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Abstract—This paper characterizes alternation trading based
proofs that the satisfiability problem is not in the time and
space bounded classDTISP(nc, nǫ), for various values c < 2
and ǫ < 1. We characterize exactly what can be proved for
ǫ ∈ o(1) with currently known methods, and prove the conjec-
ture of Williams that the best known lower bound exponent
c = 2 cos(π/7) is optimal for alternation trading proofs. For
general time-space tradeoff lower bounds on satisfiability, we
give a theoretical and computational analysis of the alternation
trading proofs for 0 < ǫ < 1, again proving time lower bounds
for various values of ǫ which are optimal for the alternation
trading proof paradigm.

I. I NTRODUCTION

How powerful are the methods we have for proving
computational lower bounds? What prevents us from proving
major complexity class separations? Over the years, there
have been several formalizations of these questions that led
to new insights into complexity itself. Relativization shows
the limits of proving lower bounds via naive diagonaliza-
tion [2], [11], natural proofs show the limits of combinato-
rial arguments in circuit complexity [13], and algebrization
shows the limits of low-degree polynomial techniques [1],
[8]. Understanding the power of existing methods is a
fundamental issue in complexity. By determining the limits
of what is provable with known methods, we can discover
how to improve upon their weaknesses.

In this paper, we perform a fine-grained study of a
proof method dubbed “alternation-trading”, which has been
applied to prove many lower bounds via indirect diagonal-
ization arguments. While our approach is not as general as
other barrier results, the significant advantage is that we can
actually prove “tight” results on what lower bounds can be
established. More precisely, our framework produces results
of the form: there is an alternation trading proof that at
least nc resources are necessary to solve problemX , and
no alternation trading proof can show thatnc+ǫ resources
are necessary to solve problemX , for everyǫ > 0. Given
the scope of alternation trading proofs, we believe that the
methods developed here will have further applications to
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establishing barriers and mining insights into complexity
lower bounds.

We focus in this paper on lower bounds for simulating
nondeterminism with time- and space-bounded deterministic
algorithms, concentrating on the satisfiability problem SAT.
However, the known alternation-trading methods for proving
these lower bounds also imply analogous time-space lower
bounds for many other NP-complete problems (see [17]).

Let DTISP(nc, nǫ) denote the class of languages recog-
nizable by deterministic algorithms that run in timenc+o(1)

with space bounded bynǫ+o(1), where1 ≤ c and0 ≤ ǫ ≤ c.
A series of results, see [9], [5], [10], [7], [6], [14], [4],
[18], [19], [20], have established better and better non-trivial
constant lower bounds on the valuesc and ǫ for which
SAT ∈ DTISP(nc, nǫ), and similar results for other hard
problems. Surveys of these and other results are given by
Van Melkebeek [15], [16] but, loosely speaking, all of these
lower bounds have been obtained by combining a “speedup”
technique of Nepomnjascii [12] with an assumption such as
SAT ∈ DTISP(nc, nǫ) in order to derive a contradiction.
For some time, it was a folklore conjecture that these
alternation trading proofs could potentially establish that
SAT 6∈ DTISP(n2−o(1), no(1)).

Williams [19], [20] gave a formal definition of these proof
methods, which he called “alternation trading proofs”, and
gave improved time-space lower bounds for SAT. In [20]
he designed computer programs that searched for good
alternation trading proofs. He conjectured that the proofs
found were optimal for alternation trading proofs. The
conjecture was somewhat provocative, because the computer
searches were far from exhaustive, and the proofs found only
established SAT 6∈ DTISP(n2 cos(π/7)−o(1), no(1)) where
2 cos(π/7) ≈ 1.8019. This matched the previous lower
bound [19] that was felt to be suboptimal.

A. Main Results

Our first main result is a proof of Williams’ conjecture:
when ǫ = 0, the lower bounds obtained by Williams [19],
[20] are in factoptimal within the framework of alterna-
tion trading proofs. In the course of the proof, we give
some surprising simplifications of alternation trading proofs,



characterizing the possible alternation trading proofs with a
device we call “achievable pairs”.

Our second main result is to establish new simultaneous
time and space lower bounds on deterministic algorithms
using alternation trading proofs, along with computer-aided
proofs that these lower bounds are optimal in the alternation
trading framework. Prior work on time-space tradeoffs in-
cludes [14], [4], [6], [19], [20]. In particular, [6] showedthat
if SAT ∈ DTISP(nc, nǫ) thenc+ ǫ ≥ 1.573, and [19], [20]
improved this toc + ǫ ≥ 2 cos(π/7), giving better bounds
for specific numeric values ofc andǫ.

The present paper substantially generalizes the prior re-
sults by giving a new characterization of arbitrary alternation
trading proofs in terms of “achievable triples” which account
for arbitrary space bounds of the formnǫ. We present a new
type of computer-based search for alternation trading proofs
via achievable triples, aided by theorems describing how the
search space can be pruned. As a consequence, we discover
better time-space tradeoffs than those found (and conjectured
to be optimal) by [20]. Our computer-based proofs always
succeed in establishing either the existence or non-existence
of alternation trading proofs for specified time and space
bounds. Therefore, our new time-space bounds are in fact
the best attainable with presently-known proof methods.

The lower bounds in this paper are all stated for a single
problem, SAT. As remarked above, they also apply to many
other NP-complete problems. In addition, by [19], our lower
bounds also apply to the problem MODm-SAT of counting
the number of satisfying assignments modulom, where
either m is not a prime power orm is prime, with the
possible exception of a single prime.

II. D ETAILED OVERVIEW

We now present a more detailed overview of the re-
sults. Let DTS(nc) be the class DTISP(nc, n0), i.e. the
set of languages accepted by a deterministic random-access
machine with runtimenc+o(1) using spaceno(1). Refining
the proof methods of earlier work, Williams [19], [20]
proved that SAT 6∈ DTS(nc) for c < 2 cos(π/2). He
used bounded quantifier notation of the forms “(∀na)b” and
“(∃na)b” for constantsa, b ≥ 0, to denote a computation
that makesna+o(1) universal (resp., existential) choices, and
then (deterministically) keepsnb+o(1) bits of information.
Thus, for instance,(∃n2)1DTS(n3) denotes the class of
languages accepted by an algorithm that guessesn2+o(1) bits
existentially, deterministically selectsn1+o(1) bits to keep in
memory (in timen1+o(1)), and then runs deterministically
in time n3+o(1), usingno(1) workspace in addition to the
n1+o(1) bits that were kept as input to the final stage.

Williams [20] presented a general framework for es-
tablishing lower bounds via alternation-trading, based on
a formal proof system of inference rules that act on
bounded quantifier notations for complexity classes. One
kind of inference rules are “speedup” rules, which use

Nepomnjascii’s method of decreasing runtime at the cost
of adding alternation(s) to the computation. The second
kind of inference rules, called “slowdown” inferences, use
the assumption that NTIME(n) ⊆ DTS(nc) (which follows
from SAT∈ DTS(nc)) to remove alternations at the cost of
slower runtime. Using the nondeterministic time hierarchy
theorem, an alternation trading proof yields a contradiction
by providing a proof that DTS(na) ⊆ DTS(na′

) for con-
stantsa > a′ > 0.

In this framework, binary strings, called “proof annota-
tions”, represent patterns of speedup and slowdown infer-
ences in an alternation trading proof, with “1” representing
a speedup and “0” a slowdown. For instance, the annotation
100 represents the sequencespeedup-slowdown-slowdown;
that is, a proof with the rough form:

DTS[na]

⊆ (∃ nx1)(∀ no(1))DTS[na−x1 ]

⊆ (∃ nx1)DTS[nc(a−x1)]

⊆ DTS[nmax{cx1,c
2(a−x1)}].

Settinga > max{cx1, c
2(a − x1)} yields a contradiction.

Lipton and Viglas [10] proved that in this situation, the
optimal setting of parameters yieldsc2 < 2.

Let X0 := (10)∗ represent an arbitrary number of
speedup-slowdown inferences. Then letXi+1 be the an-
notation1Xi0X0. Williams [19] proved these patterns of
inferences, asi increases, give contradictions forc arbitrarily
close to2 cos(π/7), and conjectured in [20] they are the
best possible inference patterns that can derived with the
formalized speedup and slowdown rules.

We prove these conjectures as Theorem 1. The inference
rules R0-R2 are defined below in Section III.

Theorem 1:The inference rules R0–R2 can be used to
derive a contradiction to SAT∈ DTS(nc) only for c <
2 cos(π/7).

The proof of Theorem 1 is based on a new analysis of
what is possible with alternation trading proofs. The central
innovation is the concept of “c-achievable pairs” which
describe inferences that can beapproximatedby alternation
trading proofs that SAT6∈ DTS(nc). Informally, a single
c-achievable pair can capture infinite sequences of proof
annotations, defined inductively. (Such an infinite sequence
of proofs mayconvergeto a certain lower bound exponent,
but no single proof annotation ever achieves it – hence
we speak of alternation trading proofs “approximating”
an inference by ac-achievable pair.) Understanding the
power of c-achievable pairs turns out to be sufficient for
understanding the limits of alternation-trading proofs. We
give methods for generatingc-achievable pairs, and prove
that these pairs exactly characterize the refutations thatcan
be approximated by alternation trading proofs.

The full version of the paper also considers lower bounds
on DTISP(nc, nǫ) algorithms for satisfiability, whereǫ > 0



can vary. For these algorithms, we use “(c, ǫ)-achievable
triples” that exactly characterize the alternation trading
derivations in the DTISP setting. Unlike theǫ = 0 case, we
are unable to give a closed form formula for alternation trad-
ing proofs that satisfiability is not in DTISP(nc, nǫ). Instead,
we use new computer-based searches for(c, ǫ)-achievable
triples that prove the existence of alternation trading refuta-
tions. This potentially requires considering infinitely many
triples, so to prune the search space, we develop a notion
of when two triples together “dual-subsume” a third triple,
as well as a related notion of “multisubsumption”. These
structure theorems allow the computer-based searches to
search for quite long proofs. In fact, the computer-based
search has always succeeded in finding an alternation trading
refutation, or in completely exhausting the search space,
proving that there can be no such refutation.

Theorem 2:For all pairs(ǫ, c) in the figure below, SAT/∈
DTISP(nc, nǫ), and there isno alternation-trading proof of
SAT /∈ DTISP(nc+0.00001, nǫ).

ǫ c
0.001 1.80083
0.01 1.79092
0.1 1.69618
0.25 1.55242
0.5 1.34070
0.75 1.15765
0.9 1.06011
0.99 1.00583
0.999 1.00058

ǫ

c

1
0

1.8019

1

Figure 1. Maximumc to five digits of accuracy, as a function ofǫ, for
which alternation trading proofs can show SAT/∈ DTISP(nc, nǫ).

The outline of this conference version is as follows:

• Section III introduces the speedup and slowdown rules,
and alternation trading proofs for SAT6∈ DTS(nc). We
give simplified notions of alternation trading proofs,
called “h-derivations” and “reduced” derivations, and
simplifications of the speedup and slowdown rules.

• Section IV introduces approximate inferences, and the
notion of a “c-achievable pair”, which informally rep-
resent infinite (inductively defined) sequences of alter-
nation proofs. We give intuition forc-achievable pairs
and recall the2 cos(π/7) lower bound.

• Section V puts limits on what kinds of pairs arec-
achievable. Section VI establishes a certain normal
form for c-achievable pairs, and completes the proof
of Theorem 1.

We review notation and results from earlier work as
needed; however, we presume a certain level of familiarity
with prior work such as that of Williams [20]. Omitted
proofs can be found in the full version of the paper [3].

III. RULES OF INFERENCE FORDTS

A. Basic rules of inference for DTS bounds

Fix, henceforth, a valuec > 1. The goal is to prove a
contradiction from the assumption SAT∈ DTS(nc), thereby
of course proving that SAT6∈ DTS(nc). The contradiction is
proved by analternation trading proofusing the following
rules R0–R2. As shown in [20], it suffices to give an alterna-
tion trading proof of DTS(na) ⊆ DTS(nb) for someb < a.
The alternation trading proof is a sequence of containments,
starting with the set1DTS(na) for some integera > 0. (The
leading superscript “1” indicates the input string has length
1 + o(1).)

The following are the original rules of inference used for
alternation trading proofs [20]. The ellipses “· · ·” indicate
an arbitrary (possibly empty) quantifier prefix.

R0: (Initial speedup)
1DTS(na) ⊆ 1(∃nx)max{x,1}(∀n0)1DTS(na−x),
where0 < x ≤ a.

R1: (Speedup)
· · · bk(∀nak)bk+1DTS(nak+1) ⊆
· · · bk(∀nmax{x,ak})max{x,bk+1}(∃n0)bk+1DTS(nak+1−x),

where0 < x ≤ ak+1.

R2: (Slowdown)
· · · bk(∀nak)bk+1DTS(nak+1) ⊆

· · · bkDTS(nmax{cbk,cak,cbk+1,cak+1}).

Each rule R1 and R2 is permitted also in dual form, with
existential and universal quantifiers interchanged. RulesR0
and R1 say that, for a small space-bounded computation
running in na time, we may “speed it up” byguessinga
list C1, . . . , Cnx of configurations of the machine atnx

points in time, thenfor all configurationsCi on the list,
verifying that the machine simulated fromCi reaches the
configurationCi+1, in na−x steps. The rule R2 is a simple
consequence of a translation (a.k.a. “padding”) lemma: if
NTIME(n) ⊆ DTS(nc), then for alla ≥ 1, coNTIME(na)
and NTIME(na) are in DTS(nca). More background can be
found in the excellent surveys by Van Melkebeek [15], [16].

Definition: A refutationD consists of a sequence of lines
of the form

1(∃na1)b2(∀na2)b3 · · · bk(Qnak)bk+1DTS(nak+1)

whereai, bi ≥ 0 and “Q” is either “∀” or “ ∃” depending
on whetherk is even or odd. The line is said to have
k alternations. The refutationD must satisfy:
(a) The first line is1DTS(na).
(b) Each line follows from the proceeding line by one of

the above rules.
(c) Only the first and last lines may (possibly) have zero

quantifiers.
(d) The last line has the form1DTS(nb), with b < a.
A D which satisfies conditions (b) and (c) is called a
derivation.



B. Simplified rules of inference

As a first step towards simplifying the syntax of refuta-
tions and derivations, we define the notion of “h-refutation”.
An h-derivation or h-refutation is defined similarly to a
derivation or refutation, but with the following changes.
First, change the leading superscript “1” in all lines to
be a “0”. Second, replace rule R0 with rule h-R0 by
replacing all three superscripts “1” with “0”. In particular,
the superscript“max{x, 1}” is replaced by just “x”.1

h-R0 : 0DTS(na) ⊆ 0(∃nx)x(∀n0)0DTS(na−x).

Lemma 3:There is an h-refutation if and only if there is
a refutation.

The difficult direction of Lemma 3 is the transformation of
h-refutations into refutations. The intuition is that by scaling
the exponents in an h-refutation by a large multiplicative
factor, one can make all exponents greater than 1, and then
the h-refutation is easily converted to a refutation by suitably
replacing exponents “0” with “1”.

Proof: (⇐=) SupposeD is a refutation. We need to
form an h-refutationD′. To formD′, first replace the initial
line, 1DTS(na), of D with 0DTS(na), and change the initial
inference ofD to be an h-R0 inference instead of an R0
inference. To form the rest ofD′, follow exactly the same
inferences as inD. It is easy to check that this can be done
in such a way that each line inD′ has exactly the same
form as the corresponding line inD except that some of
the exponents inD′ may be less than the corresponding
exponents inD.

(=⇒) Let D′ be an h-refutation; we must construct a
refutationD. Let D′(m) denote the result of multiplying
all superscripts inD′ by the valuem > 0. Let the first
R2 (slowdown) inference inD′ be thei-th inference inD′.
Thus, the firsti−1 inferences inD′ are speedup inferences,
h-R0 or R1. Choosem large enough so thatm > 1/x for
all values ofx used in these firsti− 1 speedup inferences.

In D′(m), the second throughi-th lines have the form

0(∃na1)b2 · · · bk(Qn0)0DTS(nak+1). (1)

This is because rule h-R0 gives a formula of this form, and
the speedup rule R1 preserves this form. By choice ofm,
for all i ≤ k, the valuesai and bi are> 1 in the lines (1).
The next line inD′(m), inferred by slowdown, has the form

0(∃na1)b2 · · · bk−1(Qnak−1)bkDTS(nmax{cbk,cak+1}). (2)

Form the refutationD by modifying D′(m) as follows.
First, in thei − 1 lines of the form (1), replace “(Qn0)0”
with “(Qn0)1”. Second, on every line, replace the leading
superscript “0” with “ 1”.

1The “h” stands for “homogeneous”, and the key property of an h-
derivation is that if all superscripts are multiplied by a fixed positive
constant, it remains a valid h-derivation.

It is straightforward to verify that this makesD a valid
refutation. The firsti−1 inferences are correct sincebk > 1
by choice of m. The ith-inference, a slowdown, of the
line (2) is also correct, sincebk > 1. Finally, the first
superscriptsb2 are all≥ 1: this is true for the first line by
choice ofm, and the values ofb2 can only increase when
they are affected by a speedup R2. Thus the final inference
in D has the form

1(∃na1)b2DTS(na2) ⊆ 1DTS(nmax{ca1,cb2,ca2})

with b2 ≥ 1 and is a valid instance of R2.

Our second simplification removes all theai’s, i =
1, . . . , k, from lines in derivations. This is based on two
observations: First,ai ≤ bi+1, for all i ≤ k. This property
holds for rule h-R0 and is preserved by R1 and R2. Second,
the value ofak is used only for the slowdown rule R2 in the
expressionmax{cbk, cak, cbk+1, cak+1}. But, asak ≤ bk+1,
the presence ofak is superfluous.

This observation lets us simplify the proof system con-
siderably. Our “reduced” system replaces each quantifier
(Qnai)bi+1 by justQbi+1 . Valid lines in a reduced derivation
have the form:

0∃b1∀b2∃b3 · · · bk−1Qbk+1DTS(na). (3)

for 0 ≤ bi and 0 ≤ a. Now (3) no longer represents a
complexity class per se – it is merely a syntactic object.
Nonetheless, the reduced system allows us to reason about
refutations involving “real” complexity classes. We use “⊢”
instead of “⊆” to indicate derivability in the reduced system.
The rules of inference for the reduced system are:

R0′: (Initialization)
0DTS(na) ⊢ 0∃0DTS(na).

R1′: (Speedup)
· · · bk∀bk+1DTS(na) ⊢

· · · bk∀max{x,bk+1}∃bk+1DTS(na−x),
where0 < x ≤ a.

R2′: (Slowdown)
· · · bk∀bk+1DTS(na) ⊢ · · · bkDTS(nmax{cbk,cbk+1,ca}).

As before, each rule R1′ and R2′ is permitted in dual form,
with existential and universal quantifiers interchanged. The
rule R0′ has been formulated to have only one quantifier
and not incorporate a speedup: this will be convenient later
when we discussc-achievable pairs.

A reduced refutationis defined similarly to a refutation,
but using⊢ instead of⊆, with rules R0′–R2′ in place of
R0–R2, and must prove0DTS(na)⊢0DTS(nb) for b < a.

Lemma 4:There is a reduced refutation (with R0′-R2′)
iff there is a refutation (with R0-R2).

Proof: Note that an application of R0′ followed by a
use of R1′ can simulate a reduced initial speedup (h-R0)
inference:

0DTS(na) ⊢ 0∃x∀0DTS(na−x)



The lemma thus follows from Lemma 3 and the above
discussion.

The rest of the paper will work primarily with reduced
derivations and refutations. To simplify terminology, we
henceforth use the terms “derivation” and “refutation” to
refer to reduced derivations and refutations. The context
should always make it clear whether we are referring to
the reduced or the original system.

C. Approximate inferences

Definition: Let Ξ and Ξ′ be classes represented in the
reduced inference system just defined:

Ξ = 0∃b2∀b3 · · · bkQbk+1DTS(na) (4)

Ξ′ = 0∃b
′

2∀b
′

3 · · · b
′

kQb′
k+1DTS(na′

).

If Ξ and Ξ′ have the same number of alternations, then
Ξ′ ≤ Ξ iff a′ ≤ a andb′i ≤ bi for all i.

The classΞ + ǫ is defined by the conditionΞ′ = Ξ + ǫ
holds iff a′ = a+ ǫ andb′i = bi + ǫ for all i ≥ 2.

Definition: Theweakeningrule of inference allowsΞ to be
inferred fromΞ′ if Ξ′ ≤ Ξ. We use the notationΞ w

Λ to
indicate that there is a derivation ofΛ from Ξ in the reduced
inference system augmented with the weakening rule. A
derivation that includes weakening inferences is called a
w -derivation. We reserve the terminology “derivation” and

the symbol “⊢” for (reduced) derivations that do not use
weakenings.

Lemma 5:Let Ξ, Ξ′, Λ, Λ′ be classes in the reduced
refutation system.
(a) Ξ wΛ iff there is aΛ′ ≤ Λ such thatΞ ⊢ Λ′.
(b) If Ξ w

Λ andΞ′ ≤ Ξ, then there is a derivation ofΞ′⊢Λ′

for someΛ′ ≤ Λ.

The lemma is readily proved by induction on the number
of lines in a derivation with weakening rules. We leave
the details to the reader. By part (b) of the lemma we
may assume WLOG that derivations (without weakening
inferences) never contain linesΞ ≤ Ξ′ with Ξ preceding
Ξ′ in the derivation.

We next define a notion of “approximate inference”,
denoted
. Intuitively, Ξ 
 Λ means that fromΞ one can
derive something as close toΛ as desired.

Definition: We write Ξ 
 Λ to mean that for allǫ > 0,
there exists aδ > 0 so that(Ξ + δ) w (Λ + ǫ).

Lemma 6:The
 relation is transitive: ifΞ 
 Λ andΛ 


Γ, thenΞ 
 Γ.

Now let ∆ be a “prefix” for a reduced line; that is,
∆ = 0∃e2∀e3 · · · eℓ∀eℓ+1 . (Note there is no “DTS” part
to ∆.) ForΞ of the form shown above in (4), we define the
concatenation∆Ξ to be the reduced line

0∃e2∀e3 · · · eℓ∀eℓ+1∃b2∀b3 · · · bk∀bk+1DTS(na).

A similar definition of concatenation is used for prefixes∆
with an odd number of quantifiers; in this case, since
quantifiers must alternate type, ifΞ begins with an∃ then
∆ must begin with a∀, and vice-versa.

Lemma 7: If Ξ 
 Γ, then∆Ξ 
 ∆Γ.

Proof: For ǫ > 0, chooseδ > 0 so that there is aw -
derivationD of Γ+ǫ from Ξ+δ. Without loss of generality,
δ ≤ ǫ. We claim that that, by prefixing each line inD with
∆+δ, we obtain a w -derivationD′ of (∆ + δ)(Γ + ǫ) from
(∆ + δ)(Ξ + δ). This is becauseD contains no lines with
zero quantifiers, and thus the superscript “0” at the beginning
of each line has no effect on the validity ofD. Sinceδ ≤ ǫ,
adding a weakening at the end ofD′ makes it a w -derivation
of the line(∆ + ǫ)(Γ + ǫ).

IV. A CHIEVABLE DERIVATIONS

A. Achievability and subsumption

Williams [20] uses proof annotations of1’s and0’s to in-
dicate sequences of speedups and slowdowns (respectively)
in a derivation. We think of1’s and 0’s as being paired
up like open and closed parentheses, and define abalanced
derivation to be a derivation containing only inferences of
types R1′ and R2′ for which the corresponding pattern of
1’s and 0’s, viewed as parentheses, is properly balanced.
Put another way, a derivation is balanced provided the first
and last lines have the same number of alternations, and
each intermediate line has at least that many alternations.
In a balanced derivation, each speedup (a “1”) is uniquely
matched by a later slowdown (a “0”).

We use the star notation∗ of regular expressions to con-
struct annotations for derivations. For instance, a derivation
of type(10)∗ consists of alternating speedup and slowdown
inferences. Theorems 11 and 16 will establish what can be
achieved with derivations of this type.

Definition: Let 〈µ, ν〉 be a pair such thatµ ≥ 1 and0 < ν.
The pair〈µ, ν〉 is c-achievableprovided that, for all values
a, b andd satisfyingcµb = νd,

a∃bDTS(nd) 

a∃µbDTS(nνd). (5)

The inference (5) is called a〈µ, ν〉 step. A c-achievable pair
〈µ, ν〉 is calledusefulprovidedν < 1.

One subtle, but important, aspect of the definition ofc-
achievable is that the value ofa makes no difference at all.
This is because the approximate implication (5) must be
based on derivations that satisfy condition (c) of the defi-
nition of “derivation” as given at the end of Section III-A.
That is, the derivations cannot contain any lines with zero
quantifiers, and inspection of the rules R1′ and R2′ shows
that the valuea cannot influence these derivations.

It is also important to note thatc-achievability is defined
in terms of
, namely, approximate inference. That is, if



〈µ, ν〉 is c-achievable, it is only required that the〈µ, ν〉 step
be approximately derivable.

The motivation is that we wish to makeν as small as
possible inc-achievable pairs so as to makeνd as small
as possible. This will needed to find as good a refutation
as possible (that is, a refutation for as large a value ofc as
possible). In particular, the next lemma shows that ifν < 1/c
is c-achievable, then there is a refutation.

Lemma 8:Suppose there is ac-achievable〈µ, ν〉 with
ν < 1/c. Then there exists a refutation.

Proof: We have the following (approximate) refutation:

0DTS(n1) ⊢ 0∃0DTS(n1) (initialization)
w 0∃ν/(cµ)DTS(n1) (weakening)



0∃ν/cDTS(nν) (by a 〈µ, ν〉 step)

⊢ 0DTS(ncν) (slowdown)

With ν < 1/c, we havecν < 1. By definition of approximate
derivation (
), we can hence derive0DTS(ncν+ǫ) from
0DTS(n1) for all smallǫ > 0. Choosingǫ so thatcν+ǫ < 1
gives a refutation.

The converse to Lemma 8 will be proved below as
Lemma 21; thus there is a refutation if and only if there
is an achievable pair〈µ, ν〉 with ν < 1/c.

Unfortunately, makingν small involves a tradeoff: the
〈µ, ν〉 step (5) increases the value ofb to b′ = µb while
decreasing the value ofd to d′ = νd. Furthermore, as we
shall see, obtaining achievable pairs with smaller values of ν
will be done at the cost of requiring larger values ofµ.

Definition: An implication

· · · bkQbk+1DTS(na)
w
· · · bkQb′

k+1DTS(na′

) (6)

is subsumed by〈µ, ν〉 provided the implication can be
inferred by a weakening, followed by a〈µ, ν〉 step and then
a weakening.

The next two lemmas follow from the definitions.

Lemma 9:The implication (6) is subsumed by〈µ, ν〉 iff

b′k+1 ≥ max{µbk+1,
1

c
νa} and

a′ ≥ max{cµbk+1, νa}.

Lemma 10:Supposeµ ≤ µ′ and ν ≤ ν′ < 1. If 〈µ, ν〉
is c-achievable, then so is〈µ′, ν′〉. If an implication is
subsumed by〈µ′, ν′〉, then it is also subsumed by〈µ, ν〉.

We also need a weaker notion of subsumption, which is
defined as follows (compare to Lemma 9).

Definition: The implication (6) isweakly subsumedby
〈µ, ν〉 iff a′ ≥ max{cµbk+1, νa}.

The intuition is that optimal derivations in the proof sys-
tem are subsumed byc-achievable pairs. However, there are

also non-optimal derivations that are only weakly subsumed
by a c-achievable pair. As an example, the trivial inference
0DTS(nd)⊢0DTS(nd) is only weakly subsumed by〈1, 1〉,
or indeed by anyc-achievable〈µ, ν〉.

Recall that1 < c < 2. The next lemma, although stated
quite differently, is essentially the same as the Conditional
Speedup Lemma 6.7 of Williams [19].

Lemma 11:The pair 〈1, c − 1〉 is c-achievable, with
derivations of type(10)∗.

Sincec < 2, the pair〈1, c− 1〉 is useful.

Proof: Let Ξ = a∃bDTS(nd). If cb ≤ d, then fromΞ
we can derive, by a speedup followed by a slowdown:

Ξ ⊢ a∃b∀bDTS(nd−b) (7)

⊢ a∃bDTS(nmax{cb,c(d−b)}),

where the first step is a speedup withx = b. That is, from
Ξ we can derive

a∃bDTS(nd′

)

with d′ = max{cb, c(d− b)}. The possible values ford′ are
shown on the following graph.

0 d

d′

cb

cb

b

b

2b

d′ = cb

c
c−1b

d′ = c(d− b)

d′=d

As shown in the graph, ford′ = max{cb, c(d−b)}, we have
d′ < d precisely whencb < d < c

c−1b. For cb ≤ d ≤ 2b,
we haved′ = cb. And, for 2b < d < c

c−1b, we haved′ =
c(d− b). Thus, depending on the value ofd, we have either

d′ = cb or
(

c
c−1b− d′

)

= c
(

c
c−1b− d

)

. Therefore, by
repeating the inference pattern10 a finite number of times,
we can infer

a∃bDTS(nd)⊢a∃bDTS(ncb), (8)

providedcb < d < c
c−1b.

To complete the proof of Lemma 11, we must show that

a∃bDTS(n
c

c−1
b) 
 a∃bDTS(ncb).

Let ǫ > 0, and pick δ > 0 so that δ ≤ ǫ/c and
δ < c(2− c)b/(c− 1)2. By the latter inequality and since
c

c−1 > 1,

c(b+ δ) <
c

c− 1
b+ δ <

c

c− 1
(b + δ). (9)



Therefore, we have

a+δ∃b+δDTS(n
c

c−1
b+δ) ⊢ a+δ∃b+δDTS(nc(b+δ))

w a+ǫ∃b+ǫDTS(ncb+ǫ)

where the first step follows by a(10)∗ derivation as in (8)
using (9), and the second step is a weakening, ascδ ≤ ǫ.

B. Composition of achievable pairs

We next describe how twoc-achievable pairs can be
combined (or, “composed”) to form another.

Lemma 12:Let 〈µ1, ν1〉 and 〈µ2, ν2〉 be c-achievable.
Also supposecν1µ2 ≥ µ1. Set

µ = cν1µ2 (10)

ν =
cµ1ν1ν2
µ1 + ν1ν2

(11)

Then 〈µ, ν〉 is c-achievable.

The idea of the proof is that a〈µ, ν〉 step can be achieved
by a speedup (R1′) inference, a〈µ2, ν2〉 step, a slowdown
(R2′) inference, and a〈µ1, ν1〉 step. That is, ifB andA are
annotations for proofs that approximate a〈µ1, ν1〉 step and
a 〈µ2, ν2〉 step sufficiently well (respectively), then1A0B
is an annotation for an approximate〈µ, ν〉 step. However,
the final 〈µ1, ν1〉 step should be skipped if〈µ1, ν1〉 is not
useful. The proof can be found in the full version.

The conditioncν1µ2 ≥ µ1 restricts howc-achievable pairs
can be composed. The next lemma shows that the case where
this condition fails can be handled by simply lettingµ =
max{µ1, cν1µ2}.

Lemma 13:Let 〈µ1, ν1〉 and〈µ2, ν2〉 bec-achievable. Set

µ = max{cν1µ2, µ1} (12)

ν =
cµ1ν1ν2
µ1 + ν1ν2

. (13)

Then 〈µ, ν〉 is c-achievable.

Proof: If µ1 ≤ cν1µ2, then Lemma 12 already implies
the result. Otherwise, letµ′

2 = µ1/(cν1), so thatµ′
2 > µ2

and µ1 = cν1µ
′
2. By Lemma 10,〈µ′

2, ν2〉 is c-achievable.
Thus Lemma 12 applied to the pairs〈µ1, ν1〉 and 〈µ′

2, ν2〉
now gives the desired result.

To better understand what is happening when we compose
〈µ1, ν1〉 and 〈µ2, ν2〉 to form 〈µ, ν〉, reexpress the two
formulas of Lemma 12 as:

1

µ
=

1

cν1

(

1

µ2

)

(14)

1

ν
=

ν1
µ1(cν1 − 1)

−
1

cν1

(

ν1
µ1(cν1 − 1)

−
1

ν2

)

(15)

Equations (14) and (15) give an interesting perspective on
µ andν. We may view the pair〈µ1, ν1〉 as a transformation
that acts on thereciprocalvalues1/µ2 and1/ν2 to give the
values1/µ and1/ν. Equation (14) shows that the value1/µ2

is scaled by the factor1/(cν1) to obtain1/µ. In the usual
case whereν1 ≥ 1/c, the scale factor is≤ 1, soµ ≥ µ2.

Equation (15) shows that the value1/ν is obtained by
contracting1/ν2 towards a fixed pointν1/(µ1(cν1 − 1)),
with the scaling factor for the contraction again equal to
1/(cν1). In most cases,1/ν2 is smaller than this fixed point
and we also have the scale factor1/(cν1) < 1. In these
cases,1/ν > 1/ν2, so ν < ν2. Getting smaller and smaller
values forν is desirable since, as Lemma 8 showed, our
goal is to obtainν < 1/c so as to obtain a refutation.

The fixed point for the mappingν2 7→ ν will be denoted
by τ(µ1, ν1); namely,

τ(µ1, ν1) =
cν1 − 1

ν1
µ1

and
(τ(µ1, ν1))

−1 =
ν1

(cν1 − 1)µ1
.

With this notation, we can rewrite equation (15) equiva-
lently as
(

(τ(µ1, ν1))
−1 −

1

ν

)

=
1

cν1

(

(τ(µ1, ν1))
−1 −

1

ν2

)

.

(16)
This makes it clear howν is contracting towardsτ(µ1, ν1).

C. The refutations forc < 2 cos(π/7)

Suppose that1 < c < 2 cos(π/7). Recasting results from
Williams [19], we prove there exists a refutation. We begin
by recalling a simple characterization of2 cos(π/7):

Lemma 14:Let c ≥ 1. Then

τ(1, c− 1) =
c(c− 1)− 1

c− 1
≤

1

c

if and only if c ≤ 2 cos(π/7).

Proof: The inequality holds iffc3 − c2 − 2c + 1 ≤ 0.
For c ≥ 1, this is equivalent toc ≤ 2 cos(π/7).

The following is immediate from Lemma 14 and the fact
that τ(1, c− 1) is a fixed point for the composition defined
earlier.

Theorem 15 (Williams [19]):There is a refutation for
1 < c < 2 cos(π/7).

The present work establishes that this is the only situation
in which a refutation can exist, under the rules of alternation-
trading proofs.

V. THE LIMITS OF ACHIEVABLE CONSTRUCTIONS

In this section we argue that, for1 < c < 2, no refutation
can do better than what is possible usingc-achievable pairs,
and furthermore that the bestc-achievable pairs are〈1, c−1〉
and the ones that can be obtained by the constructions of
Lemmas 12 and 13.



A. Limits on derivations of type(10)∗

We start by giving lower bounds on what can be achieved
with derivations that follow the(10)∗ pattern.

Lemma 16:Any non-empty(10)∗ pattern of inferences
in a derivation is subsumed by〈1, c− 1〉.

Proof: Recall the derivation (7) of type10 that was
used in the proof of Lemma 11. We claim that this is the
optimal kind of10 inference step. The derivation (7) used
a speedup withx = b; however, to prove Lemma 16, we
must consider a general10 inference withx not necessarily
equal tob:

a∃bDTS(nd) ⊢ a∃max{x,b}∀bDTS(nd−x)

⊢ a∃max{x,b}DTS(nmax{cx,cb,c(d−x)}).

We need to rule out the use ofx 6= b. First, supposex < b.
In this case, we can achieve the same inference by using a
weakening to increase the value ofd and change the speedup
to usex = b. Namely,

a∃bDTS(nd)
w a∃bDTS(nd+b−x)

⊢ a∃b∀bDTS(n(d+b−x)−b)

= a∃b∀bDTS(nd−x)

⊢ a∃bDTS(nmax{cb,c(d−x)}).

Second, supposex > b. In this case, we first use weakening
to increaseb by x− b:

a∃bDTS(nd)
w a∃xDTS(nd)

⊢ a∃x∀xDTS(nd−x)

⊢ a∃xDTS(nmax{cx,c(d−x)}).

Thus any(10)∗ pattern of inferences can be replaced by a
sequence of operations of the following types: (a) increased,
(b) increaseb, and (c) replaced with max{cb, c(d − b)}.
There is, WLOG, at least one operation of type (c). It is
not hard to show that any such sequence of operations is
subsumed by〈1, c− 1〉. (See the full version for details.)

B. Limits on derivations of type1A0B

The next lemma shows that any balanced derivation that
starts with a line of the form· · · a∃bDTS(nd) with d > cb
does no real work, and can be replaced by a weakening. Thus
WLOG, any premiss of a speedup inference hasd > cb.

Lemma 17:Suppose a balanced derivation starts with the
line · · · a∃bDTS(nd). Then the last line of the derivation has
the form · · · a∃b

′

DTS(ncb′′) for someb′′ ≥ b′ ≥ b.
Thus, if d ≤ cb, then any non-empty balanced derivation,

with first line · · · a∃bDTS(nd), is subsumed by〈1, 1〉.

Proof: Throughout the derivation, the superscript after
the ∃ stays equal tob or becomes larger. (This is because
speedup steps can not decrease the superscript, and because
the derivation is balanced and cannot remove the∃ with a

slowdown.) Therefore, the final step in the derivation is a
slowdown of the form

· · · a∃b
′

∀eDTS(nf ) ⊢ · · · a∃b
′

DTS(nmax{cb′,ce,cf}).

Letting b′′ = max{b, e, f}, this proves the lemma.

In keeping with the intuition that〈µ1, ν1〉 is a trans-
formation acting on〈µ2, ν2〉, we sometimes express the
conditions (10) and (11), or the equivalent (14) and (15),
with a mapping notation:

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

This notation is used only whenµ1 ≤ cν1µ2. Otherwise, we
will occasionally express that (12) and (13) hold by writing

〈µ1, ν1〉 : 〈µ2, ν2〉 7→
max 〈µ, ν〉.

Note that the “7→max” notation makes no restriction on
whetherµ1 is larger thancν1µ2.

The next lemma is our main technical tool putting limita-
tions on how derivations are formed fromc-achievable pairs.
Informally, it states that any balanced derivation with a1/0
annotation of the form1A0B with A andB balanced can
be subsumed by the composition of the subderivationA and
the subderivationB, where “composition” is in the sense of
composition of pairs〈µi, νi〉 as used in Lemmas 12 and 13.

Lemma 18:Let a balanced derivationD have the anno-
tation 1A0B, whereA and B are balanced1/0-patterns.
Suppose that the subderivation corresponding toA is weakly
subsumed by〈µ2, ν2〉. Further suppose that the subderiva-
tion corresponding toB is non-empty and subsumed (re-
spectively, weakly subsumed) by〈µ1, ν1〉. Then the entire
derivationD is subsumed (respectively, weakly subsumed)
by a pair〈µ, ν〉 such that either

〈µ1, ν1〉 : 〈µ2, ν2〉 7→
max 〈µ, ν〉, (17)

or
〈1, 1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉. (18)

On the other hand, ifB is empty, then the derivationD is
weakly subsumed by the〈µ, ν〉 given by (18).

The lemma is stated for derivationsD that contain only
speedup and slowdown inferences, and no weakenings.
However, by the proof of Lemma 5 and the definition
of subsumption, it also holds for derivations that contain
weakenings. In this case, the weakenings in the derivation do
not contribute to the pattern of0’s and1’s for the derivation.

Proof: The derivation starts withΞ = · · · a∃bDTS(nd),
and ends with a line∆ = · · · a∃x

′

DTS(nu′

) (or, dually,
with ∀ in place of∃). The prefix “· · ·” never changes during
the balanced derivation, so we henceforth suppress it in the
notation. The first inference of the1A0B derivation is a
speedup,

a∃bDTS(nd) ⊢ a∃max{x,b}∀bDTS(nd−x).



We claim that WLOG we havex ≥ b. This is proved just
as in the proof of Lemma 16. Namely, ifx < b, just add a
weakening inference to the beginning to derive

a∃bDTS(nd)
w a∃bDTS(nd+b−x) ⊢ a∃b∀bDTS(nd−x).

This means there is a1A0B derivation D′ of ∆ from
a∃bDTS(nd+b−x). Thus, it suffices to prove the lemma
assuming that the first speedup inference usesx ≥ b; this
will prove that〈µ, ν〉 subsumesD′ and hence subsumesD.

The 1A0 portion of the derivationD consists of a
speedup, then a subderivation with the annotationA that
is weakly subsumed by〈µ2, ν2〉, and then a slowdown:

a∃bDTS(nd) ⊢ a∃x∀bDTS(nd−x) (by speedup)
...

... (weakly subsumed by〈µ2, ν2〉)

⊢ a∃x∀yDTS(nz)

⊢ a∃xDTS(nu) (by slowdown) (19)

where u = max{cx, cy, cz} and where, by the weak
subsumption by〈µ2, ν2〉,

z ≥ max{cµ2b, ν2(d− x)}.

SupposeB is empty in the derivation, soa∃xDTS(nu) is the
last line of the1A0B derivation. Byu ≥ cz andu ≥ cx, we
haveu ≥ c(cµ2)b andu ≥ max{cx, cν2(d−x)}. The value
max{cx, cν2(d − x)} is minimized withx = ν2d/(1 + ν2)
and thereforeu ≥ cν2d/(1 + ν2). Thus, if B is empty, the
derivationD is weakly subsumed by the pair〈µ, ν〉 with
µ = cµ2 and ν = cν2

1+ν2
. This is the same as definingµ

andν by 〈1, 1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.
Now assumeB is non-empty. We claim that we may

assume WLOGcµ2b ≤ ν2(d − x). If this does not hold,
we argue similarly to how we showed thatx ≥ b WLOG,
and prove that we can increase the value ofd to x+ cµ2

ν2
b.

Namely, letd′ = x+ cµ2

ν2
b > d, and replace the1A0 portion

of D with the following inferences:

a∃bDTS(nd)
wa∃bDTS(nd′

) (weakening)

⊢ a∃x∀bDTS(nd′−x) (speedup)

= a∃x∀bDTS(ncµ2b/ν2)



a∃x∀µ2bDTS(ncµ2b) (by a 〈µ2, ν2〉 step)

= a∃x∀yDTS(nz) (wherey = µ2b andz = cµ2b)

⊢ a∃xDTS(nu) (slowdown)

In this case, we still havez ≥ max{cµ2b, ν2(d − x)}.
Modifying D in this way leaves the first and last lines of
the derivation intact, so if we prove this modified derivation
is subsumed by a pair〈µ, ν〉 it certainly follows thatD is
also subsumed by the same pair.

It thus follows that we can assume WLOG that

b ≤ x ≤ d−
cµ2

ν2
b (20)

with the derivationD having the annotation1A0B, possibly
with A representing a〈µ2, ν2〉 step and a weakening.

In the line (19) at the end of the1A0 part of the
derivation, we must haveu ≥ cz ≥ cν2(d − x). Picking
up from line (19), the “B” part of the derivation derives

a∃xDTS(nu) ⊢ a∃x
′

DTS(nu′

).

Since this part is weakly subsumed by〈µ1, ν1〉, we have

u′ ≥ max{cµ1x, cν1ν2(d− x)}. (21)

If B is also (non-weakly) subsumed by〈µ1, ν1〉, then

x′ ≥ max{µ1x, ν1ν2(d− x)}. (22)

We claim that we can assume without loss of generality
that either (i)x = b andµ1x > ν1ν2(d − x) or (ii) x ≥ b
and µ1x ≤ ν1ν2(d − x). To prove this, supposeµ1x >
ν1ν2(d−x) andx > b. (Recall that we already havex ≥ b.)
Then, we can modify the1A0B derivation by decreasing
the value ofx to get a stronger derivation. The value ofx
can be decreased until eitherx = b or µ1x = ν1ν2(d − x)
so that either (i) or (ii) holds.

If case (i) applies, we havex = b andµ1b ≥ ν1ν2(d− b).
This gives

(µ1 + ν1ν2)b ≥ ν1ν2d. (23)

Multiplying (20) by ν1ν2 gives

ν1ν2d ≥ (ν1ν2 + cµ2ν1)b. (24)

The last two equations implyµ1 ≥ cν1µ2. The bound (21)
with x ≥ b implies thatu′ ≥ cµ1b. This, plus (23), implies
u′ ≥ cµ1ν1ν2

µ1+ν1ν2
d. Thus the entire derivationD is weakly

subsumed by〈µ, ν〉 with

µ = µ1 = max{µ1, cν1µ2}

ν =
cµ1ν1ν2
µ1 + ν1ν2

If B is (non-weakly) subsumed by〈µ2, ν2〉, then similar
reasoning using (22) in place of (21) gives a lower bound
on x′ and proves that the derivationD is also (non-weakly)
subsumed by〈µ, ν〉.

If case (i) does not apply, then (ii)µ1x ≤ ν1ν2(d − x)
andx ≥ b. In particular,(µ1 + ν1ν2)x ≤ ν1ν2d, so

x ≤
ν1ν2

µ1 + ν1ν2
d and

d− x ≥
µ1

µ1 + ν1ν2
d. (25)

From (20), we getd− x ≥ cµ2

ν2
b, whence

ν1ν2(d− x) ≥ cν1µ2b. (26)

By (ii), we getν1ν2(d−x) ≥ µ1b. This fact and inequalities
(21), (25) and (26) imply that

u′ ≥ max

{

cµ1b, (c
2ν1µ2)b,

cµ1ν1ν2
µ1 + ν1ν2

d

}

.



Therefore, the entire derivationD is weakly subsumed by the
pair 〈µ, ν〉, whereµ = max{µ1, cν1µ2} andν = cµ1ν1ν2

µ1+ν1ν2
. If

B was (non-weakly) subsumed by〈µ2, ν2〉, then, by similar
reasoning using (22),D is also (non-weakly) subsumed by
〈µ, ν〉. This completes the proof of Lemma 18.

C. Characterization of achievable pairs

In this section we prove that every balanced derivation is
subsumed by somec-achievable pair, and we give a small
list of operations that suffice to form allc-achievable pairs.

The earlier constructions used the following five methods
for constructingc-achievable pairs:

(A) 〈1, c− 1〉 is c-achievable.
(B) Suppose〈µ1, ν1〉 and〈µ2, ν2〉 arec-achievable and

µ1 ≤ cν1µ2. Then〈µ, ν〉 is c-achievable, where

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

(C) Suppose〈µ1, ν1〉 and〈µ2, ν2〉 arec-achievable and
µ1 > cν1µ2. Then〈µ, ν〉 is c-achievable, where

〈µ1, ν1〉 : 〈µ2, ν2〉 7→
max 〈µ, ν〉.

(D) If 〈µ2, ν2〉 is c-achievable, then so is〈µ, ν〉, where

〈1, 1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

(E) If 〈µ, ν〉 is c-achievable andµ′ ≥ µ and1 ≥ ν′ ≥
ν, then〈µ′, ν′〉 is c-achievable.

(Constructions (B) and (C) are defined separately since we
will later show that the constructions (C) are not needed.)
A pair 〈µ, ν〉 is called an ABCD-pair if it can be shown to
be c-achievable by the operations (A)-(D).

Theorem 19:Any balanced non-empty derivationD start-
ing with a line with at least one alternation, is weakly
subsumed by some ABCD-pair.

One more simple lemma is needed to prove Theorem 19:

Lemma 20:Let D1 andD2 be balanced derivations with
the first line of D2 the same as the last line ofD1. If
D1 is subsumed by thec-achievable pair〈µ, ν〉, then the
concatenationD1D2 is also subsumed by〈µ, ν〉.

Proof: Let D1 begin with the line· · · a∃bDTS(nd), and
end with the line· · · a∃b

′

DTS(nd′

). By the subsumption
assumption, lettingf = max{µb, 1cνd}, we haveb′ ≥ f and
d′ ≥ cf . Now, by Lemma 17, the last line ofD2 is of the
form a∃b

′′

DTS(nd′′

), with b′′ ≥ b′ ≥ f andd′′ ≥ cb′ ≥ cf .
That is,D1D2 is also subsumed by〈µ, ν〉.

The proof of Theorem 19 is by induction on the com-
plexity of the derivationD. SinceD is balanced, its first
inference is a speedup, and there is later a matching slow-
down. That is,D has the annotation1A0B whereA andB
are balanced patterns of0’s and 1’s. If A is empty, then
the first two lines ofD are inferred by a10 pattern and
hence by Lemma 16 is subsumed by〈1, c− 1〉. Therefore,
by Lemma 20, all ofD is also subsumed by〈1, c−1〉. Now

supposeA is non-empty. The induction hypothesis is that
the subderivations ofD corresponding toA andB are both
weakly subsumed byABCD-pairs. It follows immediately
from Lemma 18 thatD is also weakly subsumed by some
ABCD-pair. This concludes the proof of Theorem 19.

D. Characterizing refutations

We can now characterize for which values ofc > 1
refutations exist, in terms of what pairs arec-achievable.

Lemma 21:Fix c ≥ 1. There is a refutation if and only if
there is some ABCD-pair〈µ, ν〉 with ν < 1/c. Furthermore,
there is a refutation if and only if there is ac-achievable pair
with ν < 1/c.

Proof: By Theorem 19, any refutation has the form

0DTS(n1) ⊢ 0∃0DTS(n1) Initialization
...

... (weakly subsumed by〈µ, ν〉)

⊢ 0∃aDTS(nd)

⊢ 0DTS(nmax{ca,cd}) Slowdown

with max{ca, cd} < 1, for an ABCD-pair 〈µ, ν〉. The
definition of weak subsumption impliesd ≥ ν, thusν < 1/c.

Conversely, every ABCD-pair isc-achievable. And by
Lemma 8, if there isc-achievable pair withν < 1/c, then
there is a refutation.

VI. L IMITS ON ACHIEVABLE PAIRS

The previous section reduced the question of whether
there exists a refutation to the question of whether there isa
c-achievable pair〈µ, ν〉 with ν < 1/c. It was further shown
that only ABCD-pairs need be considered. We shall show,
in fact, that only ABE-pairs need to be considered; namely,
that anyc-achievable pair is subsumed by some ABE-pair.

Definition: The ABE-pairs (respectively, AB-pairs) are the
pairs that can be obtained by operations (A), (B) and (E)
(respectively, by (A) and (B)).

A pair 〈µ, ν〉 is subsumedby 〈µ′, ν′〉 if µ′ ≤ µ andν′ ≤ ν.

Lemma 22:Every ABCD-pair is an ABE-pair.

Proof: The proof of Lemma 13 shows that any use of
rule (C) can be replaced by rule (E) followed by rule (B).
Since〈1, c− 1〉 subsumes〈1, 1〉, rule (D) is unnecessary.

Corollary 23: Fix c ≥ 1. There is a refutation if and only
if there is some ABE-pair〈µ, ν〉 with ν < 1/c.

Recall from Section IV-B the definition ofτ :

τ(µ, ν) =
cν − 1

ν
µ =

(

c−
1

ν

)

µ.

As we showed, the action of〈µ1, ν1〉 on 〈µ2, ν2〉 produces
〈µ, ν〉 with ν obtained by “reciprocally contracting”ν2 to-
wardsτ(µ1, ν1). The next lemma shows that eitherτ(µ1, ν1)
is sufficient for obtaining a refutation or it only causes
τ values to increase.



Lemma 24:Supposeτ(µ1, ν1) ≥ 1/c and 〈µ1, ν1〉 :
〈µ2, ν2〉 7→ 〈µ, ν〉. Thenτ(µ, ν) ≥ τ(µ2, ν2).

Proof: Note that 1ν = 1
cν1ν2

+ 1
cµ1

. We have

τ(µ, ν) =

(

c−
1

ν

)

µ =

(

c−
1

cν1ν2
−

1

cµ1

)

cν1µ2

= c2ν1µ2 −
µ2

ν2
−

µ2ν1
µ1

=

(

cµ2 −
µ2

ν2

)

+

(

c2ν1µ2 − cµ2 −
µ2ν1
µ1

)

= τ(µ2, ν2) +

(

c
(cν1 − 1)µ1

ν1
− 1

)

ν1µ2

µ1

= τ(µ2, ν2) + (cτ(µ1, ν1)− 1)
ν1µ2

µ1

≥ τ(µ2, ν2),

where the last inequality follows fromτ(µ1, ν1) ≥ 1/c.

Theorem 25:Fix c ≥ 1. There is a refutation if and only
if c < 2 cos(π/7).

Proof: Theorem 15 shows that ifc < 2 cos(π/7),
then there is a refutation. For the converse, supposec ≥
2 cos(π/7). We claim that any ABE-pair〈µ, ν〉 has

τ(µ, ν) ≥ τ(1, c− 1) ≥ 1/c and ν > τ(1, c− 1) ≥ 1/c.
(27)

The claim is proved by induction on the number of steps
used to derive the ABE-pair. The base case for the induction
is 〈µ, ν〉 = 〈1, c−1〉. Then, sincec ≥ 2 cos(π/7), we have
ν = c − 1 > 1/c. Also, τ(1, c − 1) ≥ 1/c by Lemma 14.
The induction step splits into two cases depending on
whether 〈µ, ν〉 is derived by an (E)-operation or a (B)-
operation. If it is derived by an (E)-operation (subsumption),
then the inequalities of (27) follow immediately from the
induction hypothesis and monotonicity. If〈µ, ν〉 is derived
by a (B)-operation, the first inequality of (27) follows from
Lemma 24. For the second inequality, observe that by
equation (16), ifcν1 > 1 and 〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉,
thenν is betweenν2 andτ(µ1, ν1). This proves the claim.

It follows by Corollary 23 that ifc ≥ 2 cos(π/2), there is
no proof of a refutation.

Theorem 1 is an immediate corollary of Lemma 4 and
Theorem 25.
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