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Abstract. Alternation trading proofs are motivated by the goal of sep-
arating NP from complexity classes such as Logspace or NL; they have
been used to give super-linear runtime bounds for deterministic and co-
nondeterministic sublinear space algorithms which solve the Satisfiabil-
ity problem. For algorithms which use no(1) space, alternation trading
proofs can show that deterministic algorithms for Satisfiability require
time greater than ncn for c < 2 cos(π/7) (as shown by Williams [21, 19]),
and that co-nondeterministic algorithms require time greater than ncn

for c < 3
√

4 (as shown by Diehl, van Melkebeek and Williams [5]). It is
open whether these values of c are optimal, but Buss and Williams [2]
have shown that for deterministic algorithms, c < 2 cos(π/7) is the best
that can obtained using present-day known techniques of alternation
trading.

This talk will survey alternation trading proofs, and discuss the optimal-
ity of the unlikely value of 2 cos(π/7).

Keywords: Satisfiability, alternation trading, indirect diagonalization,
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1 Introduction

A central open problem in computer science is the question of whether nondeter-
ministic polynomial time (NP) is more powerful than ostensibly weaker compu-
tational classes such as polynomial time (P) or logarithmic space (Logspace).
These are famously important and difficult questions, and unfortunately, in spite
of over 40 years of concerted efforts to prove that NP 6= P or NP 6= Logspace,
it is generally felt that minimal progress has been made on resolving them.

Alternation trading proofs are a method aimed at separatingNP from smaller
complexity classes, by using “indirect” diagonalization to prove separations. A
typical alternation trading proof begins with a simulation assumption, for in-
stance the assumption that the NP-complete problem of Satisfiability (SAT)
can be recognized by an algorithm which uses time nc and space no(1). Iterated
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application of the simulation assumption allows it to be amplified into an as-
sertion which can be refuted by diagonalization. This yields a proof that the
simulation assumption is false.

One of the strongest alternation trading separations known to date is that
SAT cannot be recognized by a deterministic algorithm which uses time nc and
space no(1) for c a constant < 2 cos(π/7) ≈ 1.8109 (see Theorem 8 below). The
bound of 2 cos(π/7) on the runtime exponent might seem unlikely; however, it
has recently been shown that this bound on the exponent is optimal in the sense
that present-day techniques of alternation trading proofs cannot establish any
better runtime bound. This is stated as Theorem 10 below, and thus gives an
upper bound on the lower bounds that can be achieved with alternation trading
proofs — at least using currently known techniques. In short, we provably need
better techniques — or better ways to apply known techniques — in order to
get improved separation results via alternation trading proofs.

The next section outlines these results in more detail. However, many details
of the definitions and proofs are omitted. These details and additional back-
ground information can be found in [19, 2]. The earlier survey [12] provides an
excellent introduction to alternation trading proofs, but does not include the
upper bounds on lower bounds of Theorem 10.

2 Definitions and Preliminaries

We adopt the convention that time- and space-bounded algorithms are run on
Turing machines with random access tapes, as this permits robust definitions
for subquadratic time and sublinear space computational classes. Specifically,
Turing machines are assumed to be multitape machines that have random access
(indexed) tapes. This means that the Turing machine’s tapes come in pairs. Each
pair consists of a sequential access tape and a random access tape. The sequential
access tape is accessed as usual in the Turing machine model with a tape head
that can move at most one tape cell left or right per step. The random access tape
is indexed by the sequential access tape, so that the Turing machine has access
to the symbol written in the tape cell whose index is written on the sequential
access tape. The input string is stored on a read-only random access tape.

Random access Turing machines form a very robust model of computation;
for instance, [9] shows their equivalence to more general random access comput-
ers up to logarithmic factors on runtime and space.

The space used by the Turing machine is the number of cells which are
accessed on either kind of tape, except that the contents of the (read-only)
input tape do not count towards the space used by the Turing machine. For t a
time-constructible function, the complexity classes DTIME(t) and NTIME(t)
contain the languages L which can be recognized by deterministic, respectively
nondeterministic, algorithms which use time O(t).

We will work primarily with algorithms for Satisfiability that use sublinear
space of only no(1) or ne+o(1) for some constant e < 1. Note these sublinear space
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algorithms do not even have sufficient space to store a single truth assignment
for an instance of Satisfiability.

Definition 1. Let c, e ≥ 0. The complexity class DTISP(nc, ne) is the set of
decision problems L such that L can be recognized by a deterministic algorithm
which uses time nc+o(1) and space ne+o(1). The complexity class NTISP(nc, ne)
is defined similarly but allowing nondeterministic algorithms instead of deter-
ministic algorithms.

DTS(nc) is equal to DTISP(nc, n0). And NTS(nc) is NTISP(nc, n0).

It is a little unusual for the definitions of DTISP and NTISP to include the
“o(1)” terms in the exponents, but the advantage is that it gives extra no(1)

factors which can absorb polylogarithmic factors in time or space bounds.

The Cook-Levin theorem states that SAT is NP-complete. In fact, SAT is
NP-complete in a very strong way. An algorithm is called “quasilinear time”
provided it has runtime n(logn)O(1), and “polylogarithmic time” provided it
has runtime (logn)O(1).

Theorem 2. Let L ∈ NTIME(n). Then there is a quasilinear time many-one
reduction f from L to SAT such that there is a polylogarithmic time algorithm,
which given x and j, produces the j-th symbol of f(x).

The point of Theorem 2 is that the computational complexity of SAT is as
strong as any language in NTIME(n). In particular:

Corollary 3. Fix c ≥ 0. NTIME(t) ⊆ DTS(nc) if and only if SAT ∈ DTS(nc).

Proofs of Theorem 2 and its precursors were given by [14, 17, 15, 3, 16, 18, 7, 12].
For the most direct proof of Theorem 2 as stated see [12], which uses much the
same methods as [17, 16].

Corollary 3 provides the justification for “slowdown” steps in alternation
trading proofs. Alternation trading proofs also contain “speedup” steps which
allow sublinear space computations to be speeded up, at the cost of introducing
alternations. Speedup steps are based on the following theorem which states that
runtime can be speeded up by alternation. The theorem is based on techniques
independently developed by Bennett [1], Nepomnjaščĭı [13], and Kannan [10].
We state it only for the special case where the space is no(1), but it can be
generalized to space ne for constants e < 1.

Theorem 4. Suppose a > b > 0 and that L ∈ DTS(na). Then membership in L
can be expressed as

x ∈ L ⇔ (∃y, |y|≤|x|b+o(1))(∀z, |z|≤d log |x|)(〈x, g(y, z)〉 ∈ L′)

for some constant d > 0, some L′ ∈ DTS(na−b), and some function g ∈
DTS(n0) such that |(g(y, z)| = |x|o(1).
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3 Separation Results with Alternation Trading

The first separation results using alternation trading were established by Kan-
nan [10] and Fortnow [6], who were motivated by problems such as proving
that NP is not equal to NL. Theorem 5 states a simplified version of Fortnow’s
results.

Theorem 5. Let ǫ > 0. Then SAT /∈ DTISP(n1, n1−ǫ). In fact, we have
SAT /∈ NTISP(n1, n1−ǫ). Consequently, NTIME(n) 6⊆ coNTISP(n1, n1−ǫ).

Fortnow’s theorem was quickly extended to better runtime lower bounds. Lipton
and Viglas [11] improved the n1 time bound to nc for all c <

√
2, but with

polylogarithmic space instead of n1−ǫ. Their methods give the following theorem:

Theorem 6. Let c <
√
2 ≈ 1.414. Then SAT /∈ DTS(nc).

This bound was improved by Fortnow and van Melkebeek [8, 7] to use c < φ
where φ = (1 +

√
5)/2 ≈ 1.618 is the golden ratio.

Theorem 7. Let c < φ. Then SAT /∈ DTS(nc).

The bound c < φ was improved to c <
√
3 ≈ 1.732 by Williams [20] and to

c < 1.759 by Diehl and van Melkebeek [4] (the latter result was a more general
result about randomized computation). Finally, these bounds were improved by
Williams [21, 19] to c < 2 cos(π/7) ≈ 1.8109. His theorem applied to a more
general setting of modular counting, but for SAT and NTIME(n) his results
were:

Theorem 8. Let c < 2 cos(π/7). Then SAT /∈ DTS(nc).

Corollary 9. Let c < 2 cos(π/7). Then NTIME(n) 6⊆ DTS(nc).

Subsequently to proving Theorem 8, Williams used a computer-based search
(coded in Maple) to search for better alternation trading proofs. For this, Williams
formulated a precise set of inference rules that allow the derivation of assertions
about inclusions between complexity classes. We do not describe the inference
rules here, but they can be found in [19, 2]. The essential idea is that the infer-
ence rules formalize the “slowdown” and “speedup” principles of Corollary 3 and
Theorem 4. This computerized search did not lead to any improved alternation
trading proofs beyond those already found for Theorem 8.

The somewhat mysterious value 2 cos(π/7) arises from its being one of the
roots of x3 − x2 − 2x+ 1 = 0.

4 Limits on Alternation Trading Proofs

It had long been informally conjectured that alternation trading proofs should
be able to establish Theorems 6-8 for all values of c < 2. However, as a result
of the computerized search, Williams conjectured that the (admittedly unlikely
sounding) value 2 cos(π/7) is the best that can be achieved with his formalized
inference rules. This conjecture was recently proved by Buss and Williams [2]:
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e c

0.001 1.80083
0.01 1.79092
0.1 1.69618
0.25 1.55242
0.5 1.34070
0.75 1.15765
0.9 1.06011
0.99 1.00583
0.999 1.00058 e

c

1
0

1.8019

1

Fig. 1. Showing the maximum value of c, as a function of e, for which alternation trad-
ing proofs suffice to show that SAT is not in DTISP(nc, ne). The values are accurate
to within 10−5. This figure is from [2].

Theorem 10. The alternation trading proof inference system, as described in
[19, 2], can prove that SAT /∈ DTS(nc) if and only if c < 2 cos(π/7).

This inference system for alternation trading proofs includes all alternation trad-
ing proofs which have been developed so far, and seems to fully capture the power
of the Bennett-Nepomnjaščĭı-Kannan technique of Theorem 4. Thus, Theorem 10
appears to put a meaningful bound on what can be achieved by alternation trad-
ing proofs.

Fortnow and van Melkebeek [8] and Williams [19] also used alternation trad-
ing proofs to prove results about NTIME(n) 6⊆ DTISP(nc, ne) for values of
c > 1 and e < 1. Already [8] showed that, for any value of e < 1, this holds for
c sufficiently close to 1; and improved values were given by [19]. The possible
values for c and e were further improved, and shown to be optimal by Buss and
Williams [2]:

Theorem 11. The alternation trading proof inference systems described in [19,
2] can prove SAT /∈ DTISP(nc, ne) for precisely the values of c and e graphed
in Fig. 1.

Unfortunately, the values shown in Fig. 1 are numerically computed; there is no
known formula for describing the values of c and e for which alternation trading
proofs exist.

5 Other Directions

So far, we have discussed the question of whether SAT lies in DTS(nc) or
DTISP(nc, ne) for constant values of c and e. The alert reader will have noticed
that Theorem 5 also discussed whether SAT lies in the nondeterministic class
NTISP(n1, n1−ǫ). A number of further such results have been obtained, in par-
ticular by [8, 7, 21, 19], culminating in the following theorem proved by Diehl,
van Melkebeek, and Williams [5]:
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Theorem 12. Let c < 3
√
4. Then SAT /∈ NTS(nc). Consequently, NTIME(n) 6⊆

coNTS(nc).

It is tempting to conjecture that the methods of [2] can be extended to prove
that the constant 3

√
4 is optimal for what can be proved with alternation trading

proofs. However, to the best of our knowledge, this has not been attempted yet
and so it remains an open problem.
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