆ 1(∃nx)max{x ,1}(∀n0)1DTS(na−x),

Speedup: (0 < x ≤ ak+1)

· · · bk (∃nak )bk+1DTS(nak+1)

⊆ · · · bk (∃nmax{x ,ak})max{x ,bk+1}(∀n0)bk+1DTS(nak+1−x),

Slowdown:

· · · bk (∃nak )bk+1DTS(nak+1) ⊆ · · · bkDTS(nmax{cbk ,cak ,cbk+1,cak+1}).

and the dual rules.
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Example: alternation trading proof.

Let 1 < c <
√
2. Then, if Sat ∈ DTS(nc),

DTS(n2) ⊆ (∃n1)1(∀n0)1DTS(n1)

⊆ (∃n1)1DTS(nc)

⊆ DTS(nc
2
).

which is a contradiction. Proof uses a speedup-slowdown-slowdown
pattern, also denoted 100.

This proves:

Theorem (Lipton-Viglas, 1999)

Sat /∈ DTS(n
√
2).
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Better results can be found with more alternations.

Theorem (Fortnow, van Melkebeek, et. al)

Sat /∈ DTS(nc), where c < φ ≈ 1.618, the golden ratio.

The optimal refutation with seven inferences derives:

Theorem (Williams)

Sat /∈ DTS(n1.6).

This proof uses the pattern of inferences: 1100100, where “1”
denotes a speedup and “0” denotes a slowdown.
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Theorem (Williams)

Let c < 2 cos(π/7) ≈ 1.801. Then Sat /∈ DTS(nc).

This used proofs of the following 1/0 patterns:

1n(10)∗(0(10)∗)n.

Based on using Maple to (unsuccessfully) search for better
refutations, these were conjectured by Williams to be the best
possible refutations.

We next discuss how to prove this conjecture, at least in the
framework of currently known rules for alternation trading proofs.

Remark: If Sat /∈ DTS(nc) for all c , then L 6= NP, something
thought to be hard to prove.

L ⊆ NP ⊆ P ⊆ NP ⊆ PSpace.
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Theorem (Buss-Williams)

There are alternation trading proofs of Sat /∈ DTS(nc) for exactly
the values c < 2 cos(π/7).
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Reduced alternation trading proofs

Two simplifications for a ‘reduced” system:
1. Replace the superscripts “1” with “0”.
2. Get rid of half the exponents! Replace each quantifier
“(Qnai )bi ” with just “Qbi”.

The intuition is:

Firstly, that the values “1” can be made infinitesimal by making
ai ’s and bi ’s large. Then the “1”s can be replaced by zeros.

Secondly, the ai ’s are always dominated by the bi ’s and thus are
never important.

Sam Buss Alternation Trading Proofs



Introduction
Bounds on DTS proofs

Bounds for time/space tradeoffs

Reduced alternation trading
Achievable inferences
Limits on achievability

The simplified rules for alternation proofs become:

Initialization: 0DTS(na) ⊢ 0∃0DTS(na).

Speedup: (0 < x ≤ a)

· · · bk∃bk+1DTS(na) ⊢ · · · bk∃max{x ,bk+1}∀bk+1DTS(na−x),

Slowdown: · · · bk∃bk+1DTS(na) ⊢ · · · bkDTS(nmax{cbk ,cbk+1,ca}).

Theorem

The reduced system has a refutation iff the original system has a

refutation.

Sam Buss Alternation Trading Proofs



Introduction
Bounds on DTS proofs

Bounds for time/space tradeoffs

Reduced alternation trading
Achievable inferences
Limits on achievability

Approximate inference

Defn: Given Ξ and Ξ′:

Ξ = 0∃b2∀b3 · · · bkQbk+1DTS(na)
Ξ′ = 0∃b′2∀b′3 · · · b′kQb′

k+1DTS(na
′

).

Ξ ≤ Ξ′ means a ≤ a′ and each bi ≤ b′
i
.

The weakening rule allows inferring Ξ′ from Ξ; deduction with
weakening is denoted Ξ w Ξ′. The weakening rule does not add
any power to the proof system.

Defn: (Ξ + ǫ) is obtained from Ξ by increasing a and each bi by ǫ.

Definition (Approximate inference, )

Ξ  Λ if and only if for all ǫ > 0 there exists a δ > 0 such that

(Ξ + δ) w (Λ + ǫ).
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Achievability

Definition

Let µ ≥ 1 and 0 < ν. The pair 〈µ, ν〉 is c-achievable provided
that, for all values a, b and d satisfying cµb = νd ,

a∃bDTS(nd ) 
a∃µbDTS(nνd ).

Theorem

If 〈µ, ν〉 is c-achievable for ν < 1/c, then Sat /∈ DTS(nc).

Pf : 0
DTS(n1) ⊢ 0∃0DTS(n1) Initialization

w 0∃ν/(cµ)DTS(n1) Weakening


0∃ν/cDTS(nν) By a 〈µ, ν〉 step

⊢ 0
DTS(ncν) Slowdown

Note cν < 1. (Converse to proof holds too.)
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Theorem

〈1, c−1〉 is c-achievable with (10)∗ derivations

Pf. Let Ξ = a∃bDTS(nd), with cb ≤ d . Then

Ξ ⊢ a∃b∀bDTS(nd−b) ⊢ a∃bDTS(nmax{cb,c(d−b)}) = a∃bDTS(nd
′

).

0 d

d ′

cb

cb

b

b

2b

d ′ = cb

c

c−1b

d ′ = c(d − b)

d ′=d

d ′ is the max of the dashed lines

“q.e.d.”
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Composition of c-achievable pairs

Theorem

Let 〈µ1, ν1〉 and 〈µ2, ν2〉 be c-achievable, with cν1µ2 ≥ µ1. Then

〈µ, ν〉 is c-achievable, where
µ = cν1µ2 and ν =

cµ1ν1ν2
µ1 + ν1ν2

.

Pf idea: Use a speedup, followed by a 〈µ2, ν2〉 step, then a
slowdown, and finally a 〈µ1, ν1〉 step. If cν1µ2 < µ1, then theorem
holds with µ = max{cν1µ2, µ1} instead.

Theorem

The constructions above “subsume” all alternation trading proofs.

There is an alternation trading proof of Sat /∈ DTS(nc) iff an

c-achievable pair with ν < 1/c can be constructed using the

previous two theorems.
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Understanding what is achievable

The expressions for µ and ν can be rewritten as:

1

µ
=

1

R

(

1

µ2

)

and
1

ν
=

1

T
− 1

R

(

1

T
− 1

ν2

)

.

where
1

R
=

1

cν1
and

1

T
=

ν1
(c(ν1 − 1)µ1

. Without loss of

generality ν1 > 1/c (otherwise we are done), and thus
1

R
< 1.

We think of 〈µ1, ν1〉 as transforming 〈µ2, ν2〉 to yield 〈µ, ν〉, and
write this as

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉
This transformation makes µ2 increase geometrically to get µ, and
makes ν2 contract inverse-geometrically towards T to get ν.
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Define 〈µi , νi 〉 by:

〈µ0, ν0〉 = 〈1, c−1〉,
〈µ0, ν0〉 : 〈µi , νi 〉 7→ 〈µi+1, νi+1〉.

If

T0 =
(cν0 − 1)µ0

ν0
=

c(c − 1)− 1

c − 1
< 1/c ,

then some νi < 1/c . This will give an alternation trading proof of
Sat /∈ DTS(nc). For 1 ≤ c ≤ 2, this is equivalent to

c3 − c2 − 2c + 1 < 0,

i.e., c < 2 cos(π/7).

This gives the desired alternation trading proof that
Sat /∈ DTS(n2 cos(π/7)). [Williams]
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The next theorem states c = 2cos(π/7) is the best possible. A key
point is that the attraction points “T” only increase.

Lemma

If 〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉 and if T1 ≥ 1/c, then T ≥ T2.

Theorem

There are alternation trading proofs of Sat /∈ DTS(nc) for exactly
the values c < 2 cos(π/7).
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Time-Space Tradeoff Lower Bounds

Definition

DTISP(nc , nǫ) is the class of problems decidable in deterministic
time nc+o(1) and space nǫ+o(1).

The notion of alternation trading proofs can be expanded to give
proofs that Sat /∈ DTISP(nc , nǫ) for various values
1 ≤ c < 2 cos(π/7) and 0 < ǫ < 1.

This is done by giving alteration trading proofs of

DTISP(nαc , nαǫ) ⊆ DTISP(nβc , nβǫ)

for some α > β > 0.
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Rules of inference for DTISP

Initial speedup: (e < x ≤ a)

1DTISP(na, ne) ⊆ 1(∃nx)max{x ,1}(∀n0)max{e,1}DTISP(na−x+e , ne)
Invoked only with a = c · e/ǫ.

Speedup: (e < x ≤ ak+1.)

· · · bk (∃nak )bk+1DTISP(nak+1 , ne)

⊆ · · · bk (∃nmax{x ,ak})max{x ,bk+1}(∀n0)max{bk+1,e}DTISP(nak+1−x+e , ne)

Slowdown: Let a = max{bk , ak , bk+1, ak+1}.
· · · bk (∃nak )bk+1DTISP(nak+1 , ne) ⊆ · · · bkDTISP(nca, nǫa).
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Based on extension of the theory of acheivable pairs to “acheivable
triples”, and on a computer-based search (C++), aided by
theorems about pruning the searches:
Theorem [Buss-Williams] The following pairs are the optimal
values c and ǫ for which there are alternating trading proofs that
Sat /∈ DTISP(nc , nǫ).

ǫ c

0.001 1.80083
0.01 1.79092
0.1 1.69618
0.25 1.55242
0.5 1.34070
0.75 1.15765
0.9 1.06011
0.99 1.00583
0.999 1.00058

ǫ

c

1
0

1.8019

1

These values for c and ǫ are better than prior known lower bounds.
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Open problems

Find a closed form solution for the optimal DTISP(nc , nǫ)
proofs. Even, find a simple characterization of how to
construct the optimal proofs without resorting to a brute-force
(pruned) search.

There are many other flavors of alternation trading proofs, for
instance for nondeterministic algorithms for tautologies. One
could try giving proofs that the known alternation trading
proofs are optimal.

Most interesting: Try to find new principles that go beyond
the presently known speedup and slowdown inferences, to give
improved lower bound proofs.
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Thank you!
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Number of Number of Has
ǫ c Rounds Triples Refutation

0.001
1.80084 7 167 No
1.80083 11 455 Yes

0.01
1.79093 20 764 No
1.79092 11 278 Yes

0.1
1.69619 248 3633 No
1.69618 26 435 Yes

0.25
1.55242 249 2932 No
1.55242 33 297 Yes

0.5
1.34071 203 1533 No
1.34070 44 406 Yes

0.75
1.15766 155 1379 No
1.15765 27 167 Yes

0.9
1.06012 146 454 No
1.06011 19 88 Yes

0.99
1.00584 99 260 No
1.00583 7 20 Yes

0.999
1.00059 3 3 No
1.00058 24 10 Yes
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