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Abstract—This paper characterizes alternation trading based  establishing barriers and mining insights into complexity
proofs that the satisfiability problem is not in the time and lower bounds.
space bounded clas©TISH(n®, n°), for various values ¢ < 2 We focus in this paper on lower bounds for simulating
and € < 1. We characterize exactly what can be proved for - o L
¢ € o(1) with currently known methods, and prove the conjec- ~nondeterminism with time- and space-bounded determunisti
ture of Williams that the best known lower bound exponent  algorithms, concentrating on the satisfiability problenTSA
c = 2cos(w/7) is optimal for alternation trading proofs. For However, the known alternation-trading methods for prgvin
general time-space tradeoff lower bounds on satisfiabilitywe  these lower bounds also imply analogous time-space lower

give a theoretical and computational analysis of the alteration _
trading proofs for 0 < ¢ < 1, again proving time lower bounds bounds for many other NP-complete problems (see [17]).

for various values of ¢ which are optimal for the alternation Let DTISRAn¢,n¢) denote the class of languages recog-
trading proof paradigm. nizable by deterministic algorithms that run in time+o()

with space bounded by-t°() wherel < cand0 < ¢ < c.
A series of results, see [9], [5], [10], [7], [6], [14], [4],
[18], [19], [20], have established better and better ndnatr
How powerful are the methods we have for provingconstant lower bounds on the valuesand e for which
computational lower bounds? What prevents us from provin@AT € DTISP(n¢, n¢), and similar results for other hard
major complexity class separations? Over the years, thereroblems. Surveys of these and other results are given by
have been several formalizations of these questions tHat levan Melkebeek [15], [16] but, loosely speaking, all of these
to new insights into complexity itself. Relativization sth® lower bounds have been obtained by combining a “speedup”
the limits of proving lower bounds via naive diagonaliza- technique of Nepomnjascii [12] with an assumption such as
tion [2], [11], natural proofs show the limits of combinato- SAT € DTISP(n¢,n) in order to derive a contradiction.
rial arguments in circuit complexity [13], and algebrizati For some time, it was a folklore conjecture that these
shows the limits of low-degree polynomial techniques [1],alternation trading proofs could potentially establiskatth
[8]. Understanding the power of existing methods is aSAT & DTISP(n?~°(1) no)),
fundamental issue in complexity. By determining the limits ~ Williams [19], [20] gave a formal definition of these proof
of what is provable with known methods, we can discovermethods, which he called “alternation trading proofs”, and
how to improve upon their weaknesses. gave improved time-space lower bounds for SAT. In [20]
In this paper, we perform a fine-grained study of ahe designed computer programs that searched for good
proof method dubbed “alternation-trading”, which has beerglternation trading proofs. He conjectured that the proofs
applied to prove many lower bounds via indirect diagonal-found were optimal for alternation trading proofs. The
ization arguments. While our approach is not as general agonjecture was somewhat provocative, because the computer
other barrier results, the significant advantage is thatave ¢ searches were far from exhaustive, and the proofs found only
actually prove “tight” results on what lower bounds can beestablished SAT¢ DTISP(n?cos(/T)=e(l) po(l)) where
established. More precisely, our framework produces tesul 2 cos(7/7) ~ 1.8019. This matched the previous lower
of the form: there is an alternation trading proof that at bound [19] that was felt to be suboptimal.
leastn® resources are necessary to solve probl&@mand
no alternation trading proof can show that ¢ resources A. Main Results
are necessary to solve problem, for everye > 0. Given ) , . . , )
the scope of alternation trading proofs, we believe that the OUr first main result is a proof of Williams’ conjecture:

methods developed here will have further applications taVhene = 0, the lower bounds obtained by Williams [19],
[20] are in factoptimal within the framework of alterna-
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characterizing the possible alternation trading proofthwai  Nepomnjascii's method of decreasing runtime at the cost
device we call “achievable pairs”. of adding alternation(s) to the computation. The second

Our second main result is to establish new simultaneoukind of inference rules, called “slowdown” inferences, use
time and space lower bounds on deterministic algorithmshe assumption that NTIMiz) C DTS(n¢) (which follows
using alternation trading proofs, along with computeredid from SAT € DTS(n)) to remove alternations at the cost of
proofs that these lower bounds are optimal in the alternatioslower runtime. Using the nondeterministic time hierarchy
trading framework. Prior work on time-space tradeoffs in-theorem, an alternation trading proof yields a contradicti
cludes [14], [4], [6], [19], [20]. In particular, [6] showetiat by providing a proof that DT&?) C DTS(n®') for con-
if SAT € DTISP(n®,n®) thenc + ¢ > 1.573, and [19], [20]  stantsa > o’ > 0.
improved this toc + ¢ > 2cos(7/7), giving better bounds In this framework, binary strings, called “proof annota-
for specific numeric values af ande. tions”, represent patterns of speedup and slowdown infer-

The present paper substantially generalizes the prior reences in an alternation trading proof, with"“representing
sults by giving a new characterization of arbitrary altéiora  a speedup andd” a slowdown. For instance, the annotation
trading proofs in terms of “achievable triples” which acnbu 100 represents the sequensgeedup-slowdown-slowdown
for arbitrary space bounds of the fonm. We present a new that is, a proof with the rough form:
type of computer-based search for alternation tradingfgroo DTS/
via achievable triples, aided by theorems describing h@wv th
search space can be pruned. As a consequence, we discover
better time-space tradeoffs than those found (and comfttu
to be optimal) by [20]. Our computer-based proofs always
succeed in establishing either the existence or non-existe ) ) o
of alternation trading proofs for specified time and space>€ttinga > max{czy,c’(a — 21)} yields a contradiction.
bounds. Therefore, our new time-space bounds are in fadfPton and Viglas [10] proved that in this situation, the
the best attainable with presently-known proof methods. OPtimal setting of parameters yield$ < 2.

The lower bounds in this paper are all stated for a single -6t Xo := (10)" represent an arbitrary number of
problem, SAT. As remarked above, they also apply to manyPeedup-slowdown inferences. Then [gt, be the an-
other NP-complete problems. In addition, by [19], our lowern0tation 1.X;0.X,. Wiliams [19] proved these patterns of
bounds also apply to the problem MQESAT of counting inferences, asincreases, give contradictions foarbitrarily

the number of satisfying assignments modulg where close to2cos(w/7), and conjectured in [20] they are the
either m is not a prime power o is prime, with the best possible inference patterns that can derived with the

(3 ™) (¥ n°V)DTS[n "]
(3 n™)DTYpele==1)]
DTS[nmax{cml,cz(ale)}].
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possible exception of a single prime. formalized speedup ar}d slowdown rules. .
We prove these conjectures as Theorem 1. The inference
Il. DETAILED OVERVIEW rules RO-R2 are defined below in Section III.

We now present a more detailed overview of the re- Theorem 1:The inference rules RO-R2 can be used to
sults. Let DT$n¢) be the class DTISR.C, n?), i.e. the derive a contradiction to SAe DTS(n¢) only for ¢ <
set of languages accepted by a deterministic random-accegsos(7/7).
machine with runtimenc+°() using space:*(!). Refining The proof of Theorem 1 is based on a new analysis of
the proof methods of earlier work, Williams [19], [20] what is possible with alternation trading proofs. The caintr
proved that SAT ¢ DTS(n¢) for ¢ < 2cos(n/2). He innovation is the concept ofctachievable pairs” which
used bounded quantifier notation of the fornfg:#*)*” and  describe inferences that can agproximatedby alternation
“(3n)*" for constantsa,b > 0, to denote a computation trading proofs that SAT¢ DTS(n°). Informally, a single
that makes:**°(1) universal (resp., existential) choices, and c-achievable pair can capture infinite sequences of proof
then (deterministically) keeps®t°(!) bits of information.  annotations, defined inductively. (Such an infinite seqaenc
Thus, for instance(3n?)'DTS(n?) denotes the class of of proofs mayconvergeto a certain lower bound exponent,
languages accepted by an algorithm that gues$e¥") bits  but no single proof annotation ever achieves it — hence
existentially, deterministically selects+°(!) bits to keep in  we speak of alternation trading proofs “approximating”
memory (in timen!*°(), and then runs deterministically an inference by ac-achievable pair.) Understanding the
in time n3+t°(M usingn°) workspace in addition to the power of c-achievable pairs turns out to be sufficient for
n'*°() pits that were kept as input to the final stage. understanding the limits of alternation-trading proofse W
Williams [20] presented a general framework for es-give methods for generatingachievable pairs, and prove
tablishing lower bounds via alternation-trading, based orthat these pairs exactly characterize the refutationsdat
a formal proof system of inference rules that act onbe approximated by alternation trading proofs.
bounded quantifier notations for complexity classes. One The full version of the paper also considers lower bounds
kind of inference rules are “speedup” rules, which useon DTISRn¢, n¢) algorithms for satisfiability, where > 0



can vary. For these algorithms, we usg:,¢t)-achievable I1l. RULES OF INFERENCE FORDTS
triples” that exactly characterize the alternation tradin A Basic rules of inference for DTS bounds
derivations in the DTISP setting. Unlike the= 0 case, we
are unable to give a closed form formula for alternation-trad
ing proofs that satisfiability is not in DTISR, n¢). Instead,
we use new computer-based searches(éoe)-achievable
triples that prove the existence of alternation tradingitieef

tions. This potentially requires considering infinitely mya tion trading proof of DT$n%) C DTS(n?) for someb < a.

triples, so to prune the searih space, we q,evelo_p a .nOt'QPhe alternation trading proof is a sequence of containments
of when two triples together “dual-subsume” a third triple,

. « : I starting with the setDTS(n®) for some integet > 0. (The
as well as a related notion of “multisubsumption”. These eading superscriot “1” indicates the inout string has tan
structure theorems allow the computer-based searches§ g sup P P 9 9

0
search for quite long proofs. In fact, the computer-base

Fix, henceforth, a value > 1. The goal is to prove a
contradiction from the assumption SATDTS(n<), thereby
of course proving that SAZ DTS(n°). The contradiction is
proved by analternation trading proofusing the following
rules RO—R2. As shown in [20], it suffices to give an alterna-

+o(1).)

L . .~ The following are the original rules of inference used for
search has always succeeded in finding an alternation ¢radin g 9

. . : alternation trading proofs [20]. The ellipses-*" indicate
refutation, or in completely exhausting the search space, . arbitrary (possibly empty) quantifier prefix
proving that there can be no such refutation. '

. . ! RO: (Initial speedup)
Theorem 2:For all pairs(e, ¢) in the figure below, SAT IDTS(n%) C 1(3n®)maxte:1} (Vn0) ! DTS(no—*)

DTISP(n¢, n¢), and there imo alternation-trading proof of \\hereo < = < a.
SAT ¢ DTISP(ne+0-00001 pyc), R1: (Speedup)

€ ¢ Lo bk (Vnak)bk+1 DTS(nak+1) C
0.001| 1.80083 max{x,ar \max{x,by . Ap41—T
1.80194 0.01 | 179092 hb:)(vn <{ ) k}) { 7bk+1}(3n0)bk+1DTS(n RH1TT)
01 | 1.69618 WY ST ki
05 | 134070 - (¥n)eDTS(mor) C
c 0.75 115765 L bk DTS(nmax{cbk,cak,cbk+1,cak+1})'
0.9 | 1.06011 Each rule R1 and R2 is permitted also in dual form, with
0.99 | 1.00583 existential and universal quantifiers interchanged. RR@s
1 . 0.999| 1.00058 and R1 say that, for a small space-bounded computation
0 € 1 running in n® time, we may “speed it up” byuessinga
list Cy,...,C,= of configurations of the machine at”
Figure 1. Maximume to five digits of accuracy, as a function effor ~ POINts in time, thenfor all configurationsC; on the list,
which alternation trading proofs can show SATDTISP(n®, n¢). verifying that the machine simulated frod); reaches the
configurationC; 41, in n*~ steps. The rule R2 is a simple
The outline of this conference version is as follows: ~ consequence of a translation (a.k.a. “padding”) lemma: if

NTIME(n) C DTS(n¢), then for alla > 1, coNTIME(n®)
and NTIMEn?) are in DTSn*). More background can be
found in the excellent surveys by Van Melkebeek [15], [16].

« Section Il introduces the speedup and slowdown rules
and alternation trading proofs for SAT DTS(n°). We
give simplified notions of alternation trading proofs,
called “h-derivations” and “reduced” derivations, and Definition: A refutation D consists of a sequence of lines
simplifications of the speedup and slowdown rules.  of the form

« Section IV introduces approximate inferences, and the a a a a
notion of a ‘c-achievable pair”, which informally rep- H(@n) (vn2) P (Qn )P DTS )
resent infinite (inductively defined) sequences of alterwherea;,b; > 0 and “Q” is either “v" or “3" depending
nation proofs. We give intuition foe-achievable pairs on whetherk is even or odd. The line is said to have
and recall the2 cos(w/7) lower bound. k alternations The refutationD must satisfy:

o Section V puts limits on what kinds of pairs are (a) The first line is'DTS(n%).

achievable. Section VI establishes a certain normal(h) Each line follows from the proceeding line by one of
form for c-achievable pairs, and completes the proof the above rules.

of Theorem 1. (c) Only the first and last lines may (possibly) have zero

We review notation and results from earlier work as  quantifiers.
needed; however, we presume a certain level of familiarity(d) The last line has the forfDTS(n?), with b < a.
with prior work such as that of Williams [20]. Omitted A D which satisfies conditions (b) and (c) is called a
proofs can be found in the full version of the paper [3].  derivation



B. Simplified rules of inference It is straightforward to verify that this make® a valid

As a first step towards simplifying the syntax of refuta- refutatpn. The first — 1’|nf(.arences are correct sinég > 1
tions and derivations, we define the notion of “h-refutation PY choice ofm. The ith-inference, a slowdown, of the
An h-derivation or h-refutation is defined similarly to a IN€ (2) is also correct, sincé;, > 1. Finally, the first
derivation or refutation, but with the following changes. SUPErsCripts, are all> 1: this is true for the first line by
First, change the leading superscript “1” in all lines to choice ofm, and the values ob, can only increase when
be a “0". Second, replace rule RO with rule h-RO bythey are affected by a speedup R2. Thus the final inference

replacing all three superscripts “1” with “0”. In particaja N P has the form

the superscripthax{z, 1}” is replaced by just #".1 1(3n®)P2DTS(n%) C 'DT(pmex{cor bz cazty
h-RO: DTS(n*) < °(3n™)"(¥n)°DTS(n" ™). with b, > 1 and is a valid instance of R2. [ |
Our second simplification removes all the's, i =

Lemma 3:There is an h-refutation if and only if there is

a refutation. 1,...,k, from lines in derivations. This is based on two

- N ) _ observations: Firstg; < b;11, for all ¢ < k. This property
The difficult direction of Lemma 3 is the transformation of ,,\4s for rule h-RO and is preserved by R1 and R2. Second,

h-refutations into refutations. The intuition is that byaleg o alue ofay, is used only for the slowdown rule R2 in the
the exponents in an h-refutation by a large multipIicativeexpressionnax{cbk cag, cbiy1, caps1}. But, asay < bpqy
factor, one can make all exponents greater than 1, and thgp presence aiy is su;oerfluc)7u5. ' - ’

the h-refutationis eas“il){' cqnv?rt:ad to a refutation byalit This observation lets us simplify the proof system con-
replacing exponents “0” with “1". siderably. Our “reduced” system replaces each quantifier
Proof: (<) SupposeD is a refutation. We need to (Qn® )%+ by just@Q®+:. Valid lines in a reduced derivation
form an h-refutatiorD’. To form D/, first replace the initial have the form:
line, 'DTS(n®), of D with °DTS(n%), and change the initial Omtbr s —be bt b “
inference of D to be an h-RO inference instead of an RO 3y QR DTS, (3)
inference. To form the rest d@’, follow exactly the same for 0 < b, and 0 < a. Now (3) no longer represents a
inferences as irD. It is easy to check that this can be done complexity class per se — it is merely a syntactic object.
in such a way that each line i®" has exactly the same Nonetheless, the reduced system allows us to reason about
form as the corresponding line i except that some of refutations involving “real” complexity classes. We usg€’ *
the exponents i’ may be less than the correspondinginstead of =" to indicate derivability in the reduced system.
exponents irD. The rules of inference for the reduced system are:
(=) Let D’ be an h-refutation; we must construct a Rq': (Injtialization)
refutation D. Let D’(m) denote the result of multiplying opTg(pe) |- 939DTS(Ra).
all superscripts inD’ by the valuem > 0. Let the first .
. L L L R1: (Speedup)
R2 (slowdown) inference i’ be thei-th inference inD’. bibi DTS(ne) -
Thus, the first — 1 inferences iMD’ are speedup inferences, b /max{z,bas1} bk oz
e PRY Prt1r FPr+1 DTSR %),
h-RO or R1. Choosen large enough so that > 1/ for
. . . where0 < z < a.
all values ofz used in these first — 1 speedup inferences. _
In D’(m), the second throughth lines have the form R2': (Slowdown)
. bkvbk+1 DTS(na) [T by DTS(nnlaX{Cbk’Cbk+l’Ca}).

O(3nm)P2 - (Qn°)°DTS(n ). 1) As before, each rule Rand R2 is permitted in dual form,
Oyvith existential and universal quantifiers interchangelde T
rule R4 has been formulated to have only one quantifier
and not incorporate a speedup: this will be convenient later
when we discuss-achievable pairs.

A reduced refutatioris defined similarly to a refutation,
0(3nar)be ... br-1(Qnee-1)bk DT(pmax{cbrcartily = (2)  but usingF instead ofC, with rules R-RZ in place of

RO-R2, and must proDTS(n*)-DTS(n?) for b < a.

This is because rule h-R0O gives a formula of this form, an
the speedup rule R1 preserves this form. By choicenof
for all ¢ < k, the valuesz; andb; are> 1 in the lines (1).
The next line inD’(m), inferred by slowdown, has the form

Form the refutatiorD by modifying D’(m) as follows. ) . . .
First, in thei — 1 lines of the form (1), replace(6n?)"” Lemma 4:There is a reduced refutation (with RR2)

with “(Qn°)!”. Second, on every line, replace the Ieading"’-f there is a refutation (with RO'RZ)'
superscript 6” with “1”. Proof: Note that an application of RGollowed by a
use of R1 can simulate a reduced initial speedup (h-RO)

1The “h” stands for “homogeneous”, and the key property of an h inference:

derivation is that if all superscripts are multiplied by aefix positive
constant, it remains a valid h-derivation. DTS(n®) F °3*v°DTS(n*"*)



The lemma thus follows from Lemma 3 and the aboveA similar definition of concatenation is used for prefix&s
discussion. Bm with an odd number of quantifiers; in this case, since
The rest of the paper will work primarily with reduced duantifiers must alternate type, 3 begins with and then

derivations and refutations. To simplify terminology, we & must begin with &, and vice-versa.

henceforth use the terms “derivation” and “refutation” to Lemma 7:If Z I T, thenAZ I+ AT,

refer to reduced derivations and refutations. The context
should always make it clear whether we are referring toq
the reduced or the original system.

Proof: For e > 0, choosed > 0 so that there is a*-
erivationD of I' 4 ¢ from £+ 9. Without loss of generality,
0 < e. We claim that that, by prefixing each line 1 with
C. Approximate inferences A+§, we obtain a-derivationD’ of (A +0)(I" + ¢) from
(A4 0)(E+9). This is becaus® contains no lines with
zero quantifiers, and thus the superscrigtét the beginning
of each line has no effect on the validity Bt Sinced < e,

Definition: Let Z and =’ be classes represented in the
reduced inference system just defined:

2 = 03bybs .. bk Qb DTS(n?) (4)  adding a weakening at the end®f makes it a™-derivation
= = 03hybh .. Qb DTS(n ). of the line (A + ¢)(T" + ¢). [}
If = and Z' have the same number of alternations, then IV. ACHIEVABLE DERIVATIONS
= < Siff o < aandb; < b for alli. A. Achievability and subsumption

The classz + ¢ is defined by the conditioE’ = = + ¢

holds iff a’ = a + e andb), = b; + ¢ for all i > 2. Williams [20] uses proof annotations tfs and0’s to in-

dicate sequences of speedups and slowdowns (respectively)
Definition: Theweakeningule of inference allow& to be in a derivation. We think oft’s and 0’s as being paired

inferred from=" if = < E. We use the notatio “A to  yp like open and closed parentheses, and defibalanced
indicate that there is a derivation affrom = in the reduced  derivation to be a derivation containing only inferences of
inference system augmented with the weakening rule. Aypes R1 and R2 for which the corresponding pattern of
derivation that includes weakening inferences is called a's and 0's, viewed as parentheses, is properly balanced.
*-derivation We reserve the terminology “derivation” and pyt another way, a derivation is balanced provided the first
the symbol " for (reduced) derivations that do not use and last lines have the same number of alternations, and
weakenings. each intermediate line has at least that many alternations.

Lemma 5:Let =, =, A, A’ be classes in the reduced In a balanced derivation, each speedup 18 ‘is uniquely
refutation system. matched by a later slow_down (@"). _
(a) S A iff there is aA’ < A such thats - A”. We use the.star notanqh of regular expressions tq con-
(b) If = A and=’ < =, then there is a derivation &+ A’ struct annotauons_for der|vat|on§. For instance, a dedma

for someA’ < A of type (10)* consists of alternating speedup and slowdown

inferences. Theorems 11 and 16 will establish what can be
The lemma is readily proved by induction on the numberachieved with derivations of this type.

of lines in a derivation with weakening rules. We leave )

the details to the reader. By part (b) of the lemma weDefinition: Let (u,v) be a pair such that > 1 and0 < v.
may assume WLOG that derivations (without WeakeningThe pair (s, u>_ is _c-ach|evableprOV|ded that, for all values
inferences) never contain lin€s < =’ with = preceding @ b andd satisfyingcub = vd,

=’ in the derivation. agb d aub vd
We next define a notion of “approximate inference”, FOTS(nY) I “FDTS(n™). ®)

denotedl-. |ntuitive|y, = I A means that fronE one can The inference (5) is called @7 y) step A c-achievable pair

derive something as close toas desired. (u,v) is calledusefulprovidedr < 1.

Definition: We write = I- A to mean that for alk > 0, One subtle, but important, aspect of the definitioncof

there exists & > 0 so that(Z +4) I (A + ¢). achievable is that the value afmakes no difference at all.
Lemma 6:ThelF relation is transitive: i€ I A andA |- This is because the approximate implication (5) must be

T, then= I T. based on derivations that satisfy condition (c) of the defi-

nition of “derivation” as given at the end of Section IlI-A.
That is, the derivations cannot contain any lines with zero
quantifiers, and inspection of the rules’Rihd R2 shows
that the valuex cannot influence these derivations.

It is also important to note thatachievability is defined
03ezyes ... eoyerraigbaybs . beyberi DTS(na), in terms of -, namely, approximate inference. That is, if

Now let A be a “prefix” for a reduced line; that is,
A = 03eayes...eeyectn (Note there is no “DTS” part
to A.) For = of the form shown above in (4), we define the
concatenatiol\= to be the reduced line



(u, V) is c-achievable, it is only required that tHe, ) step  also non-optimal derivations that are only weakly subsumed

be approximately derivable. by ac-achievable pair. As an example, the trivial inference
The motivation is that we wish to make as small as °DTS(n%)F°DTS(nd) is only weakly subsumed by, 1),

possible inc-achievable pairs so as to mak& as small or indeed by any-achievable(y, v).

as possible. This will needed to find as good a refutation Recall thatl < ¢ < 2. The next lemma, although stated

as possible (that is, a refutation for as large a value @aé  quite differently, is essentially the same as the Condition

possible). In particular, the next lemma shows that# 1 /¢ Speedup Lemma 6.7 of Williams [19].

is c-achievable, then there is a refutation. Lemma 11:The pair (1,¢ — 1) is c-achievable, with

Lemma 8:Suppose there is a-achievable(y,v) with derivations of type(10)*.
v < 1/c. Then there exists a refutation.

Sincec < 2, the pair(1,c — 1) is useful.
Proof: We have the following (approximate) refutation:

Proof: Let = = 23*DTS(n4). If c¢b < d, then from=

'DTS(n') F  °3°DTS(n') (initialization) we can derive, by a speedup followed by a slowdown:
w  0qv/(cp) 1 ;
= OEI *DTS(n") (weakening) = F 93vDTS(n?) @)
- HU/CDTS(TLU) (by a <:u7 I/> Step) - aﬂbDTS(nmax{Cb’c(d_b)}),
F °DTS(n) (slowdown)

where the first step is a speedup with= b. That is, from

With v < 1/c, we haverv < 1. By definition of approximate = \ve can derive

derivation (-), we can hence derivEDTS(n*¢) from
9DTS(n!) for all smalle > 0. Choosing so thater +e < 1

gives a refutation. B with & = max{cb, c(d —b)}. The possible values fat are
The converse to Lemma 8 will be proved below asshown on the following graph.
Lemma 21; thus there is a refutation if and only if there

*3'DTS(n)

4 /
is an achievable paifu, v) with v < 1/c. d /
Unfortunately, makingr small involves a tradeoff: the J—d ’
(u,v) step (5) increases the value bfto ¥’ = pb while - \ ,’§
decreasing the value af to d = vd. Furthermore, as we S
shall see, obtaining achievable pairs with smaller valdes o cht+—-————- - d =cb
will be done at the cost of requiring larger values,of L :
S b P ~— —— d' =c¢(d-b)
Definition: An implication /- :
/ ’ / :
b QUIDTS(nA) - e QU1 DTS(n®) (6) J/
is subsumed by(u,v) provided the implication can be 0 b cb2b Zb d
inferred by a weakening, followed by (@, v/) step and then As shown in the graph, fa’ = max{cb, c(d—b)}, we have
a weakening. d" < d precisely whernch < d < —%5b. Forcb < d < 20,
i we haved’ = cb. And, for 2b < d < =%5b, we haved' =
The next two lemmas follow from the definitions. . c—1 .
T _ _ ¢(d —b). Thus, depending on the value @éfwe have either
Lemma 9:The implication (6) is subsumed by, v) iff d = chor(=sb—d) = c¢(=2b—d). Therefore, by
1 . . - .
b,y > max{ubys1, ~va} and repeatm_g the inference pattet® a finite number of times,
c we can infer
I
> .
a' > max{cubgi1,va} aabD-l-S(nd)FaabDTS(ncb)7 8)

Lemma 10:Supposex < p/ andv < v/ < 1. If (u,v)
is c-achievable, then so isy’,v’). If an implication is
subsumed by, v'), then it is also subsumed hy:, v/).

We also need a weaker notion of subsumption, which is *3DTS(n=1°) I *3*DTS(n).
defined as follows (compare to Lemma 9).

providedeb < d < “5b.

To complete the proof of Lemma 11, we must show that

o _ Let ¢ > 0, and pické > 0 so thaté < ¢/c and
Definition: The implication (6) isweakly subsumedy § < ¢(2 —¢)b/(c —1)2. By the latter inequality and since

(u,v) iff @’ > max{cpbgi1,va}. >,

The intuition is that optimal derivations in the proof sys- c ¢
tem are subsumed hyachievable pairs. However, there are c(b+9) < :b +9 < c_1 (b+9). 9)




Therefore, we have is scaled by the factot/(ci1) to obtainl/u. In the usual
at5—bLs < bts atbobis c(b+9) case where; > 1/c, the scale factor is< 1, SO > po.
F7DTS(n=7) :J a+63b+5 DTS(anﬂ ) Equation (15) shows that the valugv is obtained by
= FTDTS(n™™) contractingl/v, towards a fixed pointy /(1 (cvy — 1)),
where the first step follows by @L0)* derivation as in (8) with the scaling factor for the contraction again equal to

using (9), and the second step is a weakeningjas ¢. m 1/(crn). In most cases] /v, is smaller than this fixed point
- and we also have the scale factbf(cr;) < 1. In these

B. Composition of achievable pairs cases,l /v > 1/vs, SOV < vy. Getting smaller and smaller

We next describe how twa-achievable pairs can be values forv is desirable since, as Lemma 8 showed, our
combined (or, “composed”) to form another. goal is to obtainv < 1/c¢ so as to obtain a refutation.

Lemma 12:Let (u1,11) and (s, ) be c-achievable. The fixed point for the mapping, — v will be denoted
Also suppose:w; iz > 1. Set by 7(p1,v1); namely,

—1
o= iz (10) T(p, 1) = Cyl,/ Ha
1
Cl1V1V9
= —= 11
v Hn1 + vive (11) and "
-1
; ; T , UV =

Then (u,v) is c-achievable. (7(p1, 1)) (e — D

The idea of the proof is that @, ) step can be achieved . . . . . .
by a speedup (R} inference, aus, 1) step, a slowdown | Vt\ll'th this notation, we can rewrite equation (15) equiva-
(R2) inference, and du1,v1) step. That is, ifB and A are ently as
annotations for pro_o_fs that approximate{;al,yl) step and 1y 1 1
a (ug, 1) step sufficiently well (respectively), thenA0B (7, 21)) ™" = v)  oan (rlp, )™ = )
is an annotation for an approximatge, ) step. However, (16)

the final (u1,11) step should be skipped ifu1,24) is not  This makes it clear how is contracting towards (1, v1).
useful. The proof can be found in the full version.

The conditiorer, 1o > 11 restricts howe-achievable pairs  C. The refutations for < 2 cos(7/7)
can be composed. The next lemma shows that the case wheresppose that < ¢ < 2 cos(w/7). Recasting results from

this condition fails can be handled by simply lettipg= jlliams [19], we prove there exists a refutation. We begin
max {1, cvfiz}. by recalling a simple characterization ®tos(w/7):
Lemma 13:Let (u1, 1) and{us, 1) be c-achievable. Set Lemma 14:Let ¢ > 1. Then
po = max{crifiz, pa} 12) cle=1)—1 _1
. (le—1)= —~—— < -
o U112 c—1 c
= ——= (13)
p1 + vive

if and only if ¢ < 2 cos(m/7).

o Proof: The inequality holds iffc® — ¢ — 2c + 1 < 0.
Proof: If u1 < cv1p2, then Lemma 12 already implies For ¢ > 1, this is equivalent ta: < 2 cos(r /7). u
the result. Otherwise, let, = u1/(cv1), so thatuh > s

and p; = cripb. By Lemma 10,(ub, v2) is c-achievable.
Thus Lemma 12 applied to the paitg;, v1) and (uf, 1)
now gives the desired result. [ ] . _ .

To better understand what is happening when we compose 1 heorem 15 (Williams [19]):There is a refutation for
(u1,v1) and (us,vs) to form (u,v), reexpress the two 1 <¢< 2 cos(m /7).

Then (u, v) is c-achievable.

The following is immediate from Lemma 14 and the fact
that(1,c— 1) is a fixed point for the composition defined
earlier.

formulas of Lemma 12 as: The present work establishes that this is the only situation
1 1 /1 in which a refutation can exist, under the rules of alteorati
T w (E) (14)  trading proofs.
1 _ 1 1 ( ul 3 i) (15) V. THE LIMITS OF ACHIEVABLE CONSTRUCTIONS
v palevr =1) e \m(evi =1)  vo In this section we argue that, far< ¢ < 2, no refutation

Equations (14) and (15) give an interesting perspective ogan do better than what is possible usingchievable pairs,

© andv. We may view the paifu,,v4) as a transformation and furthermore that the bestchievable pairs ar@, c—1)

that acts on theeciprocal valuesl/us and1/v; to give the  and the ones that can be obtained by the constructions of
valuesl /u and1/v. Equation (14) shows that the valligus Lemmas 12 and 13.



A. Limits on derivations of typél0)* slowdown.) Therefore, the final step in the derivation is a

We start by giving lower bounds on what can be achievedowdown of the form
with derivations that follow th€10)* pattern. ._.azlb'veDTs(nf) - '.'azlb'DTs(nmax{cb/,ce,cf}).

Lemma 16:Any non-empty(10)* pattern of inferences
in a derivation is subsumed hit, ¢ — 1).

Proof: Recall the derivation (7) of typa0 that was
used in the proof of Lemma 11. We claim that this is the
optimal kind of 10 inference step. The derivation (7) used
a speedup withe = b; however, to prove Lemma 16, we
must consider a generab inference witha not necessarily (p1,v1) : (g, o) ¥ {(p, V).
equal tob:

Letting b”” = max{b, e, f}, this proves the lemma. ]

In keeping with the intuition thatu;,r;) is a trans-
formation acting on{us,v2), we sometimes express the
conditions (10) and (11), or the equivalent (14) and (15),
with a mapping notation:

This notation is used only whem < cvyus. Otherwise, we
aPDTS(nd) + agmaxizblybpTg(nd—7) will occasionally express that (12) and (13) hold by writing
- azlmax{w,b} DTS(nmax{cw,cb,c(d—m)})'

max

(1) = (p2, v2) =™ (u,v).

We need to rule out the use of# b. First, Suppose < b.  note that the £5™*” notation makes no restriction on
In this case, we can achieve the same inference by Usmg\ﬁhetherul is larger thanev .

weakening to increase the valuedand change the speedup e next lemma is our main technical tool putting limita-

to usez = b. Namely, tions on how derivations are formed fraachievable pairs.
a3PDTS(n?) [ *PDTS(nd+t—7) Informa]ly, it states that any bglanced derivation with/@
- aghyhDTS(n(Hh )by annotation of the fornLAOB \{v_|th A and B bala_nced can
be subsumed by the composition of the subderivaticamd
“3V'DTS(n?*) the subderivatiorB, where “composition” is in the sense of
Lo a3DTg(pmax{cbeld=a)}y, composition of pairgu;, ;) as used in Lemmas 12 and 13.

Lemma 18:Let a balanced derivatiof® have the anno-
tation 1A0B, where A and B are balancedl/O-patterns.
Suppose that the subderivation corresponding te weakly

Second, suppose > b. In this case, we first use weakening
to increase by x — b:

a3*pTS(n?) *~ 23*DTS(n?) subsumed by, ). Further suppose that the subderiva-
- a3eyeDTS(Rd ) tion corresponding taB is non-empty and subsumed (re-
- agepTS(pmelencd-o)) spectively, weakly subsumed) biy:q1,241). Then the entire
n ’ .

derivationD is subsumed (respectively, weakly subsumed)

Thus any(10)* pattern of inferences can be replaced by aby & pair(u, v) such that either
sequence of operations of the following types: (a) increlase (ur, 1) : (o, vo)
(b) increaseb, and (c) replacel with max{cb,c(d — b)}.

There is, WLOG, at least one operation of type (c). It isor

not hard to show that any such sequence of operations is (1,1) : (p2,va) — {u,v). (18)
subsumed by1, ¢ — 1). (See the full version for details.|

" w,v), (17)

On the other hand, iB is empty, then the derivatio® is
B. Limits on derivations of typg AOB weakly subsumed by thg:, v) given by (18).

The next lemma shows that any balanced derivation that 1he lemma is stated for derivatiori3 that contain only
starts with a line of the form--*3*DTS(n?) with d > ¢b ~ SPeedup and slowdown inferences, and no weakenings.

does no real work, and can be replaced by a weakening. Thigowever, by the proof of Lemma 5 and the definition

WLOG, any premiss of a speedup inference Has cb. of subsumption, it also holds for derivations that contain

weakenings. In this case, the weakenings in the derivation d

Lemma 17:Suppose a balanced derivation starts with the : ; .
line - --43°DTS(n®). Then the last line of the derivation has not contribute to the pattern 6fs and1’s for the derivation.

the form- - - 23 DTS(n") for someb” > b/ > b. Proof: The derivation starts Wit = - - - *3*DTS(n?),
Thus, ifd < ¢b, then any non-empty balanced derivation,é“'_‘d er_1ds with a lineA = a37'DTS(n") (or, dually,
with first line - - - ©3*DTS(n), is subsumed by, 1). with V in place ofd). The prefix - -” never changes during

Proof: Th h he derivati h iot af the balanced derivation, so we henceforth suppress it in the
root: Throughout the derivation, the super_scnpt after station. The first inference of theAOB derivation is a
the 3 stays equal td or becomes larger. (This is becauses d

e

speedup steps can not decrease the superscript, and beca
the derivation is balanced and cannot remove heith a @3°DTS(nd) - agmaxizbhy?DTS(pd—7),



We claim that WLOG we have: > b. This is proved just
as in the proof of Lemma 16. Namely, if < b, just add a
weakening inference to the beginning to derive

“PDTS(n?) 1 *FDTS(n"~*) F *IV'DTS(n* ).
This means there is 4 AOB derivation D’ of A from
a3°DTS(nd*+*=*), Thus, it suffices to prove the lemma
assuming that the first speedup inference uses b; this
will prove that{u, v) subsume®’ and hence subsuméz
The 1A0 portion of the derivationD consists of a
speedup, then a subderivation with the annotatibrthat

is weakly subsumed by, 1), and then a slowdown:

aPDTS(n?) F *3VDTS(n?*)  (by speedup)

: (weakly subsumed byjus, 1))
F o 23*vYDTS(n?)

F 23*DTS(n") (by slowdown) (19)

where u max{cx,cy,cz} and where, by the weak
subsumption by(pe, v2),

z > max{cpuab, vo(d —

SupposeB is empty in the derivation, s&3*DTS(n") is the
last line of thel AOB derivation. Byu > ¢z andu > cx, we

haveu > ¢(cu2)b andu > max{cz, cva(d — z)}. The value
max{cx, cve(d — )} is minimized withz = vod/(1 + v2)

and therefore. > cvod/(1 + v»). Thus, if B is empty, the
derivationD is weakly subsumed by the pafp,v) with

p = cpz andv = %2 This is the same as defining

andv by (1,1) : {u, V).

(2, v2) =

Now assumeB is non-empty. We claim that we may
assume WLOGcusb < va(d — ). If this does not hold,
we argue similarly to how we showed that> b WLOG,
and prove that we can increase the valuelab = + 2.
Namely, letd’ = z+<22b > d, and replace th& A0 portion
of D with the following inferences:

with the derivatiorD having the annotatioh A0 B, possibly
with A representing duz, 2) step and a weakening.

In the line (19) at the end of thda A0 part of the
derivation, we must have > cz > cva(d — x). Picking
up from line (19), the B” part of the derivation derives

“3*DTS(n*) F *3*' DTS(n™).

Since this part is weakly subsumed by, 1), we have

v’ > max{cuix, crrve(d — x)}. (21)
If B is also (non-weakly) subsumed Ky, 1), then
' > max{px, v1ve(d — x)}. (22)

We claim that we can assume without loss of generality
that either (i)x = b and p1z > v1va(d — ) or (i) x > b
and 1z < rve(d — x). To prove this, supposgix >
nva(d—z) andz > b. (Recall that we already hawe> b.)
Then, we can modify thd AOB derivation by decreasing
the value ofx to get a stronger derivation. The value of
can be decreased until either= b or y1z = 1112(d — @)
so that either (i) or (ii) holds.

If case (i) applies, we have = b and ;b > v1va(d—0).
This gives

(/Ll + VlVQ)b Z I/1V2d. (23)
Multiplying (20) by v, v5 gives
nived > (11ve + cuair)b. (24)

The last two equations imply; > cvypus. The bound (21)
with = > b implies thatu’ > cu1b. This, plus (23), implies
u > %d Thus the entire derivatio is weakly

subsumed by(y, v) with

= 1 = max{u,cvips}
Cl1V1V2
p1 + vive
If B is (non-weakly) subsumed byps,v2), then similar
reasoning using (22) in place of (21) gives a lower bound

1

“PDTS(n?) £*3IDTS(n?)  (weakening) onz’ and proves that the derivatidd is also (non-weakly)
aza\ b d—z subsumed by(p, v).
- aﬂmvbDTS(’l’Lc# b/)y (speedup) If case (i) does not apply, then (D12 < viva(d — )
= 3V°DTS(nH2"/v2) andz > b. In particular,(u1 4+ v1ve)z < vivad, SO
- *37vH2PDTS(n#2)  (by a(us,v2) step) V1V
x < d and
= ‘F'WDTS(n?) (wherey = p2b and z = cusb) [+ vivs
F 23*DTS(n") (slowdown) dez> M1 _ (25)
In this case, we still have > {cpob, vo(d — x)}. s
maxy cab, v T e
Modifying D in this way leaves the first and last lines of From (20), we geti — o > T b whence
the derivation intact, so if we prove this modified derivatio v1va(d — ) > cvy puob. (26)

is subsumed by a paiju, v) it certainly follows thatD is
also subsumed by the same pair.
It thus follows that we can assume WLOG that

b<az<d— 2

(20)
V)

By (ii), we getviva(d—2) > upb. This fact and inequalities
(21), (25) and (26) imply that
cluiV Vo d}.

u > max {culb, 02V1u2 b, —————
( ) p1 + e



Therefore, the entire derivatidn is weakly subsumed by the supposeA is non-empty. The induction hypothesis is that

1t+rive

pair (i, v), wherep = max{ 1, cvi o} andv = :‘“& If
B was (non-weakly) subsumed By, 1), then, by similar

the subderivations db corresponding tod and B are both
weakly subsumed bywABCD-pairs. It follows immediately

reasoning using (22)p is also (non-weakly) subsumed by from Lemma 18 thaD is also weakly subsumed by some

{(u,v). This completes the proof of Lemma 18. [ ]

C. Characterization of achievable pairs

ABCD-pair. This concludes the proof of Theorem 19.

D. Characterizing refutations

In this section we prove that every balanced derivation is We can now characterize for which values of> 1
subsumed by some-achievable pair, and we give a small refutations exist, in terms of what pairs ar@chievable.

list of operations that suffice to form attachievable pairs.

Lemma 21:Fix ¢ > 1. There is a refutation if and only if

The earlier constructions used the following five methodshere is some ABCD-paify, v) with v < 1/c. Furthermore,

for constructinge-achievable pairs:

(A) (1,¢—1) is c-achievable.

(B) Suppos€ui, ) and{us, o) arec-achievable and
w1 < cvipe. Then(u,v) is c-achievable, where

(B, v1) © (p2, v2) = ().

(C) Supposépu;, i) and{us, o) arec-achievable and

w1 > cvipe. Then(u,v) is c-achievable, where
(1,v1) t (po, v) =™ (u,v).
(D)  If (u2,v9) is c-achievable, then so ig:, v), where
<1a 1> : <:u271/2> = <Ma V>'
(E) If {u,v) is c-achievable and’ > p and1 > v/ >

v, then (', ') is c-achievable.

there is a refutation if and only if there iscaachievable pair
with v < 1/c.

Proof: By Theorem 19, any refutation has the form

'DTS(n') F °3°DTS(n')  Initialization

: (weakly subsumed by, v))
F 939DTS(n?)

- ODTS(pmex{cacdly  Slowdown

with max{ca,cd} < 1, for an ABCD-pair (i, v). The
definition of weak subsumption implies> v, thusy < 1/c.
Conversely, every ABCD-pair ig-achievable. And by
Lemma 8, if there isc-achievable pair withy < 1/¢, then
there is a refutation. ]

VI. LIMITS ON ACHIEVABLE PAIRS

(Constructions (B) and (C) are defined separately since we . , ,
will later show that the constructions (C) are not needed.) 1he Previous section reduced the question of whether

A pair (u,v) is called an ABCDpair if it can be shown to
be c-achievable by the operations (A)-(D).

Theorem 19:Any balanced non-empty derivatidn start-

ing with a line with at least one alternation, is weakly

subsumed by some ABCD-pair.

there exists a refutation to the question of whether theee is
c-achievable paifu, v) with v < 1/c. It was further shown
that only ABCD-pairs need be considered. We shall show,
in fact, that only ABE-pairs need to be considered; namely,
that anyc-achievable pair is subsumed by some ABE-pair.

One more simple lemma is needed to prove Theorem 1d_Definition: The ABE-pairs (respectively, ABpairs) are the

Lemma 20:Let D; andD, be balanced derivations with

the first line of Dy the same as the last line @?;. If
D, is subsumed by the-achievable pairy,v), then the
concatenatiorD; D, is also subsumed by, v).

Proof: Let D; begin with the line --*3*DTS(n?), and
end with the line---*3"DTS(n?). By the subsumption
assumption, letting’ = max{ub, Lvd}, we havel > f and
d > cf. Now, by Lemma 17, the last line @, is of the
form ¢3""DTS(n?"), with b’ > v’ > f andd” > cb/ > cf.
That is, D1 Ds is also subsumed by, v). [ ]

The proof of Theorem 19 is by induction on the com-

plexity of the derivationD. SinceD is balanced, its first

inference is a speedup, and there is later a matching slow-

down. That is,D has the annotatiohA0B whereA and B
are balanced patterns ofs and 1's. If A is empty, then
the first two lines ofD are inferred by al0 pattern and
hence by Lemma 16 is subsumed fyc — 1). Therefore,
by Lemma 20, all ofD is also subsumed b§i,c— 1). Now

pairs that can be obtained by operations (A), (B) and (E)
(respectively, by (A) and (B)).
A pair (i, v) issubsumetby (p/, ') if p/ < pandy <w.
Lemma 22:Every ABCD-pair is an ABE-pair.

Proof: The proof of Lemma 13 shows that any use of
rule (C) can be replaced by rule (E) followed by rule (B).
Since(1,c— 1) subsumeg1, 1), rule (D) is unnecessarm

Corollary 23: Fix ¢ > 1. There is a refutation if and only
if there is some ABE-paifyu,v) with v < 1/c.

Recall from Section IV-B the definition of:

cv—1 1
m(p,v) = po=le——)n

14

As we showed, the action @fi1,v1) on (ug, v2) produces
(u, v) with v obtained by “reciprocally contracting’, to-
wardst(u1, v1). The next lemma shows that eithep; , 1)

is sufficient for obtaining a refutation or it only causes
7 values to increase.



Lemma 24:Supposer(p1,v1)
(ua, v2) = {u,v). Thent(u,v) > 71

Proof: Note thatl = —L_ +

criva

) = (e=1)n =

Y

1/¢ and {(u1,11)
12, V2).

. We have

~~

|)—‘

o
=

1

(¢~ )
C — — —— | CV1 42
CV1V3 Cl1

Il

\‘
~
=
‘:’
S
TS

7N

> 7(p2,v2),

where the last inequality follows from(p,v1) > 1/c. B

[4]

(5]

(6]

[7]

(8]

9]

Theorem 25:Fix ¢ > 1. There is a refutation if and only [10]

if ¢ <2cos(n/T7).
Proof: Theorem 15 shows that i€ < 2cos(w/7),

then there is a refutation. For the converse, suppose

2 cos(m /7). We claim that any ABE-paifyu, v) has

T(u,v) >7(l,c—=1)>1/c and v>7(l,c—1)>1/c.
(27)

The claim is proved by induction on the number of steps
used to derive the ABE-pair. The base case for the induction
is {(u,v) = (1,c—1). Then, sincec > 2cos(w/7), we have
v=c—1>1/e. Also, 7(1,c—1) > 1/c by Lemma 14.
The induction step splits into two cases depending on

(11]

(12]

(13]

whether (u,v) is derived by an (E)-operation or a (B)- [14]

operation. If it is derived by an (E)-operation (subsummp}jo
then the inequalities of (27) follow immediately from the
induction hypothesis and monotonicity. {f, ») is derived
by a (B)-operation, the first inequality of (27) follows from

Lemma 24. For the second inequality, observe that b){m]

equation (16), ifevy > 1 and (u1,v1) = (p2,v2) — (1, v),

thenv is betweerv, andr(u1,v1). This proves the claim.
It follows by Corollary 23 that ifc > 2 cos(w/2), there is
|

no proof of a refutation.

Theorem 1 is an immediate corollary of Lemma 4 and
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