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Keywords. satisfiability, alternation-trading proofs, time-space trade-
offs, lower bounds

Subject classification. 68Q15, 68Q17

1. Introduction

Our inability to prove major complexity class separations, such
as P 6= NP, has prompted researchers to formalize barriers pre-
venting us from establishing separations. Relativization (Baker
et al. 1975) has established limits on naive diagonalization, natural
proofs (Razborov & Rudich 1997) have shown limits for combina-
torial arguments for circuit complexity, and algebrization (Aaron-
son & Wigderson 2009) has given limits on low-degree polynomial
techniques. The goal of all these is to understand the limitations
of present approaches with the hope of overcoming them.

The present paper contains a detailed study showing the lim-
itations of the alternation trading proof method, an indirect di-
agonalization method that has been used to prove a number of
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lower bounds. Our approach is specific to a particular set of al-
ternation trading proof techniques, but these include all currently
known techniques of this type. A significant advantage is that we
can prove tight results on what lower bounds can be established:
we produce optimal results stating that there exists an alternation
trading proof that at least nc resources are necessary to solve prob-
lem X , but that no alternation trading proof can show that nc+ǫ

resources are necessary to solve problem X for any ǫ > 0.

More specifically, our results establish lower bounds for simu-
lating non-determinism with time- and space-bounded determinis-
tic algorithms. We concentrate on lower bounds for deterministic
algorithms that solve the satisfiability problem SAT; however, the
results also imply the same time-space lower bounds for many other
NP-complete problems (see van Melkebeek & Raz (2005)).

Let DTISP(nc, nǫ) denote the class of languages recognizable
by deterministic algorithms that run in time nc+o(1) with space
bounded by nǫ+o(1), where 1 ≤ c and 0 ≤ ǫ ≤ c, and “o(1)” is
the usual little-o notation. A series of results, see Diehl & van
Melkebeek (2006); Fortnow (1997); Fortnow et al. (2005); Fortnow
& van Melkebeek (2000); Kannan (1984); Lipton & Viglas (1999);
Tourlakis (2001); Williams (2006, 2008, 2013), have established
better and better non-trivial constant lower bounds on the values
c and ǫ for which SAT ∈ DTISP(nc, nǫ). Surveys of these and
other results are given by van Melkebeek (2004, 2007) but, loosely
speaking, these lower bounds have all been obtained by combining
a “speedup” technique of Bennett (1962), Nepomnjaščĭı (1970) and
Kannan (1984) with an assumption such as SAT ∈ DTISP(nc, nǫ)
in order to obtain a contradiction. Williams (2008, 2013) gave
a formal definition of these proof methods, which he calls “al-
ternation trading proofs”, and gave improved time-space lower
bounds for deterministic algorithms for SAT. He also designed
computer programs that search for optimal alternation trading
proofs, and based on these results obtained further alternation
trading proofs. He conjectured (Williams 2013) that the proofs
found by the computer searches are optimal for alternation trad-
ing proofs. The conjecture was somewhat controversial, since the
computer searches were far from exhaustive, the proofs found only
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established SAT 6∈ DTISP(n2 cos(π/7)−ǫ, no(1)) for all ǫ > 0, and the
constant 2 cos(π/7) ≈ 1.8019 seemed unnatural. Indeed, it was
a folklore conjecture that these alternation trading proofs could
potentially establish (only) that SAT 6∈ DTISP(n2−ǫ, no(1)).

The present paper examines more carefully the possible alter-
nation trading proofs for establishing time and space lower bounds
on algorithms for SAT. Our first main result is that, for the case of
ǫ = 0, the lower bounds obtained by Williams (2008, 2013) are in
fact optimal, at least within the present framework of alternation
trading proofs. This proves Williams’ conjecture is indeed true. As
part of this, we give some surprising simplifications of alternation
trading proofs by characterizing the possible alternation trading
proofs with “achievable pairs”.

Our second main result is to establish detailed simultaneous
time and space lower bounds on deterministic algorithms using
alternation trading proofs. Prior work on time-space tradeoffs
includes Diehl & van Melkebeek (2006); Fortnow et al. (2005);
Tourlakis (2001); Williams (2008, 2013). In particular, Fortnow
et al. (2005) showed that if SAT ∈ DTISP(nc, nǫ) then c + ǫ ≥
1.573, and Williams (2008, 2013) gave better bounds for specific
numeric values of c and ǫ. The present paper substantially gen-
eralizes results obtained by Williams (2008, 2013), by establishing
that arbitrary alternation trading proofs can be characterized in
terms of “achievable triples”. We give extensive computer-based
searches for achievable triples, aided by theorems on how the search
space can be pruned. As a consequence, we are able to find bet-
ter numerical values for the time-space tradeoffs than those found
by Williams (2013). Our computer-based proofs always succeed
in establishing either the existence or non-existence of alternation
trading proofs. Therefore, our numerical values for simultaneous
time and space bounds are the best that can be obtained with
presently-known methods for alternation trading proofs.

The lower bounds in the present paper are all stated for the
problem SAT. As remarked above, they also apply to many other
NP-complete problems. In addition, by Williams (2008), our lower
bounds also apply to the classes MODm-SAT, of counting the num-
ber of satisfying assignments modulo m, where either m is not a
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prime power or m is prime, with the possible exception of a single
prime.

Let DTS(nc) denote the class DTISP(nc, n0), that is the set of
languages accepted by a deterministic Turing machine with run-
time nc+o(1) using space no(1). Williams (2008, 2013) proved that
SAT 6∈ DTS(nc) for c < 2 cos(π/7). For this, he used bounded
quantifier notations of the forms “a(∀nb)d” and “a(∃nb)d” for con-
stants a, b, d ≥ 1, to denote a computation that has na+o(1) input
bits, makes nb+o(1) universal (resp., existential) choices, and then
(deterministically) computes nd+o(1) bits of information in time
nmax{b,d}+o(1). Thus, for instance, 1(∃n2)1DTS(n3) denotes the class
of languages that are accepted by an algorithm that guesses n2+o(1)

bits existentially, deterministically computes n1+o(1) bits to keep in
memory (in time n2+o(1)), and then runs deterministically in time
n3+o(1), using no(1) workspace in addition to the n1+o(1) bits that
were kept as input to the final stage.

For his alternation trading proofs, Williams (2008, 2013) in-
troduced a general framework for establishing lower bounds based
on a formal proof system of inference rules that act on bounded
quantifier notations for classes.1 The first kind of inference rules
are “speedup” rules that use the Bennett-Nepomnjascii-Kannan
method of decreasing runtime at the cost of adding alternation(s).
The second kind of inference rules, called “slowdown” inferences,
use the assumption that NTIME(n) ⊆ DTS(nc) (which follows
from SAT ∈ DTS(nc)) to remove alternations at the cost of slower
runtime. Using the nondeterministic time hierarchy theorem, an al-
ternation trading proof yields a contradiction by providing a proof
that DTS(na) ⊆ DTS(na′) for constants a > a′ > 0. Williams
showed SAT 6∈ DTS(nc) for any c < 2 cos(π/7) ≈ 1.8019 by using
alternation trading proofs. Based partly on his computer-based
searches, he further conjectured that the constant 2 cos(π/7) is the
best that can be obtained with the formalized speedup and slow-
down rules.

We prove this conjecture as Theorem 1.1. The inference rules
R0-R2 are defined below in Section 2.

1van Melkebeek (2004) gives a comprehensive survey of alternation-trading
proofs and speedup and slowdown rules.
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Theorem 1.1. The inference rules R0–R2 can be used to derive
a contradiction only for c < 2 cos(π/7).

The proof of Theorem 1.1 is based on a new detailed analysis of
what is possible with alternation trading proofs. The central in-
novation is the concept of “c-achievable pairs” which describe in-
ferences that can be approximated by alternation trading proofs.
We give methods for generating c-achievable pairs, and prove that
these pairs exactly characterize the refutations can be approxi-
mated by alternation trading proofs.

Williams used binary strings, called “proof annotations”, to
represent patterns of speedup and slowdown inferences in an al-
ternation trading proof, with “1” representing a speedup and “0”
a slowdown. For instance, the annotation “1010” represents the
sequence of inferences speedup-slowdown-speedup-slowdown. Let
X0 := (10)∗ represent an arbitrary number of speedup-slowdown
inferences. Then let Xi+1 be the annotation 1Xi0X0. Williams
proved these patterns of inferences, as i increases, give contradic-
tions for c arbitrarily close to 2 cos(π/7), and he conjectured they
are the best possible inference patterns. We prove this below as
part of proving Theorem 1.1.

The second half of the paper considers lower bounds on time nc

and space nǫ algorithms for satisfiability, where 0 < ǫ < 1. For
these algorithms, we use “(c, ǫ)-achievable triples” that exactly
characterize the alternation trading derivations in the DTISP set-
ting. Unlike the ǫ = 0 case, we are unable to give a closed form
formula for when there are alternation trading proofs that satisfi-
ability is not in DTISP(nc, nǫ). Instead, we have to use computer-
based searches for (c, ǫ)-achievable triples that prove the existence
of alternation trading refutations. This potentially requires con-
sidering infinitely many triples, so to prune the search space, we
develop a notion of when two triples together “dual-subsume” a
third triple, as well as a related notion of “multisubsumption”.
In the end, this allows the computer-based searches to search for
quite long proofs. In addition, the computer-based search has al-
ways been successful either in finding that an alternation trading
refutation exists, or in completely exhausting the search space and
thus showing that there is no such refutation.
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The outline of the paper is as follows. Section 2 introduces the
speedup and slowdown rules, and the notion of alternation trading
proofs of SAT 6∈ DTS(nc). We then introduce considerably sim-
plified notions of alternation trading proofs, called “h-derivations”
and “reduced” derivations, along with simplified versions of the
speedup and slowdown rules, R0′–R2′. Section 3 introduces the
notion of approximate inferences, and the notion of a “c-achievable
pair”, by which is meant that that certain kinds of results can be
approximately proved (achieved) with alternation proofs. Section 4
puts limits on what kinds of pairs are c-achievable. Section 5 proves
a certain kind of normal form on c-achievable pairs, and completes
the proof of Theorem 1.1. Section 6 turns to time-space tradeoffs
and introduces the different systems of alteration trading infer-
ences for DTISP(nc, nǫ), including the “reduced” inference system.
It also introduces the notion of approximate inferences for DTISP
derivations. Section 7 defines achievable triples, and gives methods
for generating achievable triples. Section 8 gives the theoretical re-
sults needed for our computer-based search for achievable triples,
and reports the numerical results of the searches. Section 9 estab-
lishes that our rules for generating (c, ǫ)-achievable triples exactly
characterize the possible DTISP refutations.

We review notation and results from earlier work as needed; for
more background, see Williams (2013).

2. Rules of inference for DTS

2.1. Basic rules of inference for DTS bounds. Fix, hence-
forth, a value c > 1. The goal is to prove a contradiction from
the assumption SAT ∈ DTS(nc), thereby of course proving that
SAT 6∈ DTS(nc). The contradiction is proved by an alterna-
tion trading proof using the following rules R0–R2. As shown
by Williams (2013), it suffices to give an alternation trading proof
of DTS(na) ⊆ DTS(nb) for some b < a. The alternation trading
proof is a sequence of containments, starting with the set 1DTS(na)
for some integer a > 0. (The leading superscript “1” indicates the
input string has length 1 + o(1).)

The following are the original rules of inference used for alter-
nation trading proofs (Williams 2013). The ellipses “· · ·” indicate
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an arbitrary (possibly empty) quantifier prefix.

R0: Initial speedup:
1DTS(na) ⊆ 1(∃nx)max{x,1}(∀n0)1DTS(na−x),

where 0 < x ≤ a.

R1: Speedup:

· · · bk(∀nak)bk+1DTS(nak+1)

⊆ · · · bk(∀nmax{x,ak})max{x,bk+1}(∃n0)bk+1DTS(nak+1−x),

where 0 < x ≤ ak+1.

R2: Slowdown:

· · · bk(∀nak)bk+1DTS(nak+1) ⊆ · · · bkDTS(nmax{cbk,cak,cbk+1,cak+1}).

Each rule R1 and R2 is permitted also in dual form, with existential
and universal quantifiers interchanged.

Definition 2.1. A refutation D consists of a sequence of lines
each of the form

1(∃na1)b2(∀na2)b3 · · · bk(Qnak)bk+1DTS(nak+1)

where k ≥ 0 and ai, bi ≥ 0 and “Q” is either “∀” or “∃” depending
on whether k is even or odd. The line is said to have k alternations.
The refutation D must satisfy:

(a) The first line is 1DTS(na).

(b) Each line follows from the preceding line by one of the above
rules.

(c) Only the first and last lines may (possibly) have zero quan-
tifiers.

(d) The last line has the form 1DTS(nb), with b < a.

A D which satisfies conditions (b) and (c) is called a derivation.

Williams (2013) showed that this refutation is sound; namely,
if a refutation D exists, then NTIME(n) 6⊆ DTS(nc). The sound-
ness of R0 and R1 is based on the Bennett-Nepomnjascii-Kannan
construction. Rule R2 is sound assuming NTIME(n) ⊆ DTS(nc)
and hence coNTIME(n) ⊆ DTS(nc).
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2.2. Simplified rules of inference. As a first step towards sim-
plifying the syntax of refutations and derivations, we define the
notion of “h-refutation”.

An h-derivation or h-refutation is defined similarly to a deriva-
tion or refutation, but with the following changes. First, change the
leading superscript “1” in all lines to be a “0”. Second, replace rule
R0 with rule h-R0 by replacing all three superscripts “1” with “0”.
In particular, the superscript“max{x, 1}” is replaced by just “x”.

h-R0 : 0DTS(na) ⊆ 0(∃nx)x(∀n0)0DTS(na−x).

The “h” stands for “homogeneous”, and the key property of
an h-derivation is that if all superscripts are multiplied by a fixed
positive constant, it remains a valid h-derivation.

Lemma 2.2. Fix c > 1. There is an h-refutation if and only if
there is a refutation.

The difficult direction of Lemma 2.2 is the transformation of
h-refutations into refutations. The intuition is that by scaling the
exponents in an h-refutation by a large multiplicative factor, one
can make all exponents greater than 1, and then the h-refutation
is easily converted to a refutation by suitably replacing exponents
“0” with “1”.

Proof. (⇐=) Suppose D is a refutation. We need to form an
h-refutation D′. To form D′, first replace the initial line, 1DTS(na),
of D with 0DTS(na), and change the initial inference of D to be
an h-R0 inference instead of an R0 inference. To form the rest
of D′, follow exactly the same inferences as in D. It is easy to
check that this can be done in such a way that each line in D′ has
exactly the same form as the corresponding line in D except that
some of the exponents in D′ may be less than the corresponding
exponents in D.

(=⇒) Let D′ be an h-refutation; we must construct a refuta-
tion D. Let D′(m) denote the result of multiplying all superscripts
in D′ by the value m > 0. Let the first R2 (slowdown) inference
in D′ be the i-th inference in D′. Thus, the first i − 1 inferences
in D′ are speedup inferences, h-R0 or R1. Choose m large enough
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so that m > 1/x for all values of x used in these first i−1 speedup
inferences.

In D′(m), the second through i-th lines have the form

(2.3) 0(∃na1)b2(∀na2)b3 · · · bk(Qn0)0DTS(nak+1).

This is because rule h-R0 gives a formula of this form, and the
speedup rule R1 preserves this form. By choice of m, for all i ≤ k,
the values ai and bi are > 1 in the lines (2.3). The next line
in D′(m), inferred by slowdown, has the form

(2.4) 0(∃na1)b2(∀na2)b3 · · · bk−1(Qnak−1)bkDTS(nmax{cbk,cak+1}).

Form the refutation D by modifying D′(m) as follows. First, in
the i − 1 lines of the form (2.3), replace “(Qn0)0” with “(Qn0)1”.
Second, on every line, replace the leading superscript “0” with “1”.

It is straightforward to verify that this makes D a valid refuta-
tion. The first i − 1 inferences are correct since bk > 1 by choice
of m. The i-th inference, a slowdown, of the line (2.4) is also cor-
rect, since bk > 1. Finally, the first superscripts b2 are all ≥ 1: this
is true for the first line by choice of m, and the values of b2 can
only increase when they are affected by a speedup R2. Thus the
final inference in D has the form

1(∃na1)b2DTS(na2) ⊆ 1DTS(nmax{ca1,cb2,ca2})

with b2 ≥ 1 and is a valid instance of R2. �

For our second simplification of the syntax of derivations, we
shall remove all the ai’s, i = 1, . . . , k, from lines in derivations.
This is based on two observations: First, ai ≤ bi+1, for all i ≤ k.
This property holds for rule h-R0 and is preserved by R1 and R2.
Second, the value of ak is used only for the slowdown rule R2, in
the expression max{cbk, cak, cbk+1, cak+1}. But, being ≤ bk+1, the
presence of ak is superfluous.

This allows us to simplify the format of lines and rules of infer-
ence considerably with a “reduced” inference system. The reduced
system replaces each quantifier (Qnai)bi+1 by just Qbi+1 . The valid
lines in a reduced derivation have the form:

(2.5) 0∃b1∀b2∃b3 · · · bk−1Qbk+1DTS(na).
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for 0 ≤ bi and 0 ≤ a. The expression (2.5) no longer actually
represents a complexity class per se, rather it is merely a syntactic
object. Nonetheless, the reduced system allows us to reason about
syntactic “classes” of the form (2.5). We use “⊢” instead of “⊆” to
indicate derivability in the reduced system. The rules of inference
for the reduced system are:

R0′: Initialization:

0DTS(na) ⊢ 0∃0DTS(na).

R1′: Speedup:

· · · bk∀bk+1DTS(na)

⊢ · · · bk∀max{x,bk+1}∃bk+1DTS(na−x),

where 0 < x ≤ a.

R2′: Slowdown:

· · · bk∀bk+1DTS(na) ⊢ · · · bkDTS(nmax{cbk ,cbk+1,ca}).

As before each rule R1′ and R2′ is permitted in dual form, with
existential and universal quantifiers interchanged. The rule R0′ has
been formulated to have only one quantifier and not incorporate a
speedup: this will be convenient later when we discuss c-achievable
pairs.

A reduced derivation is defined similarly to a derivation, but
using ⊢ instead of ⊆, with rules R0′-R2′ in place of R0-R2. Thus,
Ξ⊢Λ means that Λ is derivable from Ξ via a sequence of R0′-R2′

inferences, and all lines in the reduced derivation, except possi-
bly Ξ and Λ, have quantifiers. A reduced refutation is a reduced
derivation of 0DTS(na)⊢0DTS(nb) with b < a.

Lemma 2.6. Fix c > 1. There is a reduced refutation (with rules
R0′-R2′) iff there is a refutation (with R0-R2).

Proof. Note that an application of R0′ followed by a use of R1′

can simulate a reduced initial speedup (h-R0) inference:

0DTS(na) ⊢ 0∃x∀0DTS(na−x)

The lemma follows from Lemma 2.2 and the above discussion. �
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The rest of the paper will work primarily with reduced derivations
and refutations. In order to simplify terminology, we henceforth
use the terms “derivation” and “refutation” to refer to reduced
derivations and refutations. The context should always make it
clear whether we are referring to the reduced or the original system.

2.3. Approximate inferences.

Definition 2.7. Let Ξ and Ξ′ be classes represented in the re-
duced inference system just defined:

(2.8) Ξ = 0∃b2∀b3 · · · bkQbk+1DTS(na)

and

Ξ′ = 0∃b′
2∀b′

3 · · · b′kQb′
k+1DTS(na′).

Suppose, as indicated, that Ξ and Ξ′ have the same number of
alternations. We define Ξ′ ≤ Ξ to mean that a′ ≤ a and b′i ≤ bi for
all i.

The class Ξ + ǫ is defined by the condition Ξ′ = Ξ + ǫ holds iff
a′ = a+ ǫ and b′i = bi + ǫ for all i ≥ 2.

Definition 2.9. The weakening rule of inference allows Ξ to be
inferred from Ξ′ if Ξ′ ≤ Ξ. We use the notation Ξ wΛ to indicate
that there is a derivation of Λ from Ξ in the reduced inference
system augmented with the weakening rule.

A derivation that is allowed to contain weakening inferences
will be called a w -derivation. We reserve the terminology “deriva-
tion” and the symbol “⊢” for (reduced) derivations that do not use
weakenings.

Lemma 2.10. Let Ξ, Ξ′, Λ, Λ′ be classes in the reduced refutation
system.

(a) Ξ wΛ iff there is a Λ′ ≤ Λ such that Ξ ⊢ Λ′.

(b) If Ξ wΛ and Ξ′ ≤ Ξ, then there is a derivation of Ξ′⊢Λ′ for
some Λ′ ≤ Λ.
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The lemma is readily proved by induction on the number of lines
in a derivation with weakening rules. We leave the details to the
reader.

By part (b) of the lemma we may assume without loss of gener-
ality that derivations (without weakening inferences) never contain
lines Ξ ≤ Ξ′ with Ξ preceding Ξ′ in the derivation.

We next define a notion of “approximate inference” denoted 
.
Intuitively, Ξ 
 Λ means that from Ξ one can derive something as
close to Λ as desired.

Definition 2.11. We write Ξ 
 Λ to mean that for all ǫ > 0,
there exists a δ > 0 so that (Ξ + δ) w (Λ + ǫ).

It is easy to show that if Ξ wΛ then Ξ 
 Λ also holds.

Lemma 2.12. The 
 relation is transitive: if Ξ 
 Λ and Λ 
 Γ,
then Ξ 
 Γ.

Now let ∆ be a “prefix” for a reduced line:

∆ = 0∃e2∀e3 · · · eℓ∀eℓ+1.

(Note there is no “DTS” part to ∆.) For Ξ of the form shown
above in (2.8), we define the concatenation ∆Ξ to be the reduced
line

0∃e2∀e3 · · · eℓ∀eℓ+1∃b2∀b3 · · · bk∀bk+1DTS(na).

A similar definition of concatenation is used for prefixes ∆ with
an odd number of quantifiers; in this case, since quantifiers must
alternate type, if Ξ begins with an ∃ then ∆ must begin with a ∀,
and vice-versa.

Lemma 2.13. Suppose Γ as at least one quantifier, and ∆ is as
above. If Ξ 
 Γ, then ∆Ξ 
 ∆Γ.

Proof. For ǫ > 0, choose δ > 0 so that there is a w -derivation
D of Γ + ǫ from Ξ + δ. Without loss of generality, δ ≤ ǫ. We
claim that that, by prefixing each line in D with ∆+ δ, we obtain
a w -derivation D′ of (∆ + δ)(Γ + ǫ) from (∆ + δ)(Ξ + δ). This is
because D contains no lines with zero quantifiers, and thus the
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superscript “0” at the beginning of each line has no effect on the
validity of D.

Since δ ≤ ǫ, adding a weakening at the end of D′ makes it a
w -derivation of the line (∆ + ǫ)(Γ + ǫ). �

3. Achievable derivations

3.1. Achievability and subsumption. Williams (2013) used
proof annotations of 1’s and 0’s to indicate sequences of speedups
and slowdowns (respectively) in a derivation. We think of 1’s and
0’s as being paired up like open and closed parentheses, and define
a balanced derivation to be a derivation containing only inferences
of types R1′ and R2′ for which the corresponding pattern of 1’s
and 0’s, viewed as parentheses, is properly balanced. In other
words, a derivation is balanced provided the first and last lines
have the same number of alternations, and each intermediate line
has at least that many alternations. In a balanced derivation, each
speedup inference (a “1”) is uniquely matched by a later slowdown
derivation (a “0”).

We use the star notation ∗ of regular expressions to construct
annotations for derivations. For instance, a derivation of type
(10)∗ consists of alternating speedup and slowdown inferences.
Theorems 3.9 and 4.1 will establish what can be achieved with
derivations of this type.

Definition 3.1. Fix c > 1. Let 〈µ, ν〉 be a pair such that µ ≥ 1
and 0 < ν. The pair 〈µ, ν〉 is c-achievable provided that, for all
values a, b and d satisfying cµb = νd,

(3.2) a∃bDTS(nd) 

a∃µbDTS(nνd).

The inference displayed is called a 〈µ, ν〉 step. The c-achievable
pair 〈µ, ν〉 is called useful provided ν < 1.

One subtle, but important, aspect of Definition 3.1 is that the
value of a makes no difference at all. This is because the approx-
imate implication (3.2) must be based on derivations that satisfy
condition (c) of the definition of “derivation” as given at the end
of Section 2.1. That is to say, the derivations cannot contain any
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lines with zero quantifiers, and inspection of the rules R1′ and R2′

shows that the value a cannot influence these derivations.

It is also important to note that c-achievability is defined in
terms of 
, namely, approximate inference. That is to say, if 〈µ, ν〉
is c-achievable, it is only required that the 〈µ, ν〉 step be approxi-
mately derivable.

The motivation is that we wish to make ν as small as possible
in c-achievable derivations so as to make νd as small as possible.
This is needed to find as good a refutation as possible (that is to
say, a refutation for as large a value of c as possible). In particular,
the next lemma shows that if ν < 1/c is c-achievable, then there is
a refutation.

Lemma 3.3. Fix c > 1. Suppose there is a c-achievable pair 〈µ, ν〉
with ν < 1/c. Then there exists a refutation.

Proof. We have the following (approximate) refutation:

0DTS(n1) ⊢ 0∃0DTS(n1) Initialization
w 0∃ν/(cµ)DTS(n1) Weakening



0∃ν/cDTS(nν) By a 〈µ, ν〉 step

⊢ 0DTS(ncν) Slowdown

With ν < 1/c, we have cν < 1. By the definition of approxi-
mate derivations (
), we can therefore derive 0DTS(ncν+ǫ) from
0DTS(n1) for arbitrarily small ǫ > 0. Choosing ǫ so that cν+ ǫ < 1
gives a refutation. �

The converse of Lemma 3.3 will be proved below as Lemma 4.20;
thus there is a refutation if and only if there is a c-achievable pair
〈µ, ν〉 with ν < 1/c. In addition, Corollary 3.17 shows this happens
if there is a c-achievable pair 〈µ, ν〉 with ν ≤ 1/c.

Unfortunately, making ν small involves a tradeoff: the 〈µ, ν〉
step (3.2) increases the value of b to b′ = µb while decreasing the
value of d to d′ = νd. Furthermore, as we shall see, obtaining
achievable pairs with smaller values of ν will be done at the cost
of requiring larger values of µ.
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Definition 3.4. An implication

(3.5) · · · bkQbk+1DTS(na) w · · · bkQb′
k+1DTS(na′)

is subsumed by 〈µ, ν〉 provided the implication can be inferred by
a weakening, followed by a 〈µ, ν〉 step and then a weakening.

The next two lemmas are immediate from the definitions. To prove
Lemma 3.6, note that a 〈µ, ν〉 step was defined with the require-
ment that cµb = νd: if this equality does not hold, a weakening
can be used to increase one of b or d so that 〈µ, ν〉 step can be
applied.

Lemma 3.6. The implication (3.5) is subsumed by 〈µ, ν〉 iff

b′k+1 ≥ max{µbk+1,
1

c
νa} and a′ ≥ max{cµbk+1, νa}.

Lemma 3.7. Suppose µ ≤ µ′ and ν ≤ ν ′ < 1. If 〈µ, ν〉 is c-
achievable, then so is 〈µ′, ν ′〉. If an implication is subsumed by
〈µ′, ν ′〉, then it is also subsumed by 〈µ, ν〉.

We also need a weaker notion of subsumption, which is defined
as follows (compare to Lemma 3.6).

Definition 3.8. The implication (3.5) is weakly subsumed by
〈µ, ν〉 iff

a′ ≥ max{cµbk+1, νa}.

The intuition is that optimal derivations are subsumed by c-
achievable pairs. However, there are derivations that are only
weakly subsumed by a c-achievable pair; these derivations are not
particularly useful, but do need to be accounted for. As an exam-
ple, for sufficiently large a, the trivial inference

0∃1DTS(na)⊢0∃1DTS(na)

is only weakly subsumed by 〈1, 1〉, or indeed by any c-achievable
〈µ, ν〉.
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3.2. Derivations of type (10)∗. We continue to fix a value of c
with 1 < c < 2. The next lemma, although stated quite differently,
is essentially the same as the Conditional Speedup Lemma 6.7 of
Williams (2008).

Lemma 3.9. The pair 〈1, c − 1〉 is c-achievable, with derivations
of type (10)∗.

Since c < 2, the pair 〈1, c− 1〉 is useful.

Proof. Let Ξ = a∃bDTS(nd). If cb ≤ d, then from Ξ we can
derive, by a speedup followed by a slowdown:

Ξ ⊢ a∃b∀bDTS(nd−b)(3.10)

⊢ a∃bDTS(nmax{cb,c(d−b)}),

where the first step is a speedup with x = b. That is, from Ξ we
can derive

a∃bDTS(nd′)

with d′ = max{cb, c(d − b)}. The possible values for d′ are shown
on the following graph.

0 d

d′

cb

cb

b

b

2b

d′ = cb

c
c−1

b

d′ = c(d− b)

d′=d

As shown in the graph, for d′ = max{cb, c(d− b)}, we have d′ < d
precisely when cb < d < c

c−1
b. For cb ≤ d ≤ 2b, we have d′ = cb.

And, for 2b < d < c
c−1

b, we have d′ = c(d− b). Thus, depending on

the value of d, we have either d′ = cb or
(

c
c−1

b− d′
)

= c
(

c
c−1

b− d
)

.
Therefore, by repeating the inference pattern 10 a finite number
of times, we can infer

(3.11) a∃bDTS(nd)⊢a∃bDTS(ncb),
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provided cb < d < c
c−1

b.
To complete the proof of Lemma 3.9, we must show that

a∃bDTS(n
c

c−1
b) 
 a∃bDTS(ncb).

Let ǫ > 0. Choose δ > 0 so that δ ≤ ǫ/c and δ < c(2− c)b/(c− 1)2.
By the latter inequality and since c

c−1
> 1,

(3.12) c(b+ δ) <
c

c− 1
b+ δ <

c

c− 1
(b+ δ).

Therefore, we have

a+δ∃b+δDTS(n
c

c−1
b+δ) ⊢ a+δ∃b+δDTS(nc(b+δ))

w a+ǫ∃b+ǫDTS(ncb+ǫ)

where the first step follows by a (10)∗ derivation as in (3.11) us-
ing (3.12), and the second step is a weakening since cδ ≤ ǫ. �

3.3. Composition of achievable pairs. We next describe how
two c-achievable pairs can be combined (or, “composed”) to form
another c-achievable pair. The next lemma is in some sense equiv-
alent to the construction behind Lemma 6.8 of Williams (2008),
but is stated in a quite different and more general form.

Lemma 3.13. Let 〈µ1, ν1〉 and 〈µ2, ν2〉 be c-achievable. Also sup-
pose cν1µ2 ≥ µ1. Set

µ = cν1µ2(3.14)

ν =
cµ1ν1ν2
µ1 + ν1ν2

(3.15)

Then 〈µ, ν〉 is c-achievable.
The idea for the proof is that a 〈µ, ν〉 step can be achieved by a
speedup (R1′) inference, a 〈µ2, ν2〉 step, a slowdown (R2′) inference,
and a 〈µ1, ν1〉 step. That is, if B and A are annotations for proofs
that approximate a 〈µ1, ν1〉 step and a 〈µ2, ν2〉 step sufficiently well
(respectively), then 1A0B is an annotation for an approximate
〈µ, ν〉 step. However, the final 〈µ1, ν1〉 step should be skipped if
〈µ1, ν1〉 is not useful.
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Proof. Let d = cµ 1
ν
b and Ξ = a∃bDTS(nd). Note that cµb =

νd; we have to show that Ξ 

a∃µbDTS(ncµb). Let x = 1

µ1
µb =

1
µ1
cν1µ2b. Since cν1µ2 ≥ µ1, we have x ≥ b. Therefore, by a

speedup inference,

Ξ ⊢ a∃x∀bDTS(nd−x).

We have

d =
cµ

ν
b = c(cν1µ2)

(

µ1 + ν1ν2
cµ1ν1ν2

)

b = c

(

µ2

ν2
+

µ2ν1
µ1

)

b,

whence

d− x = c
µ2

ν2
b > 0.

Thus, by the c-achievability of 〈µ2, ν2〉,

(3.16) Ξ 

a∃x∀µ2bDTS(nν2(d−x)) = a∃x∀µ2bDTS(ncµ2b).

The construction now splits into two cases depending on whether
x ≤ cµ2b. First, consider the case x ≤ cµ2b. Note that this case
always applies if 〈µ1, ν1〉 is useful since then µ1 ≥ 1 and ν1 < 1.
Since x ≤ cµ2b, a slowdown inference applied to (3.16) gives

Ξ 

a∃xDTS(ncν2(d−x)).

A simple calculation shows cµ1x = ν1(cν2(d − x)). Hence, by the
c-achievability of 〈µ1, ν1〉 and the transitivity of 
,

Ξ 

a∃µ1xDTS(ncµ1x) = a∃µbDTS(ncµb) = a∃µbDTS(nνd).

On the other hand, suppose x ≥ cµ2b. Picking up from (3.16),
with a slowdown and a weakening, we obtain

Ξ 

a∃xDTS(ncx) w a∃µ1xDTS(ncµ1x) = a∃µbDTS(nνd).

This proves Lemma 3.13. �
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Corollary 3.17. Suppose there is a c-achievable pair 〈µ, ν〉 with
ν ≤ 1/c. Then there exists a refutation.

Proof. If ν < 1/c, this is just Lemma 3.3. So suppose ν = 1/c,
and thus cν = 1. Letting µ1 = µ2 = µ and ν1 = ν2 = ν,
Lemma 3.13 implies that 〈µ, ν ′〉 is c-achievable with ν ′ = µν/(µ+ν2).
It follows that 1/ν ′ = (1/ν) + (ν/µ), so ν ′ < ν = 1/c. By
Lemma 3.3, there exists a refutation. �

The condition cν1µ2 ≥ µ1 puts a restriction on how c-achievable
pairs can be combined by Lemma 3.13. The next lemma shows that
the case where this condition fails can be handled by the simple
expedient of letting µ = max{µ1, cν1µ2}.

Lemma 3.18. Let 〈µ1, ν1〉 and 〈µ2, ν2〉 be c-achievable. Set

µ = max{cν1µ2, µ1}(3.19)

ν =
cµ1ν1ν2
µ1 + ν1ν2

.(3.20)

Then 〈µ, ν〉 is c-achievable.

Proof. If µ1 ≤ cν1µ2, then Lemma 3.13 already implies the
result. Otherwise, let µ′

2 = µ1/(cν1), so that µ′
2 > µ2 and µ1 =

cν1µ
′
2. By Lemma 3.7, 〈µ′

2, ν2〉 is c-achievable. Lemma 3.13 applied
to the pairs 〈µ1, ν1〉 and 〈µ′

2, ν2〉 now gives the desired result. �

To better understand what is happening when we compose
〈µ1, ν1〉 and 〈µ2, ν2〉 to form 〈µ, ν〉, reexpress the formulas (3.14)
and (3.15) as follows:

1

µ
=

1

cν1

(

1

µ2

)

(3.21)

1

ν
=

ν1
µ1(cν1 − 1)

− 1

cν1

(

ν1
µ1(cν1 − 1)

− 1

ν2

)

(3.22)

Equations (3.21) and (3.22) give an interesting perspective on how
µ and ν are defined. They allow us to view the pair 〈µ1, ν1〉 as
being a transformation that acts on the reciprocal values 1/µ2 and
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1/ν2 to give the values 1/µ and 1/ν. Equation (3.21) shows that
the value 1/µ2 is scaled by the factor 1/(cν1) to obtain 1/µ. In the
usual case where ν1 ≥ 1/c, the scale factor is ≤ 1, so µ ≥ µ2.

Equation (3.22) shows that the value 1/ν is obtained by con-
tracting 1/ν2 towards a fixed point ν1/(µ1(cν1−1)), with the scaling
factor for the contraction again equal to 1/(cν1). In most cases,
1/ν2 is smaller than this fixed point and we also have the scale
factor 1/(cν1) < 1. In these cases, 1/ν > 1/ν2, so ν < ν2. Getting
smaller and smaller values for ν is desirable since, as Lemma 3.3
showed, our goal is to obtain ν < 1/c so as to obtain a refutation.

The fixed point for the mapping ν2 7→ ν will be denoted by
τ(µ1, ν1); namely,

τ(µ1, ν1) =
cν1 − 1

ν1
µ1 and (τ(µ1, ν1))

−1 =
ν1

(cν1 − 1)µ1

With this notation, we can rewrite equation (3.22) as

1

ν
= (τ(µ1, ν1))

−1 − 1

cν1

(

(τ(µ1, ν1))
−1 − 1

ν2

)

,

or equivalently as

(3.23)

(

(τ(µ1, ν1))
−1 − 1

ν

)

=
1

cν1

(

(τ(µ1, ν1))
−1 − 1

ν2

)

.

This makes it clear how ν is contracting towards τ(µ1, ν1).
In keeping with the intuition that 〈µ1, ν1〉 is a transforma-

tion acting on 〈µ2, ν2〉, we sometimes express the conditions (3.14)
and (3.15), or the equivalent (3.21) and (3.22), with a mapping
notation:

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.
This notation is used only when µ1 ≤ cν1µ2. Otherwise, we will
occasionally express that (3.19) and (3.20) hold by writing

〈µ1, ν1〉 : 〈µ2, ν2〉 7→max 〈µ, ν〉.

Note that the “ 7→max” notation makes no restriction on whether
µ1 is larger than cν1µ2.
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3.4. The refutations for c < 2 cos(π/7). Suppose that 1 < c <
2 cos(π/7). Recasting results from Williams (2008), we prove there
exists a refutation. We begin by recalling a simple characterization
of 2 cos(π/7):

Lemma 3.24. Let c > 1. Then τ(1, c − 1) < 1/c if and only if
c < 2 cos(π/7).

Proof. The inequality τ(1, c − 1) < 1/c holds if and only if
c3− c2−2c+1 < 0. For c > 1, this is equivalent to c < 2 cos(π/7),
see Williams (2008). �

Theorem 3.25. (Williams 2008) There is a refutation for 1 < c <
2 cos(π/7).

Proof. Define µ0 = 1 and ν0 = c − 1. Define 〈µk+1, νk+1〉 in-
ductively by 〈µ0, ν0〉 : 〈µk, νk〉 7→ 〈µk+1, νk+1〉, so that 〈µk+1, νk+1〉
is the composition of 〈1, c−1〉 and 〈µk, νk〉. Namely,

µk+1 = cν0µk and νk+1 =
cµ0ν0νk
µ0 + ν0νk

.

By Lemma 3.9, 〈µ0, ν0〉 is c-achievable. Thus, if ν0 ≤ 1/c, then
by Corollary 3.17, there is a refutation. An easy calculation shows
that for c > 1, we have ν0 = c−1 ≤ 1/c provided c ≤ (1+

√
5)/2 ≈

1.618 < 2 cos(π/7).

It remains to consider the case (1 +
√
5)/2 < c < 2 cos(π/7).

This implies that cν0 > 1. Arguing inductively on k, since ν0 is
> 1/c, the values of µk are increasing with µk = cν0µk−1 > µk−1 ≥
µ0, which by Lemma 3.13 implies that 〈µk, νk〉 is c-achievable.

By (3.22) and since cν0 > 1, the values of νk are contracting
towards the limit value

τ(µ0, ν0) =
µ0(cν0 − 1)

ν0
=

c(c− 1)− 1

c− 1

By Lemma 3.24, this value is < 1/c. Thus, for sufficiently large k,
we have νk < 1/c. �
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It is easy to check that the annotations for the alternation trad-
ing proofs described above are the patterns Xi described in the
introduction, and the same as proof annotations from Williams
(2006).

4. The limits of achievable constructions

In this section we argue that, for 1 < c < 2, no refutation can do
better than what is possible using c-achievable pairs, and further-
more that the best c-achievable pairs are 〈1, c−1〉 and the ones that
can be obtained by the constructions of Lemmas 3.13 and 3.18.

4.1. Limits on derivations of type (10)∗. We start by giving
lower bounds on what can be achieved with derivations that follow
the (10)∗ pattern.

Lemma 4.1. Every non-empty (10)∗ pattern of inferences in a
derivation is subsumed by the c-achievable pair 〈1, c− 1〉.

Proof. Recall the derivation (3.10) of type 10 that was used in
the proof of Lemma 3.9. We claim that this is the optimal kind
of 10 inference step. The derivation (3.10) used a speedup with
x = b; however, to prove Lemma 4.1, we must consider a general
10 inference with x not necessarily equal to b:

a∃bDTS(nd) ⊢ a∃max{x,b}∀bDTS(nd−x)

⊢ a∃max{x,b}DTS(nmax{cx,cb,c(d−x)}).

We need to rule out the use of x 6= b. First, suppose x < b. In
this case, we can achieve the same inference by using a weakening
to increase the value of d and change the speedup to use x = b.
Namely,

a∃bDTS(nd) w a∃bDTS(nd+b−x)

⊢ a∃b∀bDTS(n(d+b−x)−b)

= a∃b∀bDTS(nd−x)

⊢ a∃bDTS(nmax{cb,c(d−x)}).
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Second, suppose x > b. In this case, we first use weakening to
increase b by x− b:

a∃bDTS(nd) w a∃xDTS(nd)

⊢ a∃x∀xDTS(nd−x)

⊢ a∃xDTS(nmax{cx,c(d−x)}).

Thus any (10)∗ pattern of inferences can be replaced by a sequence
of operations of the following types: (a) increase d, (b) increase b,
and (c) replace d with max{cb, c(d − b)}. There is, w.l.o.g., at
least one operation of type (c). The figure used in the proof of
Lemma 3.9, shows that the value of d is decreased by an oper-
ation (c) only if d < cb/(c − 1) and that d cannot be decreased
below cb. Thus d can be decreased only by a factor < c − 1. It
follows that that any such sequence of operations is subsumed by
〈1, c− 1〉. �

4.2. Limits on derivations of type 1A0B. We now consider
arbitrary balanced derivations. These derivations must start with
a speedup inference and have the pattern 1A0B, where A and B
are themselves balanced, possibly trivial, derivations. A derivation
is called trivial if contains no inferences.

Lemma 4.2 shows that any balanced derivation that starts with
a line of the form · · · a∃bDTS(nd) with d > cb does no real work, and
can be replaced by a weakening. Thus, without loss of generality,
any premiss of a speedup inference has d > cb, since otherwise the
balanced subderivation starting with the speedup inference can be
replaced with a weakening and applying Lemma 2.10(a).

Lemma 4.2. Suppose a non-trivial balanced derivation starts with
the line · · · a∃bDTS(nd). Then the last line of the derivation has
the form · · · a∃b′DTS(ncb′′) for some b′′ ≥ b′ ≥ b.

Thus, if d ≤ cb, then any non-trivial balanced derivation, with
first line · · · a∃bDTS(nd), is subsumed by 〈1, 1〉.

Proof. Throughout the derivation, the superscript after the ∃
stays equal to b or becomes larger. (This is because speedup steps
can not decrease the superscript, and because the derivation is
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balanced and cannot remove the ∃ with a slowdown.) Therefore,
the final step in the derivation is a slowdown of the form

· · · a∃b′∀eDTS(nf ) ⊢ · · · a∃b′DTS(nmax{cb′,ce,cf})

with b′ ≥ b. Letting b′′ = max{b′, e, f}, this proves the lemma. �

The next lemma is our central technical result putting limita-
tions on how derivations are formed from c-achievable pairs. Infor-
mally, it states that any balanced derivation with a 1/0 annotation
of the form 1A0B with A and B balanced can be subsumed by the
composition of the subderivation A and the subderivation B, where
“composition” is in the sense of composition of pairs 〈µi, νi〉 as used
in Lemmas 3.13 and 3.18.

Lemma 4.3. Let a balanced derivation D have the annotation
1A0B, where A and B are balanced 1/0-patterns. Suppose that
the subderivation corresponding to A is weakly subsumed by the
pair 〈µ2, ν2〉. Further suppose that the subderivation correspond-
ing to B is non-trivial and is subsumed (respectively, weakly sub-
sumed) by 〈µ1, ν1〉. Then the entire derivation D is subsumed
(respectively, weakly subsumed) by a pair 〈µ, ν〉 such that either

(4.4) 〈µ1, ν1〉 : 〈µ2, ν2〉 7→max 〈µ, ν〉,

or

(4.5) 〈1, 1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

On the other hand, if B is trivial, then the derivation D is weakly
subsumed by the 〈µ, ν〉 given by (4.5).

The lemma is stated for derivations D that contain only speedup
and slowdown inferences, and no weakenings. However, by the
proof of Lemma 2.10 and the definition of subsumption, it also
holds for derivations that contain weakenings. In this case, the
weakenings in the derivation do not contribute to the pattern of
0’s and 1’s for the derivation.
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Proof. The derivation starts with a line Ξ = · · · a∃bDTS(nd),
and ends with a line ∆ = · · · a∃x′

DTS(nu′

) (or, dually, with ∀ in
place of ∃).

The first inference of the 1A0B derivation is a speedup,

· · · a∃bDTS(nd) ⊢ · · · a∃max{x,b}∀bDTS(nd−x).

We claim that w.l.o.g. x ≥ b. This is proved just as in the proof
of Lemma 4.1. Namely, if x < b, add a weakening inference to the
beginning to derive

· · · a∃bDTS(nd) w · · · a∃bDTS(nd+b−x) ⊢ · · · a∃b∀bDTS(nd−x).

In particular, this means there is a 1A0B derivation D′ of ∆ from
· · · a∃bDTS(nd+b−x). Thus, it will suffice to prove the lemma under
the assumption that the first speedup inference uses x ≥ b, as this
will prove that 〈µ, ν〉 subsumes D′ and hence subsumes D.

The 1A0 portion of the derivation D consists of a speedup, then
a subderivation with the annotation A that is weakly subsumed by
〈µ2, ν2〉, and then a slowdown:

· · · a∃bDTS(nd) ⊢ · · · a∃x∀bDTS(nd−x) - by speedup
...

... (weakly subsumed by 〈µ2, ν2〉)
⊢ · · · a∃x∀yDTS(nz)

⊢ · · · a∃xDTS(nu) - by slowdown(4.6)

where u = max{cx, cy, cz} and where, by the weak subsumption
by 〈µ2, ν2〉,

(4.7) z ≥ max{cµ2b, ν2(d− x)}.

Suppose B is trivial, so · · · a∃xDTS(nu) is the last line of the 1A0B
derivation. By u ≥ cz and u ≥ cx, we have u ≥ c(cµ2)b and u ≥
max{cx, cν2(d − x)}. The value max{cx, cν2(d− x)} is minimized
with x = ν2d/(1 + ν2) and therefore u ≥ cν2d/(1 + ν2). Thus, if B
is trivial, the derivation D is weakly subsumed by the pair

µ = cµ2 and ν =
cν2

1 + ν2
.
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This is the same as defining µ and ν by 〈1, 1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.
Now assume B is non-trivial. In optimal derivations, the lower

bound (4.7) will have cµ2b ≤ ν2(d−x). However, to handle all the
cases at once, we set

d0 = max{d, x+
cµ2

ν2
b}

so that cµ2b ≤ ν2(d0 − x) and

(4.8) b ≤ x ≤ d0 −
cµ2

ν2
b.

From (4.7), we also have

(4.9) z ≥ ν2(d0 − x),

since either d0 = d or cµ2b = ν2(d0 − x).
Picking up from line (4.6), the “B” part of the derivation de-

rives
· · · a∃xDTS(nu) ⊢ · · · a∃x′

DTS(nu′

)

where, since this part is weakly subsumed by 〈µ1, ν1〉 and by u ≥ cz
and (4.9),

(4.10) u′ ≥ max{cµ1x, ν1u} ≥ max{cµ1x, cν1ν2(d0 − x)}.

If B is also (non-weakly) subsumed by 〈µ1, ν1〉, then

(4.11) x′ ≥ max{µ1x, ν1ν2(d0 − x)}.

Similarly to how we introduced d0 to replace d in (4.7), we need
to introduce a value x0 to replace x in equations (4.10) and (4.11).
But doing before this, suppose µ1b > ν1ν2(d0 − b). (This happens,
however, only in non-optimal derivations.) From this assumption,

(4.12) (µ1 + ν1ν2)b > ν1ν2d0.

Multiplying (4.8) by ν1ν2 gives

(4.13) ν1ν2d0 ≥ (ν1ν2 + cµ2ν1)b.
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The last two equations imply µ1 > cν1µ2. The bound (4.10) with
x ≥ b implies that u′ ≥ cµ1b. This, plus (4.12) and d0 ≥ d, implies
u′ > cµ1ν1ν2

µ1+ν1ν2
d. Thus the entire derivation D is weakly subsumed

by 〈µ, ν〉 with

µ = µ1 = max{µ1, cν1µ2}

ν =
cµ1ν1ν2
µ1 + ν1ν2

If B is (non-weakly) subsumed by 〈µ2, ν2〉, then similar reasoning
using (4.11) in place of (4.10) gives a lower bound on x′ and proves
that the derivation D is also (non-weakly) subsumed by 〈µ, ν〉.

Now suppose µ1b ≤ ν1ν2(d0 − b), and set

x0 = min{x, ν1ν2
µ1 + ν1ν2

d0}.

By the supposition and x ≥ b, we have b ≤ x0 ≤ x. We also have
µ1x0 ≤ ν1ν2(d0 − x0). Therefore,

x0 ≤
ν1ν2

µ1 + ν1ν2
d0

and

(4.14) d0 − x0 ≥
µ1

µ1 + ν1ν2
d0.

By the definition of x0, either x0 = x or ν1ν2(d0−x0) = µ1x0 < µ1x;
hence (4.10) and (4.11) imply

(4.15) u′ ≥ max{cµ1x0, cν1ν2(d0 − x0)}.

and

(4.16) x′ ≥ max{µ1x0, ν1ν2(d0 − x0)}.

By (4.8) and x ≥ x0, we have d0 − x0 ≥ cµ2

ν2
b, whence

(4.17) ν1ν2(d0 − x0) ≥ cν1µ2b.

Then x0 ≥ b, d0 ≥ d, and inequalities (4.14), (4.15) and (4.17)
imply that

u′ ≥ max{cµ1b, (c
2ν1µ2)b,

cµ1ν1ν2
µ1 + ν1ν2

d}.
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Therefore, the entire derivation D is weakly subsumed by the pair
〈µ, ν〉

µ = max{µ1, cν1µ2}

ν =
cµ1ν1ν2
µ1 + ν1ν2

If B is (non-weakly) subsumed by 〈µ2, ν2〉, then, arguing similarly
using (4.16), D is also (non-weakly) subsumed by 〈µ, ν〉. �

4.3. Characterization of achievable pairs. In this section
we prove that every balanced derivation is subsumed by some c-
achievable pair, and we give a small list of operations that suffice
to form all c-achievable pairs.

The earlier constructions used the following five methods for
constructing c-achievable pairs:

(A) 〈1, c− 1〉 is c-achievable.

(B) Suppose 〈µ1, ν1〉 and 〈µ2, ν2〉 are c-achievable and µ1 ≤ cν1µ2.
Then 〈µ, ν〉 is c-achievable, where

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

(C) Suppose 〈µ1, ν1〉 and 〈µ2, ν2〉 are c-achievable and µ1 > cν1µ2.
Then 〈µ, ν〉 is c-achievable, where

〈µ1, ν1〉 : 〈µ2, ν2〉 7→max 〈µ, ν〉.

(D) If 〈µ2, ν2〉 is c-achievable, then so is 〈µ, ν〉, where

〈1, 1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

(E) If 〈µ, ν〉 is c-achievable and µ′ ≥ µ and 1 ≥ ν ′ ≥ ν, then
〈µ′, ν ′〉 is c-achievable.

(Constructions (B) and (C) are defined separately since we will
show that the constructions (C) are not needed.) A pair 〈µ, ν〉 is
called an ABCD-pair if it can be shown to be c-achievable by the
operations (A)-(D).
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Theorem 4.18. Any balanced non-trivial derivation D starting
with a line with at least one alternation, is weakly subsumed by
some ABCD-pair.

As we shall show momentarily, Theorem 4.18 follows easily from
Lemmas 4.1 and 4.3. First, however, we prove another simple
lemma.

Lemma 4.19. Let D1 and D2 be balanced derivations with the
first line of D2 the same as the last line of D1. If D1 is subsumed
by the c-achievable pair 〈µ, ν〉, then the concatenation D1D2 is also
subsumed by 〈µ, ν〉.

Proof of Lemma 4.19. Let the derivation D1 begin with the
line · · · a∃bDTS(nd), and end with the line · · · a∃b′DTS(nd′). By
the subsumption assumption, letting f = max{µb, 1

c
νd}, we have

b′ ≥ f and d′ ≥ cf . Now, by Lemma 4.2, the last line of D2 is of
the form a∃b′′DTS(nd′′), with b′′ ≥ b′ ≥ f and d′′ ≥ cb′ ≥ cf . That
is to say, D1D2 is also subsumed by 〈µ, ν〉. �

Proof of Theorem 4.18. The proof is by induction on the
complexity of the derivation D. Since D is balanced, its first infer-
ence is a speedup, and there is later a matching slowdown. That
is, D has the annotation 1A0B where A and B are balanced pat-
terns of 0’s and 1’s. If A is trivial, then the first two lines of D
are inferred by a 10 pattern and hence by Lemma 4.1 is subsumed
by 〈1, c− 1〉. Therefore, by Lemma 4.19, all of D is also subsumed
by 〈1, c − 1〉. Now suppose A is non-trivial. The induction hy-
pothesis is that the subderivations of D corresponding to A and B
are both weakly subsumed by ABCD-pairs. It follows immediately
from Lemma 4.3 that D is also weakly subsumed by some ABCD-
pair. �

4.4. Characterizing refutations. We can now characterize for
which values of c > 1 refutations exist, in terms of what pairs are
c-achievable.

Lemma 4.20. Fix c ≥ 1. There is a refutation if and only if there
is some ABCD-pair 〈µ, ν〉 with ν < 1/c. Furthermore, there is a
refutation if and only if there is a c-achievable pair with ν < 1/c.
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Proof. By Theorem 4.18, any refutation must have the form

0DTS(n1) ⊢ 0∃0DTS(n1) Initialization
...

... (weakly subsumed by 〈µ, ν〉)
⊢ 0∃aDTS(nd)

⊢ 0DTS(nmax{ca,cd}) Slowdown

with max{ca, cd} < 1, for some ABCD-pair 〈µ, ν〉. By the defini-
tion of weak subsumption, this implies d ≥ ν. Thus ν < 1/c.

Conversely, every ABCD-pair is c-achievable. By Lemma 3.3, if
there is a c-achievable pair with ν < 1/c, then there is a refutation.

�

5. Limits on achievable pairs

The previous section reduced the question of whether there exists
a refutation to the question of whether there is a c-achievable pair
〈µ, ν〉 with ν < 1/c. It was further shown that only ABCD-pairs
need be considered. We shall show, in fact, that only ABE-pairs
need to be considered; namely, that any c-achievable pair is sub-
sumed by some ABE-pair.

Definition 5.1. The ABE-pairs (respectively, AB-pairs) are the
pairs that can be obtained by operations (A), (B) and (E) (respec-
tively, by (A) and (B)).

A pair 〈µ, ν〉 is subsumed by 〈µ′, ν ′〉 when µ′ ≤ µ and ν ′ ≤ ν.

Lemma 5.2. Every ABCD-pair is an ABE-pair.

Proof. The proof of Lemma 3.18 shows that any use of rule (C)
can be replaced by a use of rule (E) followed by rule (B). And, since
〈1, c− 1〉 subsumes 〈1, 1〉, rule (D) is unnecessary. �

Corollary 5.3. Fix c ≥ 1. There is a refutation if and only if
there is some ABE-pair 〈µ, ν〉 with ν < 1/c.
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Recall from Section 3.3, the definition of τ .

τ(µ, ν) =
cν − 1

ν
µ =

(

c− 1

ν

)

µ.

As we showed, the action of 〈µ1, ν1〉 on 〈µ2, ν2〉 produces 〈µ, ν〉 with
ν obtained by “reciprocally contracting” ν2 towards τ(µ1, ν1). The
next lemma shows that either τ(µ1, ν1) is sufficient for obtaining a
refutation or it only causes τ values to increase.

Lemma 5.4. Suppose τ(µ1, ν1) ≥ 1/c and

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

Then τ(µ, ν) ≥ τ(µ2, ν2).

Proof. Note that 1
ν
= 1

cν1ν2
+ 1

cµ1
. We have

τ(µ, ν) =

(

c− 1

ν

)

µ =

(

c− 1

cν1ν2
− 1

cµ1

)

cν1µ2

= c2ν1µ2 −
µ2

ν2
− µ2ν1

µ1

=

(

cµ2 −
µ2

ν2

)

+

(

c2ν1µ2 − cµ2 −
µ2ν1
µ1

)

= τ(µ2, ν2) +

(

c
(cν1 − 1)µ1

ν1
− 1

)

ν1µ2

µ1

= τ(µ2, ν2) + (cτ(µ1, ν1)− 1)
ν1µ2

µ1

≥ τ(µ2, ν2),

where the last inequality follows from τ(µ1, ν1) ≥ 1/c. �

Theorem 5.5. There is a refutation if and only if c < 2 cos(π/7).

Proof. Theorem 3.25 already showed that if c < 2 cos(π/7),
then there is a refutation. For the converse, suppose c ≥ 2 cos(π/7).
We claim that any ABE-pair 〈µ, ν〉 has

(5.6) τ(µ, ν) ≥ τ(1, c− 1) ≥ 1/c and ν > τ(1, c− 1) ≥ 1/c.
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The claim is proved by induction on the number of steps used to
derive the ABE-pair. The base case for the induction is 〈µ, ν〉 =
〈1, c−1〉. Then, since (c − 1)2 > c − 2, we have ν = c − 1 >
(c−2)/(c−1) = τ(1, c−1). And, Lemma 3.24 implies τ(1, c−1) ≥
1/c since c ≥ 2 cos(π/7). The induction step splits into two cases
depending on whether 〈µ, ν〉 is derived by an (E)-operation or a
(B)-operation. If it is derived by an (E)-operation (subsumption),
then the inequalities of (5.6) follow immediately from the induc-
tion hypothesis and monotonicity. On the other hand, if 〈µ, ν〉
is derived by a (B)-operation, the first inequality of (5.6) follows
from Lemma 5.4. The second inequality follows from the fact that
equation (3.23) showed that if cν1 > 1 and

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉,

then ν has value between ν2 and τ(µ1, ν1). This proves the claim.

It follows by Corollary 5.3 that if c ≥ 2 cos(π/7), there is no
proof of a refutation. �

Theorem 1.1 is an immediate corollary of Lemma 2.6 and The-
orem 5.5.

6. Rules of inference for DTISP

So far we have considered algorithms in DTS(na), namely algo-
rithms that use only no(1) space. The rest of the paper considers
the classes DTISP(na, ne) which are allowed to use ne+o(1) space.
In particular, we generalize our earlier results to prove time-space
tradeoffs that give lower bounds on the values of c and ǫ for which
satisfiability can be computed in DTISP(nc, nǫ). Fortnow (1997),
Fortnow et al. (2005), Williams (2006), and Williams (2013) al-
ready proved tradeoffs for some values of c and ǫ. We will improve
these bounds, giving a precise tradeoff, and proving that this trade-
off is optimal for the present-day known rules R0ǫ-R2ǫ given below.

6.1. Basic and reduced rules of inference for DTISP. We
henceforth fix values c > 1 and ǫ ∈ [0, 1) such that c + ǫ < 2.
Our goal will be to prove a contradiction from the assumption
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that SAT ∈ DTISP(nc, nǫ), based on alternation trading infer-
ences. Generalizing the rules R0-R2 discussed for DTS(nc), we
have the following rules of inference for alternation trading proofs,
which were implicitly stated by Williams (2013). (The rule names
include a subscript ǫ to distinguish them from the earlier-defined
rules, but only R2ǫ actually depends on c or ǫ.)

R0ǫ: Initial speedup:

1DTISP(na, ne) ⊆ 1(∃nx)max{x,1}(∀n0)max{e,1}DTISP(na−x+e, ne),

where e < x ≤ a. (The initial speedup rule will be invoked
only with e = ǫ · a/c.)

R1ǫ: Speedup:

· · · bk(∃nak)bk+1DTISP(nak+1 , ne)

⊆ · · · bk(∃nmax{x,ak})max{x,bk+1}(∀n0)c DTISP(nak+1−x+e, ne)

where c = max{bk+1, e}, and e < x ≤ ak+1.

R2ǫ: Slowdown:

· · · bk(∀nak)bk+1DTISP(nak+1, ne) ⊆ · · · bkDTISP(nca, nǫa)

where a = max{bk, ak, bk+1, ak+1}.
R2ǫ is sound for all e ≥ 0, but is needed only for e ≤ bk+1.

As before, each rule R1ǫ and R2ǫ is permitted in dual form, with
existential and universal quantifiers interchanged.

Recall that the class DTISP(na, ne) is defined only for a ≥ e.
The upper bound on x in the speedup rule enforces this condition.
The conclusion of the R2ǫ rule is a class · · ·DTISP(nb, ne) where
e = ǫ · b/c, since b = ca and e = ǫa. For space reasons, we
shall occasionally use the notation DTISP(nb, n···) and then it is
understood that the omitted space bound is ne with e = ǫ · b/c.

The concept of a refutation is defined similarly as before. It is
now required that the first line have the form 1DTISP(na, ne), and
the last line have the form 1DTISP(nb, nf ) where b < a and e < f .
Since the last line has f = (ǫ/c)b, it can be required without loss
of generality that the first line have e = (ǫ/c)a. For fixed values of
c and ǫ, if there is a refutation, then SAT 6∈ DTISP(nc, nǫ).
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We now formulate the simplified rules of inference for DTISP.
First, the h-R0ǫ rule is defined to be:

h-R0ǫ:
0DTISP(na, ne) ⊢ 0(∃nx)x(∀n0)eDTISP(na−x+e, ne),

namely, by changing the superscripts 1 in R0ǫ to 0’s. A homoge-
neous refutation, or an h-refutation, is one that uses rules h-R0ǫ,
R1ǫ, and R2ǫ. By exactly the same proof as Lemma 2.2, there is
an h-refutation iff there is a refutation.

For the second simplification, we form a reduced inference sys-
tem by getting rid of the superscripts aj bounding the size of the
existentially and universally quantified values. The valid lines in a
reduced proof will have the form

0∃b1∀b2∃b3 · · · bk−1QbkDTISP(na, ne).

These will be required to satisfy the conditions

(6.1) a ≥ e and bi ≥ e, for all i.

The rules of inference for the reduced system simplify to:

R0′ǫ: Initialization:

0DTISP(na, ne) ⊢ 0∃eDTISP(na, ne).

R1′ǫ: Speedup:

· · · bk∃bk+1DTISP(na, ne)

⊢ · · · bk∃max{x,bk+1}∀max{bk+1,e}DTISP(na−x+e, ne),

where e < x ≤ a. By (6.1), this rule can be further simplified
by replacing “max{bk+1, e}” with just “bk+1”.

R2′ǫ: Slowdown:

· · · bk∀bk+1DTISP(na, ne) ⊢ · · · bkDTISP(nca′ , nǫa′).

where a′ = max{bk, bk+1, a, e} = max{bk, bk+1, a}.

As always, the last two rules are permitted in dual form, with
existential and universal quantifiers interchanged.

The analogue of Lemma 2.6 holds for DTISP proofs, so we have:
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Lemma 6.2. Fix c > 1 and 0 ≤ ǫ < 1. There is a reduced refuta-
tion, with R0′ǫ-R2

′
ǫ, iff there is a refutation (that is, with R0ǫ-R2ǫ).

Proof. The proof of Lemma 6.2 is similar to that of Lemma 2.6,
but we also need to verify that the conditions of (6.1) can be re-
quired to hold. We in addition need that e ≥ ǫ

c
a for all lines in

the refutation. These conditions are readily shown by induction
on the number of steps in a reduced proof: the only slightly prob-
lematic condition is that bi ≥ e in all lines. It is certainly true
for the conclusion of a R0′ǫ or R1′ǫ inference. Consider the con-
clusion · · · bkDTISP(nca′, nǫa′) of a R2′ǫ slowdown inference. This
is matched by an earlier line · · · b′′kDTISP(na′′ , ne′′) which is the
premise of the matching speedup inference. We have bk ≥ b′′k, and
have b′′k ≥ e′′ ≥ ǫ

c
a′′ by the induction hypothesis. Also, without

loss of generality, either ca′ < a′′ or ǫa′ < e′′, since otherwise the
second line is a weakening of the first line and the derivation could
be simplified. In either case, it follows that ǫa′ < e′′. Thus, since
bi ≥ e′′ for all i, we also have bi ≥ ǫa′ as desired. �

We henceforth work exclusively with reduced derivations and
refutations. It is required that the conditions (6.1) hold for all lines
in reduced derivations and refutations.

As a digression, it is interesting to note that the rules R1ǫ
and R1′ǫ could be relaxed removing the restriction that e < x ≤ a
replaced with the restriction that e < x ≤ a + e. The relaxed
versions of the rules are:

alt-R1ǫ: Speedup (alternate form):

· · · bk(∃nak)bk+1DTISP(nak+1 , ne)

⊆ · · · bk(∃nmax{x′,ak})max{x′,bk+1}(∀n0)max{bk+1,e
′}DTISP(na′ , ne′),

where e < x ≤ ak+1+ e, x′ = min{x, ak+1}, a′ = ak+1−x+ e,
and e′ = min{e, ak+1 − x+ e}.

alt-R1′ǫ: Speedup (alternate reduced form):

· · · bk∃bk+1DTISP(na, ne)

⊢ · · · bk∃max{x′,bk+1}∀max{bk+1,e
′}DTISP(na−x+e, ne′),
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with the same conditions on x, x′, and e′ (replacing ak+1

with a).

There are two main properties to establish about the alt-R1ǫ
rule. First, this rule is sound; that is, it only derives true conclu-
sions. Second, if there is a (reduced) refutation using alt-R1′ǫ, then
there is already a reduced refutation.

To verify that alt-R1ǫ is a valid inclusion, consider a predi-
cate P that is in DTISP(nak+1 , ne). Suppose ak+1 < x ≤ ak+1+e, so
x′ = ak+1 and e′ = ak+1−x+e. Let f = x−e, so 0 < f ≤ ak+1. The
predicate P has runtime nak+1+o(1). To speedup P , split the com-
putation of P into nf many “blocks” each with computation time
nak+1+o(1)/nf = nak+1−f+o(1), and existentially guess the following
values for each block boundary: (1) The contents of all memory lo-
cations that are needed for the computation P in the immediately
preceding or immediately following block, and (2) For each such
memory location, the index of the previous block boundary where
the same memory location is existentially specified. Guessing these
values requires time and space nf · nak+1−f+o(1) = nak+1+o(1). Then
universally choose (1) each block and verify its computation, and
(2) each pair of block boundaries and verify the consistency of
the values of the memory locations and their indices for the pre-
vious boundary where the value was specified. Since there are
O((nf)2) many pairs of blocks, this requires log(n2f ) = no(1) many
universal choices, plus deterministic computation time and space
of nak+1−x+e+o(1).

Thus, P is computable with nx′+o(1) existential guesses, fol-
lowed by no(1) universal choices, and deterministic computation
time nak+1−x+e+o(1). This establishes the soundness of the inference
rule alt-R1ǫ. From this, it follows that if there is a refutation using
the rules R0ǫ, alt-R1ǫ, and alt-R2ǫ, then SAT /∈ DTISP(nc, nǫ).
And, by the same reasoning used earlier, there is such a refutation
if and only if there is a reduced refutation using alt-R1′ǫ.

Finally, we claim that alt-R1′ǫ inferences can be removed from
a reduced refutation. For this, suppose that a refutation contains
an alt-R1′ǫ inference, which must be later followed by a pair of R2′ǫ
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inferences starting at the same quantifier alternation level:

· · · bk∃bk+1DTISP(nak+1 , ne)

⊢ · · · bk∃max{x′,bk+1}∀max{bk+1,e
′}DTISP(nak+1−x+e, ne′)

...
...

⊢ · · · bk∃yDTISP(nb, nf )

⊢ · · · bkDTISP(ncb′ , nǫb′).

In the first inference, we have x′ = ak+1 by assumption. In the next
to last line, we must have y ≥ max{x′, bk+1} since exponents on
quantifiers can only increase during the derivation. In the final in-
ference, b′ = max{y, b, bk}. It follows that b′ ≥ max{ak+1, bk, bk+1}:
therefore, (a strengthened version of) the last line can already be
derived from the first line by a single R2′ǫ-inference. Thus, we have
shown that alt-R1′ǫ-inferences are unnecessary for refutations, and
can be eliminated from derivations.

We henceforth work only with derivations that do not use the
alternate speedup rules.

6.2. Approximate inferences for DTISP proofs. The notion
of approximate inferences for DTISP proofs is defined similarly to
the definitions given in section 2.3. Suppose Ξ and Ξ′ are classes
represented in the reduced inference system for DTISP:

(6.3) Ξ = 0∃b2∀b3 · · · bkQbk+1DTISP(na, ne)

and
Ξ′ = 0∃b′2∀b′3 · · · b′kQb′

k+1DTISP(na′ , ne′).

We define Ξ′ ≤ Ξ iff a′ ≤ a and e′ ≤ e and b′i ≤ bi for all i.
The class Ξ + δ is defined by the condition Ξ′ = Ξ+ δ holds iff

a′ = a+ δ and e′ = e+ δ and b′i = bi + δ for all i ≥ 2.
The weakening rule is defined exactly as before. The notation

Ξ wΛ means there is a derivation of Λ from Ξ in the reduced system
augmented with the weakening rule. We henceforth reserve the
term “derivation” and the symbol “⊢” for derivations that do not
use weakenings.

It is easy to check that, with these definitions, Lemma 2.10
holds word-for-word for DTISP derivations. In particular, the
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weakening rule does not make possible any new refutations. Fur-
thermore, we may assume w.l.o.g. that no derivation contains two
lines Ξ ≤ Ξ′ with Ξ preceding Ξ′ in the derivation.

The notion of approximate inference, 
, is defined exactly as
before. Lemma 2.12 still holds; namely, 
 is transitive. Similarly,
Lemma 2.13 also holds for approximate DTISP derivations.

7. Achievable derivations for DTISP

7.1. Achievable triples and subsumption. The notion of a
“c-achievable pair” was crucial for understanding the power of refu-
tations for DTS proofs. For inferences involving DTISP, there are
space bounds in addition to time bounds; as a consequence, it is
necessary to consider triples 〈µ, ν, ℓ〉 instead of pairs 〈µ, ν〉. The
meanings of µ and ν are similar to before. The purpose of the
integer ℓ is to count the nestings of speedup rules; the intuition is
that each speedup rule adds an extra factor of ne to the runtime.

Definition 7.1. Fix values c and ǫ so that c > 1 > ǫ ≥ 0 and
c+ ǫ < 2. Suppose µ ≥ 1 and 0 < ν < 1 and 1 ≤ ℓ ∈ N. Then the
triple 〈µ, ν, ℓ〉 is (c, ǫ)-achievable provided that, for all values b, d
and e satisfying (c+ ǫ)µb = ν(d+ ℓe) and e ≤ b ≤ d,

(7.2) a∃bDTISP(nd, ne) 

a∃µbDTISP(ncµb, nǫµb).

The displayed inference is called a 〈µ, ν, ℓ〉-step. The triple 〈µ, ν, ℓ〉
is called useful provided that ν < (c+ ǫ)/(c + ℓǫ).

As the terminology suggests, we are mostly interested in (c, ǫ)-
achievable triples that are useful. In particular, when working
with DTISP classes satisfying e = (ǫ/c)d, usefulness is equivalent
to having cµb < d and ǫµb < e in (7.2).

As before, the value of a makes no difference at all in the defi-
nition of achievability, since the derivations that approximate the

-implication of (7.2) cannot contain any lines with zero alterna-
tions. For the same reason, any such derivation must end with a
slowdown inference, R2′ǫ; hence the right hand side of (7.2) was
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assumed to be of the form DTISP(nd′ , n(ǫ/c)d′) with no loss of gen-
erality.

The extra restriction that b ≤ d for (7.2) can be made without
any loss of generality. Indeed, the next lemma shows that if b ≥ d
then the best possible next inference is a slowdown. In particular,
there is no need to apply a (c, ǫ)-achievable triple when b ≥ d.

Lemma 7.3. Suppose Ξ is a line in a refutation of the form

· · · a∃bDTISP(nd, ne)

with b ≥ d. Then, without loss of generality, the next inference is
a slowdown.

Proof. Ξ is followed by some balanced inference pattern (pos-
sibly empty) of 1’s and 0’s, and then a slowdown that removes the
existential quantifier from Ξ. Namely,

· · · a∃bDTISP(nd, ne) ⊢ · · · a∃b′DTISP(nd′ , ne′)

⊢ · · · aDTISP(nmax{ca,cb′,cd′}, n···)

where b′ ≥ b. This can be replaced by a single slowdown

· · · a∃bDTISP(nd, ne) ⊢ · · · aDTISP(nmax{ca,cb,cd}, n···).

Since b′ ≥ b ≥ d, this improves the subderivation. �

The notions of “subsume” and “weakly subsume” carry over to
DTISP derivations in the expected way.

Definition 7.4. An implication

(7.5) · · · bkQbk+1DTISP(na, ne) w · · · bkQb′
k+1DTISP(na′ , ne′)

is subsumed by 〈µ, ν, ℓ〉 provided the implication can be inferred
by a weakening, a 〈µ, ν, ℓ〉 step, and then another weakening.

The next two lemmas follow immediately from the definitions.
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Lemma 7.6. The implication (7.5) is subsumed by 〈µ, ν, ℓ〉 iff

b′k+1 ≥ max

{

µbk+1,
ν(a + ℓe)

c+ ǫ

}

and

(7.7) a′ ≥ max

{

cµbk+1,
cν(a + ℓe)

c+ ǫ

}

and

e′ ≥ max

{

ǫµbk+1,
ǫν(a + ℓe)

c+ ǫ

}

.

Definition 7.8. The implication (7.5) is weakly subsumed by
〈µ, ν, ℓ〉 iff the second inequality of (7.7) holds, that is, iff a′ satisfies
the lower bound of (7.7).

Definition 7.9. 〈µ, ν, ℓ〉 subsumes 〈µ′, ν ′, ℓ′〉 if µ ≤ µ′ and ν ≤ ν ′

and ℓ ≤ ℓ′.

Lemma 7.10. Suppose 〈µ, ν, ℓ〉 subsumes 〈µ′, ν ′, ℓ′〉. Any implica-
tion subsumed by 〈µ′, ν ′, ℓ′〉 is also subsumed by 〈µ, ν, ℓ〉.

In seeking alternation trading refutations, our goal is to find
a (c, ǫ)-achievable triple with ν and ℓ as small as possible. More
precisely, our goal is to have (c+ ℓǫ)ν < (c+ ǫ)/c. In addition, we
shall need to have cµǫ < 1.

Definition 7.11. We define ρ(µ, ν, ℓ) =
c(c+ ℓǫ)ν

c+ ǫ
.

Note that a triple 〈µ, ν, ℓ〉 is useful iff it has ρ(µ, ν, ℓ) < c.

Lemma 7.12. Suppose there is a (c, ǫ)-achievable triple 〈µ, ν, ℓ〉
with

cµǫ < 1 and ρ(µ, ν, ℓ) < 1.

Then there is a refutation.
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Proof. We have the following (approximate) refutation, where

we let b = max{ǫ, ν(c+ℓǫ)
(c+ǫ)µ

} = max{ǫ, ρ(µ, ν, ℓ)/(cµ)}. Note that

b < 1/c since µ ≥ 1.

0DTISP(nc, nǫ) ⊢ 0∃ǫDTISP(nc, nǫ) (Initialization)
w 0∃bDTISP(nc, nǫ)



0∃µbDTISP(ncµb, nǫµb)

(Subsumed by the (c, ǫ)-achievable 〈µ, ν, ℓ〉)
⊢ 0DTISP(nc2µb, nǫcµb) (Slowdown)

Since c2µb < c, this suffices to prove the lemma. �

The converse of Lemma 7.12 holds as well, see Theorems 9.17
and 9.18.

7.2. Derivations of type (10)∗. The next lemma is a general-
ization of Lemma 3.9.

Lemma 7.13. The triple 〈1, c+ǫ−1, 1〉 is (c, ǫ)-achievable. Fur-
thermore, it is achievable with derivations of type (10)∗.

This triple is useful since c+ ǫ < 2.

Proof. Let Ξ = a∃bDTISP(nd, ne) with e ≤ b ≤ d. A speedup
with parameter x = b, followed by a slowdown gives

Ξ ⊢ a∃b∀bDTISP(nd−b+e, ne) ⊢ a∃bDTISP(nmax{cb,c(d−b+e)}, n···).

Thus, from Ξ we can derive the line a∃bDTISP(nd′ , ne′) with d′ =
max{cb, c(d− b+ e)} and e′ = max{ǫb, ǫ(d− b+ e)}. In particular,

d′ + e′ = max{(c+ ǫ)b, (c + ǫ)((d+ e)− b)}.

The graph below shows the value of d′+e′ as a function of d+e.
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0 d+ e

d′ + e′

(c+ǫ)b

(c+ǫ)b

b

b

2b

d′ + e′ = (c+ ǫ)b

c+ǫ
c+ǫ−1

b

d′ + e′ = (c + ǫ)((d+ e)− b)

d′+e′=d+e

The situation is identical to that of the proof of Lemma 3.9, except
that we are now analyzing how the value d + e changes (instead
of d), and the value c+ ǫ replaces the value c. Therefore, if d+ e =
c+ǫ

c+ǫ−1
b,

a∃bDTISP(nd, ne) 

a∃bDTISP(nd′ , ne′)

where d′ + e′ = (c + ǫ)b. Since also e′ = (ǫ/c)d′, we have d′ = cb
and e′ = ǫb.

That is to say, if (c+ ǫ)b = (c+ ǫ− 1)(d+ e) then

a∃bDTISP(nd, ne) 

a∃bDTISP(ncb, nǫb)

This shows that 〈1, c+ǫ−1, 1〉 is (c, ǫ)-achievable. �

7.3. Composition of achievable triples. The next lemma de-
scribes how two (c, ǫ)-achievable triples can be composed to form
a third (c, ǫ)-achievable triple.

Lemma 7.14. Let 〈µ1, ν1, ℓ1〉 and 〈µ2, ν2, ℓ2〉 be (c, ǫ)-achievable
triples. Let

µ =
c(c+ ℓ1ǫ)

c+ ǫ
ν1µ2(7.15)

ν =
c(c+ ǫ)(c+ ℓ1ǫ)µ1ν1ν2

(c+ ǫ)2µ1 + c(c+ ℓ1ǫ)ν1ν2
(7.16)

ℓ = ℓ2 + 1.(7.17)

Suppose that µ ≥ µ1. Then 〈µ, ν, ℓ〉 is (c, ǫ)-achievable.
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Proof. We prove that a 〈µ, ν, ℓ〉-step can be achieved by a slow-
down, a 〈µ2, ν2, ℓ2〉-step, a speedup, and a 〈µ1, ν1, ℓ1〉-step. Suppose
e ≤ b ≤ d and (c+ǫ)µb = ν(d+ℓe), and let Ξ = a∃bDTISP(nd, ne).
We must show that Ξ 


a∃µbDTISP(ncµb, nǫµb). Let

(7.18) x = µb/µ1 =
c(c+ ℓ1ǫ)ν1µ2

(c+ ǫ)µ1
b.

We have x ≥ b ≥ e since µ ≥ µ1. If x ≤ d, a speedup inference will
give

(7.19) Ξ ⊢ a∃x∀bDTISP(nd−x+e, ne).

Assume for the moment that b ≤ d − x + e, and thus certainly
x ≤ d. We show that a 〈µ2, ν2, ℓ2〉 step can be applied to (7.19).
We have

d+ (ℓ2 + 1)e = d+ ℓe =
(c+ ǫ)µb

ν

= c(c+ ℓ1ǫ)ν1µ2

(

1

(c+ ǫ)µ1
+

c+ ǫ

c(c+ ℓ1ǫ)ν1ν2

)

b

=

(

c(c+ ℓ1ǫ)ν1µ2

(c+ ǫ)µ1
+

(c + ǫ)µ2

ν2

)

b

= x+
(c+ ǫ)µ2

ν2
b,

whence
(c+ ǫ)µ2b = ν2((d− x+ e) + ℓ2e).

Thus, by (7.19) and the (c, ǫ)-achievability of 〈µ2, ν2, ℓ2〉,

(7.20) Ξ 

a∃x∀µ2bDTISP(ncµ2b, nǫµ2b).

On the other hand, if b > d− x+ e, we apply a speedup inference
to Ξ with parameter d− b+ e, followed by a weakening to obtain:

Ξ ⊢ a∃d−b+e∀bDTISP(nb, ne)
w a∃x∀µ2bDTISP(ncµ2b, ne)(7.21)

since µ2 ≥ 1. This is the same as (7.20) but with a larger space
bound. (The larger space bound is harmless, as the next inference
will be a slowdown.)
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The argument splits into two cases again, now based on whether
x ≤ cµ2b or not. First consider the case x ≤ cµ2b. This certainly
holds if 〈µ1, ν1, ℓ1〉 is useful, since then (c + ℓ1ǫ)ν1/(c + ǫ) < 1. In
this case, a slowdown inference, applied to (7.20) or (7.21), gives

(7.22) Ξ 

a∃xDTISP(nc2µ2b, nǫcµ2b).

Since (7.18) gives

(c+ ǫ)µ1x = ν1(c
2µ2b+ ℓ1ǫcµ2b),

a 〈µ1, ν1, ℓ1〉 step applied to (7.22) yields

Ξ 

a∃µ1xDTISP(ncµ1x, nǫµ1x) = a∃µbDTISP(ncµb, nǫµb).

Now consider the case x ≥ cµ2b. Picking up from (7.20) or (7.21),
a slowdown and a weakening give

Ξ 

a∃xDTISP(ncx, nǫx)

w a∃µ1xDTISP(ncµ1x, nǫµ1x) = a∃µbDTISP(ncµb, nǫµb)

This proves Lemma 7.14. �

Lemma 7.14 requires that µ ≥ µ1. The case where this does
not hold can be handled a method analogous to the “max” method
of Lemma 3.18.

Lemma 7.23. Let 〈µ1, ν1, ℓ1〉 and 〈µ2, ν2, ℓ2〉 be (c, ǫ)-achievable.
Set

µ = max

{

c(c+ ℓ1ǫ)

c+ ǫ
ν1µ2, µ1

}

.(7.24)

ν =
c(c + ǫ)(c+ ℓ1ǫ)µ1ν1ν2

(c+ ǫ)2µ1 + c(c+ ℓ1ǫ)ν1ν2
(7.25)

ℓ = ℓ2 + 1.(7.26)

Then 〈µ, ν, ℓ〉 is (c, ǫ)-achievable.

Proof. If µ1 ≤ c(c+ℓ1ǫ)ν1µ2/(c+ǫ), the previous lemma implies
the result. Otherwise, set µ′

2 = (c + ǫ)µ1/(c(c + ℓ1ǫ)ν1) > µ2. By
Lemma 7.10, 〈µ′

2, ν2, ℓ2〉 is (c, ǫ)-achievable. Lemma 7.14 applied
to the triples 〈µ1, ν1, ℓ1〉 and 〈µ′

2, ν2, ℓ2〉 gives the desired result. �
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The constructions of the previous two lemmas show how to com-
pose two (c, ǫ)-achievable triples to form a third one. It is again
helpful to think of the triple 〈µ1, ν1, ℓ1〉 as transforming the triple
〈µ2, ν2, ℓ2〉. The mapping notation

〈µ1, ν1, ℓ1〉 : 〈µ2, ν2, ℓ2〉 7→ 〈µ, ν, ℓ〉

is used to indicate that equations (7.15)-(7.17) hold. Similarly,

〈µ1, ν1, ℓ1〉 : 〈µ2, ν2, ℓ2〉 7→max 〈µ, ν, ℓ〉

indicates that equations (7.24)-(7.26) hold.
To better understand the action of these transformations, we

can rewrite equations (7.15) and (7.16) as

1

µ
=

c+ ǫ

c(c+ ℓ1ǫ)ν1
· 1

µ2

(7.27)

1

ν
=

1

τ(µ1, ν1, ℓ1)
− c+ ǫ

c(c+ ℓ1ǫ)ν1

(

1

τ(µ1, ν1, ℓ1)
− 1

ν2

)

,(7.28)

where

τ(µ1, ν1, ℓ1) = (c+ ǫ)µ1

(

1− c+ ǫ

c(c+ ℓ1ǫ)ν1

)

.

To write these equations more compactly, recall that

(7.29) ρ(µ1, ν1, ℓ1) =
c(c+ ℓ1ǫ)ν1

c + ǫ
,

and set R1 = ρ(µ1, ν1, ℓ1) and T1 = τ(µ1, ν1, ℓ1). Then

T1 = (c + ǫ)µ1(1− 1/R1),

and equations (7.27) and (7.28) become

(7.30)
1

µ
=

1

R1

· 1

µ2

and
1

ν
=

1

T1

− 1

R1

(

1

T1

− 1

ν2

)

.

Equations (7.28) and (7.30) show the action of 〈µ1, ν1, ℓ1〉 on the
triple 〈µ2, ν2, ℓ2〉 is in effect defining the value of 1/ν by contracting
1/ν2 towards 1/T1.
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Another suggestive, and highly useful, way to rewrite Equations
(7.16) and (7.28) is as

(7.31)
1

ν
=

1

(c+ ǫ)µ1
+

1

R1ν2
.

The above constructions generalize those of Section 3.3. In par-
ticular, the ǫ = 0 case is the same as the earlier results. In fact,
most of our just obtained results can be obtained from those of
Section 3.3 by replacing “ν1” uniformly with “(c+ ℓ1ǫ)ν1/(c+ ǫ)”.
The extra complication, however, is the presence of the parame-
ter ℓ: this makes the next section’s analysis of alternation trading
refutations substantially more difficult.

8. The refutations for DTISP lower bounds

Next, we describe the alternation trading refutations that yield
DTISP lower bounds for SAT algorithms. Perhaps surprisingly,
the refutations for DTISP lower bounds do not follow the pattern
of refutations that were used in Section 5 for the lower bounds for
DTS (ǫ = 0) algorithms. Namely, the proof of Theorem 5.5 showed
that there is a refutation (in the DTS setting) if and only if it can
be obtained by letting 〈µ1, ν1〉 = 〈1, c−1〉 and defining 〈µi+1, νi+1〉
by

〈µ1, ν1〉 : 〈µi, νi〉 7→ 〈µi+1, νi+1〉,
and finally obtaining some νi < 1/c. We initially conjectured that
we could use the same methods for DTISP refutations: Namely,
by letting 〈µ1, ν1, ℓ1〉 be 〈1, c+ǫ−1, 1〉, and defining 〈µi+1, νi+1, ℓi+1〉
by

〈µ1, ν1, ℓ1〉 : 〈µi, νi, ℓi〉 7→ 〈µi+1, νi+1, ℓi+1〉.
Our hope was that this would always suffice to obtain alternation
trading refutations. This turned out, in computer experiments, to
be false; indeed, there are values c and ǫ which have refutations, but
for which no i > 0 has ρ(µi, νi, ℓi) < 1. Recall that the function ρ
was defined before Lemma 7.12.

This greatly complicates a computer-based search for alterna-
tion trading refutations. Fix values for c and ǫ, and consider trying
out all possible constructions of (c, ǫ)-achievable triples. It turns
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out that a blind, depth-first search for refutations based on the
constructions (A)-(C) defined below will yield an immense set of
achievable triples, even after discarding subsumed triples. This
kind of blind search can eventually find a refutation if one exists;
however, if no refutation exists, the process never stops and yields
no information about the existence of a refutation.

In order to overcome this, we shall define two expanded notions
of “subsumed” which will allow the computer-based search to more
aggressively prune (c, ǫ)-achievable triples from the search space.
This will be completely successful in reducing the size of the search
space. Even more importantly, when there is no alternation trading
refutation, the broader notions of subsumption allow the computer-
based search to terminate quickly with a proof that no refutation
exists (modulo round-off errors in the calculations).

The operations (A)-(E) for introducing (c, ǫ)-achievable triples
are:

(A) 〈1, c+ǫ−1, 1〉 is c-achievable.

(B) Suppose 〈µ1, ν1, ℓ1〉 and 〈µ2, ν2, ℓ2〉 are (c, ǫ)-achievable and
that µ1 ≤ c(c + ℓ1ǫ)ν1µ2/(c + ǫ). Then 〈µ, ν, ℓ〉 is (c, ǫ)-
achievable, where

〈µ1, ν1, ℓ1〉 : 〈µ2, ν2, ℓ2〉 7→ 〈µ, ν, ℓ〉.

(C) Suppose 〈µ1, ν1, ℓ1〉 and 〈µ2, ν2, ℓ2〉 are (c, ǫ)-achievable and
that µ1 > c(c + ℓ1ǫ)ν1µ2/(c + ǫ). Then the pair 〈µ, ν〉 is
(c, ǫ)-achievable, where

〈µ1, ν1, ℓ1〉 : 〈µ2, ν2, ℓ2〉 7→max 〈µ, ν, ℓ〉.

(D) If 〈µ2, ν2, ℓ2〉 is (c, ǫ)-achievable, then so is 〈µ, ν, ℓ〉, where

〈1, 1, 1〉 : 〈µ2, ν2, ℓ2〉 7→ 〈µ, ν, ℓ〉.

(E) If 〈µ, ν, ℓ〉 is (c, ǫ)-achievable and 〈µ, ν, ℓ〉 subsumes 〈µ′, ν ′, ℓ′〉,
then 〈µ′, ν ′, ℓ′〉 is (c, ǫ)-achievable.
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As before, the ABE-triples are defined to be those triples that can
be inferred by operations (A), (B), and (E). Analogously to the ear-
lier results for DTS-refutations, Theorem 9.18 will establish that,
for any fixed values of c and ǫ, there is a DTISP-refutation if and
only if some ABE-triple 〈µ, ν, ℓ〉 has ρ(µ, ν, ℓ) < 1 and cµǫ < 1.2

Our computer-based search focuses on finding an ABC-triple
with ρ-value < 1. In light of Lemma 7.12, it is also required that
the triple satisfy cµǫ < 1. More broadly, we shall require that
cµǫ ≤ R holds for all triples generated during the computer search,
where R = ρ(µ, ν, ℓ). The reason for this is that our theoretical
results below depend on having cµǫ ≤ R. Our experimental results
are that cµǫ ≤ R does in fact always hold, even though we have
been unable to prove the condition should hold.

The computer search proceeds in rounds, or “stages”. At each
stage, there is a set Γ of derived (c, ǫ)-achievable triples. Initially,
Γ contains just 〈1, c+ǫ−1, 1〉. At each stage, two triples τ1 and τ2
are chosen from Γ, and a new triple τ is obtained by operation (B)
or (C). It is checked that the new triple has cµǫ ≤ R and then,
based on some subsumption checks as defined below, the triple
will either be pruned (discarded) or be added to Γ. The process
terminates when there is no new triple available to add to Γ or
when a triple with ρ value < 1 is generated.

New triples are generated with operations (B) and (C), instead
of with operations (B) and (E), essentially because the only point
of using the subsumption operation (E) is to weaken a triple (as in
the proof of Lemma 7.23 where µ2 was increased to the value µ′

2)
in order that it may be used in operation (B). More precisely, it is
easy to prove the following lemma by induction on the number of
applications of operations (B) and (E).

Lemma 8.1. If a triple τ can be derived from Γ by (B) and (E)
operations, then there is a triple τ ′ derivable from Γ using only
(B) and (C) operations, such that τ ′ subsumes τ . Furthermore the
minimum number of (B) and (C) operations needed to derive τ ′ is
at most the number of (B) operations used in the derivation of τ .

2The proof of Theorem 9.18 is postponed until Section 9 as it is rather
similar to the earlier proofs for DTS refutations.
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Notation 8.2. To streamline the discussion, we denote a triple
〈µ, ν, ℓ〉 by the Greek letter τ ; and we let R = ρ(µ, ν, ℓ). If there
are subscripts, superscripts, or other marks on τ , they are applied
uniformly to its associated values. For example, τi = 〈µi, νi, ℓi〉
and has ρ value Ri.

We write τ1[τ2] to denote the triple τ obtained by operation (B).

Although the computer search uses (B) and (C) operations, our
theoretical analysis below is based on (B) and (E) derivations. This
is justified by Lemmas 7.23 and 8.1.

Definition 8.3. A derivation of a triple from Γ is viewed as a
tree. The leaves of the tree are members of Γ, and internal nodes
are labeled with triples that are inferred by (B) or (E) operations
from their children. The height of a derivation is the maximum
number of (B) operations along any branch of the tree.

A contradiction from Γ is a triple τ derivable from Γ that has
R < 1.

Definition 8.4. Let Γ be a set of triples and τ a (new) triple.
We say τ may be pruned provided that any derivation of a contra-
diction from Γ∪τ has height greater than or equal to the minimum
height of a derivation of a contradiction from Γ.

For example, it is clear that if τ is subsumed by some member of Γ,
then τ may be pruned. The next definition gives a less trivial, and
more useful, notion of subsumption.

Definition 8.5. The triple τ1 R-subsumes τ2 provided µ1 ≤ µ2

and R1 ≤ R2 and ℓ1 ≤ ℓ2.

By the definition of ρ(µ, ν, ℓ), if τ1 subsumes τ2, then certainly
τ1 R-subsumes τ2. Thus R-subsumption is a more general notion
than subsumption. In addition, we claim that if τ is R-subsumed
by some triple in Γ, then τ may be pruned from Γ. This is proved
by induction on the height of derivations from Γ∪{τ} that contain
(B) and (E) operations, using the following lemma for the key
induction argument.



50 Buss & Williams

Lemma 8.6. Suppose τ0 and τ1 R-subsume τ3 and τ4, respectively.
In addition, suppose R3 ≥ 1. Let τ2 = τ0[τ1] and τ5 = τ3[τ4]. Then
either τ2 R-subsumes τ5, or τ4 R-subsumes τ5.

Proof. We have µ2 = R0µ1 ≤ R3µ4 = µ5, so µ2, µ4 ≤ µ5.
Also, ℓ2 = ℓ1 +1 ≤ ℓ4 +1 = ℓ5. It thus suffices to show that either
R2 ≤ R5 or R4 ≤ R5. Referring back to equations (7.29) and (7.31)
for R and 1/ν, we have

1

R5
=

c+ ǫ

c(c+ ℓ5ǫ)

(

1

(c+ ǫ)µ3
+

1

R3

c(c+ ℓ4ǫ)

c + ǫ

1

R4

)

=
1

c(c+ ǫℓ4 + ǫ)

1

µ3
+

(

1− ǫ

c+ ǫℓ4 + ǫ

)

1

R3

1

R4

=
1

c(c+ ǫℓ4 + ǫ)

(

1

µ3

− cǫ
1

R3

1

R4

)

+
1

R3

1

R4

(8.7)

with analogous equations holding for 1/R2 (replacing subscripts
3,4,5 with 0,1,2, respectively).

Suppose the quantity in parentheses in the last equation is neg-

ative, so
(

1
µ3

− cǫ 1
R3

1
R4

)

< 0. Then

1

R5
≤ 1

R3

1

R4
≤ 1

R4

since R3 ≥ 1. It follows that R4 ≤ R5, so τ4 R-subsumes τ5.
Otherwise, that quantity is non-negative. Then,

1

R5
≤ 1

c(c+ ǫℓ1 + ǫ)

(

1

µ3
− cǫ

1

R3

1

R4

)

+
1

R3

1

R4

=
1

c(c+ ǫℓ1 + ǫ)

1

µ3
+

(

1− ǫ

c+ ǫℓ1 + ǫ

)

1

R3

1

R4

≤ 1

c(c+ ǫℓ1 + ǫ)

1

µ0

+

(

1− ǫ

c+ ǫℓ1 + ǫ

)

1

R0

1

R1

=
1

R2

The first inequality above follows from ℓ1 ≤ ℓ4; the second inequal-
ity from µ0 ≤ µ3, R0 ≤ R3, and R1 ≤ R4. Thus R5 ≥ R2, so τ2
R-subsumes τ5. �
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Corollary 8.8. If τ is R-subsumed by a triple in Γ, then τ may
be pruned.

Corollary 8.8 is proved using induction on the height of deriva-
tions. Namely, any triple derivable from Γ∪ τ with a derivation of
height h is R-subsumed by some triple derivable from just Γ with
a derivation of height ≤ h. We leave the details to the reader.

Note that the requirement in Lemma 8.6 that R3 ≥ 1 is harm-
less, since if any of R0, R1, R3, R4 are < 1, then a contradiction has
already been reached.

The ability to prune R-subsumed triples reduces the search
space considerably, but it still leads to large search spaces and,
when no contradiction exists, even to unbounded searches. Ac-
cordingly, we next define a yet-stronger form of subsumption, called
“dual subsumption”: it requires two triples to “dual subsume” a
new triple.

For the intuition of what it means for τ1 and τ3 to “dual-
subsume” τ2, recall from equation (7.31) that if τ ′ = τi[τ ], then
ν ′ is calculated as

(8.9)
1

ν ′
=

1

(c+ ǫ)µi
+

1

Ri

1

ν

The definition of dual-subsumption is based on the effectiveness of
each τi at producing a small value for ν ′. Letting Li be the line
with y-intercept 1/((c+ǫ)µi) and slope 1/Ri, then the effectiveness
of τi is represented by the height of the line Li — the higher the
line Li is, the better τi is. This is illustrated in Figure 8.1, where
the two lines L1 and L3 jointly dominate L2 in the sense that L2

lies below the maximum of the lines L1 and L3 for all values of 1/ν.
This will be enforced by having v23 ≤ v13 ≤ v12, where

vij =

1
(c+ǫ)µi

− 1
(c+ǫ)µj

1
Rj

− 1
Ri

is the intersection of lines Li and Lj .

Definition 8.10. The triples τ1 and τ3 dual-subsume τ2 provided
the following four conditions hold.
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(ds1) 1
µ1

> 1
µ2

> 1
µ3
,

(ds2) 1
R1

< 1
R2

< 1
R3
,

(ds3) ℓ1 ≤ ℓ2 and ℓ3 ≤ ℓ2,

and

(8.11)

1
µ2

− 1
µ3

1
R3

− 1
R2

≤
1
µ1

− 1
µ3

1
R3

− 1
R1

≤
1
µ1

− 1
µ2

1
R2

− 1
R1

.

We write “(8.11rv)” to denote the last line with the directions
of the inequalities reversed.

1
ν

1
ν′

1
(c+ǫ)µ3

1
(c+ǫ)µ2

1
(c+ǫ)µ1

L3, slope 1/R3

L2, slope 1/R2

L1, slope 1/R1

v23 v13 v12

Figure 8.1: L1 and L3 dominate L2.

The notions of “R-subsume” and “dual-subsume” can be gen-
eralized to “multisubsume” as follows. Let τ be a triple and Γ
be a finite set of triples such that (1) for each τi ∈ Γ, ℓi ≤ ℓ,
and (2) for positive values of 1/ν, the line L associated with τ is
bounded above by the maximums of the lines Li associated with
τi’s in Γ. Another way to state condition (2) is that the infinite
convex polytope in the first quadrant which is bounded below by
the lines Li is above the line L.

Lemma 8.12. Γ multisubsumes τ if and only if there are τi and τj
in Γ which dual-subsume τ or there is a τi in Γ that R-subsumes τ .

The proof of the lemma is trivial: Consider a closest vertex of the
polytope to the line L. Then either the two triples corresponding
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to the edges adjacent to this vertex dual-subsume L, or one of them
R-subsumes L.

This immediately implies a transitivity property for dual- and
multi-subsumption:

Corollary 8.13. Suppose that τ1 and τ2 dual-subsume τ5, that
τ3 and τ4 dual-subsume τ6, and that τ5 and τ6 dual-subsume τ7.
Then either one of τ1, τ2, τ3 and τ4 subsumes τ7, or some two of τ1,
τ2, τ3 and τ4 dual-subsume τ7. More generally, if Γ multisubsumes
each triple in ∆, and ∆ multisubsumes τ , then Γ multisubsumes τ .

We would like to extend Corollary 8.8 (which stated that R-
subsumed triples may be discarded) to conclude that any dual-
subsumed triples may be discarded during the computer search
for contradictions. We need an additional assumption however,
namely that all generated triples satisfy the property that cµǫ ≤ R.
Theorem 8.23 will state this property precisely, but first we prove
a series of preliminary results as Lemmas 8.14-8.22.

Lemma 8.14. The validity of the inequalities in the system (8.11)
is unchanged by any of the following changes to the values of µi

or Ri:

(a) Multiplying each value 1
µi

by a scalar α > 0.

(b) Multiplying each value 1
Ri

by a scalar α > 0.

(c) Adding a constant α to each value 1
µi
.

(d) Adding a constant α to each value 1
Ri
.

(e) Replacing each 1
µi

with 1
µi

+ α 1
Ri

where α is a scalar.

(f) Replacing each 1
Ri

with 1
Ri

+ α 1
µi

where α is a scalar.

Furthermore, (g) if (8.11) holds then after swapping the values of
1
µi

with 1
Ri
, property (8.11rv) holds, and vice-versa.

The proof of Lemma 8.14 is trivial. The case (f) can be proved
using (g), then (e), and then (g) again.
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Lemma 8.15. Let τ1 and τ3 dual-subsume τ2 with R3 ≥ 1. Let τ
be a triple that satisfies cµǫ ≤ R. Set τ ′i = τ [τi] for all i. Then τ ′1
and τ ′3 multisubsume τ ′2.

Proof. The definition of the triples τ ′i gives

1

µ′
i

=
1

R

1

µi
(8.16)

1

R′
i

=
1

c(c+ ǫℓi + ǫ)

(

1

µ
− cǫ

1

R

1

Ri

)

+
1

R

1

Ri
,(8.17)

similarly to equation (8.7). Note that the quantity in the paren-
theses must be nonnegative, since each Ri ≥ 1 and since cµǫ ≤ R.
Consequently, R′

i will increase if the value of ℓi is increased.
We claim that we may assume w.l.o.g. that ℓ1 = ℓ2 = ℓ3, and

thus ℓ′1 = ℓ′2 = ℓ′3. To see this, consider increasing the values of
ℓ1 and ℓ3 to equal ℓ2 while keeping the values Ri fixed. (This will
keep (ds3) satisfied.) To keep Ri = (c(c + ℓi)/(c + ǫ))νi fixed,
it is necessary to also decrease the values of ν1 and ν3. These
changes however, do not affect the hypothesis of dual subsumption.
In addition, as just remarked, this only increases the values R′

1

and R′
3, and it leaves the values of µ′

1 and µ′
3 unchanged. This

only makes it harder to establish the desired multisubsumption;
indeed, it shifts the lines L′

1 and L′
3 downward while L′

2 remains
unchanged. (L′

i is the line defined by µ′
i and R′

i, similarly as in
Figure 8.1.)

By (8.16) and (ds1),

(ds1)′ 1
µ′

1

> 1
µ′

2

> 1
µ′

3

.

From (8.17) and the assumption that ℓ1 = ℓ2 = ℓ3, it follows that
1/R′

i is a linear function of 1/Ri. Therefore,

(ds2)′ 1
R′

1

< 1
R′

2

< 1
R′

3

For the same reasons, and by parts (a), (b) and (d) of Lemma 8.14,
condition (8.11) holds for the triples τ ′1, τ

′
2, and τ ′3. Note that for

part (a), the scalar α is 1/R and is positive. For part (b), the
scalar α is (c+ǫℓi)/(R(c+ǫ(ℓi+1))); this is the same for all i and
positive.
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It follows that τ ′1 and τ ′3 dual-subsume, and hence multisub-
sume, τ ′2. �

Corollary 8.18. Suppose τ1 and τ3 multisubsume τ2, and cµǫ ≤
R and 1 ≤ R1, R3, R. Let τ ′i = τ [τi]. Then the four triples
τ1, τ3, τ

′
1, τ

′
3 multisubsume τ ′2.

Proof. If τ1 and τ3 dual-subsume τ2, the corollary follows from
the previous lemma. Otherwise, one of τ1 or τ3 R-subsumes τ2.

Suppose that τ1 R-subsumes τ2. Since τ R-subsumes itself,
Lemma 8.6 implies that one of τ ′1 or τ2 R-subsumes τ ′2. If it is τ2
that R-subsumes τ ′2, then the transitivity ofR-subsumption implies
that τ1 also R-subsumes τ ′2.

Likewise, if τ3 R-subsumes τ2, then either τ ′3 or τ3 R-subsumes
τ2. This suffices to prove the corollary. �

Lemma 8.19. Let τ1 and τ3 dual-subsume τ2. Let τ also be a
triple, and let τ ′i = τi[τ ]. Then τ ′3 and τ ′1 multisubsume τ ′2.

Proof. Each µ′
i is equal to Riµ. Thus, from (ds2),

(ds1rv)′ 1
µ′

3

> 1
µ′

2

> 1
µ′

1

.

Suppose 1
ν
≥ v23. Referring back to Figure 8.1, it is evident that

1
ν′
3

≥ 1
ν′
2

since L3 is above L2 in this range. Hence, µ′
3 ≤ µ′

2, and

ν ′
3 ≤ ν ′

2, and ℓ′3 = ℓ′2, and therefore τ ′3 subsumes (and hence R-
subsumes and multisubsumes) the triple τ ′2.

On the other hand, suppose 1
ν
< v23. From Figure 8.1 again,

we have 1
ν′
1

> 1
ν′
2

> 1
ν′
3

. Since ℓ′1 = ℓ′2 = ℓ′3 = ℓ+ 1, this implies

(ds2rv)′ 1
R′

3

< 1
R′

2

< 1
R′

1

We claim that τ ′3 and τ ′1 dual-subsume τ ′2. For this, we must show
that τ ′1, τ

′
2, and τ ′3 satisfy the conditions of (8.11rv). Since each

ℓ′i = ℓ+ 1, we have

1

R′
i

=
c+ ǫ

c(c+ǫℓ+ǫ)

(

1

c+ ǫ
· 1

µi
+

1

ν
· 1

Ri

)

1

µ′
i

=
1

µ
· 1

Ri
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Hence, using part (g) of Lemma 8.14, and then parts (a), (b),
and (f), it follows that τ ′1, τ ′2, and τ ′3 satisfy the conditions of
(8.11rv). �

Corollary 8.20. Suppose τ1 and τ3 multisubsume τ2 and that
1 ≤ R2. Let τ ′i = τi[τ ]. Then the five triples τ, τ1, τ3, τ

′
1, τ

′
3 multi-

subsume τ ′2.

Proof. If τ1 and τ3 dual-subsume τ2, the corollary follows from
the previous lemma. Otherwise, one of τ1 or τ3 R-subsumes τ2.

Suppose that τ1 R-subsumes τ2. Since τ R-subsumes itself,
Lemma 8.6 implies that one of τ ′1 or τ R-subsumes τ ′2. Likewise, if
τ3 R-subsumes τ2, then either τ ′3 or τ R-subsumes τ2.

This suffices to prove the corollary. �

Definition 8.21. Γ[Γ] is the set of triples {τ1[τ3] : τ1, τ3 ∈ Γ}.

Lemma 8.22. Suppose that every triple in Γ satisfies 1 ≤ R and
cµǫ ≤ R. Also suppose Γ multisubsumes τ ′2 and τ ′′2 , and that
1 ≤ R′

2. Let τ2 = τ ′2[τ
′′
2 ]. Then Γ ∪ Γ[Γ] multisubsumes τ2.

Proof. By assumption, there are τ ′1, τ
′′
1 , τ

′
3, τ

′′
3 ∈ Γ so that τ ′1

and τ ′3 multisubsume τ ′2, and τ ′′1 and τ ′′3 multisubsume τ ′′2 . From
Corollary 8.18, we have

τ ′′1 , τ
′′
3 , τ

′
1[τ

′′
1 ], τ

′
1[τ

′′
3 ] multisubsume τ ′1[τ

′′
2 ],

and
τ ′′1 , τ

′′
3 , τ

′
3[τ

′′
1 ], τ

′
3[τ

′′
3 ] multisubsume τ ′3[τ

′′
2 ].

And, from Corollary 8.20,

τ ′′2 , τ
′
1, τ

′
3, τ

′
1[τ

′′
2 ], τ

′
3[τ

′′
2 ] multisubsume τ ′2[τ

′′
2 ].

Now, by transitivity of multisubsumption (Corollary 8.13),

τ ′1, τ
′
3, τ

′′
1 , τ

′′
3 , τ

′
1[τ

′′
1 ], τ

′
1[τ

′′
3 ], τ

′
3[τ

′′
1 ], τ

′
3[τ

′′
3 ] multisubsume τ ′2[τ

′′
2 ]. �
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Theorem 8.23. Suppose Γ is a set of triples which satisfy 1 ≤ R
and cµǫ < R. Further suppose that Γ multisubsumes every triple
from Γ[Γ]. Then there is no contradiction derivable from Γ.

Proof. Let τ be a triple derivable from Γ. We claim that Γ
multisubsumes τ . The claim is proved by induction on the number
of steps in the derivation of τ from Γ. For the induction step,
Lemma 8.22 implies that τ is multisubsumed by Γ ∪ Γ[Γ]; thus by
the transitivity of multisubsumption, τ is multisubsumed by Γ.

Finally, note that if τ is R-subsumed by τ1 or is dual subsumed
by τ0 and τ1, then R ≥ R1. It follows that R ≥ 1 since R1 ≥ 1 for
every τ1 in Γ. �

We can now describe and justify the algorithm behind our
computer-based search for alternation trading refutations. The
program runs in stages, maintaining a set Γ of triples that sat-
isfy 1 ≤ R and cµǫ ≤ R. Initially, Γ contains the single triple
〈1, c+ǫ−1, 1〉. The algorithm loops, repeatedly generating new
triples τ using operations of type (B) and (C). Any τ which multi-
subsumed by Γ is discarded. For τ ’s which are not multisubsumed:

(i) If cµǫ > R, the program aborts and fails to give an answer.

(ii) If cµǫ ≤ R < 1, the program has found a contradiction,
and the program halts and reports there that an alterna-
tion trading refutation exists. This implies that SAT is not
in DTISP(nc, nǫ).

(iii) Otherwise the triple τ is added to Γ for the next iteration of
the loop.

If the algorithm ever reaches a stage where no new triple is added
to Γ, then it halts and reports that there is no alternation trading
refutation for these values of c and ǫ.3

3In actuality, our algorithm is implemented somewhat more efficiently than
what was described. The program keeps track of the convex polytope discussed
around Lemma 8.12. It also aggressively seeks for contradictions by first it-
eratively transforming the initial triple 〈1, c+ǫ−1, 1〉 with the optimal choices
of triples corresponding to the edges of the convex polytope, before forming
other triples. We developed these more sophisticated search strategies in or-
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Figure 8.2 tabulates and graphs, for various values of ǫ, the
maximum value of c for which there exists an alternation trading
proof (with five digits of accuracy). In each case, the computer-
based search was able to prove there is no alternation trading proof
for the next value of c.

The numbers in Figure 8.2 improve on the lower bounds found
by Williams (2013), which were obtained with Maple. They correct
lower bounds reported in the earlier version (Williams 2010).

ǫ c
0.001 1.80083
0.01 1.79092
0.1 1.69618
0.25 1.55242
0.5 1.34070
0.75 1.15765
0.9 1.06011
0.99 1.00583
0.999 1.00058 ǫ

c

1
0

1.8019

1

Figure 8.2: Showing the maximum value of c, as a function of ǫ, for
which alternation trading proofs suffice to show that SAT is not in
DTISP(nc, nǫ).

The computer search for the values of c in Figure 8.2 was re-
markably long in most cases. Indeed, the program often needed to
run for tens of levels, and generate hundreds of triples. This is re-
ported in Figure 8.3. For each value of ǫ and c, the table reports the
number of rounds that were needed for the search. It also reports
the total number of triples that were generated by the search and
which could not be pruned immediately (and thus were retained
for the next round of search). For instance, finding a refutation of
ǫ = 0.5 and c = 1.3407 required 44 rounds of the search, generating
406 intermediate triples. This means that the shortest refutation

der to explore the behavior of (c, ǫ)-achievable triples (and before discovering
the concept of “dual-subsumption”). However, in the end, we conjecture that
these sophisticated search techniques are not substantially more effective than
other, more straightforward strategies.
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Number of Number of Has
ǫ c Rounds Triples Refutation

0.001
1.80084 7 167 No
1.80083 11 455 Yes

0.01
1.79093 20 764 No
1.79092 11 278 Yes

0.1
1.69619 248 3633 No
1.69618 26 435 Yes

0.25
1.55243 249 2932 No
1.55242 33 297 Yes

0.5
1.34071 203 1533 No
1.34070 44 406 Yes

0.75
1.15766 155 1379 No
1.15765 27 167 Yes

0.9
1.06012 146 454 No
1.06011 19 88 Yes

0.99
1.00584 99 260 No
1.00583 7 20 Yes

0.999
1.00059 3 3 No
1.00058 24 10 Yes

Figure 8.3: Numbers of rounds and triples needed to find an alter-
ation trading refutation or establish that none exists. A full table
of results can be found online at
http://math.ucsd.edu/~sbuss/ResearchWeb/npProofLimits/timespacebdsDS3.xls.
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requires somewhere between 44 and 406 operations of type (B);
this is a remarkably large number. Recall that each operation of
type (B) can only be approximated by alternation trading deriva-
tions. Thus, the actual alternation trading refutations written out
as R0′ǫ-R2

′
ǫ steps will need to be much larger, well beyond the search

capabilities of the Maple-based searches of Williams (2013).

It is remarkable that the computer-based search always suc-
ceeded to either find a refutation or prove that a refutation does
not exist. We conjecture that this is guaranteed to happen: namely,
either a refutation can be found by exhaustive search, or subsump-
tion and dual-subsumption pruning will eventually establish that
no refutation exists. However, our only evidence for the conjecture
is the success of the computer-based searches in every case that we
have tried.

It would be desirable to find a normal form for alternation
trading proofs in the DTISP setting. However, even after looking
carefully at the kinds of refutations generated by the computer
searches, we have been unable to identify patterns that allow direct
(non-exhaustive) search for refutations.

9. The limits of achievable DTISP constructions

This section establishes that refutations can do no better that what
is possible using (c, ǫ)-achievable triples.4 Furthermore, the only
(c, ǫ)-achievable triples needed are those that are constructed using
Lemmas 7.13-7.23.

Lemma 9.1. Let Ξ be a∃bDTISP(nd, ne), with b ≤ d. Let D be
a derivation that starts with the line Ξ and contains a non-empty
(10)∗ pattern of inferences. Then D is subsumed by the (c, ǫ)-
achievable triple 〈1, c+ǫ−1, 1〉.

Proof. We must show that the kind of refutation used in the
proof of Lemma 7.13 is optimal. That proof considered speedup
inferences with x = b; however, we now need to consider pairs of

4Section 9 can be read independently of Section 8, with the sole exception
of needing the definitions of operations (A)-(E) as given in Section 8.
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speedup-slowdown inferences with arbitrary values of x:

Ξ ⊢ · · · a∃max{x,b}∀bDTISP(nd−x+e, ne)

⊢ · · · a∃max{x,b}DTISP(nmax{cx,cb,ce,c(d−x+e)}, n···).(9.2)

We wish to show that we can require x = b, at the expense of
adding weakening inferences. This is argued similarly as in the
proof of Lemma 4.1. First, if x < b, use a weakening inference to
increase the value of d up to d+b−x, and then change the speedup
to use x = b. Second, if x > b, use a weakening to increase the
value of b to x before applying the speedup inference. In both
cases, we get a new derivation with the same final line.

We can now assume x = b. Since d ≥ x = b ≥ e, the deriva-
tion (9.2) becomes

Ξ ⊢ · · · a∃b∀bDTISP(nd−b+e, ne)

⊢ · · · a∃bDTISP(nmax{cb,c(d−b+e)}, nmax{ǫb,ǫ(d−b+e)})

= · · · a∃bDTISP(nd′ , ne′).

The derivation D can thus be assumed to consist of the following
operations: (a) weakenings that increase d, (b) weakenings that
increase b, and (c) speedup/slowdown pairs of the type just dis-
played. There will be at least one operation of type (c), and it has
the effect of setting d′ and e′ so that

d′ + e′ = max{(c+ ǫ)b, (c + ǫ)((d+ e)− b)}.

(Refer to the proof of Lemma 7.13.) The same reasoning as used
in Lemma 4.1 now shows that the derivation D is subsumed by
〈1, c+ǫ−1, 1〉. �

Next we prove the central tool needed for showing derivations
are subsumed by (c, ǫ)-achievable triples. This is a direct general-
ization of Lemma 4.3.

Lemma 9.3. Suppose that A andB are balanced 0/1-annotations,
and that a derivation D has the inference pattern 1A0B, and the
first line Ξ of D has the form · · · a∃bDTISP(nd, ne) with e ≤ b ≤ d.
Further suppose the subderivation corresponding to A is weakly
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subsumed by 〈µ2, ν2, ℓ2〉, and the subderivation corresponding to B
is non-trivial and subsumed (respectively, weakly subsumed) by
〈µ1, ν1, ℓ1〉. Then the entire derivation D is subsumed (respectively,
weakly subsumed) by a triple 〈µ, ν, ℓ〉 such that either

(9.4) 〈µ1, ν1, ℓ1〉 : 〈µ2, ν2, ℓ2〉 7→max 〈µ, ν, ℓ〉,

or

(9.5) 〈1, 1, 1〉 : 〈µ2, ν2, ℓ2〉 7→ 〈µ, ν, ℓ〉.

If B is trivial, then the derivation D is weakly subsumed by the
〈µ, ν, ℓ〉 given by (9.5).

The triple defined by (9.5) is equal to

〈µ, ν, ℓ〉 := 〈cµ2,
c(c+ ǫ)ν2

(c + ǫ) + cν2
, ℓ2 + 1〉.

Proof. The last line D has the form · · · a∃x′

DTISP(nu′

, nv′).
The first inference of D is a speedup,

· · · a∃bDTISP(nd, ne) ⊢ · · · a∃max{x,b}∀bDTISP(nd−x+e, ne).

We claim that w.l.o.g. x ≥ b. Otherwise, arguing as before, we can
insert a weakening inference to increase the value of d to d+ b− x
and then do a speedup with x = b to derive the same result. We
thus henceforth assume x ≥ b.

The 1A0 part of D consists of a speedup, then a subderivation
weakly subsumed by 〈µ2, ν2, ℓ2〉, then a slowdown:

· · · a∃bDTISP(nd, ne) ⊢ · · · a∃x∀bDTISP(nd−x+e, ne) (Speedup)
...

... (Weakly subsumed by 〈µ2, ν2, ℓ2〉)
⊢ · · · a∃x∀yDTISP(nz, nw)

⊢ · · · a∃xDTISP(nu, nv) (Slowdown)(9.6)

where u = max{cx, cy, cz} and v = max{ǫx, ǫy, ǫz}, and by the
weak subsumption,

z ≥ max{cµ2b,
c

c+ ǫ
ν2(d− x+ (ℓ2 + 1)e)}.
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Suppose B is trivial, so (9.6) is the last line of D. We have

u ≥ cz ≥ c(cµ2)b

and
u ≥ max{cx, c c

c+ ǫ
ν2(d− x+ (ℓ2 + 1)e)}.

The right hand side of the latter inequality is minimized when

x =
cν2(d+ (ℓ2 + 1)e)

(c+ ǫ) + cν2
;

hence,

u ≥ c

c+ ǫ
· c(c+ ǫ)ν2
(c+ ǫ) + cν2

(d+ (ℓ2 + 1)e).

It follows that D is weakly subsumed by 〈µ, ν, ℓ〉 as defined by (9.5).
Now assume B is non-trivial. In optimal derivations, the first

argument to the max function in (9.7) will be less than or equal to
the second argument. However, to handle all cases at once, we set

d0 = max{d, (x− (ℓ2 + 1)e) + (c+ ǫ)
µ2

ν2
b}

so that either d0 = d or cµ2b = (c/(c+ ǫ))ν2(d0−x+ (ℓ2+1)e). In
either case, by (9.7),

z ≥ c

c+ ǫ
ν2(d0 − x+ (ℓ2 + 1)e).

In addition,

(9.7) b ≤ x ≤ (d0 + (ℓ2 + 1)e)− (c+ ǫ)
µ2

ν2
b,

and so

(9.8) (c+ ǫ)
µ2

ν2
b ≤ d0 − x+ (ℓ2 + 1)e.

The B part of the derivation D derives

· · · a∃xDTISP(nu, nv) ⊢ · · · a∃x′

DTISP(nu′

, nv′).
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Since this is weakly subsumed by 〈µ1, ν1, ℓ1〉,

u′ ≥ max{cµ1x,
c

c+ ǫ
ν1(u+ ℓ1v)}

= max{cµ1x,
c

c+ ǫ
ν1
c+ ℓ1ǫ

c
u}

≥ max{cµ1x,
c2(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2(d0 − x+ (ℓ2 + 1)e)}.(9.9)

The last inequality follows from u ≥ cz and (9.7). If B is also (non-
weakly) subsumed by the triple, then the same reasoning shows

(9.10) x′ ≥ max{µ1x,
c(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2(d0 − x+ (ℓ2 + 1)e)}.

We want to introduce a value x0 ≤ x so that equations (9.9)
and (9.10) can ignore the first argument to the max function. How-
ever, first suppose

µ1b ≥ c(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2(d0 − b+ (ℓ2 + 1)e).

Using (9.8) and x ≥ b gives

(

µ1 +
c(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2

)

b ≥ c(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2(d0 + (ℓ2 + 1)e)(9.11)

≥ c(c+ ℓ1ǫ)

(c+ ǫ)2
(

(c+ ǫ)ν1µ2 + ν1ν2
)

b.

Hence

µ1 ≥ c(c+ ℓ1ǫ)

c + ǫ
ν1µ2.(9.12)

We have u′ ≥ cµ1b by x ≥ b and (9.9). So by (9.11), (9.12), and
d0 ≥ d,

u′ ≥ c

c+ ǫ
· c(c+ ǫ)(c + ℓ1ǫ)µ1ν1ν2
(c+ ǫ)2µ1 + c(c+ ℓ1ǫ)ν1ν2

(d+ (ℓ2 + 1)e).

The last two displayed inequalities suffice to prove that D is weakly
subsumed by the triple 〈µ, ν, ℓ〉 defined by (9.4). If B is (non-
weakly) subsumed by 〈µ2, ν2, ℓ2〉, then similar calculations lower
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bounding x′ show that D is likewise (non-weakly) subsumed by
the triple 〈µ, ν, ℓ〉. We leave those details to the reader.

Now suppose

(9.13) µ1b <
c(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2(d0 − b+ (ℓ2 + 1)e),

and let x0 be the minimum of x and

c(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2(d0 + (ℓ2 + 1)e)

(

µ1 +
c(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2

)−1

.

Then,

µ1x0 ≤ c(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2(d0 − x0 + (ℓ2 + 1)e).

From this and x ≥ b, the assumption (9.13) gives x0 ≥ b, and (9.9)
gives

(9.14) u′ ≥ c2(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2(d0 − x0 + (ℓ2 + 1)e).

We also have

(

µ1 +
c(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2

)

x0 ≤ c(c+ ℓ1ǫ)

(c+ ǫ)2
ν1ν2(d0 + (ℓ2 + 1)e),

whence
(9.15)

d0 − x0 + (ℓ2 + 1)e ≥ (c+ ǫ)2µ1

(c+ ǫ)2µ1 + c(c+ ℓ1ǫ)ν1ν2
(d0 + (ℓ2 + 1)e).

As before, u′ ≥ cµ1b. In addition, using the inequality (9.14)
with (9.8) and x0 ≤ x, we have

u′ ≥ c
(c(c+ ℓ1ǫ)

c+ ǫ
ν1µ2

)

b.

Further, again using (9.14), now with (9.15) and d0 ≥ d, yields

u′ ≥ c

c+ ǫ
· c(c+ ǫ)(c + ℓ1ǫ)µ1ν1ν2
(c+ ǫ)2µ1 + c(c+ ℓ1ǫ)ν1ν2

· (d+ (ℓ2 + 1)e).
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These three lower bounds on u′ suffice to prove that D is weakly
subsumed by the triple 〈µ, ν, ℓ〉 as defined by (9.4). Similar cal-
culations of lower bounds on x′ show that if B is (non-weakly)
subsumed by 〈µ1, ν1, ℓ1〉, then D is (non-weakly) subsumed by the
triple 〈µ, ν, ℓ〉.

That completes the proof of Lemma 9.3. �

Lemma 9.3 lets us give a full characterization of when DTISP
refutations exist, in terms of ABCD triples.

Theorem 9.16. Any balanced, non-trivial derivation D starting
with a line with at least one quantifier is weakly subsumed by some
ABCD triple.

The proof of Theorem 9.16 is entirely analogous to the proof of
Theorem 4.18; we leave the details to the reader. Likewise, the next
theorems are proved entirely analogously to Lemmas 4.20 and 5.2
and Corollary 5.3. (Note, however, that we are not able to prove
any useful analogue of Lemma 5.4 for DTISP refutations.)

Theorem 9.17. Fix c and ǫ. There is a refutation if and only if
there is a ABCD-triple 〈µ, ν, ℓ〉 with cµǫ < 1 and ρ(µ, ν, ℓ) < 1.

Theorem 9.18. Fix c and ǫ. There is a refutation if and only if
there is a ABE-triple 〈µ, ν, ℓ〉 with cµǫ < 1 and ρ(µ, ν, ℓ) < 1.

It is left to the reader to verify the details of the proofs.
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