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Abstract

This paper gives nearly optimal lower bounds on the minimum
degree of polynomial calculus refutations of Tseitin’s graph tautologies
and the mod p counting principles, p ≥ 2. The lower bounds apply
to the polynomial calculus over fields or rings. These are the first
linear lower bounds for the polynomial calculus for k-CNF formulas.
As a consequence, it follows that the Gröbner basis algorithm, used
as a heuristic for k-SAT, requires exponential time in the worst-case.
Moreover, our lower bounds distinguish linearly between proofs over
fields of characteristic q and r, q 6= r, and more generally distinguish
linearly the rings Zq and Zr where q and r do not have the identical
prime factors.
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1 Introduction

The problem of recognizing when a proposition formula is a tautology is dual
to the satisfiability problem and is therefore central to computer science. A
principal method of establishing that a formula is a tautology is to find
a proof of it in a formal system such as resolution or (extended) Frege
systems. In fact, many algorithms for establishing propositional validity are
essentially a search for a proof in a particular formal system. In recent years,
several algebraic proof systems, including the Nullstellensatz system and the
polynomial calculus (also called the ‘Gröbner’ system) have been proposed:
these systems are motivated in part by the desire to identify powerful proof
systems which support efficient search algorithms and in part by the desire
to extend lower bounds on proposition proof complexity to stronger proof
systems.

The Nullstellensatz proof system is a propositional proof system based on
Hilbert’s Nullstellensatz and was introduced in [2]. The polynomial calculus
(PC) is a stronger propositional proof system introduced first by [8]. (See [15]
and [6] for subsequent, more general treatments of algebraic proof systems.)
In the polynomial calculus, one begins with an initial set of polynomials
and the goal is to prove that they cannot be simultaneously equal to zero
over a field F . A polynomial calculus (PC) derivation of Pl from a set
of polynomials Q is a sequence of polynomials P1, . . . , Pl such that each
polynomial is either an initial polynomial from Q, or follows from one of the
following two rules: (i) If Pi and Pj are previous polynomials, then cPi +dPj

can be derived, where c, d ∈ F ; (ii) if Pi is a previous polynomial and x
is a variable, then xPi can be derived. The degree of a PC derivation is
the maximum degree of the Pi’s, and its size is the sum over all i of the
number of (non-zero) monomials in Pi. We identify polynomials Pi with
the equations Pi = 0 and a PC refutation of Q (a proof that the equations
Q = 0 are not solvable over F ) is simply a PC derivation of 1 from Q (i.e.,
of 1 = 0). For Boolean tautologies, we usually consider sets Q that contain
the polynomials, x2

i − xi for each variable xi, corresponding to the axiom
that each variable is either 0 or 1. However, in this paper, we will be using
non-Boolean systems as a tool for reasoning about Boolean systems, so it
will be useful to also consider proofs without these axioms. For non-Boolean
systems it is often desirable to use an algebraicly closed field F so as to
ensure the completeness of the polynomial calculus.

The PC degree and size of the system of inconsistent polynomials Q is the
minimum degree, resp. size, of any PC refutation of the system. While size
might be considered the more natural measure, it is tightly correlated with
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degree. For example, [8] show that a constant degree lower bound implies
a polynomial size lower bound, whereas [12] show that a linear degree lower
bound implies an exponential size lower bound. In fact, the latter result is
also true for size in the PCR system which can simulate both resolution and
polynomial calculus refutations ([1]). So our results also imply the (known)
lower bounds for resolution proofs of the Tseitin tautologies ([18]). In fact,
the relationship is somewhat stronger, as we mention in the concluding
comments.

The definition of the polynomial calculus depends implicitly on the choice
of a field F such that all polynomials are over the field F . A number of
authors also consider the polynomial calculus over rings ([6, 5]). The only
difference in the definition of the PC system is that a PC refutation over a
ring is a derivation of r (i.e., of r = 0) for some non-zero r in the ring. Our
main results apply to both fields and rings.

The mod p counting principle can be formulated as a set MODn
p

of constant-degree polynomials expressing the negation of the counting
principle, and the present paper gives tight lower bounds on the degree of
polynomial calculus refutations of MODn

p over fields of characteristic q 6= p.
(Our bounds are Θ(n), but this is really sub-linear, since the MODn

p principle
has a number of variables which is a polynomial in n.) However, we obtain
our bounds via a reduction from variants of the Tseitin graph tautologies for
constant degree expanders. (The variants coincide with the normal Tseitin
graph tautologies when p = 2, and we are proving a lower bound for a field
of odd characteristic. The variation generalizes these tautologies to allow us
to prove lower bounds for MODn

p for p 6= 2 over any field of characteristic
other than p. Because the p = 2 case is somewhat simpler, we describe it
separately.) For these tautologies, which can be expressed as the negation of
k-CNF’s for a constant k depending on the degree of the graph, we obtain
a truly linear lower bound. As a consequence, it follows that the Gröbner
basis algorithm is worst-case exponential time when used as a heuristic for
k-SAT in the manner suggested by [8].

Some lower bounds on the degree of Nullstellensatz proofs of the mod p
counting principles have been given in prior work: [2] gave non-constant
lower bounds and [6] gave lower bounds of the form nε. For the polynomial
calculus, the best lower bound on the degree of PC refutations of MODn

p

was Kraj́ıček’s Ω(log log n) lower bound based on a general lower bound for
symmetrically specified polynomials [13].

Polynomial calculus lower bounds have been obtained for other families
of tautologies. Razborov [16] established

√
n lower bounds on the degree of

polynomial calculus proofs of the pigeon-hole principle, as well as a linear
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Ω(n) lower bound on a variant of this principle.6

Recently, Grigoriev [9] succeeded in giving very simple linear lower
bounds on the degree of Nullstellensatz refutations of the Tseitin mod 2
graph tautologies. The present work is motivated by this paper, and in
particular by the idea of working in the Fourier basis which greatly simplifies
the argument. More precisely, by performing a simple linear transformation
on the variables, we transform the Boolean clauses of the graph tautologies
into an equivalent (in terms of refutation degree) system of non-Boolean
binomials. We then give a normal form for polynomial calculus derivations
involving only binomials, which allows us to prove the degree lower bound for
the transformed system. Finally, we reduce the graph tautologies to MODn

p ,
thus proving the same lower bound for the modular counting principles.
Our main contribution may be that, once the tautologies are reduced to
binomials, our arguments are much simpler than for previous lower bounds.

The present paper establishes linear (in n) lower bounds to the degree of
polynomial calculus over a field of characteristic q - p, for any PC refutation
of the MODn

p polynomials. In section 8 we generalize this linear lower bound
to the polynomial calculus over rings Zq provided p and q are relatively
prime. As it is well-known to be easy to give constant degree polynomial
calculus (and even Nullstellensatz) refutations of the MODn

p polynomials
over Fp, our results imply that the MODn

p polynomials have a linear gap
between proof complexity for the polynomial calculus over Fp and over Fq.
This is the first separation of more than log log n.

When considering the polynomial calculus as a tool for analyzing
heuristics for k-SAT based on polynomial reasoning, such as the Gröbner
basis algorithm [8], it is interesting to consider size bounds for polynomial
calculus proofs for tautologies expressible as k-CNF’s. By the results of [12],
an exponential lower bound on size for a Boolean tautology follows from a
degree bound that is linear in the number of variables. Unfortunately, the
MODn

p polynomials are not expressible themselves as k-CNF’s, and have a
number of variables that is polynomial in n. However, our lower bounds for
the MODn

p polynomials are obtained via a reduction from variants of the
Tseitin Graph Tautologies for constant degree expanders. These tautologies
are expressible as k-CNF’s and have only a linear number of variables in
n. Thus, we immediately obtain an exponential lower bound for the size of
any polynomial calculus proof of these tautologies, and hence show that the

6We would like to take this opportunity to correct an embarrassing mistake that
appeared in the conference version of this paper. Razbarov’s result is the first linear
lower bound for the polynomial calculus. However, we believe our result is the first such
result for a tautology in k-CNF form or a system of bounded degree polynomials.
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Gröbner basis algorithm requires worst-case exponential time when used as
a heuristic for k-SAT.

It follows from a result of Kraj́ıček [14] that our linear lower bounds on
the degree of PC refutations imply exponential lower bounds of AC0[q]-Frege
proofs of the mod p principles when Mod-q gates are present only at the top
(root) of formulas.

A final motivation for our work, and perhaps the most significant, is
that our proof technique is much simpler than previous lower bounds for
the polynomial calculus. This core simplicity gets lost for the most general
statement of our results. Therefore, we first prove our lower bound for
the special case of the original Tseitin graph tautologies over a field of odd
characteristic, and only later state the result in full generality.

2 Tseitin tautologies: Boolean and polynomial ver-
sions

Tseitin’s (mod 2) graph tautologies are based on the following idea. Let
Gn be a connected undirected graph on n vertices, where each node in the
graph has an associated charge of either 0 or 1, and where the total sum of
the charges is odd. Then it is impossible to choose a subset of the edges E′

from E so that for every vertex v ∈ V , the number of E′-edges incident to v
is equal mod 2 to the charge of v. This impossibility follows from a simple
parity argument, since summing the degrees of all vertices in the subgraph
counts each edge twice, and so is even, whereas it should also be the sum of
all the charges, which is odd.

For an r-regular graph Gn with n odd, and charges all 1, we can express
this principle as the inconsistency of the following system of polynomials
over a finite field F of characteristic different from 2: There will be rn/2
underlying variables, one for each edge of Gn. We will denote the variable
corresponding to the edge e = {i, j} from i to j by ye = y{i,j}. For each
variable ye, we have the equation y2

e − 1 = 0; this forces the variables to take
on values of either 1 or −1, with ye = −1 corresponding to the presence of
e in the subgraph E′. Secondly, corresponding to each vertex i in Gn, we
will have the equation 1 + y{i,j1}y{i,j} · · · y{i,jr} = 0, where j1, . . . , jr are the
neighbors of i in Gn. This corresponds to saying that the degree of i in the
subgraph E′ is odd. This set of equations, representing the Tseitin mod 2
graph formula, will be denoted by TSn(2).

For any prime p, we can generalize the above principle to obtain a
mod p version as follows. Again, we fix an underlying r-regular, undirected
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graph Gn, and then let G′
n be the corresponding directed graph where

each undirected edge is replaced by two directed edges. Each vertex in G′
n

will have an associated label, or charge in [0, p − 1] such that the sum of
the vertex charges is congruent to 1 mod p. The mod p principle states
that it is impossible to assign values in [0, p − 1] to each of the directed
edges so that: (i) for any pair of complementary edges 〈i, j〉 and 〈j, i〉,
v(〈i, j〉) + v(〈j, i〉) ≡ 0 (mod p), and (ii) for every vertex i, the sum of the
edge values coming out of vertex i is congruent to the charge of that vertex
mod p. Again, this is impossible since if we sum the edges in pairs, we obtain
0 mod p, but summing them by vertices gives the total charge of 1 mod p.

Let F be a finite field with characteristic q 6= p that contains a primitive
p-th root of unity ω. Assume all charges of vertices are 1, and that
n ≡ 1 (mod p). We can express the mod p Tseitin principle for G′

n as
the unsatisfiability of the following system of polynomials over F : We
have rn underlying variables ye, one for every directed edge e. For each
variable ye we have the equation yp

e − 1 = 0; this forces variables to take
on values in 1, ω, ω2, . . . , ωp−1. (The power of ω corresponds to the value
assigned to e.) Secondly, for each vertex i in G′

n, we will have the equation
y〈i,j1〉y〈i,j2〉, . . . , y〈i,jr〉−ω = 0, where j1, . . . , jr are the neighbors of i. Third,
for each edge e = 〈i, j〉 we have the equation y〈i,j〉y〈j,i〉 − 1 = 0. This set
of equations, representing the Tseitin mod p formula, will be denoted by
TSn(p).

Alternatively, we can express the above tautologies as Boolean formulas.
In the graph case, we have one Boolean variable xe for each edge, determining
whether e ∈ E′, and we express the constraint that the degree of a node
i is odd as a CNF formula, a system of 2r−1 clauses of size r. For the
general case, we would have one Boolean variable xe,i for each directed edge
e and residue mod p, i, interpreted as an indicator variable for the event
that edge e has charge i. We would have constraints that say each edge
has one charge, that an edge’s charge is the negation of that of the reversed
edge, and that the sum of charges of edges incident to a given node sum to
1 mod p. Each of these constraints involve at most max{r, p} variables and
the tautology can be expressed as a k-CNF for some constant k. We call
these the Boolean version of the tautologies. The Boolean version is also a
system of polynomials in the usual way, writing negation as 1− xe,i, “or” as
the product of the negations, and including the axioms x2

e,i − xe,i. We let
BTSn,p denote this system of polynomials.
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3 The mod p principle and low degree reductions

A related principle is the mod p counting principle. Intuitively, it states
that it is not possible to partition a set of size n into groups of size p, if n
is congruent to 1 mod p. We will express this by polynomial equations as
follows. The underlying variables are xe, where e ranges over all p element
subsets of [1, n]. The degree 2 equations expressing the negation of the
principle are: (1) x2

e − xe = 0 for each e; (2) xexf = 0, for each e, f such
that e ∩ f 6= ∅ and e 6= f ; (3) 1−∑

e,i∈e xe = 0, for each i ∈ [1, n]. Let the
above set of equations be denoted by MODn

p .
We want to show that a low degree PC refutation of the mod p counting

principle implies a low degree PC refutation of the Tseitin mod p graph
equations. To do this, we define the following general notion of a low degree
reduction.

Definition. Let P (x), Q(y) be two sets of polynomials over a field F .
Then P is (d1, d2)-reducible to Q if: (1) For every yi, there is a degree d1

definition of yi in terms of the x’s. That is, for every i, there exists a degree
d1 polynomial ri where yi will be viewed as being defined by ri(x1, . . . , xn);
(2) there exists a degree d2 PC derivation of the polynomials Q(r(x1, . . . , xn))
from the polynomials P (x).

Lemma 1 Suppose that P (x) is (d1, d2)-reducible to Q(y). Then if there is
a degree d3 PC refutation of Q(y), then there is a degree max(d2, d3d1) PC
refutation of P (x).

With this definition, it is easy to see that the polynomial and Boolean
versions of the Tseitin tautologies are equivalent as far as their degrees go.

Lemma 2 For all n and p, and for any field F of characteristic q, where q - p,
and F includes the primitive p-th root of unity, BTSn,p is (1, pr)-reducible to
TSn,p.

Proof of Lemma 2. For the graph case, we define ye = 1 − 2xe.
In the general case, we define ye =

∑
i xe,iω

i. Proofs of degree pr of
the corresponding constraints follow from the completeness of polynomial
calculus, and the fact that each constraint involves at most pr variables. 2

We can also prove an analog for the usual reduction from k-SAT to
3-SAT:
Lemma 3 Given any unsatisfiable k-CNF formula Φ on n variables with m
clauses, we can construct an unsatisfiable 3-CNF formula Ψ with n + km
variables, so that Φ is (k, k) reducible to Ψ.
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Proof of Lemma 3. We start with the variables of Ψ. For each clause
of Φ, x1 ∨ x2 ∨ .. ∨ xk, Ψ will also have k − 2 new variables, z1, ..zk−2 and
clauses that represent z1 = x1 ∨ x2, zi = zi−1 ∨ xi+1 for i = 2, ..k − 2 and
zk−2 ∨ xk. (This is the usual reduction from k-SAT to 3 − SAT .) The
reduction simply defines zi as x1 ∨x2 ∨ ...∨xi+1. That the clauses of Ψ have
degree k proofs from the clauses the corresponding clauses of Φ follows from
the completeness of polynomial calculus, and the fact that each constraint
involves at most k original variables. 2

Lemma 4 For all n and p, and for any field F of characteristic q, where q - p,
and F includes the primitive p-th root of unity, TSn(p) is (d1, d2)-reducible
to MODm

p over F , where m = n + nrp, d1 = 2pr and d2 = 2pr.

Proof of Lemma 4. Let G′
n be a directed Tseitin graph on n vertices,

where n ≡ 1 (mod p). That is, the underlying G′
n is an r-regular graph; each

vertex of G′
n has a charge of 1, and the edges of G′

n are labeled with values
from [0, p−1]. Thus, the total number of directed edges of G′

n is rn. From G
we will define a universe U of size m, and a corresponding p-partition of this
universe, where m = n + nrp. In U , there will be one element corresponding
to each vertex of G′

n, and there will also be p elements corresponding to
each directed edge of G′

n. We will denote the element of U corresponding to
vertex i in G′

n by (i), and the vector of p elements of U corresponding to the
edge 〈i, j〉 in G′

n will be denoted by (i, j, ∗) = 〈(i, j, 1), (i, j, 2), . . . , (i, j, p)〉.
Definition. The elements in U associated with node i will be (i), plus
all elements (i, k, ∗). (That is, the rp elements corresponding to outgoing
edges from i plus the element corresponding to node i.) The elements in U
associated with the pair of nodes i, j will be the rp elements corresponding to
the directed edge 〈i, j〉 plus the rp elements corresponding to the directed edge
〈j, i〉.

The partition of U is defined as follows. We will consider node i in
G′

n, and the r labeled edges, (i, j1), (i, j2), . . . , (i, jr), leading out of i, where
j1 < j2 < · · · < jr. Suppose that the values of these edges are: a1, a2,. . . ,ar.
Then for each `, 1 ≤ ` ≤ r, we take the first a` elements in U from (i, j`, ∗),
and group them with the first (p − a`) elements in U from (j`, i, ∗). (This
gives us r p-partitions so far.) Note that the number of remaining, ungrouped
elements associated with node i is (p − a1) + (p − a2) + · · · + (p − ar) + 1,
which is congruent to 0 mod p as long as (a1 + · · ·+ ar) mod p = 1.

We then group these remaining, ungrouped elements associated with i,
p at a time, in accordance with the following ordering. Ungrouped elements
from (i, j1, ∗) are first, followed by ungrouped elements from (i, j2, ∗), and
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so on until we get to the ungrouped elements from (i, jr, ∗), and lastly the
element (i).

It should be intuitively clear that if the values yi,j satisfy TSn(p), that
is, if they are set so that the mod p sum coming out of each vertex in G′

n is
congruent to 1 mod p, and yi,jyj,i = 1 and yp

i,j = 1, then the corresponding
partition of U is a proper p partition. We want to prove this now formally,
with small-degree PC refutations. There are two steps to this reduction.
First, for each variable xe underlying MODm

p , we want to define a degree at
most rp polynomial, call it re(y), in the yi,j variables that corresponds to
the above reduction. Secondly, we want to show that there is a small degree
PC derivation of MODm

p (re) from TSn(p).

Step 1: Defining re. We will first describe the defining polynomial re for
xe. Recall that e is a particular p-set from U . In the above reduction, the
valid p-partitions are of two types: (i) where the elements of e are a subset
of the elements associated with a pair of nodes i, j in G′

n; (ii) where the
elements of e are a subset of the elements associated with a node i. Thus, if
the underlying p elements from e are not one of these two types, then xe is
just set to 0.

Now consider case (i); that is, the elements of e are a subset of the
elements associated with the pair of nodes i, j. Suppose that e is the set
{(i, j, 1), (i, j, 2), . . . , (i, j, a1), (j, i, 1), . . . , (j, i, p−a1)}. That is, e consists of
an initial segment of size a1 of the p elements associated with directed edge
〈i, j〉 and an initial segment of size p− a1 of the p elements associated with
〈j, i〉. (If e is not of this form, then again xe is just 0.) Then xe should be 1
if yi,j = ωa1 , yj,i = ωp−a1 and should be 0 otherwise. This is defined by the
following polynomial:

∏
a 6=a1

(ωa1 − ωa)−1(yi,j − ωa)×
∏

b6=p−a1

(ωp−a1 − ωb)−1(yj,i − ωb) (1)

More generally, suppose that we want to define a 0-1 valued variable x so
that x = 1 if y1 = ωp1 and y2 = ωp2 and ... and yk = ωpk , and otherwise
x = 0. Then this is accomplished by the following degree kp polynomial:

∏
i

∏
p6=pi

(ωpi − ωp)−1(yi − ωp) (2)

Case (ii) is handled similarly but is somewhat more complicated. Now
the elements of e are a subset of elements associated with i, and moreover
we can assume without loss of generality that they must be end-segments
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of (i, jl1, ∗), (i, jl2, ∗), . . . , (i, jll, ∗) plus possibly either (i) or a consecutive
segment of (i, jll+1, ∗). (Otherwise, xe is just set to zero.) Then xe should be
1 if and only if there exists values a1, . . . , ar assigned to the outgoing edges
(i, j1), . . . , (i, jr) such that the partition described in the reduction above
groups the elements of e together. This is a big OR (translated as a sum)
(of size at most pr) over the good values of a1, . . . , ar that group e together.
Thus, it is expressible by a polynomial in the variables yi,j1 , yi,j2 , . . . , yi,jr of
degree at most pr.

Step 2: Deriving MODm
p (re) from TSn(p). We will now describe how to

give small degree PC derivations of the equations MODm
p (re) from TSn(p).

Recall that the equations in MODm
p (re) are as follows.

1. r2
e − re = 0 for all p-sets e

2. rerf = 0 for all e, f such that e ∩ f 6= 0, e 6= f

3.
∑

e,u∈e re − 1 = 0, for all u ∈ [m].
We want to show that for every equation E that we need to derive as

described above, that E is a tautological consequence of a small, constant
number of equations from TSn(p). Then, since each equation of TSn(p)
involves only a constant number of variables, by completeness of PC it will
follow that there is a small-degree derivation of each equation E.

Definition. Let f1 = 0, . . . , fk = 0, g = 0 be polynomial equations over
a field F with underlying variables x1, . . . , xn. Then g is a tautological
consequence of f1, . . . , fk if for every assignment α to the underlying variables,
if all of the equations f1, . . . , fk are satisfied by α, then g = 0 is also satisfied
by α.

By generalizing slightly the completeness result in [6], (Theorem 5.2 part
2), it can be shown that if g is a tautological consequence of f1, . . . , fk, all
with underlying variables x1, . . . , xn, and if f1, . . . , fk includes the equations
xp

i = 1 for all variables x, then there is a degree pn derivation of g from
f1, . . . , fk.

In light of the above, it is just a matter of verifying that each of the above
equations E is a tautological consequence of a small number of equations
from TSn(p) involving a small number of variables. In particular, equations
of type (1) require degree pr and equations of type (2) and (3) each require
degree at most 2pr.

This completes the proof of Lemma 4. 2.
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4 Intuition and an upper bound

In order to first give some intuition behind the lower bound for the Tseitin
tautologies, it is helpful to think about the natural PC refutation for these
equations. To be concrete, we consider the mod 2 case; the others are similar.

Initially, the equations say that the number of edges out of a single vertex
v is odd. These equations have degree r. Then in degree at most 2r, one can
combine two of these equations to say that the number of edges out of a set
of vertices of size 2 is even. Continuing in this way, if S ⊂ V , then one can
derive an equation saying that the number of edges out of S, E(S), has the
same parity as the size of S. This equation is most naturally expressed as
m− 1 = 0 if |S| is even, and m + 1 = 0 if |S| is odd, where m is the product
of the variables corresponding to edges E(S), that cross between S and its
complement. Thus, the degree of this polynomial is equal to the size of E(S).
Proceeding this way, we eventually obtain two equations, one saying that
the number of edges out of a set S1 is odd, and the other one saying that
the number of edges out of a set S2 is even, where S1 and S2 are disjoint,
and S1 ∪ S2 = V . This will lead to a derivation of 1, since we have now
derived m + 1 and m− 1 for some monomial m. If Gn is highly expanding,
the degree of this refutation will be large since at some point we must pass
through a relatively large set of edges. Thus, any binomial expressing that
the number of edges out of this set must have the same parity as the size of
the set, will have a large number of variables and hence large degree.

We want to show that the above almost completely characterizes what
can be done with the initial equations. Suppose we have derived m− 1 = 0,
where m is the set of edges E(S), such that |E(S)| = d, and |S| is even. (Or
similarly, we have derived m + 1 = 0 when m is the set of edges of E(S)
but now |S| is odd.) However, now it is possible to rewrite this equation
in a slightly different form so that it has smaller degree. In particular, we
can divide up the edges of m into two halves, m1 and m2 and rewrite the
equation m− 1 = 0 instead as m1 −m2 = 0. This is derived from m− 1 in
degree d by multiplying m−1 by edges of m2, one at a time, thus transferring
the edges of m2 over to the second term, one at a time. This new equation,
m1 − m2 = 0 has degree d′ = dd/2e, and in general is not derivable by a
degree d′ PC refutation. The (degree d) equations that interest us are this
larger set of equations, which express the fact that the edges coming out of
a set S are even (or odd) by a pair of monomials.

There are two key steps to making this intuition a proof. First, we must
show that, although the PC proof can contain arbitrary polynomials, the
important lines are equalities as above, or binomials if viewed as a difference.
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This is made formal in a very general way in section 5. Secondly, that the
set of degree d equations described above, although not all provable with
degree d proofs, is more natural and thus easier to understand, and they
span all of the degree d derivable PC polynomials. In contrast, an explicit
construction of the exact set of degree d derivable PC polynomials (as
done by Razborov [16] for pigeonhole principle) seems much more difficult,
although it is possible for symmetric systems ([13]).

5 Binomial systems and bounds for PC

In the previous section, we reduced the problem of proving lower bounds
for the mod counting principles to that of proving lower bounds for the
Tseitin graph tautologies. The reason this is progress is that the Tseitin
graph tautologies are expressed as a system of polynomials of a very simple
form: each polynomial is a binomial, the difference of two terms (i.e., the
weighted sum of two monomials with coefficients over the field.) (This fact
was earlier used by Grigoriev [9] in giving lower bounds for Nullstellensatz.)
A binomial a1m1 − a2m2 can be viewed as the equation between two terms,
a1m1 = a2m2. Intuitively, an algebraic proof for a binomial system should
be expressible as a sequence of such equations.

We next recall a general characterization of things provable in PC
from [8], and then will show that this characterization can be refined for
binomial systems.
Definition. A degree d pseudo-ideal I is a vector space of degree at most d
polynomials so that if p ∈ I and p has degree ≤ d− 1, then xp ∈ I for every
variable x.

Theorem 5 [8] Let P be a system of polynomials, and let Id(P ) be the set
of all polynomials q that have a degree d PC proof from P . Then Id(P ) is a
d-pseudo-ideal, and for any d-pseudo-ideal I containing P , Id(P ) ⊆ I.

So pseudo-ideals capture provability in polynomial calculus. If equational
reasoning is complete for polynomial calculus for binomial systems, it should
follow that the pseudo-ideals for such systems are determined by which terms
are “provably equal” from the system. In other words, pseudo-ideals should
be determined by an equivalence relation on degree d terms with certain
closure properties. This is formalized below. (By ‘ring’ we always mean
‘commutative ring’.)

Definition. Let R be a ring and R∗ a multiplicative subgroup of R, and let
x1, . . . , xn be variables. (i.e., R∗ consists only of invertible elements and is

12



closed under products and inverses). An R∗-term is a term whose coefficient
is from R∗. An R∗-binomial is the difference of two R∗-terms. A d-Laurent
relation7 over R∗-terms is an equivalence relation ≡d on R∗-terms of degree
at most d with the following properties: Let t1, t2, be R∗-terms of degree at
most d and let r ∈ R∗.
(a) t1 ≡d t2 iff rt1 ≡d rt2; and
(b) If t1 and t2 are degree at most d − 1, and t1 ≡d t2 then xit1 ≡d xit2 for

any variable xi.
If ≡d is a d-Laurent relation, we define a corresponding set of binomials
B≡d

= {t1 − t2|t1 ≡d t2} and a set of polynomials S≡d
= SPANR(B≡d

), the
set of linear combinations of binomials in B≡d

.

R will usually be a field, but in section 8 we will need the more general
version. Intuitively, ≡d represents the set of pairs of terms that can be proved
equal using equational-type reasoning, where we are allowed to multiply both
sides of a known equation by a constant or variable, as long as we don’t
exceed degree d.

We now show that lower bounds on polynomial calculus proofs can be
established by exhibiting a non-trivial d-Laurent relation.

Theorem 6 Let Q be a set of R∗ binomials. If ≡d is a d-Laurent relation
with Q ⊆ B≡d

and 1 6≡d a for any a ∈ R∗, a 6= 1, then Q has no degree d
polynomial calculus refutation over R.

The proof of this theorem follows from a sequence of lemmas that take
up the rest of this section. Lemma 7 is the main technical lemma, and the
other lemmas describe how to use it to prove the theorem.
Lemma 7 Assume ≡d is d-Laurent.8 Suppose f ∈ S≡d

. Then f can be
rewritten as a linear combination f =

∑T
j=1 aj(tj − t′j) of binomials from

B≡d
such that no monomial completely cancels out, i.e., every monomial

tj , t
′
j in the linear combination appears in f with non-zero coefficient.

Proof. Let f =
∑

j aj(tj − t′j), where each pair of monomials in the above
sum is a polynomial from B≡d

. We prove the lemma by induction on the
number of distinct monomials in the above sum. At each step, if cancellation
of a monomial occurs, we will rewrite f by an equivalent sum of elements of
B≡d

such that the number of monomials in the new sum is strictly smaller.
Assume m appears in the sum, without loss of generality in exactly the

first T ′ differences, but has zero coefficient in f . Because each element
7We name them in honor of Laurent, who initiated the study of equational reasoning

for term algebras.
8Actually, we do not need property (b) in the definition of d-Laurent relation for this

lemma.
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aj ∈ R∗, and so has an inverse, by factoring out the coefficient of m in each
term, we can rewrite any elements that m appears in: ck(akm − a′km

′
k) =

ckak(m− a′ka
−1
k m′

k) = dk(m− tk) for some R∗ term tk. Also, by the closure
properties of ≡d for multiplication by constants from R∗, m ≡d tk. Now,
since m has coefficient 0 in f ,

∑
k dk = 0.

We claim that the sum of binomials containing m,
∑T ′

k=1 dk(m− tk), can
be rewritten as

∑T ′
k=2 dk(t1 − tk). This is because

∑T ′
k=2 dk(t1 − tk) =

(
∑T ′

k=2 dk)(t1) −
∑T ′

k=2 dktk = −d1(t1) −
∑T ′

k=2 dktk = −∑T ′
k=1 dktk =

(
∑T ′

k=1 dk)m−∑T ′
k=1 dktk =

∑T ′
k=1 dk(m− tk).

Since ≡d is transitive, t1 ≡ tk for all k. So this substitution rewrites f as
a weighted sum of members of B≡d

. The new sum is without m and without
any monomial not in the previous sum, so contains one fewer monomial. 2

Lemma 8 If ≡d is d-Laurent, and there is a c ∈ R, c 6= 0 with c ∈ S≡d
, then

there is an a ∈ R∗, a 6= 1 with 1 ≡d a.

Proof. If c ∈ S≡d
, by Lemma 7, c can be written as a sum of equivalent

terms which only have monomials that appear in c, i.e, are constants. Thus,
at least two distinct constants a ≡d a′, and then 1 ≡d a′a−1. 2

Lemma 9 If ≡d is d-Laurent, then S≡d
is a degree d pseudo-ideal.

Proof. By definition, S≡d
is a vector space of polynomials of degree at

most d, so we just need to show closure under multiplication by a variable,
provided the total degree is at most d. Assume f ∈ S≡d

has degree at most
d − 1. By Lemma 7, we can write f =

∑T
i=1 ci(ti − t′i), where ti ≡d t′i

and each ti, t
′
i comes from a monomial with non-zero coefficient in f . In

particular, each ti, t
′
i has degree at most d − 1. Therefore, xti ≡ xt′i by

the second closure property in the definition of d-Laurent relation. So
xf =

∑T
i=1 ci(xti − xt′i) ∈ S≡d

. 2

Proof (of Theorem 6). Let ≡d be a d-Laurent relation with Q ⊆ B≡d
,

and that 1 6≡d a for any 1 6= a ∈ R∗. Assume Q has a polynomial calculus
refutation of degree d over R, i.e., proves some c 6= 0, c ∈ R. Then c ∈ S≡d

,
since the latter is a pseudo-ideal containing Q. But then 1 ≡d a for some
a 6= 1, a ∈ R∗. This contradiction proves the theorem. 2.

The notion of d-Laurent relations is similar to the definition of the
d-Laurent proof system, which is an algebraic proof system introduced in [10]
and shown therein to be closely related to the restriction of the polynomial
calculus to binomials in that lower bounds on the degree of Laurent proofs
imply lower bounds on the degree of polynomial calculus proofs. [10] also
introduces the related algebraic Thue systems and proves their equivalence
with Nullstellensatz proofs.
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6 PC lower bound for mod 2

We first prove linear lower bounds for the Tseitin principle TSn(2) for poly-
nomial calculus over fields of characteristic q > 2, provided the underlying
graph is an expander graph.

Definition. Let G = (V, E) be an undirected graph, and let ε > 0. The
graph G has expansion ε if for any subset S of vertices with |S| ≤ |V |/2,
|N(S)| ≥ (1 + ε)|S|, where N(S) is the set of nodes adjacent to nodes in S.

Theorem 10 Let F be a field and let Gn be a graph on n nodes with
expansion ε. For all d < εn/8, there is no degree d PC refutation of TSn(2)
over F .

Note that there is no restriction on the characteristic q of the field F or
the degree of the graph. When q is an odd prime or zero, then the TSn(2)
polynomials are unsatisfiable and therefore have a PC refutation over F , of
degree which is necessarily linear by the theorem. When q = 2, then the
TSn(2) polynomials are easily seen to be satisfiable (trivially, since 1 = −1),
and there is no PC-refutation of TSn(2) at all. Similarly, while the theorem
is true for all graphs, it is only interesting for low degree graphs, since the
degree of Gn is the degree of the polynomials in TSn(2).

It is an easy corollary of Theorem 10 and Lemmas 1 and 4 that over
a field of characteristic q 6= 2, PC-refutations of the MODn

2 polynomials
require size linear in n: this is established as Corollary 20 below for general
p in place of 2.

Preparatory to proving Theorem 10, we establish some definitions and
lemmas. In what follows, we will reduce all polynomials by y2

i,j = 1 for all
variables, thus obtaining only multilinear polynomials.

Definition. For a monomial m =
∏

i y
fi
i , define the multilinearization m

of m to be
∏

i y
fi mod 2
i . For a multilinear monomial m we define Em to be

the set of edges e such that ye is a factor of m.

Definition. For two sets A, B, A +2 B denotes the disjoint union of A and
B.

Definition. Let S ⊆ V , where V is the set of vertices in Gn. Then E(S) is
defined to be the set of edges with exactly one endpoint in S and one endpoint
outside of S.

Proposition 11 Let Gn be an expander graph with expansion ε. If S ⊆ V ,
|S| ≤ n/2, then |E(S)| ≥ ε|S|.
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Proof Since |S| ≤ n/2, |N(S)| ≥ (1 + ε)|S| by the definition of expansion.
Then |N(S) − S| ≥ ε|S|, and each node in N(S) − S is the endpoint of at
least one edge in E(S). 2.

We shall prove Theorem 10 as a corollary to Theorem 6: for this, we let
R = F and R∗ = {−1, 1}. The R∗-terms are thus just the terms m and −m
where m is a monomial.
Definition. We define an equivalence relation ≡d on the R∗-terms of
degree at most d multilinear monomial, as follows. Let b1, b2 ∈ {0, 1},
(−1)b1m1 ≡d (−1)b2m2 if there exists a set S ⊂ V such that

1. Em1m2 = E(S).
2. |S| < n/2; and
3. |S| ≡ b2 − b1 (mod 2).
We will show that there is no degree d < εn/8 PC refutation of TSn(2)

by showing that that ≡d is a d-Laurent relation.

Lemma 12 If d < εn/8, then the relation ≡d is an equivalence relation.
Proof It is easy to see from the definitions that (−1)bm ≡d (−1)bm
and that (−1)b1m1 ≡d (−1)b2m2 iff (−1)b2m2 ≡d (−1)b1m1. We need
to show that if (−1)b1m1 ≡d (−1)b2m2 and (−1)b2m2 ≡d (−1)b3m3, then
(−1)b1m1 ≡d (−1)b3m3. Let S1 be the set of vertices such that E(S1) =
Em1m2 , |S1| ≡ b2 − b1 (mod 2), |S1| < n/2, and similarly let S2 be the set of
vertices such that E(S2) = Em2m3 , |S2| ≡ b3 − b2 (mod 2), |S2| < n/2. We
want to show that S′ = S1+2S2 is a set of vertices such that E(S′) = Em1m3 ,
|S′| = b3 − b1, and |S′| < n/2. Intuitively, this is saying that if S1 has parity
b2 − b1 which equals the parity of |E(S1)|, and S2 has parity b3 − b2, which
equals the parity of |E(S2)|, then S1 +2 S2 has parity b3 − b1, which equals
the parity of |E(S1 +2 S2)|. And furthermore, |S1 +2 S2| is not too large.

Clearly, |S′| mod 2 = |S1| mod 2+|S2| mod 2 = b2−b1+b3−b2 = b3−b1.
Also we have: E(S1 +2 S2) = E(S1) +2 E(S2) = Em1m2m2m3 = Em1m3 .

It is left to show that |S′| < n/2. Since |m1|, |m2| ≤ d, it follows that
|E(S1)| ≤ |m1m2| ≤ 2d. Since Gn is an expander graph, Proposition 11
implies that |E(S1)| ≥ ε|S1|, and thus it follows that |S1| ≤ 2d/ε < n/4.
Similarly, |S2| ≤ n/4. Thus, |S′| ≤ |S1| + |S2| < n/2. (In fact, since
|E(S′)| ≤ |m1m3| ≤ 2d, Proposition 11 further implies that |S′| ≤ n/4.) 2

Lemma 13 For d ≤ εn/8, ≡d is a d-Laurent relation.
Proof. Let d ≤ εn/8. We just established that ≡d is an equivalence
relation. Condition (a) of the definition of d-Laurent is trivially satisfied
from the definition of ≡d. Also, since (xM1)(xm2) = m1m2 for any variable
x, condition (b) of the definition of d-Laurent is also satisfied. 2.
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Lemma 14 Every polynomial of TSn(2) is a binomial from B≡d
.

Proof. There are two kinds of polynomials in TSn(2). For the equations
y2

e − 1, we must show that y2
e ≡d 1. This is easily done by taking S = ∅

and noting that since y2
e = 1, the three conditions of the definition of ≡d are

trivially satisfied. For the equations of the form 1+y{i,j1}y{i,j2} · · · y{i,jr} = 0,
we must show that 1 ≡d (−1)y{i,j1}y{i,j2} · · · y{i,jr}. This is easily seen to
hold with S = {i}. 2

Proof of Theorem 10. This is a consequence of Theorem 6. First,
Lemma 13 shows ≡d is d-Laurent. Second, Lemma 14 shows TSn(2) ⊂ B≡d

.
It remains to show that 1 6≡d (−1). To prove this suppose 1 = (−1)0 ≡d

(−1) = (−1)1 holds with some set S satisfying the conditions of the definition
≡d. On the one hand, we must have |S| = 1 − 0 = 1mod2, and also we
must have E(S) = ∅. But on the other hand, |S| < n/2, so Lemma 11
implies E(S) is non-empty — a contradiction. Therefore, the hypotheses of
Theorem 6 hold, and there is no PC refutation of TSn(2) over F of degree d.
2

7 PC lower bound for the general case

This section extends our linear lower bounds to the degrees of PC refutations
of TSn(p) over a field F of characteristic q.

Theorem 15 Let F be a field of characteristic q containing a primitive p-th
root of unity, and let Gn be an r-regular graph with expansion ε. Then, for
all d < εn/8, there is no degree d PC refutation of TSn(p) over F .

As a corollary to this theorem and Lemmas 1 and 4, we shall prove (as
Corollary 20) that when q - p, any PC refutation of the MODn

p polynomials
over F requires linear degree.

In order to express the TSn(p) polynomials, F must contain a p-th
primitive root of unity, ω. We let R = F and R∗ be the powers of the root
of unity, i.e., R∗ = {1, ω, ω2, . . . , ωp−1}. For the rest of this section, it is
sufficient to assume only that R is a ring (rather than a field). See section 8
for more explanation of what it means for a ring to have a p-th root of unity.

Definition. We consider multisets with multiplicities in Zp, i.e., a function
from elements of a fixed universe to Zp. An element from the universe that
does not occur in the multiset is considered to have multiplicity 0. The size
of a multiset is the number of elements of non-zero multiplicity. We identify
a set with the multiset given by its characteristic function. Let A and B be
two multisets. Then A +p B denotes the multiset, where if x occurs in A with
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multiplicity a, and in B with multiplicity b, then x occurs in A +p B with
multiplicity (a + b) mod p. (Note that when A and B are ordinary sets and
p = 2, then A +2 B is simply the disjoint union of A and B.)

Definition. For each undirected edge {i, j} ∈ E, fix a directed edge on
the same set of vertices arbitrarily; call the set of directed edges Ê. For any
monomial m in the variables ye, m = Π(i,j)|{i,j}∈Ey

a(i,j)

(i,j) , let the normalization

of m, m, be given by m = Π(i,j)∈Êy
a(i,j)−a(j,i) mod p

(i,j) . (Intuitively, we derive
m from m using yp

(i,j) = 1 and y(i,j)y(j,i) = 1. ) The inverse m−1 is

Π(i,j)|{i,j}∈Ey
p−a(i,j)

(i,j) .
Let S be a multiset over the vertices V in G, where vertex i occurs in S

with multiplicity si. E(S) will denote a multiset of edges from Ê where edge
(i, j) occurs with multiplicity si − sj.

We identify a normalized monomial with the corresponding multiset of
edges from Ê.

Proposition 16 Let Gn be an expander graph with expansion ε. If |S| ≤ n/2,
then |E(S)| ≥ ε|S|.
Proof. Consider any edge e = (i, j) ∈ Ê where i has non-zero multiplicity
in S and j has 0 multiplicity in S, or vice versa. Then e has non-zero
multiplicity in E(S). Thus the proposition follows from Proposition 11,
since every undirected edge between the sets of nodes with zero and non-zero
multiplicities corresponds to such an edge in Ê. (In fact, when members
of S have different non-zero multiplicities, it only makes the size of E(S)
increase.) 2

Definition. We define the binary relation ≡d on the R∗-terms ωbm where
m is a degree at most d monomial and 0 ≤ b < p. ωb1m1 ≡d ωb2m2 if there
exists a multiset S of vertices such that (i) m1m

−1
2 corresponds to E(S); (ii)

|S| < n/2; and (iii)
∑

i si ≡ b2 − b1 (mod p).

The next three lemmas are proved exactly analogously to Lemmas 12-14.

Lemma 17 For d ≤ εn/8, the relation ≡d is an equivalence relation.

Lemma 18 For d ≤ εn/8, ≡d is a d-Laurent relation.

Lemma 19 Every polynomial of TSn(2) is a binomial from B≡d
.

Proof of Theorem 15. Exactly as argued in the proof of Theorem 10,
we have that 1 6≡d a for any a ∈ R∗ distinct from 1, i.e., 1 6≡d ωi for all
0 < i < p − 1. Thus Theorem 15 follows from Theorem 6 using Lemmas
18 and 19. 2
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Corollary 20 Let q ≥ 2 be a prime such that q - p and let F be a field of
characteristic q. Any PC-refutation of the MODn

p polynomials requires degree
> δn, for some constant δ > 0.

Proof Choose constants ε and r so that there are r-regular graphs Gn of
expansion ε for all n. Let d1 = d2 = 2pr. Suppose MODm

p has a degree d3

PC refutation, where m = n + nrp. By Lemmas 1 and 4 TSn(p) has a
degree d3d1 PC refutation, so by Theorem 15, d3d1 > εn/(8pr). Thus,
d3 > εm/(16p2r2(1 + rp)). Since ε, r, p, d are constants, this proves the
Corollary. 2

Corollary 21 Let q ≥ 2 be a prime such that q - p and let F be a field
of characteristic q. Any PC-refutation of the BTSn,p polynomials requires
degree > δn, for some constant δ > 0.

Proof Let F ′ be a finite extension field of F containing a p-th root of unity.
By Lemma 2, BTSn,p is (1, rp) reducible to TSn,p, and by Theorem 15,
polynomial calculus refutations of TSn,p require degree Ω(n) over F ′. Thus,
the same is true for proofs of BTSn,p over F ′. Since a polynomial calculus
proof over F is a special case of a polynomial calculus proof over F ′ (provided
the original polynomials have co-efficients in F ), the same is true over F . 2

Corollary 22 Any implementation of the Gröbner basis algorithm over any
finite field that uses an explicit representation of polynomials as the sum
of their non-zero monomials requires exponential worst-case time to solve
3-SAT, with the usual representation as a system of polynomials.

Proof The size of a polynomial calculus proof is the number of non-zero
monomials in all of its lines. As noted in [8], any implementation as above
produces a polynomial calculus proof whose total size is bounded above
by the time of the algorithm. In [12], it is shown that any polynomial
calculus refutation of a constant degree system of polynomials requires size
2Ω(d2/n), where d is the minimal degree of such a refutation, and n is the
number of variables. In particular, assume the algorithm uses some field
of characteristic q, and choose a different prime p. For the k-CNF BTSn,p,
we have d = Ω(n) as a lower bound on the degree. Since BTSn,p has O(n)
clauses, by Lemma 3, we can find a 3-CNF translation that also requires
degree Ω(n) and has O(n) variables. Hence, any proof requires size 2Ω(n),
and so the running time of the Gröbner basis algorithm on the corresponding
3-CNF is exponential. 2
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8 Polynomial calculus over rings

We now consider the polynomial calculus over rings instead of over fields. For
this, we consider a fixed ring R and the polynomials have coefficients from R.
Since the definition of the polynomial calculus did not use any field-specific
properties, e.g., since the definition did not depend on the existence of
inverses, it is completely natural to consider the polynomial calculus over
rings. As before, we define a PC derivation to be a sequence of polynomials
〈Pi〉i with the same rules of addition and multiplication. However, we modify
the definition of a PC refutation of Q to be a PC derivation that ends with
a constant polynomial m where m ∈ R is non-zero (and its derivation thus
corresponds to a derivation of the contradiction m = 0).

It is known that the polynomial calculus over rings is complete with re-
spect to Boolean reasoning, i.e., if the initial polynomials include x2 − x = 0
for each variable x then any unsatisfiable set of polynomials has a PC
refutation. However, the polynomial calculus over rings is not complete for
general derivations, see the examples in [5]. In this respect the polynomial
calculus over a field is stronger than the polynomial calculus over a ring. On
the other hand, if the ring R is Zm where m = p1 ·p2 for distinct primes p1, p2,
then it is well-known that there are constant-degree polynomial calculus
proofs of MODn

p1
and MODn

p2
. But Theorem 15 implies that there is no

single field for which the polynomial calculus has constant degree proofs of
both these principles.

The situation is a little analogous to an important open problem in
circuit complexity. Namely, Smolensky [17] showed that polynomial size
constant-depth circuits with mod-q gates cannot compute the mod-p function
for distinct primes p, q. However, it is open whether this is true for composite
values of q where p - q.

We prove below that if p and q are relatively prime, then over the ring Zq,
any PC refutation of MODn

p requires degree ≥ δn for some constant δ. The
general outline of the proof is similar to the approach used for the proof of
Theorem 15.

In the next section, we do some preliminary work introducing rings
with roots of unity. Following that, we discuss the reduction of the Tseitin
principle to the mod p counting principle and then discuss the lower bound
for Tseitin principle.
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8.1 Rings with roots of unity

We are mostly interested in lower bounds on the degree of polynomial
calculus refutations over rings R = Zq; however, our method of proof
depends strongly on the use of p-th roots of unity, and on the existence of
inverses of certain terms involving the p-th root of unity. In this section,
we prove that there exist rings containing Zq with the desired p-th roots of
unity.

Theorem 23 Let p, q > 1 be relatively prime. Then there is a finite ring
R ⊃ Zq which contains a p-th root of unity ω such that
(a) p is the least positive integer i such that ωi = 1,
(b) For all 0 ≤ j < k < p, (ωk − ωj) has an inverse in R.

Proof. First we shall give a simple proof for the case where q is a product
of distinct primes q = r1 · r2 · · · rm. For any prime r, let GFr denote the
field of order r. Let Fi = GFri [

p
√

1] be the extension of GFri obtained by
adjoining a p-th root of unity. We use ωi to denote a p-th root of unity
in Fi. Define R to be the ring with domain

∏
i Fi and component-wise

addition and multiplication. An element of R is an m-tuple 〈a1, . . . , am〉
with ai ∈ Fi. By the Chinese remainder theorem, a copy of Zq is embedded
in R by n 7→ 〈n mod r1, . . . , n mod rm〉. The element 〈a1, . . . , am〉 has an
inverse in R iff each ai 6= 0. Letting ω = 〈ω1, . . . , ωm〉, it is easy to see
that ω is a p-th root of unity in R and satisfies property (a). Likewise,
ωk

i − ωj
i ∈ Fi is non-zero for all i and thus (ωk − ωj)−1 exists in R.

Now consider the general case, where q is not a product of distinct
primes. (We don’t use any special properties of Zq beyond the fact that
p−1 exists in Zq, which follows from the fact that p and q are relatively
prime.) We shall let R be the ring of polynomials from Q[ p

√
1] with integer

coefficients modulo q; R can be explicitly constructed as follows: Consider
a primitive p-th root of unity, ν, over the field of rationals. As a root of
unity, ν is a root of the polynomial xp−1 + xp−2 + · · ·+ x2 + x + 1. Likewise,
for any ` < p dividing p, νp/` is a primitive `-th root of unity, so ν is
a root of x(`−1)p/` + x(`−2)p/` + · · · + xp/` + 1. It follows that there is a
non-constant polynomial Q(x) which is the greatest common divisor of each
of these polynomials which has ν as a root. Furthermore, by Gauss’s lemma
(c.f. [11]), we may choose the polynomial Q(x) with leading coefficient 1
and integer coefficients. We define R to be the extension ring Zq[ω]/(Q(ω)).
Formally, this means we define an equivalence relation on the set Zq[ω] of
univariate polynomials over Zq by

f ∼ g ↔ ∃h ∈ Zq[ω], f(ω)− g(ω) = h(ω) ·Q(ω).
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Clearly this is an equivalence relation, and addition and multiplication
respect ∼. The ring R = Zq[ω]/(Q(ω)) =df Zq[ω]/∼ has domain the set
of ∼-equivalence classes (but we generally abuse notation by writing f ∈ R
instead of [f ] ∈ R, etc.) Clearly R is a ring. In R, each polynomial
x(`−1)p/` + x(`−2)p/` + · · · + xp/` + 1 is equal to zero, since it is a multiple
of Q. Therefore ωp = 1 in R (i.e., wp ∼ 1) since

(ω − 1) · (ωp−1 + ωp−2 + · · ·+ ω + 1) = ωp − 1.

Also note that no constant of Zq becomes equal to zero in R: this is immediate
from the fact that Q is a non-constant, monic polynomial over Zq.

It remains to prove that if k 6= `, 0 ≤ k, ` < p, then (ωk − ω`) has a
(multiplicative) inverse in R. Since (ωk − ωl) = ω`(ωk−` − 1) and ω` has
inverse in R, it will suffice to prove that (ωk − 1) has an inverse in R for all
1 ≤ k < p.

Define i0 = 0 and in+1 = in +k mod p. Let ` be the least value such that
i` = 0; of course ` divides p. Therefore the values i0, . . . , i`−1 are distinct
and enumerate all the values in {0, p/`, 2p/`, . . . , (`− 1)p/`}. For 0 ≤ j < `,
let v(j) be the value such that iv(j) = j, 0 ≤ v(j) < `. Define

f(ω) =
`−1∑
j=0

v(j)ωj =
`−1∑
n=0

n · ωin .

Claim: (ωk − 1)f(ω) = ` holds in R.

Since ` has an inverse in Zq, the claim immediately implies that (ωk − 1)
has in inverse in R, namely, `−1f(ω).

In R we have

(ωk − 1) · f(ω) =
`−1∑
n=0

nωin+k −
`−1∑
n=0

nωin

=
∑̀
n=1

(n− 1)ωin −
`−1∑
n=1

nωin

= (`− 1) · ωi` −
`−1∑
n=1

ωin

= (`− 1) · 1 + 1−
`−1∑
n=0

ωin
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= `−
`−1∑
n=0

ωin = `−
`−1∑
n=0

ωnp/`

= `− 0 = `.

That completes the proof of the claim and of Theorem 23. 2

For the next two sections, we shall consider p and q to be fixed and let R
be as in Theorem 23.

8.2 Low degree reductions

Lemma 1 clearly still applies to the polynomial calculus over rings, but
Lemma 4 needs to be reproved for rings. Let q, p, R be as in the previous
theorem.

Lemma 24 Over the ring R, TSn(p) is (d1, d2) reducible to MODm
p , where

m = n + nrp, d1 = 2pr and d2 = 2pr.

Proof. The reduction is exactly the same as the reduction used for the
proof of Lemma 4. Examination of the definition of re in Step 1 of that proof
reveals that the only place where inverses were used was in the polynomials
(1) and (2) and these were inverses of elements of the form ωa1 − ωa which
do exist in R. So it remains to re-do Step 2 of the proof of Lemma 4.

Recall that we must find small degree PC derivations of MODm
p (re)

equations:
1. r2

e − re = 0 for all p-sets e

2. rerf = 0 for all e, f such that e ∩ f 6= 0, e 6= f

3.
∑

e,u∈e re − 1 = 0, for all u ∈ [m].
As discussed before, each single equation is a tautological consequence of
a constant number of equations of TSn(p). We now need to extend the
completeness theorem of [6], Theorem 5.2, to apply to the polynomial
calculus over R.

Lemma 25 Let z1, . . . , zk be variables, and f(~z) be a polynomial.
Suppose that in the ring R, f(z1, . . . , zk) = 0 for all values of
z1, . . . , zk ∈ {1, ω, ω2, . . . , ωp−1}. Then there is PC derivation of f(~z) from
the polynomials zp

i − 1, of degree ≤ pk · deg(f).

Proof. We give the proof for the case k = 1 and leave it the reader to
formulate the proof by induction for the case k > 1. (All the essential
difficulties arise already in the case k = 1.) Let Pa be the polynomial

(z1 − ω0)(z1 − ω1) · · · (z1 − ωa−1)(z1 − ωa+1) · · · (z1 − ωp−1).
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Note that Pa · (z1−ωa) is the polynomial zp
1 − 1 (this is immediate from the

fact that they are the same polynomial in each field Fqi).

Claim: Let c = f(ωa) ∈ R. The polynomial Pa · (f(z1)− c) is PC derivable
from zp

i − 1 in degree (p− 1) · deg(f).

The claim is proved by induction on the size of the polynomial f . The
base case where f is a constant is trivial. The second base case where f(z1) is
just z1 is immediate from the observation above that Pa · (z1−ωa) = zp

1 − 1.
The induction steps of addition and multiplication are handled by the
following two constructions:

Pa · (f − c) Pa · (g − d)
Pa · ((f + g)− (c + d))

and
Pa · (f − c)

Pa · (fg − cg)
Pa · (g − d)

Pa · (cg − cd)
Pa · (fg − cd)

and this proves the claim.
Now let P `

a be the polynomial
∏

i≥`
i6=a

(z1−ωi). We only use this polynomial

when a ≥ `.

Claim: Let ` ≥ 0 and let c = f(ωa) ∈ R. The polynomial P `
a · f(z1) is PC

derivable from zp
i − 1 in degree (p− 1) deg(f).

The second claim is proved by induction on `. The base case, where ` = 0
is already established by the first claim, since P 0

a = Pa. For the induction
step, let a ≥ ` + 1. The induction hypothesis tells us that P `

` · f(z1) and
P `

a · f(z1) are both PC derivable. Subtracting these gives

(ω` − ωa)P `+1
a · f(z1).

Since (ω` − ωa) is invertible in R, we may multiply by (ω` − ωa)−1 to derive
P `+1

a · f(z1), and the claim is proved.

The base case k = 1 of Lemma 24 is immediate from the second claim,
with ` = p. The argument for the induction step is similar and is left to the
reader. 2
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8.3 PC lower bound for rings

We now prove the main theorems giving lower bounds the degrees of of PC
derivations over Zq. Fix p, q,R as above.

Theorem 26 Let Gn be an r-regular graph with expansion ε. Then, for all
d < εn/4, there is no degree d PC refutation of TSn(p) over R.

This plus Lemmas 1 and 24 immediately imply:

Corollary 27 Let p, q ≥ 2 be relatively prime. Any PC-refutation over Zq

of the MODn
p polynomials requires degree > δn, for some constant δ > 0.

The constant δ depends on p and q. To prove Theorem 26, we
need merely note that the proof of Theorem 15 still applies: We take
R∗ = {1, ω, ω2, . . . , ωp−1} and then, as already noted near the beginning of
section 7, the proof of Theorem 15 establishes Theorem 26.

9 Concluding remarks

(1) Our proof of the lower bounds for polynomial calculus proofs of the
mod p principles proceeded by first transforming the mod p principle from
additive form into the equivalent ‘multiplicative’ Tseitin principles TSn(p).
In the additive form, variables take on values 0 through p − 1, whereas
in the multiplicative form variables range over powers of the p-th root of
unity ω. This transformation into multiplicative form is seemingly necessary,
since unsatisfiable sets of degree d binomial polynomials over variables that
take on 0/1 values (i.e., where the initial polynomials include x2 − x) have
degree d + 1 polynomial calculus refutations, assuming we are working over
a field. This can be proved by noting that x1x2 · · ·xk − y1y2 · · · yn = 0 is
equivalent to the set of Horn clauses x1 ∧ · · · ∧ xk → yj (1 ≤ j ≤ n) and
y1 ∧ · · · ∧ yn → xi (1 ≤ i ≤ k). Similarly, x1 · · ·xk − 1 = 0 is equivalent
to the set of unit Horn clauses → xi. and the monomial x1 · · ·xk = 0 is
equivalent to the Horn clause x1 ∧ · · · ∧ xk →⊥. Conversely, a Horn clause
x1 ∧ · · ·xk → y is equivalent to the binomial identity x1 · · ·xk = x1 · · ·xky;
and other Horn clauses can be translated analogously.

Then, if a set of binomial polynomials including x2 − x for all variables
x is unsatisfiable, the SLD-resolution refutation of the equivalent Horn
clauses may be used to derive a polynomial calculus refutation with degree
no larger than one plus the degree of the initial polynomials. This PC
refutation proceeds as follows: for any equation x1x2 . . . xk = a with a a
non-zero scalar, derive x1 = 1 by multiplying by (x1−1) and combining with
x2

1 − x1 = 0. (If a /∈ {0, 1}, then already a contradiction can be obtained.)
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Then x1 may be “erased” from all terms. This is iterated until an equation
a = 0 is derived for some non-zero scalar a. If, on the other hand, no
such equation is obtained, the polynomials can be satisfied by the truth
assignment which gives all processed variables the value 1, and gives the
remaining variables the value 0.

(2) Our proofs of the lower bounds for polynomial calculus proofs are
closely related to the lower bounds of [9] for Nullstellensatz refutations of
binomial systems. Thus a natural question is whether the Nullstellensatz
proof system and the polynomial calculus proof systems are equivalent with
respect to binomials systems, i.e., whether any degree d polynomial calculus
refutation of binomials can be transformed into a degree d Nullstellensatz
refutation. This, however, is not the case: [7] have shown that the induction
principle is a binomial system which has constant degree polynomial calculus
refutations, but requires log n-degree Nullstellensatz proofs, and [10] has
obtained the same results for binomial systems expressing a graph principle
related to the Tseitin principle. The former separation uses 0/1 valued
variables and the latter uses ±1 valued variables. In addition, the induction
principle can be translated into multiplicative form, and this is a binomial
system over ±1 valued variables which has constant degree PC refutations
and requires logarithmic degree Nullstellensatz refutations.

(3) The proof of our main result can alternatively be proven by a direct
reduction to resolution [4]. In particular, if one begins with binomial
equations, plus extra equations x2

i = 1, then it can be shown that if there
is a PC refutation of the equations of degree d, then there is a resolution
refutation of clause-width O(d) of the corresponding unsatisfiable formula
obtained by converting the binomial equations in the natural way. Thus,
our linear lower bounds for the Tseitin graph tautologies can be obtained
as a corollary to the corresponding result for resolution of Urquhart [18].
The idea behind the reduction is to first observe that any line in an optimal
degree PC refutation over GFp is a binomial, and thus can be transformed
into a linear equation (mod p) where the number of variables in the linear
equation is at most twice the PC degree. (See [3].) And secondly, show that
any linear equation (mod p) involving d variables can be expressed as a CNF
formula of clause width d, and such that each width d CNF formula can be
derived from the previous one by a small-width resolution refutation.

Acknowledgement. We thank A. Wadsworth for discussions about ring
extensions. We also thank the reviewers for their substantial comments.

26



References

[1] M. Alekhnovich, E. Ben-Sasson, A. Razborov, and A. Widger-

son, Space complexity in propositional calculus, in Proceedings of the
32nd Annual ACM Symposium on Theory of Computation, 2000,
pp. 358–367.

[2] P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, and
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