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FeasiblyConstructiveProofSystems

A constructive proof system is one in which

proofs of existence contain, or imply the exis-

tenceof, algorithms forfinding theobjectwhich

isprovedtoexist. Forafeasiblyconstructivesys-

tem, the algorithm will be feasible, not merely

effective.

I.e., if ∀x∃yA(x, y) is provable then there should

beanalgorithmtofind y asa functionof x.

Effective versusFeasible:

“Effective” means “recursive” - Church’s the-

sis.

“Feasible” means “Computable with a reason-

able amountof timeor space resources”.

The usual mathematical model for feasible is

“polynomial-timecomputable”.
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PRELIMINARIES:

COMPUTATIONALCOMPLEXITY

Def’n: P is thesetofpolynomial timerecogniz-

able functions. FP is the set of polynomial time

computable functions.

Functions and predicates are arithmetic: poly-

nomial time means in terms of the length |x| of

the input x. (Instead of having functions and

predicatesoperateon stringsof characters.)

|x| = dlog2(x + 1)e = the length of the binary

representationof x

|~x| = |x1|, |x2|, . . . , |xk|

3



Cobham (1964) defined FP as the closure of

somebase functions under compostion and lim-

ited iterationonnotation.

BaseFunctions: 0, S (successor), b12xc, 2 · x,

x ≤ y =

{
1 ifx ≤ y
0 otherwise

Choice(x, y, z) =

{
y ifx > 0
z otherwise

Def’n: Let q be a polynomial. f is defined from

g and h by limited iteration on notation with

spacebound q iff

f(~x,0) = g(~x)

f(~x, y) = h(~x, y, f(~x, b12yc))
provided |f(~x, y)| ≤ q(|~x|, |y|) for all ~x, y.
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Def’n: NP is the set of non-deterministic poly-

nomial time computable predicates. Co-NP is

the set of complementsofNPpredicates.

Def’n: If Ψ is a set of predicates, PB∃(Ψ) is the

set of predicates A expressible as

~x ∈ A ⇔ (∃y ≤ 2p(|~x|))B(~x, y)

for somepolynomial p and some B ∈ Ψ.

PB∀(Ψ) is defined similarly with universal poly-

nomially boundedquantification.

Now, NP = PB∃(P ) and co-NP = PB∀(P ).

Def’n: If Ψ is a set of predicates, PΨ (resp.,

FPΨ)is the set of predicates (resp., functions)

polynomial time recognizable with oracles for a

finitenumberof predicates in Ψ.
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PolynomialTime“Hierarchy”:

p
1 = FP

∆p
1 = P

Σp
k = PB∃(∆p

k)

Πp
k = PB∀(∆p

k)

∆p
k+1 = PΣp

k = PΠp
k

p
k+1 = FPΣp

k = FPΠp
k

. .

. .

. .

∆p
3

p
3

Πp
2 Σp

2

∆p
2

p
2

co-NP = Πp
1 Σp

1 = NP

P = ∆p
1

p
1 = FP

OpenQuestion: Is this hierarchyproper?
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TheEquationalTheoryPV

(Cook, 1975)PV-“PolynomiallyVerifiable”

• an equational theory analogous to PRA ex-

cept for polynomial timecomputability.

• based on dyadic representation of integers

as stringsof 0’s and1’s.

• base functions include ≤, Cond, concate-

nation and iterated concatenation and two

successor functions s1 and s2:

si+1(x) = 2x + i

• additional function symbols definable by

limited iteration; this gives all FP functions.
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• a length induction rule (for equations A):

A(0) A(1) (∀x)(A(x) ⊃ A(s1(x)) ∧ A(s2(x)))

(∀x)A(x)

• Statman showed that the full induction (for

equations)holds:

A(0) ∧ A(1) ∧ (∀x)(A(x) ⊃ A(x + 1))
⊃ (∀x)A(x)

• Bounded Arithmetic will present more ap-

propriate induction axioms for polynomial

time/hierarchy complexity

• PV candefineprecisely thepolynomial time

functions; equations express precisely the

polynomial timepredicates.

• Connections between PV and polynomial

size extendedFregeproofs
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LanguageofBoundedArithmetic

First-order language for N with function sym-

bols 0, S , +, ·, b12xc, |x|, # and relation symbol

≤,where

x#y = 2|x|·|y|

The # (pronounced “smash”) function allows

us to express 2q(|~a|) for q any polynomial with

positive integer coefficients.

Def’n: A bounded quantifier is a quantifier of

the form (Qx ≤ t) with t a term. A sharply

boundedquantifier is oneof the form (Qx ≤ |t|).
(∀x) and (∃x) are unbounded quantifiers. A

bounded formula is one with no unbounded

quantifiers.
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A hierarchy of classes Σb
k, Πb

k of bounded for-

mulas is defined by counting alternations of

bounded quantifiers, ignoring sharply bounded

quantifiers. (Analogous to defining the arith-

metic hierarchy by counting unbounded quanti-

ifiers, ignoringboundedquantifiers.)

Σb
0 = Πb

0 is the set of formulaswith only sharply

boundedquantifiers.

If A ∈ Σb
k then (∀x ≤ |t|)A and (∃x ≤ t)A are in

Σb
k and (∀x ≤ t)A is in Πb

k+1.

Dually, if A ∈ Πb
k then (∃x ≤ |t|)A and (∀x ≤ t)A

are in Πb
k and (∃x ≤ t)A is in Σb

k+1.

Connectives ∧, ∨, ¬, ⊃ are treated in the usual

manner.

Thm: Fix k ≥ 1. Apredicate Q is in Σp
k iff there

is a Σb
k formulawhichdefines it.

Pf: (Stockmeyer-Wrathall, 1976),

(Kent-Hodgson, 1982)
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Reasons the # function and sharply bounded

quantifiers arenatural choices:

• # has the right growth rate for polynomial

timecomputation.

• the above theorem defines the Σ, Π classes

of the polynomial hierarchy syntactically

(withoutuseof computation),

• QuantifierExchangePrinciple:

(∀x ≤ |a|)(∃y ≤ b)A(x, y) ↔
↔ (∃y ≤ (2a + 1)#(4(2b + 1)2))(∀x ≤ |a|)

[A(x, β(x + 1, y)) ∧ β(x + 1, y) ≤ b]

• EdNelson introduced # for defining substi-

tution syntactically. Wilkie-Paris have used

Ω1 (“xlogx is total”) similarly.
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InductionAxioms forBoundedArithmetic

The INDaxiomsare theusual induction axioms.

The PIND and LIND axioms are “polynomial”

and“length”inductionaxiomsthatareintended

tobe feasibly effective formsof induction.

Σb
k-IND: For A ∈ Σb

k,

A(0) ∧ (∀x)(A(x) ⊃ A(x + 1)) ⊃ (∀x)A(x)

Σb
k-PIND: For A ∈ Σb

k,

A(0) ∧ (∀x)(A(b12xc) ⊃ A(x)) ⊃ (∀x)A(x)

Σb
k-LIND: For A ∈ Σb

k,

A(0) ∧ (∀x)(A(x) ⊃ A(x + 1)) ⊃ (∀x)A(|x|)

Σb
k-LIND and Σb

k-PIND typically are equivalent

andare (strictly?) weaker than Σb
k-IND.

Exponentiation isnotprovably total inBounded

Arithmetic.
12



TheoriesofBoundedArithmetic

Def’n: T i
2 isthefirst-ordertheorywithlanguage

0, S , +, ·, b12xc, |x|, # and≤ andaxioms:

(1) A finite set, BASIC, of (universal closures

of) open axioms defining simple properties

ofthefunctionandrelationsymbols. BASIC

properly contains Robinson’s Q since it has

tobeusedwithweaker inductionaxioms.

(2) The Σb
i -INDaxioms.

T−1
2 hasno inductionaxioms.

T2 is theunionof the T i
2’s.

T2 is equivalent to I∆0 + Ω1 (Parikh, Wilkie-

Paris) except for differences in the nonlogical

language.
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Def’n: Si
2 is the first-order theory with lan-

guage 0, S , +, ·, b12xc, |x|, # and≤ andaxioms:

(1) TheBASICaxioms, and

(2) The Σb
i -PINDaxioms.

S−1
2 = T−1

2 hasno inductionaxioms.

S2 is theunionof the Si
2’s.

Thm: (Buss, 1985). Let i ≥ 1.

T i
2 ` Si

2

and

Si
2 ` T i−1

2 .

So S2 ≡ T2.

Open: Are the inclusionsproper?

S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ · · ·
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Def’n: Let f :Nk 7→ N. f is Σb
i -definable by a

theory R iff there is a formula A(~x, y) ∈ Σb
i anda

term t so that

(1)For all ~n ∈ Nk, A(~n, f(~n)) is true.

(2) R ` (∀~x)(∃y ≤ t)A(~x, y)

(3) R ` (∀~x, y, z)(A(~x, y) ∧ A(~x, z) ⊃ y = z)

Def’n: Let Q ⊆ N. Q is ∆b
i -definable by a

theory R iff there is a Σb
i -formula A and Πb

i -

formula B that define Q so that A and B are

provably equivalent in R. A formula is ∆b
i w.r.t

R iff it is provably equivalent to a Σb
i - and to a

Πb
i -formula.

Bootstrapping Thm: Every polynomial time

function isΣb
1-definablebyS1

2 andeverypolyno-

mial timepredicate is ∆b
1-definableby S1

2 .
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Thm: AnyΣb
1-definablefunctionor∆b

1-definable

predicate of Si
2 may be introduced into the non-

logical language and used freely in induction ax-

ioms.

Pf: If f is Σb
1-definedby R:

R ` (∀x)(∃!y ≤ r(~x))Af(~x, y).

Anatomic formula ϕ(f(~s)) is equivalent toboth

(∃y ≤ r(~s))(Af(~s, y) ∧ ϕ(y))

and

(∀y ≤ r(~s))(Af(~s, y) ⊃ ϕ(y))

ThusanyΣb
i -formula involving f isequivalentto

one not involving f by tranforming atomic sub-

formulas as above (and by removing f from the

quantifier bounds). 2
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MainTheorems forSi
2

Theorem: (Buss, 1985) Let i ≥ 1. Let A be

a Σb
i -formula. Suppose Si

2 ` (∀~x)(∃y)A(~x, y).

Then there is a Σb
i -formulaBand a function f ∈

p
i anda term t so that

(1) Si
2 ` (∀~x, y)(B(~x, y) ⊃ A(~x, y)).

(2) Si
2 ` (∀~x)(∃!y)B(~x, y).

(3) Si
2 ` (∀~x)(∃y ≤ t)B(~x, y). [Parikh]

(4) For all ~n, N |= B(~n, f(~n)).

Conversely: If f ∈ p
i then there is a formula

B ∈ Σb
i andaterm t sothat(2), (3)and(4)hold.
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Corollary: (i ≥ 1) The Σb
i -definable functions

of Si
2 areprecisely the functions in p

i .

To restate in termsofpredicates:

Theorem: (i ≥ 1). Suppose A(~x) ∈ Σb
i and

B(~x) ∈ Πb
i and Si

2 ` A ↔ B. Then there is a

predicate Q ∈ ∆p
i so that, for all ~n,

Q(~n) ⇔ N |= A(~n) ⇔ N |= B(~n)

Conversely, if Q ∈ ∆p
i then there are A and B so

that theaboveholds.

So, the ∆b
i -definable predicates of Si

2 are pre-

cisely the ∆p
i -predicates.

Special casewhen i = 1:IfA isaformulawhichis

S1
2-provably inNP∩co-NP thenAdefinesapoly-

nomial time predicate (provably in S1
2). Being

provably in NP ∩ co-NP meansprovably equiva-

lent toa Σb
1- and toa Πb

1-formula.
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TheSequentCalculus

To prove the Main Theorem, we shall formalize

Si
2 inGentzen’s sequent calculus.

∧, ∨, ¬,⊃, ∀, ∃ are the logical symbols.

→ is the sequent connective.

Def’n: A sequent is of the form

A1, A2, . . . , An→B1, B2, . . . , Bk

where the Ai’s and Bi’s are formulas. Its in-

tendedmeaning is

(A1 ∧ A2 ∧ · · · ∧ An) ⊃ (B1 ∨ · · · ∨ Bk)

Greek letters Γ,∆, . . . are used to denote finite

sequences of formulas separated by commas

(“cedents”).
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An LK-proof is a tree of sequents: the leaves or

initial sequents must be of the form A→A; the

root, or endsequent, is what is proved; and the

valid inferences are:

Γ→∆, A
¬A,Γ→∆

A,Γ→∆
Γ→∆,¬A

Γ→∆, A Γ→∆, B

Γ→∆, A ∧ B

A,Γ→∆
A ∧ B,Γ→∆

B,Γ→∆
A ∧ B,Γ→∆

A,Γ→∆ B,Γ→∆

A ∨ B,Γ→∆

Γ→∆, A
Γ→∆, A ∨ B

Γ→∆, B
Γ→∆, A ∨ B

Γ→∆, A B,Γ→∆

A ⊃ B,Γ→∆

A,Γ→∆, B
Γ→∆, A ⊃ B
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A(b),Γ→∆
(∃x)A(x),Γ→∆

Γ→∆, A(t)
Γ→∆, (∃x)A(x)

A(t),Γ→∆
(∀x)A(x),Γ→∆

Γ→∆, A(b)
Γ→∆, (∀x)A(x)

In the quantifier inferences the free variable b is

called the eigenvariable and must not appear in

the lower sequent.

Γ→∆
A,Γ→∆

Γ→∆
Γ→∆, A

Γ, A, B,Π→∆
Γ, B, A,Π→∆

Γ→∆, A, B,Λ
Γ→∆, B, A,Λ

A, A,Γ→∆
A,Γ→∆

Γ→∆, A, A
Γ→∆, A

Cut:
Γ→∆, A A,Π→Λ

Γ,Π→∆,Λ
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Theorem: (Gentzen)

• LK is complete.

• LKwithout theCut inference is complete.

So if P is an LK-proof of Γ→∆ then there is

a cut-free proof P ∗ of Γ→∆. There is an ef-

fective(butnot feasible)procedure toobtain P ∗
from P .

Because there are no cuts in P ∗, every formula

appearing in P ∗ will be a subformula (in a wide

sense)ofaformulainΓ→∆. Thisgivesabound

on the logical complexity of formulas needed to

prove Γ→∆.
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ToformulatesequentcalculussystemsofBounded

Arithmetic,weenlargeLKas follows:

(1) AllowequalityaxiomsandBASICaxiomsas

initial sequents. An initial sequent will con-

tainonly atomic formulas.

(2) Add inferences for boundedquantifiers

(the variable b occursonly as indicated):

b ≤ s, A(b),Γ→∆
(∃x ≤ s)A(x),Γ→∆

Γ→∆, A(t)
t ≤ s,Γ→∆, (∃x ≤ s)A(x)

A(t),Γ→∆
t ≤ s, (∀x ≤ s)A(x),Γ→∆

b ≤ s,Γ→∆, A(b)
Γ→∆, (∀x ≤ s)A(x)
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(3) Allow induction inferences: (for A ∈ Σb
i )

Σb
i -IND

A(b),Γ→∆, A(b + 1)
A(0),Γ→∆, A(t)

Σb
i -PIND

A(b12bc),Γ→∆, A(b)

A(0),Γ→∆, A(t)

Si
2 andT i

2 maybeformulatedassequentcalculus

systems with BASIC axioms as initial sequents

and with Σb
i -PIND and Σb

i -IND inference rules,

respectively. With side formulas, the induction

inferences are equivalent to the induction ax-

ioms.
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Def’n: Acut inference
Γ→∆, A A,Π→Λ

Γ,Π→∆,Λ
is free unless A is the direct descendant either

of a formula in an initial sequent or of a principal

formulaof an induction inference.

Free-CutEliminationTheorem

(essentially due toGentzenandTakeuti):

If P is an Si
2-proof (or T i

2-proof) then there is a

proof P ∗ in the same theory with the same end-

sequentwhichcontainsno free cuts.

In a free-cut free proof, every formula will be a

subformula (in awide sense)of an induction for-

mula, of a formula in an axiom or of a formula in

the conclusion. (Thewide senseallows terms to

change.)

In Si
2 and T i

2, cut formulas may be restricted to

be Σb
i -formulas.
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ToprovetheMainTheorem

Step1: Startwithan Si
2-proof P of

→(∃y)A(~c, y).

By free-cut elimination, there is an Si
2 proof P ∗

of →(∃y ≤ t)A(~c, y) such that every formula in

P ∗ is a Σb
i -formula.

Step 2: Given the proof P ∗ we will extract an

algorithm to compute a function f(~c) such that

A(~n, f(~n)) is true forall n. The function f will be

in p
i andwillbeΣb

i -definedbySi
2. Furthermore,

Si
2 will prove (∀~x)A(~x, f(~x)).

P ∗ can be thought of as a program plus a proof

that it is correct.

Proof ofStep2 follows...
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TheWitnessPredicate

Def’n: Let B(~a) be a Σb
i -formula with all free

variables indicated. Then Witnessi,~a
B (w, a) is a

formuladefined inductively:

(1) If B ∈ Σb
i−1 ∪ Πb

i−1 then

Witnessi,~a
B (w,~a) ⇔ B(~a)

(2) If B = C ∨ D then

Witnessi,~a
B (w,~a)⇔Witnessi,~a

C (β(1, w),~a)

∨Witnessi,~a
D (β(2, w),~a)

(3) If B = C ∧ D then

Witnessi,~a
B (w,~a)⇔Witnessi,~a

C (β(1, w),~a)

∧Witnessi,~a
D (β(2, w),~a)

(4) If B = (∃x ≤ t)C(~a, x) then

Witnessi,~a
B (w,~a) ⇔ β(1, w) ≤ t

∧Witnessi,~a,b
C(~a,b)(β(2, w),~a, β(1, w))
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(5) If B = (∀x ≤ |t|)C(~a, x) then

Witnessi,~a
B (w,~a) ⇔

(∀x ≤ |t|)Witnessi,~a,b
C(~a,b)(β(x + 1, w),~a, x)

(6) If B = ¬C use prenex operations to push

thenegation sign inside.

Lemma: Let B ∈ Σb
i .

(1) For some term tB , Si
2 proves

B(~a) ↔ (∃w ≤ tB)Witnessi,~a
B (w,~a)

(2) Witnessi,~a
B ∈ ∆p

i (= P if i = 1)

(3) Witnessi,~a
B is ∆b

i with respect to Si
2.

Pf: Inductiononcomplexity of B.
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TheMainLemma

Lemma: Suppose Si
2 ` Γ→∆ where Γ and

∆ contain only Σb
i -formulas. Let ~c be the free

variables in Γ and ∆. Then, there is a function f

such that

(1) f is Σb
i -definedby Si

2

(2) Si
2 proves

Witnessi,~c∧∧
Γ(w,~c) ⊃ Witnessi,~c∨∨

∆(f(w,~c), ~c)

(3) f ∈ p
i (= FP if i = 1)

Proof is by induction on the number of infer-

ences in a free-cut free Si
2-proof of Γ→∆.
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As an example of one case of the proof of the

main lemma, suppose that P is a free-cut free

proof andendswith the inference

B(b12ac)→B(a)

B(0)→B(t)

By the induction hypothesis, there is a function

g so that

(1) g is Σb
i -definedby Si

2

(2) g is in p
i (= FP if i = 1)

(3) Si
2 ` Witnessi,a,~c

B(b12ac)
(w, a,~c) ⊃

⊃ Witnessi,a,~c
B(a)(g(w, a,~c), a,~c).

(4) Si
2 ` (∀a,~c)[g(w, a,~c) ≤ tB(a,~c)]
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Nowdefine f by limited iterationas

f(w,0, ~c) = g(w,0, ~c)

f(w, a,~c) = g(f(w, b12ac, ~c), a,~c)

so f(w, a,~c) ≤ tB(a,~c) and the followinghold:

(1) f ∈ p
i (= FP if i = 1)

Pf: Since f is defined by limited iteration

from g

(2) Si
2 canΣb

i -define f andprovethat f satisfies

theaboveconditions

(3) Si
2 ` Witnessi,a,~c

B(0,~c)(w, a,~c) ⊃
⊃ Witnessi,a,~c

B(a,~c)(f(w, a,~c), a,~c).

Pf: Since Witnessi,b,~c
B(a,~c) is a Σb

i -formula, Si
2

can prove this by Σb
i -PINDdirectly from the

inductionhypothesis.

Q.E.D.MainLemma
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ProofofMainTheoremfromMainLemma

Suppose Si
2 ` (∀~x)(∃y)A(~x, y). By a theorem

of Parikh, there is a term t so that Si
2 proves

→(∃y ≤ t)A(~c, y). By theMainLemma,

Si
2 ` Witnessi,~c

(∃y≤t)A(g(~c), ~c)

for some Σb
i -defined function g. Define

B(~c, y) tobe y = β(1, g(~c))

Since g is Σb
i -defined by Si

2, B is a Σb
i -formula

andby theproperties ofWitness,

Si
2 ` (∀~x, y)(B(~x, y) ⊃ A(~x, y))

Finally, define f(~c) = β(1, g(~c)).

Q.E.D.MainTheorem
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OtherAxioms forBoundedArithmetic

Let Ψ be a set of formulas. The axioms below

are schemeswhere A ∈ Ψ:

Ψ-MIN: (Minimization)

(∃x)A(x) ⊃ (∃x)[A(x) ∧ (∀y < x)(¬A(y))]

Ψ-LMIN: (Lengthminimization)

(∃x)A(x) ⊃ A(0)∨(∃x)[A(x)∧(∀y ≤ b12xc)(¬A(y))]

Ψ-replacement:

(∀x ≤ |t|)(∃y ≤ s)A(x, y) ↔
↔ (∃w ≤ SqBd(t, s))(∀x ≤ |t|)

(A(x, β(Sx, w)) ∧ β(Sx, w) ≤ s)

strongΨ-replacement:

(∃w ≤ SqBd(t, s))(∀x ≤ |t|)
[(∃y ≤ s)A(x, y) ↔

↔ A(x, β(Sx, w) ∧ β(Sx, w) ≤ s]

33



For i ≥ 1, relative to S1
2 :

Σb
i-IND ⇔ Πb

i-IND ⇔ Σb
i-MIN ⇔ ∆b

i+1-IND

⇓
Σb

i-PIND ⇔ Πb
i-PIND ⇔ Σb

i-LIND ⇔ Πb
i-LIND

m
Σb

i-LMIN ⇔ strongΣb
i-replacement

⇓ m
Σb

i−1-IND (Σb
i+1 ∩ Πb

i+1)-PIND

Σb
i+1-MIN ⇔ Πb

i-MIN

Σb
i+1-replacement ⇒ Σb

i-PIND ⇒ Σb
i-replacement

Si+1
2 Â

Σb
i+1

T i
2

Si+1
2 Â

B(Σb
i+1)

T i
2 + Σb

i+1-replacement
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Thm: (Buss, 1985)

S1
2 + Σb

i-PIND ` ∆b
i-IND.

Hence Si
2 ⊃ T i−1

2 .

Pf: Suppose A is ∆b
i w.r.t. Si

2. Assume

(∀x)(A(x) ⊃ A(x + 1)) andargue inside Si
2.

Let B(x, z) be the formula

(∀w ≤ x)(∀y ≤ z + 1)(A(w .− y) ⊃ A(w)).

So B is equivalent to a Πb
i -formula. Nowby def-

inition of B, (∀x, z)(B(x, b12zc) ⊃ B(x, z)) and

henceby Πb
i -PINDon B(x, z) w.r.t z,

(∀x)(B(x,0) ⊃ B(x, x)).

Bytheassumption, (∀x)B(x,0);hence (∀x)B(x, x),

fromwhence

(∀x)(A(0) ⊃ A(x))

2

35



ConservationResults

Thm: (Buss, 1987)Let i ≥ 1.

Si+1
2 is conservative over T i

2 with respect

to Σb
i+1-formulas, and hence with respect to

∀∃Σb
i+1-sentences.

Pf: (Idea). Fix i ≥ 1 and let Z be PV or T i−1
2 as

appropriate. First show that every p
i -function

is definable in Z in an appropriate sense. For

i = 1, there is a function symbol for every poly-

nomial time function; for i ≥ 1, we show that

every p
i -function can be “Qi-defined” — this

is stronger than “Σb
i -defined”. Second, prove a

stronger version of the Main Lemma above; in

essence,wepartially formalize theMainLemma

in Z and prove that the witnessing function f is

definedappropriately in Z . Namely,weprove:

Lemma: If Si
2 ` A with A ∈ Σb

i then Z ` A.
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WitnessingTheoremfor T1
2

Defn: [Papadimitriou]APolynomialLocalSearch

(PLS), problem is specified by polynomial time

functions F, N, c:

(1) c(s, x) is a cost function,

(2) N(s, x) is a neighborhood function, such

that for all s s.t. F (x, s)

c(N(s, x), x) ≤ c(s, x)

(3) {s : F (s, x)} is the solution space for input

x, and F (0, x) alwaysholds, andsuch that, if

F (s, x), then |s| < p(|x|) for p apolynomial.

AsolutiontothePLSproblemisa(multivalued)

function f , s.t., for all x,

c(N(f(x), s), s) = c(f(x), x).
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Thm [Buss-Kraj́ıček’94] Suppose T1
2 proves

(∀x)(∃y)A(x, y) where A ∈ Σb
1. Then there is

a PLS function f(x) = y and a polynomial time

function π such that

T1
2 ` (∀x)A(x, π ◦ f(x)).

Furthermore, every PLS function (and every

function π ◦ f ) is Σb
1-definableby T1

2 .

CorollaryThesameholdsforS2
2 byconservativ-

ity of S2
2 over T1

2 .

Proof-idea: A free-cut free T1
2 -proof can be

transformed intoaPLSproblem. 2
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TheKPTWitnessingTheorem

Thm [Kraj́ıček-Pudlák-Takeuti,91]

SupposeA ∈ Σb
i+2andT i

2 ` (∀x)(∃y)(∀z)A(x, y, z).

Thenthere k > 0 and functions fi(x, z1, ..., zi−1)

so that

(1) Each fi is Σb
i+1-definedby T i

2.

(2) T i
2 proves

(∀x)[(∀z1)[A(x, f1(x), z1) ∨
(∀z2)[A(x, f2(x, z1), z2) ∨
(∀z3)[A(x, f3(x, z1, z2), z3) ∨ · · ·
(∀zk)[A(x, fk(x, z1, . . . , zk−1), zk)] · · ·]]].

This is called a “nocounterexample interpreta-

tion”; and is a special formof a generalizedHer-

brand’s theorem(see [Buss’95]).
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Thm [KPT’91; Buss’9?,Zambella’9?] If T i
2 =

Si+1
2 , then the polynomial time hierarchy col-

lapses, provably in T i
2. In fact, in this case, T i

2
proves that every Σp

3 predicate is (a) equivalent

to aBoolean combination of Σp
2-predicates and

(b) is in Σp
1/poly.

Proof-ideaFor simplicity, assume i = 0. Sup-
pose T0

2 (PV ) = S1
2 . Let ϕ represent a vector

of Boolean formula ϕ = 〈ϕ1, . . . , ϕn〉. Then
T0
2 (PV ) proves

∀ϕ(∃` ≤ n)(∃〈w1, . . . , w`〉)
[(∀j ≤ `)(wj satisfiesϕj)

∧“` = norϕ`+1 is unsatisfiable”]

The formula in [· · ·] is in Πb
1, so the KPT wit-

nessing theorem can be applied to get k > 0
andpolynomial time functions f1, . . . , fk so that
T0
2 (PV ) proves (setting n = k) that given

ϕ1, . . . , ϕk satisfied by w1, . . . wk, that one of
fj(ϕ, w1, . . . , wj−1) produces a witness to ϕj .
[Note that fj hasall ϕi’s as input.]
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Let PreAdvice(a, 〈ϕ`+1, . . . , ϕk〉) mean that for

all ϕ1, . . . , ϕ` < a (not nec. satisfiable), that

fj(ϕ, w1, . . . , wj−1) satisfies ϕj for some j ≤ `.

LetAdvice(a, 〈ϕ`+1, . . . , ϕk〉)meanthatPreAdvice

holds, and that ` is the minimum possible value

forwhich there is suchPreAdvice.

Claim: T0
2 (PV ) proves, that if ϕ` < a and

if Advice(a, 〈ϕ`+1, . . . , ϕk〉), then ϕ` is satisfi-

able if and only if for all ϕ1, . . . , ϕ`−1, satis-

fied by w1, . . . , w`−1, there is j ≤ ` such that

fj(ϕ, w1, . . . , wj−1) satisfies ϕj .

Pf: If the latter condition is true, then the

only way for 〈ϕ`, . . . , ϕk〉 to not be “preadvice”,

(which it isn’t, by def’n of “advice”) is for ϕ`

to be satisfiedby f`(ϕ, ~w) for some ϕ1, . . . , ϕ`−1,

w1, . . . , w`−1. 2
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Note that this means that the NP complete

propertyofsatisfiability is incoNPrelativetothe

polynomial size advice, 〈ϕ`−1, . . . , ϕk〉.

The above shows that T0
2 (PV ) would prove

NP ⊆ coNP/poly. From this, Karp-Lipton style

methodscanshowthatT0
2 (PV ) provesthepoly-

nomial timehierarchy collapses.

In fact it can be shown that T0
2 (PV ) proves

that every polynomial time hierarchy predicate

is equivalent to Boolean combination of Σp
2

predicates. The proof idea is that the property

PreAdvice is in coNP and therefore, property

PAlen(`) ≡ ∃〈ϕ`+1, . . . , ϕk〉PreAdvice(a, 〈~ϕ〉)
is a Σp

2-property. Q.E.D.

Similarmethodswork for i ≥ 1.
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LengthsofPropositionalProofs

Def’n: PropositionalFormulasare formedwith

logical connectives ∧, ∨, ¬ and ⊃, variables

p1, p2, . . ., andparentheses.

Cook’sThm: P = NP iff there is a polynomial

timealgorithmfordetermining ifapropositional

formula is valid.

Def’n: A Frege (F ) proof system is a usual

proof system for propositional logicwith a finite

set of axiom schemes and with only the modus

ponens rule. F is soundandcomplete.

Open: Does every tautologyhave apolynomial

sizeF -proof? If so, thenNP=co-NP.

Pf: The set of tautologies is co-NP complete

and having a polynomial size F -proof is an NP

property.
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Def’n: The extended Frege (eF ) proof system

is aFregeproof systemplus theextension rule:

ExtensionRule: whenever q is a variable which

hasnotbeenused intheproofsofaranddoesnot

appear inthefinal lineoftheproofor inϕ thenwe

may infer

q ↔ ϕ.

This allows us to use q as abbreviation for ϕ.

By iterating uses of extension rule the extension

rule can apparentlymake proofs logarithmically

smaller by reducing the formula size.

(Tsěıtin, 1968) first used the extension rule, for

resolution proofs. Also, (Statman, 1977) and

(Cook,Reckhow,1979).

Thm: (Reckhow, 1976) The choice of axiom

schemas or of logical language does not affect

the lengths of F - or eF -proofs by more than a

polynomial amount.
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Def’n: A propositional proof system is a poly-

nomial time function f with range equal to the

set of all valid formulas.

An(extended)Fregeproofsystemcanbeviewed

as a propositional proof system by letting f(w)

equal the last line of w if w is a valid (e)F -proof.

Similarly, any theory (e.g. set theory) can be

viewedasapropositional proof system.

Thm: (Cook, 1975)

NP=coNP iff there is aproof system f forwhich

tautologies havepolynomial sizeproofs.

Suchaproof system f , if it exists, is called super.
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Def’n: Let S and T be proof systems (with the

samepropositional language). S simulates T iff

there is apolynomial p so that for any T -proof of

size n there is an S-proof of the same formula of

size ≤ p(n). S p-simulates T iff the S-proof is

obtainable as anFP functionof the T -proof.

Open: DoesF simulate eF?

This is related to the question of whether Bool-

ean circuits have equivalent polynomial size for-

mulas. By(Ladner,1975)and(Buss,1987)this

is anon-uniformversionof

“DoesP=ALOGTIME?”

Open: Is there a maximal proof system which

simulates all otherpropositional proof systems?

(Kraj́ıček, Pudlák, 1989): If NEXP=co-NEXP

then“Yes”.
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Def’n: The propositional pigeon hole principle

PHPn is the formula∧
0≤i≤n

∨
0≤j<n

pi,j ⊃ ∨
0≤i<m≤n

∨
0≤j<n

(pi,j ∧ pm,j)

states that n + 1 pigeons can’t fit singly into n

holes. pi,j means“pigeon i is in hole j”.

Thm: (Cook-Reckhow, 1979) There are poly-

nomial size eF -proofs of PHPn.

Thm: (Buss, 1987) There are polynomial size

F -proofs of PHPn.

Thm: (Haken, 1985) The shortest resolution

proofs of PHPn areof exponential size.

Cook and Reckhow had proposed PHPn as an

example for showing that F could not simulate

eF .

Problem: Find a combinatorial principle that

might separateF from eF .
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Proof that PHPn haspolysize eF -proofs

ConceptualVersion: (by contradiction)

Given f : [n]
1−17−→ [n − 1]

define fk: [k]
1−17−→ [k − 1]

as fn(i) = f(i),

fk(i) =

{
fk+1(i) if fk+1(i) < k
fk+1(k + 1) otherwise.

For k = 1, f1 : [1]
1−17−→ [0] —contradiction.

eF-proof: Uses qk
i,j for “fk(i) = j”.

qn
i,j ↔ pi,j

qk
i,j ↔ qk+1

i,j ∨ (qk+1
i,k ∧ qk+1

k+1,j)

Thenprovefor k = n, n−1, . . . ,1 that qk
i,j ’scode

a one-to-one function from [k] to [k − 1]. For

k = 1,wehave“f1 is total andone-to-one”:

q10,0 ∧ q11,0 ∧ ¬(q10,0 ∧ q11,0)

which is impossible. 2
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TheFirstTranslation
S1
2 andPolysize eF Proofs

Part of Cook’s motivation for the introduction

ofthefeasiblyconstructiveproofsystemPVwas

that there is an intimate translation between

PV-proofs andpolynomial size eF -proofs.

(Cook, 1975) showed that if A(x) is a polyno-

mial time equation provable in PV, then there is

a family of tautologies A n such that

(1) A n is a polynomial size propositional for-

mula,

(2) A n saysthatA(x) istruewhenever |x| ≤ n,

(3) A n haspolynomial size eF -proofs.

Generalizations have been proved by (Dowd,

1985)and (Kraj́ıček,Pudlak, 1988).
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Weshall prove theversionofCook’s theoremfor

S1
2 and Πb

2-formulas A. (seeBuss, 1988).

Def’n: Let t(~a) be a term. The bounding poly-

nomialof t is a polynomial qt(~n) such that

(∀~x)(|t(~x)| ≤ qt(max{|~x|})).
The inductivedefinition is:

q0(n)=1
qa(n)=n foraavariable

qS(t)(n)=qt(n) + 1
qs+t(n)=qs(n) + qt(n)
qs·t(n)=qs(n) + qt(n)

qs#t(n)=qs(n) · qt(n) + 1
q|t|(n)=qb12tc(n) = qt(n)

Def’n: Let A(~a) be a bounded formula. The

bounding polynomial of A is a polynomial qA(~a)

so that if |ai| ≤ n for all ai in ~a, then A(~a) refers

only tonumbersof length≤ qA(n).

51



qA is inductively definedby:

(1) qs≤t = qs=t = qs + qt

(2) q¬A = qA

(3) qA∧B = qA∨B = qA⊃B = qA + qB

(4) q(Qx≤t)A = qt(n) + qA(n + qt(n))

Nextwe define t m to be a vector of polynomial

size formulas that define (compute) the term t

for values of length ≤ m. For this it is useful to

thinkof formulas asbeingcircuits of fanout1.

Let + m be a polynomial size, fanout 1 circuit

which accepts 2m binary inputs and outputs m

binary signals; + m computes the bitwise sum

of two m-bit integers (and discards any over-

flow). Likewisedefine · m, # m, b12xc
m

, etc.
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Def’n: Let t(~a) bea termand m ≥ qt(n). t n
m is

avectorofmpropositional formulasdefiningthe

lower m bits of the valueof t(~a) when |ai| ≤ n.

For b a free variable in t, a propositional variable

vb
i represents the i-thbit of b’s value.

(1) 0 n
m is a sequence of m false formulas (for

example p ∧ ¬p).

(2) For b a variable, b n
m is a sequence of m − n

false formulas followedby vb
n−1, . . . , vb

0.

(3) s + t n
m is + m( s n

m, t n
m) (the formulas

corresponding to the circuit for addition ap-

plied to theoutputsof s n
m and t n

m).

(4) And similarly for other cases.

Note that t n
m is a polynomial size formula (in m

and n).
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Next: for A ∈ Πb
2 define a propositional formula

A n
m for m ≥ qA(n).

If B is formula, we assign new ‘existential’ vari-

ables εBi and new ‘universal’ variables µB
i to B

(i ≥ 0). Differentoccurencesof B will generally

get assigneddifferent suchvariables.

Def’n: EQm is a circuit for equality:

EQm(~p, ~q) is
m−1∧
k=0

(pk ↔ qk)

LEm(~p, ~q) is a circuit for≤:

EQm(~p, ~q) ∨ ∨
0≤i<m

(
qi ∧ ¬pi ∧

∧
i<j<m

(qi ↔ pi)
)

Def’n: A is in negation-implication normal

form (NINF) iff all negation signs are applied to

atomic subformulas and there are no implica-

tions in A.
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Def’n: Assume A ∈ Πb
2 and A is in NINF and

m ≥ qA(n). Define A n
m inductively by:

(1) s = t n
m is EQm( s n

m, t n
m)

(2) s ≤ t n
m is LEm( s n

m, t n
m)

(3) ¬A n
m is ¬ A n

m for A atomic.

(4) A ∧ B n
m is A n

m ∧ B n
m

(5) A ∨ B n
m is A n

m ∨ B n
m

(6) (∃x ≤ t)A(x) n
m is x ≤ t ∧ A(x) n

m({εA
i /vx

i }n−1
i=0)

(7) (∀x ≤ t)A(x) n
m is ¬x ≤ t ∨ A(x) n

m({µA
i /vx

i }n−1
i=0)

(8) (∀x ≤ |t|)A(x) n
m is

m−1∧
k=0

¬k ≤ |t| ∨ A(k) n
m

Notethat |t| ≤ m (byourassumptionon m).

(9) (∃x ≤ |t|)A(x) n
m is

m−1∨
k=0

k ≤ |t| ∧ A(k) n
m

55



Prop: The formula A n
m is equivalent to A in

that A(~a) is true (|ai| ≤ n) iff for all truthassign-

ments to the universal variables in A n
m there is

an assignment to the existential variableswhich

satisfies A n
m. 2

We can extend the definition of A in the obvi-

ousway to formulasnot inNINF.

Def’n: An eF -proof of A n
m is defined like an

ordinary eF -proof except now we additionally

allow the existential variables (but not the other

variables) in A n
m to be definedby the extension

rule (each existential variable may be defined

onlyonce).

Theorem: (essentiallyCook, 1975).

If A ∈ Πb
2 and S1

2 ` (∀~x)A(~x) thentherearepoly-

nomial size (in n) eF -proofs of A n
qA(n). These

eF -proofs areobtainable inpolynomial time.
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Proof: ofCook’s theorem. If Γ→∆ isprovable

in S1
2 ,weprove the theoremfor

¬Γ ∨ ∆ .

By free-cut elimination it will suffice to do it for

Γ ⊂ Σb
1 and ∆ ⊂ Πb

2. We proceed by induction

on the number of inferences in a free-cut free

proof.

Case (1):A logical axiom B→B. Obviously

¬B ∨ B = ¬ B ∨ B

hasapolynomial size eF -proof.

Case (2):ABASICaxiom. For example,

(x + y) + z = x + (y + z) n
3n

has straightforward polynomial size F -proofs

using techniquesof (Buss, 1987).
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Case (3)Theproof endswithacontraction:

Γ→∆, B, B
Γ→∆, B

Recall that all three B’s are assigned different

existential and universal variables. The induc-

tion hypothesis says there are polynomial size

eF -proofs of

¬Γ ∨ ∆ ∨ B ∨ B .

Modify these proofs by (1) identifying the uni-

versal variables for different B’s; (2) at the end

of theproof use extension todefine

ε′′j ↔ ( B (~ε) ∧ εj) ∨ (¬ B (~ε) ∧ ε′j)

where ~ε′′ are the existential variables for the

lower B and the others are the existential vari-

ables for the upper B’s; and (3) then extend to a

proof of

¬Γ ∨ ∆ ∨ B (~ε′′).
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Case (4)Theproof endswithaCut:

Γ→∆, B B,Π→Λ

Γ,Π→∆,Λ

By free cut elimination, B ∈ Σb
1; so B has exis-

tential variables~ε and¬B hasuniversal variables

~µ. By induction hypothesis, there are polyno-

mial size eF -proofs of

¬Γ ∨ ∆ ∨ B (~ε)

and

¬Π ∨ Λ ∨ ¬B (~µ)

Thepolynomial size eF -proof of

¬Γ ∨ ¬Π ∨ ∆ ∨ Λ

consists of the first proof above followed by the

second proof except with the ~µ’s changed to ~ε’s

followedbya (simulated) cut.

Case (5) For Σb
1-PIND inferences, iterate the

construction forCutandcontractions.
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Case (6) If theproof endswith:

Γ→∆, A(t)
t ≤ s,Γ→∆, (∃x ≤ s)A(x)

Let ~ε be the existential variables for (∃x ≤ s)A.

Thedesired eF -proof contains:

(a)Extension: ~ε ↔ t .

(b)Theproof fromthe inductionhypothesis of

¬Γ ∨ ∆ ∨ A(t)

(c)A further derivationof

¬t ≤ s ∨ ¬Γ ∨ ∆ ∨ (t ≤ s ∧ A(t))

(d)Aderivationof

¬t ≤ s ∨ ¬Γ ∨ ∆ ∨ (∃x ≤ s)A(x)

by changing some t ’s to ε’s. 2
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Corollaries toCook’sTheorem

Thm’sA-Caredue to (Cook, 1975)—forPV

Thm A: Let G ⊇ F be a propositional proof

system. If S1
2 ` Con(G) then eF p-simulates G.

ThmB: If S1
2 `NP=coNPthen eF is super.

Thm C: eF has polynomial size proofs of the

propositional formulas ConeF(n) which assert

that there isno eF -proofof p∧¬p of length≤ n.

Thm D: (Buss, 1989) F has polynomial size

proofsoftheself-consistencyformulasConF(n).
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Pf of Thm A from Thm C: (Idea) Suppose
there is a G proof P of a tautology ϕ. A poly-
nomial size eF proof of ϕ is constructed as fol-
lows: Let ~p be the free variables in ϕ(~p). Reason
inside eF . First show that if ¬ϕ then there is an
F -proof P1 of ¬ϕ(~p) where ~p denotes a vector of
>’s and ⊥’s: the truth values of ~p. By substitut-
ing ~p for ~p in P and combining this with P1, we
construct a G-proof P2 of a contradiction. This
proof has size polynomial in |P | since P1 has size
polynomial in |ϕ| ≤ |P |.

By Thm C there is a polynomial size eF -
proof of ConG(|P2|) so the assumption that ¬ϕ

is impossible; i.e., ϕ is true. 2

PfofThmC: S1
2 ` Con(eF). 2

Pf of Thm D: The F -self-consistency proof is
a “brute-force” proof that truth is preserved by
axioms and modus ponens using the fact that
theBoolean formula value problem is in ALOG-
TIME. 2
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Def’n: A substitutionFrege sF proof system is

aFregeproof systemplus the substitution rule:

ψ(p)

ψ(ϕ)

for ψ, ϕ arbitrary formulas, all occurences of p

substituted for.

Thm: (Cook, Reckhow, 1979), (Dowd, 1985),

(Kraj́ıček,Pudlák, 1989)

sF and eF p-simulate eachother.

Pf: sF p-simulates eF is not hard to show di-

rectly. eF p-simulates sF since S1
2 ` Con(sF).

2
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ConstantDepthFregeProofs

Let propositional formulas use connectives ∧
and ∨ with negations only on variables. The

depth of a formula is the maximum number

of blocks (alternations) of ∧’s and ∨’s on any

branchof the formula, viewedasa tree.

The depth of a Frege proof is the maximum

depthof formulasoccuring in theproof.

Completeness Thm: Constant-depth Frege

systems are complete (for constant depth tau-

tologies.

Proof: Bythecut-elimination theorem. 2
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TheSecondTranslation

I∆0/S2 andconstantdepthF

(Paris-Wilkie’85)developedthefollowingtrans-

lationbetweenprovability in I∆0 (or I∆0+Ω1)

and the lengthsof constantdepthFregeproofs.

First, we shall work with I∆0(α, f) or S2(α, f)

where α and/or f are allowed to be new pred-

icate or function symbols (resp.) which may

be used in induction axioms. We translate

closed (=variable-free) arithmetic formulas A

into propositional formulas APW : this is defined

inductively as follows.

(1) (α(t))PW is qi, where i is thenumericvalue

of the variable-free term t.

(2) (f(t) = s)PW is pi,j , where i and j are the

numericvaluesof t and s. Wlog, f occursonly in

this context.
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(3)Forother atomic formulas,

P (~t)PW is defined to be either the constant > or

the constant⊥.

(4) Boolean connectives are translatedwithout

anychange. E.g., (A ∧ B)PW is APW ∧ BPW .

(5) [(∀x ≤ t)A(x)]PW is
value(t)∧∧

i=0

[A(i)]PW .

(6) [(∃x ≤ t)A(x)]PW is
value(t)∨∨

i=0

[A(i)]PW .
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Thm: (essentiallyParis-Wilkie’85)

Suppose I∆0(α, f) proves (∀x)A(x). Then the

formulas {A(n)PW : n ≥ 0} are tautologies

andhavepolynomial size,constant-depthFrege

proofs.

Pf-idea: Given a I∆0(α, f) proof P (x) of A(x)

and given n ≥ 0, replace x everywhere with n,

to get a proof P (n) of A(n). W.l.o.g., P (x) is

free-cut free, sohasonlybounded formulas. Re-

place every formula B in P (n) with its transla-

tion BPW . Thus every sequent Γ→∆ in P (n)

becomesapropositional sequent ΓPW→∆PW .

(a) Size of new formulas. A simple size analysis

givesthatthereisaconstant c suchthatforevery

formula A ∈ P (n), the formula APW as at most

nc many symbols. This is since every term t(n)

is bounded by nc and there are finitelymany for-

mulas A in P (n).
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(b)SizeofpropositionalproofsofΓPW→∆PW is

likewise bounded by nd for some constant d. To

prove this, consider how the propositional proof

isobtainedfromtheproofP (n): thegeneral idea

is towork fromthebottomoftheproofupwards,

always considering sequents in P (n) with values

assigned toall the free variables.

(b.i)A ∃ ≤:right inference in P (n):

Γ→∆, B(s)
s ≤ t,Γ→∆, (∃x ≤ t)B(x)

.

If s ≤ t, thepropositional translationof this is:

ΓPW→∆PW, B(s)PW

∨:right’s

ΓPW→∆PW,
t∨∨

i=0
B(i)PW

>,ΓPW→∆PW,
t∨∨

i=0
B(i)PW
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(b.ii)A ∀ ≤:right inference in P (n):

a ≤ t,Γ→∆, B(a)
Γ→∆, (∀x ≤ t)B(x)

haspropositional translation:

{>,ΓPW →∆PW, B(i)PW
}t
i=0 ∧:right’s

ΓPW→∆PW,
t∧∧

i=0
B(i)PW

(b.iii)A induction inference in P (n)

Γ, B(a)→B(a + 1),∆
Γ, B(0)→B(t),∆

haspropositional translation

{
ΓPW, B(i)PW →B(i + 1)PW,∆PW

}t−1
i=0 Cuts

ΓPW, B(0)PW→B(t)PW,∆PW
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Other inferencesarehandledsimilarly. Sincethe

proof P (n) has constant size, and since the val-

ues of terms are ≤ nα, for some constant α, the

sizebound is proved. 2

When Ω1 is used the function x 7→ xlogx is total,

thegrowth rate is a little larger:

Thm: (essentiallyParis-Wilkie’85)

Suppose I∆0(α, f)+Ω1proves (∀x)A(x). Then

the formulas {A(n)PW : n ≥ 0} are tautologies

andhavequasi-polynomialsize,constant-depth

Fregeproofs.

Pf: Very similar argumentworks.
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ForSi
2 andT i

2wegetthefollowingimprovement:

First, at the cost of adding a finite set polyno-

mialtimefunctionssuchastheGödelβ function,

we may assume that every formula in Σb
i(α, f)

or Πb
i(α, f) consistsof exactly i boundedquanti-

fiers, then a sharply boundedquantifer and then

a Boolean combination of atomic formulas of

theform α(t) or f(t) = s orwhichdonotuse α or

f . [Basically,becauseofthequantifierexchange

property andbycontracting likequantifiers.]

With this convention, then if A ∈ Σb
i or A ∈ Πb

i

thenthetranslationAPW isadepth i+1proposi-

tional formulawherethebottomdepthhaspoly-

logarithmic fanin.
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Thm: Suppose T i
2 ` Γ→∆,sequentofΣb

i ∪Πb
i

formulas. Then the sequents ΓPW→∆PW have

polynomial size propositional sequent calculus

proofs of depth i + 1 inwhich every formula has

polylogarithmic faninat thebottom level.

Furthermore, there is a constant c such that

every sequent in the propositional proof has at

most c formulas.

If every formula in the T i
2-proof is in Πb

i , then

every formula in the propositional proofs starts

witha (topmost)blockof
∧
’s.

Proof: Asabove. 2
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InterpolationThmforPropositionalLogic

(Craig,1957)gavestrongerversionforfirstlogic.

Thm: Let A(~p, ~q) and B(~p, ~r) be propositional

formulas involving only the indicated variables.

Suppose

A(~p, ~q) ⊃ B(~p, ~r)

is a tautology. Then there is a propositional for-

mula C(~p) using only the common variables, so

that

A ⊃ C and C ⊃ B

are tautologies.

Pf: Since A(~p, ~q) |= B(~p, ~r); if we have already

assigned truth values to ~p = p1, . . . , pk, then

it is not possible to extend this to a truth as-

signment on ~p, ~q, ~r such that both A(~p, ~q) and

¬B(~p, ~r) hold.......
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Let τ1, . . . , τn bethetruthassignmentsto p1, . . . , pk

for which it is possible to make A(~p, ~q) true by

further assignmentof truthvalues to ~q.

Let C(~p) say that one of τ1, . . . , τn holds for ~p,

i.e.,

C =
n∨∨

i=1

(
p
(i)
1 ∧ p

(i)
2 ∧ . . . ∧ p

(i)
k

)

where

p
(i)
j =

{
pj if τi(pj) =True
¬pj otherwise

Thenclearly, A(~p, ~q) |= C(~p).

Also, by the comment from the previous slide,

C(~p) |= B(~p, ~r). 2

Notethat C(~p)maybeexponentially larger than

A(~p, ~q) and B(~p, ~r).
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Example: Let p1, . . . , pk code the binary repre-

sentationof a k-bit integer P .

Let A(~p, ~q) be a formulawhich is satisfiable iff P

is composite (e.g. q codes two integers > 1 with

product P ).

Let B(~p, ~r) be a formulawhich is satisfiable iff P

is prime(i.e., ~r codesaPratt-primalitywitness).

P is prime ⇔ ∃~rB(~p, ~r)

⇔ ¬∃~qA(~p, ~q).

and A(~p, ~q) ⊃ ¬B(~p, ~r) is a tautology.

An interpolant C(~p) must express “~p codes a

composite”.

Open: Is primality expressible by a polynomial

size formula?
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Generalizing this examplegives:

Thm: (Mundici’83-84) If there isapolyonomial
upperboundonthecircuit sizeof interpolants in
propositional logic, then

NP/poly ∩ coNP/poly = P/poly

Pf: Let ∃~qA(~p, ~q) express an NP/poly property
R(~p) and ∀~rB(~p, ~r) express R(~p) in coNP/poly

form. Then

∃~qA(~p, ~q) |= ∀~rB(~p, ~r),

which is equivalent to

A(~p, ~q) ⊃ B(~p, ~r)

beinga tautology. Let C(~p) beapolynomial size
interpolant s.t.,

A(~p, ~q) ⊃ C(~p) and C(~p) ⊃ B(~p, ~r)

are tautologies. Thus

∃~qA(~p, ~q) |= C(~p) |= ∀~rB(~p, ~r),

I.e., R(~p) ⇔ C(~p) andR(~p) hasapolynomialsize
circuit, so R(~p) is in P/poly. 2
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Defn: Let PK be the propositional fragment of

the Gentzen sequent calculus. Size of a proof

|P | is the number of steps in P . |P |dag is used for

non-treelikeproofs. V (A) denotesthesetoffree

variables inA. ForC aformula, |C| is thenumber

of ∧’s and ∨’s in C .

Thm: Let P be a cut-free PK proof of A→B,

where V (A) ⊆ {~p, ~q} and V (B) ⊆ {~p, ~q}. Then

there is an interpolant C such that

(1) A ⊃ C and C ⊃ B are valid,

(2) V (C) ⊆ {~p},
(3) |C| ≤ |P | and |C|dag ≤ |P |dag .

I.e., tree-like cut-free proofs have interpolants

of polynomial formula size, and general cut-free

proofs have interpolants of polynomial circuit

size.

Remark: The theorem also holds for proofs

which have cuts only on formulas D such that

V (D) ⊆ {~p, ~r} or V (D) ⊆ {~p, ~r}
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Pf: We prove by induction on the number of in-

ferences in P a slightlymoregeneral statement:

Claim: If P is a proof of Γ1,Γ2→∆1,∆2 and

if V (Γ1,∆1) ⊆ {~p, ~q} and V (Γ2,∆2) ⊆ {~p, ~r},
then there is an interpolant C so that

(1) Γ1→∆1, C and C,Γ2→∆2 are valid,

(2) V (C) ⊆ {~p}, and

(3)Thepolynomial sizeboundshold too.

BaseCase: Initial sequent.

If the initial sequent if qi→qi, take C to be ⊥
since

qi→qi,⊥ and ⊥→
are valid.

For initial sequent ri→ri, take C tobe>.

For an initial sequent pi→pi, C will be either >,

⊥, pi or (¬pi) dependingonhowthe pi’s are split

into Γ1,Γ2,∆1,∆2.
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InductionStep:Thereareanumberofcases,de-

pending on the type of the last inference in the

proof.

(1)For last inferencean ∨right

Γ→∆, A, B
Γ→∆, A ∨ B

the interpolant for the upper sequent still works

for the lower sequent, i.e., use C such that

(a) Γ1→∆1, A, B, C and C,Γ2→∆2,

or

(b) Γ1→∆1, C and C,Γ2→∆2, A, B,

depending on if A ∨ B is in ∆1 or ∆2 (respec-

tively).
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(2)For last inferencean ∧:right:

Γ→∆, A Γ→∆, B
Γ→∆, A ∧ B

(2.a) If A ∧ B is in ∆1, apply the induction hy-

pothesis twice to have interpolants CA and CB

so that

Γ1→∆−
1 , A, CA CA,Γ2→∆2

Γ1→∆−
1 , B, CB CB,Γ2→∆2

are valid. Nowthederivations

Γ1→∆−
1 , A, CA

Γ1→∆−
1 , A, CA ∨ CB

Γ1→∆−
1 , B, CB

Γ1→∆−
1 , B, CA ∨ CB

Γ1→∆−
1 , A ∧ B, CA ∨ CB

and
CA,Γ2→∆2 CB,Γ2→∆2

CA ∨ CB,Γ2→∆2

show (CA ∨ CB) is an interpolant.
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(2b)If A ∧ B is in ∆2 applying the induction hy-

pothesis twicegives CA and CB so that

Γ1→∆1, CA CA,Γ2→∆−
2 , A

Γ1→∆1, CB CB,Γ2→∆−
2 , B

are valid. Now the following derivations show

(CA ∧ CB) is an interpolant:

CA,Γ2→∆−
2 , A

CA ∧ CB,Γ2→∆−
2 , A

CB,Γ2→∆−
2 , B

CA ∧ CB,Γ2→∆−
2 , B

CA ∧ CB,Γ2→∆−
2 , A ∧ B

Γ1→∆1, CA Γ1→∆1, CB
Γ1→∆1, CA ∧ CB

The other cases are similar and the size bounds

on C are immediate. 2
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InterpolationTheorems forResolution

Defns: A literal is a propositional variable p or a

negatedvariable ¬p.

p is ¬p, and (¬p) is p.

A clause is a set of literals; its intendedmeaning

is thedisjunctionof itsmembers.

A set of clauses represents the conjunctionof its

members. Thusasetofclauses“is”a formula in

conjunctivenormal form.

Resolution Inference: C ∪ {p} D ∪ {p}
C ∪ D

Weassumew.l.o.g. p, p 6∈ C and p, p 6∈ D.

A resolution refutation of a set Γ of clauses is a

derivation of the empty clause ∅ from Γ by reso-

lution inferences.

Thm: Resolution is refutation-complete (and

sound).
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InterpolationTheoremLet {A1(~p, ~q), . . . , Ak(~p, ~q)}
and {B1(~p, ~r), . . . , B`(~p, ~r)} be a sets of clauses,

so that their union Γ is inconsistent. Then there

is a formula C(~p) such that for any truth assign-

ment τ , domain(τ) ⊇ {~p, ~q, ~r},
(1) If τ(C(~p)) = False, then

τ(Ai(~p, ~q)) = False, for some i.

(2) If τ(C(~p)) = True, then

τ(Bj(~p, ~q)) = False, for some j.

Pf: From Γ unsatisfiable,wehave

A1(~p, ~q), . . . , Ak(~p, ~q)→¬B1(~p, ~r), . . . ,¬B`(~p, ~r)

is valid. Thus there is an interpolant C(~p) such

that

A1(~p, ~q), . . . , Ak(~p, ~q)→C(~p)

and

C(~p)→¬B1(~p, ~r), . . . ,¬B`(~p, ~r)

are valid. 2
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Thm (Kraj́ıček’9?) Let {Ai(~p, ~q)}i∪
{
Bj(~p, ~r)

}
j

have a refutation R of n resolution inferences.

Then an interpolant, C(~p), can be chosed with

O(n) symbols indag representation.

If R is tree-like, then C(~p) is a formulawith O(n)

symbols.

Pf: [Pudlák]WeviewRasadagorasatree,each

node corresponding to an inference and labeled

with the clause inferred at that inference. For

eachclause E in R, define CE(~p) as follows:

(1)For E = Ai(~p, ~q), ahypothesis,

set CE = ⊥ (False).

(2)For E = Bj(~p, ~q), ahypothesis,

set CE = > (True).

(3)For an inference F ∪ {qi} G ∪ {qi}
F ∪ G

set CF∪G = CF∪{qi} ∨ CG∪{qi}.
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(4)For an inference F ∪ {ri} G ∪ {ri}
F ∪ G

set CF∪G = CF∪{ri} ∧ CG∪{ri}.

(5)For an inference F ∪ {pi} G ∪ {pi}
F ∪ G

setCF∪G = (pi ∧ CF∪{pi}) ∨ (pi ∧ CG∪{pi}).

Lemma For all clauses F ∈ R, CF (~p) satisfies

the followingcondition:

If τ isatruthassignmentand τ(F ) = False, then

(a) if τ(CF ) = False, then

τ(Ai(~p, ~q)) = False for some i

(b) if τ(CF ) = True, then

τ(Bj(~p, ~r)) = False for some j

Pfof lemma is by inductionon thedef’nof CF .

Q.E.D.LemmaandTheorem.

86



Resolutionwith limitedextension

“Extension’ = introduction of variables that
representcomplexpropositionalformulas. When
A isa formula, σA is theextensionvariable for A:

For p avariable, σp is just p.
Forother A, σA is a newvariable.

Defn: When A is a formula, LE(A) is a set of

clauses which define themeanings of the exten-

sions variables for all subformulasofA; towit:

(1) LE(p) = ∅
(2) LE(¬A) = LE(A) ∪ { {σ¬A, σA}︸ ︷︷ ︸

¬σA⊃σ¬A

, {σ¬A, σA}︸ ︷︷ ︸
σ¬A⊃¬σA

}

(3) LE(A ∧ B) = LE(A) ∪ LE(B)

∪{ {σA∧B, σA}︸ ︷︷ ︸
σA∧B⊃σA

, {σA∧B, σB}︸ ︷︷ ︸
σA∧B⊃σB

, {σA∧B, σA, σB}︸ ︷︷ ︸
σA∧σB⊃σA∧B

}

(4) LE(A ∨ B) = LE(A) ∪ LE(B)

∪{ {σA, σA∨B}︸ ︷︷ ︸
σA⊃σA∨B

, {σB, σA∨B}︸ ︷︷ ︸
σB⊃σA∨B

, {σA, σB, σA∨B}︸ ︷︷ ︸
σA∨B⊃σA∨σB

}
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Defn: LetA bea setof formulas. Then

LE(A) is ∪A∈A{LE(A)}.
LE(~p, ~q) = ∪ {LE(A) : V (A) ⊆ {~p, ~q}}.
LE(~p, ~r) = ∪ {LE(A) : V (A) ⊆ {~p, ~r}}.

Thm: Let Γ be the set of clauses

{Ai(~p, ~q)}i ∪ {Bj(~p, ~r)}j ∪ LE(~p, ~q) ∪ LE(~p, ~r)

and suppose Γ hasa refutation R of n resolution

inferences.

Then there is an interpolant C(~p) for the sets

{Ai(~p, ~q)}i and {Bj(~p, ~r)}j of circuit size O(n).

Pf: Let C(~p) be the interpolant for

{Ai(~p, ~q)}i ∪ LE(~p, ~q)

and

{Bj(~p, ~r)}j ∪ LE(~p, ~r)

givenby theearlier interpolation theorem.
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Claim: C(~p) is thedesired interpolant.

Pf: Any truth assignment τ with domain {~p, ~q}
canbeuniquely extended to satisfy LE(~p, ~q).

Suppose τ(C(~p)) = False. Extend τ so as to

satisfy LE(~p, ~q). By choice of C(~p), τ makes a

clause from {Ai(~p, ~q)}i ∪ LE(~p, ~q) false, hence

makesoneof the Ai’s false.

A similar argument shows that if τ(C(~p)) =

True, then τ falsifies some Bj(~p, ~r).

Q.E.D.ClaimandTheorem. 2
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NaturalProofs (Razborov-Rudich’94)

Defn: RepresentaBooleanfunction fn(x1, . . . , xn)
by its truth table (this has size N = 2n).

C = {Cn}n is quasipolynomial-time natural
against P/poly iff each Cn is a setof truth tables
of n-ary Boolean functions, and the following
hold:

Constructivity: “fn ∈ Cn?” is decidable in

TIME(2(logN)O(1)
)/poly, and

Largeness: |Cn| ≥ 2−cn · 22n
for some c > 0,and

Usefulness: If fn ∈ Cn for all n, then the family
{fn}n is not in P/poly (i.e., does not have poly-
nomial size circuits).

Motivation ‘Constructive’ proofs that NP 6⊂
P/poly ought to give (quasi)polynomial time
propertywhich is natural against P/poly.

Remark: Note that ‘quasipolynomial time’, is

measured as a function of the size of the truth

tableof fn.
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TheStrongPseudo-RandomNumber

Generator (SPRNG)Conjecture

Defn: Let Gn : {0,1}n → {0,1}2n be a

pseudo-random number generator. The hard-

ness, H(Gn), of Gn is the least S > 0 such that,

for somecircuit C of size S ,∣∣∣∣∣ Prob
x∈{0,1}n

[C(Gn(x))=1] − Prob
y∈{0,1}2n

[C(y)=1]

∣∣∣∣∣ ≥ 1

S

SPRNGConjectureThere are pseudorandom

number generators Gn, computed by polyno-

mial size circuits, with hardness H(Gn) ≥ 2nε
,

for some ε > 0.

Thm: (Razborov-Rudich) If the SPRNG con-

jecture is true, then there are no properties

which are quasipolynomial time/poly natural

against P/poly.

Pf: omitted.
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SplitBoundedArithmeticTheories

Let α and β benewunarypredicate symbols.

Si
2(α, β) and T i

2(α, β) aredefinedasusual, allow-

ing inductionon Σb
i(α, β)-formulas.

Let Σb∞(α) denote all bounded formulas in the

languageof S2 plus α. Define:

SΣb
i = Σb

i(Σ
b∞(α),Σb∞(β))

where Σb
1(X) indicates the closure of X under

∧, ∨, sharply bounded quantification and exis-

tential bounded quantification, where Πb
1(X) is

defined similarly and

Σb
i+1(X) = Σb

1(Π
b
i(X))

and Πb
i+1(X) is similarly defined.

Defn: Split versionsof Si
2 and T i

2:

SSi
2 = BASIC + SΣb

i-PIND

ST i
2 = BASIC + SΣb

i-IND
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Supposesuperpolynomial lowerboundsareprov-

able in S2
2(α) as follows.

Let N ≥ 0 and n = |N | ≈ logN . (n = |x|).

Also suppose t(n) = nω(1) (a superpolynomial

lowerbound),andthatS(N, x) isaΣb∞-formula.

Let LB(t, S, α) be the statement

¬[α codesa circuit of size≤ t(n) s.t.
(∀x ∈ {0,1}n)(α(x) = 1 ↔ S(N, x))]

(1)Thefreevariablesof LB(t, S, α) are N and α.

(2) By “α encodes a ciruit” we mean that α en-

codes gate types and gate connections in some

straightforwardmanner,plus, α mayencodethe

full truth tabledescriptionof the functionscom-

putedbyeverygate in the circuit!
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Thm: If S2
2(α) ` LB(t, S, α), then

SS2
2 ` SLB(t, S, α, β)

where SLB(t, S, α, β) is

¬[α codesa circuit of size≤ t(n)/2 − 1and
β codesa circuit of size≤ t(n)/2 − 1 s.t.

∀x ∈ {0,1}n((α ⊕ β)(x) = 1 ↔ S(N, x))]

Pf: If ¬SLB(t, S, α, β), then thecircuit α′

¯
¯
¯
¯
¯̄

L
L

L
L

LL

¯
¯
¯
¯
¯̄

L
L

L
L

LL

⊕
¡

¡¡

@
@@

α β




α′

satisfies ¬LB(t, S, α). 2
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By rephrasing SLB(t, S, α, β), we let γ be a new

predicate symbol andwehave that if

SS2
2 ` SLB(t, S, α, β),

then

SS2
2 ` ¬CC(t/2−1, γ, α)∨¬CC(t/2−1, S⊕γ, β)

where CC(t, T (x), α) states:

[α codesa circuit of size≤ t(n) s.t.
∀x ∈ {0,1}n(α(x) = 1 ↔ T (x))]

or, in sequent form, SS2
2(α) proves

CC(t/2 − 1, γ, α), CC(t/2 − 1, S ⊕ γ, β)→
Since CC is a Σb

1 formula, this sequent is also

provable in ST1
2 by ∀Σb

2-conservativity. (By the

same proof that shows S2
2 is conservative over

T1
2 .)
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Thm: (Razborov’95) If SS2
2 ` SLB(t, S, α, β)

for some t = nω(1) and S ∈ Σb∞, then the

SPRNGconjecture is false.

Corollary: If the SPRNG conjecture holds,

then S2
2 does not prove superpolynomial lower

bounds on circuit size for any bounded formula

(i.e., for any polynomial time hierarchy predi-

cate).

Pf: (rest of slides)Weshall prove that, if

ST1
2 ` CC(t, γ, α), CC(t, S ⊕ γ, β)→,

thentherearequasipolynomialsizecircuitswhich

arenatural against P/poly.

FirstStep: Convert the ST1
2 proof and the se-

quentintoaconstant-depthpropositionalproof.
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Toconvert topropositional logic

Usevariables ~q for the valuesof α, i.e,

qi denotesαi

Likewise use variables ~r for the values of β(x)
andvariables ~p for the valuesof γ(x).

By expanding the language to include the β
function and using SΠb

1-IND and applying free
cut-elimination, we may assume that every for-
mula in the ST1

2 proof is of the form

(∀y ≤ r)(∃z ≤ |r′|)(· · ·)
where (· · ·) is a Boolean combination of Σb∞(α)
formulas and Πb∞(β) formulas and of formulas
γ(· · ·).

When translated into propositional logic by the
Paris-Wilkie translation, this becomes

2nO(1)∧∧
i=0

nO(1)∨
j=0

Ei,j

whereeach Ei,j is (1)±pi or (2) involvesonly ~p, ~q

or (3) involvesonly ~p, ~r.
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Fixing N and f(x) = S(N, α), we obtain a

propositional sequent calculusproof of:∧∧
i

Ai(~p, ~q),
∧∧
j

Bj(~p, ~r)→
where:

(1) {Ai(~p, ~q)}i is a set of clauses stating that ~q

codes a circuit of size t computing the function

γ withgraphgivenby ~p.

(2) {Bj(~p, ~q)}j is a set of clauses stating that ~r

codes a circuit of size t computing the function

γ ⊕ f .

(3) f doesnothaveacircuit of size 2t + 1

(4)Each formula in the proof is a conjunction of

disjunctionsof formulas involving just ~p, ~q or just

~p, ~r (ason last slide).

(5) Each sequent has only c many formulas, c a

constant independentof N .

(6)Theproof hasonly 2nO(1)
many symbols.
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SecondStep: Removethe
∧∧

’s fromtheproofas

follows.

(a)Givena sequent

p1∧∧
i=1

E1,i, . . . ,

pc′∧∧
i=1

Ec′,i→
q1∧∧

i=1

F1,i, . . . ,

qc′′∧∧
i=1

Fc′′,i

replace itwith the q1 · q2 · · · · · qc′′ sequents

E1,1, E1,2, . . . , E1,p1
, E2,1, . . . , Ec′,pc′→→F1,i1, F1,i2, . . . , Fc′′,ic′′

Since each qi = 2nO(1)
and c′′ = O(1), this still

only 2nO(1))
many sequents.

(b)Build a newproof of all these sequents. The

hardest case of making this a valid new proof, is

the caseof a cuton
p∧∧

i=1
Fi. For this, an inference

Γ→∆,
p∧∧

i=1
Fi

p∧∧
i=1

Fi,Γ→∆

Γ→∆
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is replacedby p cuts; i.e., by

Γ∗→∆∗, F3

Γ∗→∆∗, F2

Γ∗→∆∗, F1 F1, F2, . . . , Fp,Γ∗→∆∗
F2, F3, . . . , Fp,Γ∗→∆∗

F3, . . . , Fp,Γ∗→∆∗
···

Γ∗→∆∗

At the end of the second step, we have a treelike

sequent calculusproof of

A1(~p, ~q), . . . , Ak(~p, ~q), B1(~p, ~r), . . . B`(~p, ~r)→
such that every formula in in the proof is a dis-

junction of formulas which either involve just ~p

and ~q or involve just ~p and ~r.
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ThirdStep: Convert to a resolutionwith limited

extension refutation.

Eachsequent intheproofobtained inthesecond

stephas the form

p1∨
i=1

E1,i, . . . ,
pu∨

i=1
Eu,i,→ q1∨

i=1
F1,i, . . . ,

qv∨
i=1

Fv,i (A)

whereeachEa,i,Fa,i involvesonly {~p, ~q}or {~p, ~r}.

Associate with sequent (A), the following set

(B)of clauses:{
{E1,i}p1

i=1, . . . , {Eu,i}pu
i=1, (B)

{¬F1,1, }, {¬F1,2, }, . . . , {¬Fv,qv, }
}

Now(B)isnotreallyapropersetofclauses,since

clauses are supposed to contain literals (not for-

mulas).
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So instead of using (B), we introduce extension

variablestoformthefollowingset(C)ofclauses:

{
{σE1,i

}p1
i=1, . . . , {σEu,i

}pu
i=1, (C)

{σ¬F1,1
, }, {σ¬F1,2

, }, . . . , {σ¬Fv,qv
, }

}
If sequent (A) is Γ→∆, then the set (C) of

clauses is denoted (Γ→∆)LE . It is important

that all the extension variables used in (C) are

from LE(~p, ~q) and LE(~p, ~r).

Lemma: If Γ→∆ is derived in m lines of the

sequent calculus proof constructed in Step (2)

above, then

(Γ→∆)LE ∪ LE(~p, ~q) ∪ LE(~p, ~r)

hasa resolution refutation (notnecessarily tree-

like)of O(m2) resolution inferences.

Proof: by induction on m. — splits into cases

dependingon the last inferenceof theproof.
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Case (1) Γ→∆ is A→A.

If A =
∨

Ai, then{
{σA1

, . . . , σAu}, {σ¬A1
}, . . . , {σ¬Au}

}
∪ LE(A)

hasa resolution refutationof O(u) inferences.

Case (2): Suppose A =
∨
i

Ai involves only ~p, ~q.

Then {σA} and {σA1
, . . . , σAu} can be derived

from each other (in the presence of LE(A)).

Therefore it isnot importanthowweexpress for-

mulas asdisjunctionswhen there is a choice.

Case (3): ∧:left and ∨:right inferences involve

only fomulas that use just ~p, ~q or just ~p, ~r; these

arethereforestraightforward(the∧:right isa lit-

tle harder than the ∨:left case).

Case (4): An ∨:left inference canbe:

∨
i

Ei,Γ→∆
∨
j

Fj,Γ→∆

∨{Ei, Fj}i,j,Γ→∆
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Case (4) cont’d: The inductionhypothesesgive

refutations R1 and R2:

(Γ→∆)LE

{σEi
}i

LE(~p, ~q)
LE(~p, ~r)




R1=⇒ ∅

and

(Γ→∆)LE

{σFj
}j

LE(~p, ~q)
LE(~p, ~r)




R2=⇒ ∅

Combine theseas:

(Γ→∆)LE

{σEi
}i ∪ {σFj

}j

LE(~p, ~q)
LE(~p, ~r)




R′
1=⇒ {σFj

}j

(Γ→∆)LE

LE(~p, ~q)
LE(~p, ~r)




R2=⇒ ∅

where R′
1 is like R1 but uses {σEi

}i ∪ {σFj
}j in

placeof {σEi
}i.

Remark: Note the refutation is not tree-like

since {σFj
}j maybeusedmultiple times in R2.
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Case5: Last inference is cut:

Γ→∆,
∨
i

Ai
∨
i

Ai,Γ→∆

Γ→∆

The induction hypotheses give refutations R1
and R2:

(Γ→∆)LE

{σ¬A1
}, . . . , {σ¬Au}

LE(~p, ~q)
LE(~p, ~r)




R1=⇒ ∅

and
(Γ→∆)LE

{σA1
, . . . , σAu}

LE(~p, ~q)
LE(~p, ~r)




R2=⇒ ∅

Combine these as below, with R′
1 equal to R1

minusanyusesof {σ¬Ai
}’s:

(Γ→∆)LE

LE(~p, ~q)
LE(~p, ~r)




R′
1=⇒ {σA1

, . . . , σAu}
(Γ→∆)LE

LE(~p, ~q)
LE(~p, ~r)




R2=⇒ ∅

Q.E.D.Lemma.
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FromtheLemma&InterpolationThm:

There is a circuit C(~p) of size 2nO(1)
such that

(1) If C(~p) = 0, then {Ai(~p, ~q)}i is unsatisfiable

(2) If C(~p) = 1, then {Bj(~p, ~q)}j is unsatisfiable

Note the size of C(~p) is 2(logN)O(1)
which is

quasipolynomial in N = 2n.

In case (1), when C(~p) = 0, the function γ(x)

doesnothaveacircuit of size t = nω(1).

In case (2), when C(~p) = 1, the function

(γ ⊕ f)(x) does not have a circuit of size t =

nω(1).

(Recall f(x) does not have a circuit of size

2t + 1.)

Defn: Let

C∗(~p) df
= (¬C(~p)) ∨ C(~p ⊕ f),

where ~p ⊕ f is p0 ⊕ f(0), . . . pN−1 ⊕ f(N − 1).

(Each f(i) is 0or1, of course.)

106



Claim: Undertheaboveassumptions,C∗(~p) isa

quasipolynomial timeproperty against P/poly.

Pf: Thereare three things to show:

(1)“Constructivity”

C∗ has circuits of size 2(logN)O(1)
since C does.

(2)“Largeness”For all γ ,

either C∗(γ) or C∗(γ ⊕ f) holds (since either

¬C(γ)holds,orC((γ⊕f)⊕f)holds). Therefore,

C∗(γ) holds for at least half of the γ ’s.

(3) “Usefulness” We must show that if C∗(γ)

holds, then γ does not have a polynomial size

circuit.

(3.a) If ¬C(~p), i.e., C(~p) = 0, then γ = ~p does

nothaveacircuit of size t, by choiceof C .

(3.b) If C(~p ⊕ f), i.e., C(~p ⊕ f) = 1, then

(~p ⊕ f) ⊕ f = ~p (= γ) likewise does not have

acircuit of size t.

Q.E.D.Razborov’sTheorem!!

The proof presented above is essentially a sim-

plificationofRazborov’s proof, due toKraj́ıček.

107


