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SHARPENED LOWER BOUNDS FOR CUT ELIMINATION

SAMUEL R. BUSS

Abstract. We present sharpened lower bounds on the size of cut free proofs for first-order logic. Prior

lower bounds for eliminating cuts from a proof established superexponential lower bounds as a stack of

exponentials, with the height of the stack proportional to the maximum depth d of the formulas in the

original proof. Our results remove the constant of proportionality, giving an exponential stack of height

equal to d − O(1). The proof method is based on more efficiently expressing the Gentzen–Solovay cut

formulas as low depth formulas.

§1. Introduction. The Gentzen cut elimination procedure is a cornerstone of
mathematical logic, and is oneof the primary tools for establishing the consistency of
proof systems, for extracting the constructive content of proofs, and for classifying
the strengths of formal systems in terms of their consistency strengths or their
computational complexity. It is well-known that cut free proofs may need to be
superexponentially larger than proofs that contain cut, as shown originally by
Statman [21, 22] and Orevkov [15]. The present paper sharpens these lower bounds
to (almost) match the known upper bounds.
All proofs considered in this paper will be Gentzen-style sequent calculus (LK)
proofs in first-order logic. The depth of a formula is defined to be the height of a
formula when viewed as a tree. The depth of a proof is the maximum depth of a cut
formula in the proof. The applications in the present paper will be for proofs that
have low depth endsequents, and for these proofs, the depth will equal themaximum
depth of any formula in the proof. As defined below, the height of a proof is the
maximum number of non-weak inferences along any branch in the proof.
The base two superexponential function is defined by 2n0 = n and 2

n
k+1 = 2

2nk .
The best known upper bounds on the size of proofs generated by cut elimination
state that if a proof P has depth d , then P can be transformed into a cut free

proof with size 2h(P)d+1 , where h(P) is the height of P; for this see Orevkov [16, 17],
Zhang [25, 26], Buss [6], and the textbook by Troelstra and Schwichtenberg [23].
Beckmann–Buss [4] give a slightly more general result that applies in the presence
of non-logical axioms. Other authors have derived similar, but not quite as sharp
upper bounds, including [13, 5]. Baaz and Leitsch [2, 3] have shown that better
upper lower bounds hold in some special cases.
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The known lower bounds for the size of cut free proofs are also superexponential.
The sharpest lower bounds for the Gentzen sequent calculus state that there is a
fixed constant ǫ, 0 ≤ ǫ < 1, and proofs P of arbitrarily large depth d , such that any

cut free proofQ with the same endsequent of P has size greater than 2h(P)
ǫd . The first

such result was proved byOrevkov [15], who established this with ǫ ≈ 1
4 , in predicate

logic without function symbols. Gerhardy [11] obtained ǫ ≈ 1
2 for first-order logic

with function symbols.
The main result of this paper is to improve the lower bound on the size of cut free

proofs to obtain ǫ ≈ 1. More precisely, we replace the bound 2h(P)
ǫd with the bound

20d−c , for c ∈ N a small constant. This is nearly optimal, as h(P) = O(d ).
Our new lower bound also corrects an error in the literature [27], which claimed

to have established an upper bound of 2h(P)d/2 on the size of cut free proofs.

Our lower bound can be compared to bounds obtained originally by Zhang [25,
26] and refined by Gerhardy [12, 11]. They prove that if n is an upper bound on
the number of alternations of groups of ∀ and ∧ connectives and groups of ∃ and
∨ connectives in cut formulas, then the size of a cut free proof can be bounded

essentially by 2h(P)n+2 . (This is a somewhat simplified and weakened restatement
of Zhang’s and Gerhardy’s upper bounds). In addition, Buss [6] shows upper

bounds of the form 2h(P)
n+O(1)

, where n is the number of alternation of quantifiers

in cut formulas, now allowing arbitrary occurrences of intervening propositional
connectives.
Our lower bound, like the earlier lower bounds of Statman, Orevkov, Gerhardy,
and others, is based on proving that an inductive predicate I contains a large
number 20n. Loosely speaking, it is shown that there are short proofs of I (2

0
n), but

that any cut free proof of this requires superexponential size. These short proofs are
based on defining inductive initial segments (which are sometimes called “inductive
cuts”, confusingly, since they have nothing to do with cut inferences). The method
of defining inductive initial segments goes back essentially to Gentzen [9] who used
it for proving transfinite induction. It became well-known from Solovay [20], who
introduced it for use in bounded arithmetic. A number of other authors have
also used this technique or similar ones, independently rediscovering it on at least
two occasions. These include Statman [21, 22], Yessin-Volpin [24], Nelson [14],
Paris–Dimitracopoulos [18], Pudlák [19], Baaz–Leitsch [1], and Gerhardy [11].
Orevkov’s lower bound [15] constructs short proofs of I (20n), with cuts, using
intermediate formulas that have depth d = O(n). Our principal innovation is to
improve the depth of these formulas to n + O(1). Section 2 establishes notation
by proving a form of Statman’s and Orevkov’s lower bounds, but with ǫ ≈ 1

2 , over
a first-order language with function symbols. This construction is taken almost
directly from [19, 11]. In Section 3, we improve this to obtain our new lower bound
ǫ ≈ 1. Section 4 outlines how to prove the same results for first-order logic without
function symbols, also with ǫ ≈ 1.

§2. Preliminaries. We begin with a short review of our formal systems, however
the reader is presumed to have basic familiarity with the sequent calculus and cut
elimination, as well as at least some familiarity with bounded arithmetic systems
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such as PV or I∆0 + exp. We work with a sequent calculus for classical logic over
the connectives ∀, ∃, ∧, ∨, ⊃, and ¬. The only logical initial sequents are A→A,
for A an atomic formula. The rules of inference are as shown below.

Γ, A, B,Λ→∆
Exchange: left

Γ, B,A,Λ→∆
Γ→∆, A, B,Λ

Exchange: right
Γ→∆, B,A,Λ

A,A,Γ→∆
Contraction: left

A,Γ→∆
Γ→∆, A,A

Contraction: right
Γ→∆, A

Γ→∆
Weakening: left

A,Γ→∆
Γ→∆

Weakening: right
Γ→∆, A

Γ→∆, A
¬: left

¬A,Γ→∆
A,Γ→∆

¬: right
Γ→∆,¬A

A,B,Γ→∆
∧: left

A ∧ B,Γ→∆
Γ→∆, A Γ→∆, B

∧: right
Γ→∆, A ∧ B

A,Γ→∆ B,Γ→∆
∨: left

A ∨ B,Γ→∆
Γ→∆, A, B

∨: right
Γ→∆, A ∨ B

Γ→∆, A B,Γ→∆
⊃: left

A ⊃ B,Γ→∆
A,Γ→∆, B

⊃: right
Γ→∆, A ⊃ B

A(t),Γ→∆
∀: left

(∀x)A(x),Γ→∆
Γ→∆, A(b)

∀: right
Γ→∆, (∀x)A(x)

A(b),Γ→∆
∃: left

(∃x)A(x),Γ→∆
Γ→∆, A(t)

∃: right
Γ→∆, (∃x)A(x)

Γ→∆, A A,Γ→∆
Cut

Γ→∆
The ∀ : right and ∃ : left inferences must satisfy the usual eigenvariable condition
that b does not appear in the lower sequent.
The first six inferences are called weak inferences: these are needed since we
treat cedents as sequences of formulas, rather than as sets or multisets of formulas.
However, the size, |P|, of a proof is defined to be equal to the number of non-
weak inferences. The height of P is denoted h(P) and is the maximum number of
non-weak inferences along any branch in the proof.

Definition 1. The depth of a formula A is defined by

a. If A is atomic, then depth(A) = 0.
b. If A is ¬B, (∃x)B, or (∀x)B, then A = 1 + depth(B).
c. If A is B ◦ C for ◦ one of ∨, ∧ or ⊃, then

depth(A) = 1 +max{depth(B), depth(C )}.

The depth of a cut inference is the depth of its cut formula. The depth of a proof P
is the maximum depth of cuts appearing in P.

We use a special notation for an “extended” superexponential function. Let ~u be
a finite sequence ~u = 〈u1, . . . , uk〉, with k ≥ 1. The value 2~u is defined inductively.
For ~u = 〈u1〉, a sequence of length one, 2〈u1〉 = u1. And, for ~u = 〈u1, . . . , uk〉,
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2~u = u1 + 2
2〈u2,...,uk〉 . For instance,

2〈a,b,c,d〉 = a + 2
b+2c+2

d

.

We now review the prior superexponential lower bound for cut elimination, based
on Pudlák’s exposition [19], but with the better lower bound of ǫ ≈ 1

2 as obtained
by Gerhardy [11]. We let T be a finitely axiomatized theory of bounded arithmetic
which contains a finite fragment of Cook’s theory PV plus the exponential function
2i and the superexponential functions 2xi and 2〈~u〉. The language of T contains
function symbols for sufficiently many polynomial time computable functions to
formalize the needed arguments described below: this includes sequence coding,
and proving simple properties about the needed polynomial time computable func-
tions and about the exponential and superexponential functions. The theory T is
axiomatized by a finite set of purely universal formulas.
T contains an additional, uninterpreted, unary predicate symbol I (x), with the
two axioms I (0) and (∀x)(I (x) ⊃ I (Sx)). The predicate I is not permitted in
induction axioms. The predicate I (x) intuitively means that induction works up
to x, or that x can be reached from zero by repeatedly adding 1. Define the formula
ø0(x) to be I (x), and for i ≥ 0, define øi+1(x) to be the formula

(∀y)(øi (y) ⊃ øi(y + 2
x)).

There are then simple proofs of

øi(0) and ∀x(øi(x) ⊃ øi(Sx)). (1)

These are proved for successive values of i using simple properties of zero and
successor; namely, as we show below, the formulas (1) for i = k + 1 are proved
from those for i = k. In addition, as we detail below, it is easy to prove that
øi+1(x) ⊃ øi(2x).
Let Γ be the set of universal formulas that axiomatize T , including the two
axioms for the predicate I (x), and the equality axioms for the relation and functions
symbols of T . As we describe below, the sequents øi+1(x)→ øi(2x) can be proved
with a proof of height O(i) which contain cuts only on atomic formulas and on
substitution instances of subformulas of øi . Likewise, the sequent → øi(0) is
proved with proofs with heightO(i) and with the same cut complexity. Combining
these sequents with cuts, we get a proof Pℓ of Γ → I (20ℓ) which has height O(ℓ)
and in which all cut formulas either are atomic or are substitution instances of
subformulas of øℓ(x).
Let Qℓ be a proof with the same conclusion Γ → I (20ℓ) as Pℓ in which all cuts
are on quantifier-free formulas. We claim that the size of Qℓ is ≥ 20ℓ . To prove
this, we modify Qℓ in the following fashion. Find each ∀ : left inference in Qℓ , and
omit this inference and instead let the auxiliary formula of the inference remain in
the antecedent of that sequent and in all sequents below that sequent, down to the
endsequent. For this, contractions on (formerly universal) formulas are omitted.
The result is a proof Q∗

ℓ of a sequent Γ
∗ → I (20ℓ) in which every formula in Γ

∗ is a
quantifier-free substitution instance of an axiom of T . Without loss of generality,
Γ∗ does not contain any variables, since any variables that are present may be
replaced everywhere with the constant 0. Note that the number of formulas in Γ∗

is less than or equal to the number of ∀ : right inferences in Qi plus the number of
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quantifier-free axioms in the (finite) set Γ. In particular, the number of substitution
instances of I (x) ⊃ I (S(x)) in Γ∗ is less than the size of Qℓ .
Each such substitution instance of I (x) ⊃ I (S(x)) is a formula of the form
I (s) ⊃ I (S(s)), for s a closed term. Let n0 ∈ N be the least integer so that no s has
value equal to n0. Of course n0 must be less than the size of Qℓ . On the other hand,
we claim that n0 ≥ 2

0
ℓ . Otherwise, we could falsify the sequent Γ

∗ → I (20ℓ ) in the
standard model of the integers by letting I (n) hold for exactly the values n ≤ n0. It
follows that the size of Qℓ is greater than or equal to 20ℓ .
This is enough to establish the superexponential lower bound on cut free proofs.
However, it is worth examining in more detail how the proof Pℓ can be formed.
First, Pℓ derives the sequents

Γ→ øi(0) (2)

and

Γ, øi(a)→ øi(S(a)) (3)

for 0 ≤ i ≤ ℓ , where a is a free variable. For i = 0, these are simple to prove without
cuts. For the induction step, Pℓ derives (2) with i = k + 1 from the three sequents

(i) Γ, øk(a)→ øk(S(a)),
(ii) Γ→ S(a) = a + 20,
(iii) Γ, S(a) = a + 20, øk(S(a))→ øk(a + 2

0),

using cuts on the formulas S(a) = a+20 andøk(S(a)) followed by an⊃;right and
a ∀ : right. The sequent (i) is (3) with i = k. Sequent (ii) is provable by a fixed size
cut free proof. And, since Γ includes equality axioms, (iii) has a cut free proof of
height O(k). (This last fact is readily proved by induction on the depth of øk from
the fact that øk has depth O(k).)
As the second part of the induction step, Pℓ derives (3) for i = k + 1 from the
sequents

(i) øk+1(a), øk(b)→ øk(b + 2
a),

(ii) øk+1(a), øk(b + 2
a)→ øk((b + 2

a) + 2a),
(iii) Γ→ (b + 2a) + 2a = b + 2S(a),
(iv) Γ, (b + 2a) + 2a = b + 2S(a), øk((b + 2

a) + 2a)→ øk(b + 2
S(a)),

using cuts on the atomic formula (b + 2a) + 2a = b + 2S(a) and the formulas
øk(b + 2

a) and øk((b + 2
a) + 2a), followed by an ⊃ : right and a ∀ : right. Note

that (i) and (ii) are readily provable by fixed proof schemes without any cuts.
After proving all the instances of (2) and (3), Pℓ derives the sequents

Γ, øk+1(a)→ øk(2
a) (4)

for 0 ≤ k < ℓ . This sequent is proved from the sequents

(i) øk+1(a), øk(0)→ øk(0 + 2
a),

(ii) Γ→ øk(0),
(iii) Γ→ 0 + 2a = 2a ,
(iv) Γ, 0 + 2a = 2a , øk(0 + 2

a)→ øk(2
a)

using cuts on the formulas 0 + 2a = 2a , øk(0), and øk(0 + 2
a). Note that (i) is

provable by a small proof with no cuts, and that (ii) is the same as (2).
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Finally, Pℓ derives Γ→ ø0(20ℓ) from the sequent (2) with i = ℓ , the sequents (4)
for 0 ≤ i < ℓ , and the sequents

(i) Γ→ 22
0
i = 20i+1,

(ii) Γ, 22
0
i = 20i+1, øℓ−i−1(2

20i )→ øℓ−i−1(20i+1),

using cuts on the indicated formulas.
By inspection, the height of Pℓ is O(ℓ). Its depth is 2ℓ , since øℓ(0) is the cut
formula ofmaximum depth. We have thus reproved, taking d = 2ℓ , the prior results
for lower bounds on cut-elimination that were described in the introduction:

Theorem 1. There are proofs Pℓ of sequents Sℓ of depth d and height O(d ) such
that any cut free proof of Sℓ requires size 2

0
(1/2)d

. The formulas in Sℓ are purely

universal and have depthO(1).

The proof Pℓ constructed above has exponential size because the formulas øi
have exponential size, O(2i). These formulas could be replaced by polynomial size
formulas, as is done by Pudlák [19] using constructions from Ferrante–Rackoff [8].
They could even bemade linear size using the refinements to [8] byBuss–Johnson [7].
With these modifications, Pℓ would be polynomial size; its depth would become
larger than 2ℓ , although it would still be O(ℓ).

§3. Improved lower bounds for cut-elimination. We now improve Theorem 1 to
establish the ǫ ≈ 1 version of the lower bounds on the size of cut free proofs. The
idea is to modify the formulasøi used in Pℓ so that they have depth i+O(1) instead
of depth 2i . For this we shall prove there are formulas ϕi (equivalent to øi) such
that ϕi (x) has depth i +O(1), and ϕ0(x) is I (x), and the formulas

ϕi+1(x)↔ (∀y)(ϕi (y) ⊃ ϕi(y + 2
x)) (5)

have proofs of height O(i) and depth i + O(1). The proof Pℓ can then be carried
out using the ϕi ’s in place of the øi ’s, and this will give the desired lower bound on
cut elimination.
Although the details will be a bit complicated, the intuition behind the construc-
tion of the ϕi ’s is simple. The formulaøi(w), although exponential size, has prenex
form that is a Πi -formula after like quantifiers are collapsed. Thus, øi(w) can be
equivalently expressed as a formula ϕi(w) of the form

(∀y0)(∃y1) . . . (Qyi−1)R(〈y0, . . . , yi−1〉, w), (6)

where R is a superexponential-time computable relation. We will not be able to
add R as a predicate symbol to T as this seems to be precluded by the fact that the
predicate symbol I cannot be used in induction axioms. Instead, we will introduce
a finite set of new predicate and function symbols to the theoryT , which will enable
T to define R as a constant depth formula. After doing this, the principal task
is to prove that the formulas (1) with øi replaced with ϕi have T -proofs of depth
i +O(1).
We begin by describing how to express the conditionR. Recall thatø0(z) is I (z),
and that ø1(y) is ∀z(I (z) ⊃ I (z + 2y)). Expanding further gives that ø2(x) is

∀y(∀z(I (z) ⊃ I (z + 2y)) ⊃ ∀z(I (z) ⊃ I (z + 2y+2
x

))),
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and that ø3(w) is

∀x
[

∀y
(

∀z(I (z) ⊃ I (z + 2y)) ⊃ ∀z
(

I (z) ⊃ I
(

z + 2y+2
x)))

⊃ ∀y
(

∀z(I (z) ⊃ I (z + 2y)) ⊃ ∀z
(

I (z) ⊃ I
(

z + 2y+2
x+2w )))

]

.

To better see the pattern, consider a “skeletal” tree representation of ø3(w).

∀x

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

∃y

LLLLLLLLLLL

kkkkkkkkkkkkkkkkkkkkk ∀y

LLLLLLLLLLL

kkkkkkkkkkkkkkkkkkkkk

∀z


















BB
BB

BB
BB

BB
∃z


















GG
GG

GG
GG

GG
G ∃z

BB
BB

BB
BB

BB


















∀z
KKKKKKKKKK


















I (z) I (z + 2y) I (z) I
(

z + 2y+2
x)

I (z) I (z + 2y) I (z) I
(

z + 2y+2
x+2w

)

The skeletal tree shows the quantifier structure of ø3, but omits the propositional
connectives to keep it simpler. The skeletal tree can be written in a more generic
form as follows:

∀0xǫ

fffffffffffffffffffffffffffffffffffffff

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

∃1x0

mmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQ ∀0x1

mmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQ

∀2x00
{{

{{
{{

{{

DD
DD

DD
DD

∃1x01
{{

{{
{{

{{

DD
DD

DD
DD

∃1x10
{{

{{
{{

{{

DD
DD

DD
DD

∀0x11
{{

{{
{{

{{

DD
DD

DD
DD

I (t000) I (t001) I (t010) I (t011) I (t100) I (t101) I (t110) I (t111)

This is intended to represent the fact that ø3 is equivalent to the prenex formula

∀xǫ∀x1∀x11∃x0∃x01∃x10∀x00

[

((

I (t000) ⊃ I (t001)
)

⊃ (I (t010) ⊃ I (t011))
)

⊃
(

(I (t100) ⊃ I (t101)) ⊃ (I (t110) ⊃ I (t111))
)

]

.

The superscripts on the quantifiers indicate the order in which quantifiers are pulled
out when putting ø3 in prenex form. For example, x11 is in the first (outermost)
block of quantifiers of ø3’s prenex form instead of the third (innermost) block.
The subscripts on the t’s and x’s indicate the path in the tree to reach that node,
with “0” and “1” indicating left and right respectively. For instance, the term t011
(which is in fact the term x01 + 2x0+2

xǫ ) is reached by starting at the root and
descending left, then right, then right. The empty sequence is denoted by “ǫ”.
The pattern for ø3 generalizes to form skeletal trees of øi , i ≥ 1. The formation
rules are as follows. The quantified variables in øi are x~u , for ~u ∈ {0, 1}<i . The
level ℓ = ℓ(~u) on the quantifierQℓx~u is equal to the number of 0’s in ~u. The variable
x~u is universally quantified iff its level ℓ(~u) is even. The atomic subformulas of øi
are of the form I (t~u) for ~u ∈ {0, 1}i . If ~v is a sequence, let |~v| denote the length
of ~v. For p ≤ |~v|, let ~v ↾ p denote the sequence containing the first p elements of ~v.
For t~u a term and ~u ∈ {0, 1}i , we define í~u to be the sequence

í~u := 〈x~u↾(i−1), x~u↾(i−2), . . . , x~u↾1, xǫ, w〉,

namely, the variables along the path to node ~u plus the free variable w: this is
the sequence of variables that potentially could appear in t~u . Then, t~u is the
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superexponential term

t~u := 2í~u↾(r+1)

where r is the number of contiguous 1’s occurring at the end of ~u. For example, in
the formula trees above, for t011, there are two 1’s at the end of “011”, so t011 is equal
to 2〈x01,x0,xǫ〉, the extended superexponential function with the subscript a sequence
of length 3 = r + 1.
A variable yℓ in ϕi—see (6) above—will code a sequence containing the values of
the variables x~u with level ℓ(~u) equal to ℓ . Letting ~y be 〈y0, . . . , yi−1〉, the entry yℓ
is “well-formed” provided that it codes a function with domain equal to the set of
sequences x~u with |~u| < i and ℓ(~u) = ℓ . If yℓ is not well-formed, then by convention
it codes the constant function which is equal to zero on all inputs in its domain.
For ~u ∈ {0, 1}<i , we write X (~u) to mean the value that ~u is mapped to by the
function encoded by yℓ(~u). (The intuition is that X (~u) equals the value of the
variable x~u.) We write t(~u) for the value of t~u when the variables x~u′ are given the
values X (~u′). Note that, although it is suppressed in the notation, X (~u) depends
on the vector of values ~y. Also, t(~u) depends on both ~y and w, and we sometimes
will write it as t(~u, ~y,w).
Let n be a power of two. Suppose ~ó ∈ {T,F }n, ~ó = 〈ó0, . . . , ón−1〉, where T and
F stand for “True” and “False”. Define the relation BIT(~ó) by (“BIT” stands for
“binary implication tree”)

BIT(~ó) =

{

ó0 if |~ó| = 1,

BIT(〈ó0, . . . , ón/2−1〉) ⊃ BIT(〈ón/2, . . . , ón−1〉) otherwise.

We identify binary vectors ~u in {0, 1}i with integers, and write nm(~u) for the integer
with binary representation given by ~u.
We now can define the formula R(~y,w) in (6) to be

(∃~ó ∈ {0, 1}2
i

)(BIT(~ó) ∧ (∀~u ∈ {0, 1}i)[ónm(~u) = 1↔ I (t(~u))]).

Note that↔ is not in our first-order language; instead A ↔ B is an abbreviation
for (A ⊃ B) ∧ (B ⊃ A). By inspection, the depth of R equals 5.
This completes the definition (6) of the formulas ϕi(w). Clearly, ϕi has depth
i +O(1), namely depth i plus the depth of R.
We now give a sketch of the proof that the equivalences (5) haveT -proofs of depth
i +O(1). Note that the intuition behind the definition of R is that R states that a
tree of implications holds. We define formulas S0 and S1 that express, respectively,
the hypothesis and the conclusion of the implication, so that R is equivalent to
S0 ⊃ S1. We do this in a general way so that we can do prenex quantifier operations
with the formulas S0 and S1.
Suppose yj codes a function f with domain the set of ~u’s with |~u| < i and
ℓ(~u) = j for j > 0. We write yj//0 for the code of the function g that has as domain
the set of strings u1 . . . uk such that 0u1 . . . uk is in the domain of f and such that
g(u1 . . . uk) = f(0u1 . . . uk). Define yj//1 similarly. For ~y = 〈y1, . . . , yi−1〉, define
t0 so that

t0(~u, 〈y0, . . . , yk−1, yk//0, . . . , yi−1//0〉, k)
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is equal to t(0~u, 〈y0, . . . , yi−1〉, w) for all ~u’s of length i − 1. (Note that t0 does not
depend on w.) Likewise, define t1 so that

t1(~u, 〈y0, . . . , yk−1, yk//1, . . . , yi−1//1〉, w, k)

is equal to t(1~u, 〈y0, . . . , yi−1〉, w) for all ~u’s of length i−1. LetS0(〈y0, . . . , yi−1〉, k)
be the formula

(∃~ó ∈ {0, 1}2
i−1

)(BIT(~ó) ∧ (∀~u ∈ {0, 1}i−1)[ónm(~u) = 1↔ I (t0(~u, ~y, k))]).

Let S1(〈y1, . . . , yi−1〉, w, k) be

(∃~ó ∈ {0, 1}2
i−1

)(BIT(~ó) ∧ (∀~u ∈ {0, 1}i−1)[ónm(~u) = 1↔ I (t1(~u, ~y,w, k))]).

Clearly we have R(~y,w) is equivalent to S0(~y,w, i) ⊃ S1(~y,w, i). And, this has a
straightforward proof in the theory T .
For k = i, i−1, . . . , 2, 1, consider the formulas

(∀y0) . . . (∃yk−1)
[

(∃yk)(∀yk+1) · · · (∃yi−1)S0(~y, k)

⊃ (∀yk)(∃yk+1) · · · (∃yi−2)S1(~y,w, k)
]

, (7)

where the notation here assumes k is even and i is odd (and the obvious changes are
madewhen k is odd or i is even). These formulas correspond to the formulas that are
obtained asϕi(w) is converted out of prenex form, and into a quantifier pattern that
matches that of the righthand side of (5). These formulas can be proved equivalent
to each other, using proofs of size polynomial in i and using formulas that are
no more complicated than the formulas (7). The equivalences of the formulas (7)
are proved straightforwardly by noting which parts of the (functions coded by the)
variables yℓ are used by S0 and S1 and using prenex reasoning. Also, note that S1
does not depend on yi−1, so the quantifier ∀yi−1 has been omitted in front of S1.
(The notation ~y thus variously denotes either 〈y0, . . . , yi−2〉 or 〈y0, . . . , yi−1〉, as
appropriate.)
Thus, at k = 1, the formula

(∀y0)
[

(∀y1)(∃y2) · · · (∃yi−1)S0(~y, 1) ⊃ (∃y1)(∀y2) · · · (∃yi−2)S1(~y,w, 1)
]

(8)

is equivalent to ϕi(w). The value y0 codes a function with domain 1<i : y0 can be
split into two parts, the first part codes a value yǫ and the remaining part codes
values for f(1j) for all 1 ≤ j < i . Note that S0 depends only on the yǫ part of y0.
Formula (8) is thus equivalent to

(∀yǫ)
[

(∀y1)(∃y2) · · · (∃yi−1)S0(〈yǫ, y1, . . . , yi−1〉, 1)

⊃ (∀y0)(∃y1)(∀y2) · · · (∃yi−2)S1(〈yǫ ∪ y0, y1, . . . , yi−2〉, w, 1)
]

,

where the notation yǫ∪y0 denotes the number that codes the union of the functions
coded by yǫ and y0.
Paying attention to the way that S1 uses w and the value yǫ, and letting yǫ(x)
denote the code of the function f with domain {ǫ} such that f(ǫ) = x, the last
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formula is equivalent to

(∀x)
[

(∀y1)(∃y2) · · · (∃yi−1)S0(〈yǫ(x), y1, . . . , yi−1〉, 1)

⊃ (∀y0)(∃y1)(∀y2) · · · (∃yi−2)S1(〈y0, y1, . . . , yi−2〉, w + 2
x , 0)

]

,

The hypothesis of the implication is equivalent to ϕi−1(x): to prove this equiva-
lence in T , just prove that the subformulas of the hypothesis are equivalent to the
corresponding subformulas of ϕi−1(x) starting with the quantifier-free part, and
working out to the entire formula. Similarly, the conclusion of the implication is
equivalent to ϕi−1(w + 2x).
That completes the sketch of the T -proof that the formula ϕi(w) is equivalent
to ∀x(ϕi−1(x) ⊃ ϕi−1(w + 2x)). This, plus the lower bound on the size of Qℓ as
established in Section 2, suffices to establish the following theorem.

Theorem 2. There is a constant c ∈ N and proofs Pℓ of depth ≤ ℓ + c and height
O(ℓ) such that every cut free proof Qℓ with the same conclusion as Pℓ has height at
least 20ℓ . Furthermore, the same holds for Qℓ containing cuts on only quantifier-free
formulas.

Examination of the proof of Theorem 2 reveals that the constant c can equal 6. To
see this, note that the formulas S0 and S1, like the formulaR, have depth equal to 5.
Furthermore, the most complex formulas used in the proof Pi , such as formulas (7)
and (8), have depth i + 6.

§4. Lower bounds for relational languages. The superexponential lower bound of
Theorem 2 was obtained for a language including a number of function symbols,
including symbols for exponentiation and superexponentiation. The present section
shows that the use of function symbols is entirely unnecessary, and the same lower
bound can be obtained for a purely relational language. In prior work, Orevkov
already obtained superexponential lower bounds for cut elimination in a purely
relational language, but only with ǫ ≈ 1

4 .
The theory T used a finite set of function and relation symbols axiomatized by a
set Γ of universal axioms. By standard techniques, the theory T can be converted
to a purely relational theory T rel with a ∀∃-axiomatization. For this, each function
symbol f of T is replaced by a relation symbol Gf that defines the graph of f;
that is, Gf(~x, y) indicates that f(~x) = y. The set Γ of universal axioms can be
replaced by a set of axioms Γrel := Γ0 ∪Γ1 where Γ0 is a set of universal axioms and
Γ1 contains the ∀∃-statements asserting the totality of the functions. In particular,
for each function f, the set Γ1 contains the formula (∀~x)(∃y)Gf (~x, y). The set Γ

rel

axiomatizes a theory T rel which is equivalent to T in the sense that models of T
and T rel are essentially the same up to the choice of language.
Since no functions symbols are allowed, the set Γ0 can no longer contain the
axiom (∀x)(I (x) ⊃ I (S(x)). Instead, it now contains the formula

(∀x)(∀y)(y = S(x) ∧ I (x) ⊃ I (y)),

where “y = S(x)” is shorthand notation for a binary relation with parameters x
and y.
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The construction in the previous section of the proofsPℓ can bemodified straight-
forwardly to give proofs of the corresponding statements in the new language. For-
mulas ϕreli that express the same condition as ϕi can be defined which still have
depth i + O(1) (the constant hidden in the O(1) will be only slightly larger than
before). Furthermore, there are proofs of

Γrel → ϕrelk (0)

and of

Γrel, ϕrelk (a), b = 2
a → ϕrelk−1(b)

which have height O(k) and depth k +O(1). Here the formula “b = 2a” does not
use the exponential 2a as a function, but instead is a binary relation on a and b.
Combining these proofs for 1 ≤ k ≤ ℓ , we can form a proof Prelℓ of heightO(ℓ) and
depth ℓ +O(1) of the sequent

Γrel, a0 = 2
0, a1 = 2

a0 , a2 = 2
a1 , . . . , aℓ = 2

aℓ−1 → I (aℓ ).

Let Qrelℓ be a cut free proof of this sequent (or, even a proof in which all cut
formulas are quantifier-free). We claim that Qrelℓ must have size ≥ 2

0
ℓ . To prove

this, we extend the lower bound argument used earlier for Qℓ in Section 2. This
will involve (a) removing all quantifier inferences inQrelℓ and removing contractions
on formulas that (formerly) had quantifiers, and (b) at the same time, assigning an
integer value to every free variable in Qrelℓ .
Without loss of generality,Qrelℓ is in free variable normal form. The only free vari-
ables in the endsequent are the variables ak , and these are assigned the integers 2

0
k+1.

The proof Qrelℓ is then modified iteratively by removing one quantifier inference at
a time. At each stage in this process, we will have assigned integer values to all
variables that occur below all quantifiers. To remove the next quantifier, choose the
lowest remaining quantifier inference. If it is a ∀ : left inference, just omit the infer-
ence, and allow the auxiliary formula in the upper sequent to remain unchanged.
In addition, omit all contraction inferences on that formula and its descendants in
the proof. On the other hand, suppose the lowest quantifier inference is an ∃ : left.
This will be an inference of the form

Gf(~s, b),Π→∆

(∃y)Gf(~s, y),Π→∆

where ~s is a vector of terms and all variables in the terms in ~s have already been
assigned integer values ~n. ModifyQrelℓ by omitting this ∃ : left inference and propa-
gating the formula Gf(~s, b) down to the endsequent in place of (∃y)Gf(~s, y). The
free variable b is assigned the integer value f(~n) so as to make Gf(~s, b) true.
Once all the quantifier inferences are removed from Qrelℓ , we obtain a proof Q

rel∗
ℓ

in which all formulas are quantifier-free. The number of substitution instances of
y = S(x)∧ I (x) ⊃ I (y) in the antecedent of the endsequent ofQrel∗ℓ is less than the
size |Qrelℓ | of Qrelℓ . By a similar argument as before, this implies that |Q

rel
ℓ | is ≥ 20ℓ .

This gives the following lower bound for cut elimination in relational languages.

Theorem 3. Theorem 2 holds in the purely relational language described above.

By being careful with the constructions of φreli , Theorem 3 can be shown to hold
with the constant c equal to 8.
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Although our lower bounds are very close to optimal, there is still a small gap
between the lower bounds of Theorems 2 and 3 and the known upper bounds
discussed in the introduction. Our lower bounds have the form 20ℓ . But, since Pℓ
has heightO(ℓ) and depth ℓ +O(1), the upper bounds of [16, 25, 26] on the size of
cut free proofs are equal to

2O(ℓ)
ℓ+O(1)

= 20ℓ+log∗(ℓ)+O(1),

where log∗ denotes the inverse superexponential function. It is open how to close
the log∗ gap between the height of superexponential size upper and lower bounds.
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