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Abstract

The k -provability problem is, given a first order formula φ and an
integer k , to determine if φ has a proof consisting of k or fewer lines
(i.e., formulas or sequents). This paper shows that the k -provability
problem for the sequent calculus is undecidable. Indeed, for every r.e.
set X there is a formula φ(x) and an integer k such that for all n ,
φ(Sn0) has a proof of ≤ k sequents if and only if n ∈ X .

1 Introduction

The concept of the length of a proof is important because it provides a
measure of the difficulty of proving a given theorem in a given formal system.
There are two common ways to measure the length of a proof; namely, to count
the number of formulas or inferences in the proof or to count the number of
symbols appearing in the proof. It is important to note that knowing the
number of formulas in a proof does not give a bound on the number of
symbols since the formulas may be very long; in particular, the terms used in
the proof could be large. For this paper, the length of a proof will be defined
to be the number of distinct lines in the proof, where a line is either a formula
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or, in the sequent calculus, a sequent. The k -provability problem for a first
order theory is, given a formula A and an integer k , to determine if A has a
proof with k or fewer lines.

The motivations for this paper arose out of work on Kreisel’s conjecture [7]
that if Peano arithmetic PA proves A(Sn0) with a proof of ≤ k formulas
for all n then PA proves (∀x)A(x).† Parikh [11] showed that this is true
for a variant PA∗ of PA where addition and multiplication are three-place
relations. He did this by first showing that if A is a formula and k ∈ N then
there is an a priori bound ` such that if A has a proof of ≤ k lines then it has
a proof of ≤ k lines in which each formula contains ≤ ` logical connectives
— the bound ` is a function of k and the logical complexity of A . Hence
when searching for a proof of length ≤ k we can control the logical complexity
of the formulas appearing in the proof; however, the terms appearing in the
proof might be arbitrarily complicated. For his result on PA∗ , Parikh then
exploited the fact that PA∗ has only one (unary) function symbol to show
that the k -provability problem for PA∗ is definable in Presburger arithmetic
and decidable.

A proof analysis is a partial description of a proof which describes the
proof as a directed acyclic graph with a node for each formula (or sequent) in
the proof. Each node is labelled with the rule of inference or axiom scheme
which is used to derive the corresponding formula; incoming edges are ordered
to specify which nodes represent which hypothesis of the inference. In short, a
proof analysis specifies everything about the proof except the actual formulas
in the proof. Every proof clearly has a proof analysis, but not all proof
analyses correspond to proofs. Since first order systems typically have only a
finite number of axiom schemes and rules of inference, there are, for fixed k ,
only finitely many possible proof analyses for proofs of length k . Hence the
k -provability problem can be reduced to the problem of, given a formula A
and a proof analyis, determining if A has a proof with that proof analysis.

Farmer [2, 1] showed that if the substitution axiom is modified then the
k -provability problem for PA is decidable; he emphasized the fact that finding
the terms to flesh out a proof analysis is a version of second-order unification.
Second order unification was shown to be undecidable by Goldfarb [4].

†It is not clear to this author whether Professor Kreisel ever conjectured this or merely
posed it as a problem. At any rate, Kreisel’s conjecture was the original motivation for
all the work outlined in this introduction.
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Kraj́ıček and Pudlák [6] showed that for the sequent calculus LK it is
undecidable whether a given formula has a proof with a given proof analysis.
Orevkov had earlier proved a similar result [10]. Other work related to
Kreisel’s conjecture has been done by Richardson [12], Miyatake [8, 9] and
Yukami [14, 15]; see Kraj́ıček [5] for a more complete survey. M. Baaz has
recently announced a proof of Kreisel’s conjecture.

The main result of this paper is:

Main Theorem 1 Let LK be Gentzen’s sequent calculus with a unary func-
tion symbol S , a binary function symbol and infinitely many binary relation
symbols. For every recursively enumerable set X there is a formula A(x) and
an integer k such that for all n, n ∈ X if and only if →A(Sn0) has an
LK -proof with ≤ k distinct sequents.

Hence the k -provability problem is undecidable for LK . The main theorem
also holds for LKe , i.e., for LK augmented with equality axioms. It is
permissable for there to be additional function and predicate symbols besides
the ones required in the hypothesis of the main theorem. The hypothesis that
there be infinitely many binary relation symbols can be weakened to require
only some bounded number of binary relation symbols; the precise number
required depends on the size of a diophantine equation which defines an r.e.
complete set.

There are of course many ways to formalize first order logic other than
the sequent calculus. Unfortunately, our proof does not seem to apply
immediately to all usual first order logics; however, our technique could
probably be adapted to a lot of other specific first order logics. It would be
desirable to improve our methods in this paper to be readily applicable to a
wide range of formalizations of first order logic.

M. Baaz has announced an approach towards proving Kreisel’s conjec-
ture; but the details have not been fully worked out yet. Baaz’s method
avoids the undecidability of k -provability for the Gentzen sequent calculus
firstly by translating proofs into a Hilbert-style ε-calculus and secondly by
circumventing the need to solve the k -decidablity problem for the ε-calculus.

In section 2 below we introduce a variant of second-order unification and
show that it is undecidable. In section 3 we review the sequent calculus and
develop a tool called the “logical flow graph” for analyzing sequent proofs. In
section 4 we prove the Main Theorem.
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I wish to thank J. Kraj́ıček and M. L. Bonet for suggesting improvements
to a preliminary version of this paper and G. Kreisel for useful comments on
an earlier version of this introduction.

2 Undecidability of Second Order Unification

with Partial Substitution

Goldfarb [4] proved that second-order unification is undecidable; see
Kraj́ıček-Pudlák [6] for a simplified proof. We show here what a variant of
second-order unification which allows partial substitution is also undecidable.

First some notation: a, b, c, . . . , possibly with subscripts, are first-order
variables (not metavariables); S is a unary function symbol and ◦ is a binary
function symbol; both S and ◦ act on first-order objects. Other function
symbols may be present and will not affect the results. The usual conventions
on parentheses and term formation apply; we will usually omit parentheses
and it is understood that ◦ associates from right to left. Symbols r, s, t, . . .
will be used to denote first-order terms. Greek letters α, β, γ will be second-
order variables which will range over first-order terms. Finally, the symbols
ρ, σ, τ will be used to denote second-order terms built from S , ◦ and first- and
second-order variables. Note that a, b, c, S, ◦, α, β, γ are symbols of a formal
language whereas r, s, t, ρ, σ, γ are metasymbols. For k ≥ 0, we write Skρ to
denote the term consisting of S applied k times to ρ ; e.g., S3a is SSSa .

If r and s are first-order terms we write r(s/a) to denote the result of
replacing every occurence of a in r by the term s . Similarly, r(s1/a1, s2/a2)
denotes the simultaneous substitution of s1 and s2 for a1 and a2 . Note
that this is not in general the same as r(s1/a1)(s2/a2) if a2 occurs in s1 . A
second-order unification problem is a finite set of equations

βij(ρj/aij) = σj

for j = 1, . . . ,m . Recall that aij and βij are specific first- and second-order
variables and ρj and and σj are metavariables for second-order terms. A
solution to the second-order unification problem is an assignment of first-order
terms to second-order variables such that, when all the second-order variables
are replaced by their assigned terms, the equalities become true. For example,
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the unification problem consisting of the two equations β(a ◦ b/a) = γ ◦ b and
γ(Sa/a) = Sγ has as unique solution γ = a and β = a .

We shall write r(s//a) to denote the result of a partial substitution of s
for a in r . Actually, r(s//a) by itself is not uniquely defined and represents
one of a finitely many possible terms; we shall use this notation only in an
equation of the form

r(s//a) = t.

Such an equation is true if and only if t can be obtained by replacing some
(perhaps all or none) of the a ’s in r by s . A second-order unification problem
with partial substitution is a finite set of equations of the form

βij(ρj//aij) = σj

for j = 1, . . . ,m and a solution to this system of equations is an assignment
of first-order terms to second-order variables that makes all of the equations
true. For example, β(a ◦ b//a) = γ ◦ b and γ(Sa//a) = Sγ has an infinite
number of solutions: (1) β = γ = a and (2) γ = Ska and β = (Ska) ◦ b
for k = 0, 1, 2, . . . . To see this, note that the only solutions to the second
equation are γ = Ska for k ≥ 0.

Theorem 2 The second-order unification problem with partial substitution is
undecidable.

In [4] and [6] second-order unification (without partial substitution) is
shown undecidable by use of Matijacevič’s theorem; we shall use a similar
technique to prove Theorem 2. In order to express the solvability of a
diophantine equation as a second-order unification problem with partial
substitution, we need to have a representation for integers and a way to
force the correctness of addition and multiplication. A term of the form Ska
will represent the nonnegative integer k . The following equation can be used
to guarantee that β represents an integer:

(1) β(Sa//a) = Sβ

The only solutions to (1) are β = Ska for k ≥ 0. To prove this note that
either β = a or β = Sβ1 where β1 is a solution to β1(Sa//a) = Sβ1 . Arguing
inductively shows β = Ska for some k ≥ 0.

To express addition we need a set of equations whose only solutions are
β1 = Sk1a , β2 = Sk2a , β3 = Sk1+k2a . This is accomplished by:
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(2) i) βj(Sa//a) = Sβj , j = 1, 2, 3
ii) β1(β2//a) = β3

iii) β1(Sβ2//a) = Sβ3

By (2.i), βj = Skja for j = 1, 2, 3. By (2.ii), depending on whether the
substitution is performed, either k3 = k1 + k2 or k3 = k1 . By (2.iii), either
k3 = k1 + k2 or k3 + 1 = k1 . Hence, k3 = k1 + k2 .

Multiplication is more complicated. Consider the following set of equa-
tions:

(3) i) βj(Sa//a) = Sβj , j = 1, 2, 3

ii) β4(Sb//b) = Sβ4

iii) β′
j(Sa′//a′) = Sβ′

j , j = 1, 3

iv) β′
4(Sb′//b′) = Sβ′

4

v) βj(a
′//a) = β′

j , j = 1, 3

vi) β4(b
′//b) = β′

4

vii) β2(b//a) = β4

viii) α(β1//a, Sb//b, β′
1//a

′, Sb′//b′, a ◦ b ◦ a′ ◦ b′ ◦ c//c) =
= β3 ◦ β4 ◦ β′

3 ◦ β′
4 ◦ α

ix) α(β′
1//a, Sb′//b, a//a′, b//b′, a′ ◦ b′ ◦ c//c) = β′

3 ◦ β′
4 ◦ α

(Recall that ◦ associates from right to left.) Any solution to (3.i)–(3.vii)
must have βj = Skja and β′

j = Skja′ for j = 1, 2, 3 and have β4 = Sk2b and
β′

4 = Sk2b′ . We need to show that (3.viii) and (3.ix) are also satisfiable if and
only if k1 · k2 = k3 . In fact we claim that the only solution has α equal to

S(k2−1)k1a ◦ Sk2−1b ◦ S(k2−1)k1a′ ◦ Sk2−1b′ ◦ · · · ◦
S2k1a ◦ S2b ◦ S2k1a′ ◦ S2b′ ◦ Sk1a ◦ Sb ◦ Sk1a′ ◦ Sb′ ◦ a ◦ b ◦ a′ ◦ b′ ◦ c

where k1 · k2 = k3 .
It is obvious that when k1 · k2 = k3 this value for α is a solution with

all possible substitutions being made. It remains to see that this is the only
possible solution. Suppose that values have been assigned to α and the β ’s
which satisfy the equations. First of all, α might be set equal to the term c ;
in this case k2 = k3 = 0. Otherwise, α must be of the form

Sm1a ◦ Sn1b ◦ Sm′
1a′ ◦ Sn′

1b′ ◦ α2.
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This follows from equation (3.viii) since we can write α uniquely in the form
ρ1 ◦ ρ2 ◦ ρ3 ◦ · · · ρt and because of the form of the partial substitutions. From
β1 = Sk1a and β3 = Sk3a it follows that ρ1 must be either Sk3a or Sk3−k1a .
Similarly ρ2 must be either Sk2a or Sk2−1a , and similarly for ρ3 and ρ4 .
Thus we have m1 and m′

1 are either k3 or k3 − k1 but not necessarily equal,
and n1 and n′

1 are k2 or k2−1 and again not necessarily equal. Furthermore,
α2 satisfies the equation

α2(β1//a, Sb//b, β′
1//a

′, Sb′//b′, a ◦ b ◦ a′ ◦ b′ ◦ c//c) =

= Sm1a ◦ Sn1b ◦ Sm′
1a′ ◦ Sn′

1b′ ◦ α2

which is identical in form to (3.viii). Reasoning inductively shows that α
must be of the form

Sm1a ◦ Sn1b ◦ Sm′
1a′ ◦ Sn′

1b′ ◦ · · · ◦ Smta ◦ Sntb ◦ Sm′
ta′ ◦ Sn′

tb′ ◦ c

where m1 and m′
1 are k3 or k3 − k1 , n1 and n′

1 are k2 or k2 − 1, mi+1 is mi

or mi − k1 , m′
i+1 is m′

i or m′
i − k1 , ni+1 is ni or ni − 1, n′

i+1 is n′
i or n′

i − 1,
and mt = nt = m′

t = n′
t = 0. Note that in each case the first choice of values

holds when the corresponding instance of the substitution is not carried out;
when the substitution is made, the second value applies.

Now consider the fact that equation (3.ix) is also satisfied. The righthand
side of the equation has the form

Sk3a′ ◦ Sk2b′ ◦ Sm1a ◦ Sn1b ◦ Sm′
1a′ ◦ Sn′

1b′ ◦ α2.

The substitution must cause the first a , b , a′ , and b′ of α to be replaced
by Sk1a′ , Sb′ , a and b respectively and thus k3 = m1 + k1 , k2 = n1 + 1,
m1 = m′

1 , and n1 = n′
1 . Furthermore α2 satisfies the equation

α2(β
′
1//a, Sb′//b, a//a′, b//b′, a′ ◦ b′ ◦ c//c) = Sm′

1a′ ◦ Sn′
1b′ ◦ α2

which, by the same reasoning, implies that m′
1 = m2 + k1 , n′

1 = n2 + 1,
m2 = m′

2 , n2 = n′
2 . Continuing inductively we have that m1 = m′

1 = k3 −k1 ,
n1 = n′

1 = k2 − 1, mi+1 = m′
i+1 = mi − k1 and ni+1 = n′

i+1 = ni − 1, so
mi = k1 · ni for all i and k3 = k1 · k2 .

We have established that equation 3 correctly prescribes multiplication;
however, the last two equations allow simultaneous partial substitutions in five
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variables and our definition of unification problems did not allow equations
involving simultaneous substitutions. Fortunately, equation (3.viii) can
easily be replaced by five single partial substitutions using new intermediate
variables and equation (3.ix) can be equivalently replaced by two equations

α(a′′//a′, b′′//b′) = α′

α′(β′
1//a, Sb′//b, a//a′′, b//b′′, a′ ◦ b′ ◦ c//c) = β′

3 ◦ β′
4 ◦ α

and these two simultaneous partial substitutions can be replaced by seven
equations using more intermediate variables.

Given the above equations for defining the integers and addition and
multiplication it is easy to effectively transform any diophantine equation
into a second-order unification problem with partial substitution so that the
unification problem has a solution if and only if the diophanitine equation
has a zero. So Theorem 2 now follows from Matijacevič’s theorem. The proof
above establishes a stronger version of Theorem 2; namely, for any r.e. set X
there is a set Ω of partial substitution equations such that, for all n , n ∈ X if
and only if Ω ∪ {β1 = Sn0} has a solution.

For our proof of the undecidability of k -provability we shall use a restricted
version of the unification problem with partial substitution:

Definition A partial substitution satisfies the special restriction if it is of the
form β(s//a) = σ where s is neither a second-order variable nor the first-order
variable a .

The above partial substitution equations did not all satisfy the special
restriction, but it is easy to modify them so that they do. First, equation (2.ii)
can be replaced by β1(SSβ2//a) = SSβ3 and the three equations still define
addition. In equations (3.viii) and (3.ix), if β1 and β′

1 are replaced by
Sβ1 and Sβ′

1 then the equations obey the special restriction and define
the property (k1 + 1)k2 = k3 . Now since multiplication can be defined by
xy = z ⇔ (x + 1)y = z + y , Matijacevič’s theorem implies:

Theorem 3 The second-order unification problem with partial substitution
under the special restriction is r.e.-complete. Indeed, for any r.e. set X there
is a set Ω of partial substitution equations satisfying the special restriction
such that, for all n, n ∈ X if and only if Ω ∪ {β1 = Sn0} has a solution.
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3 The Sequent Calculus

The sequent calculus is a formulation of the first-order logic due to
Gentzen; this section contains a brief review (see [13] for a detailed exposition)
and proves some lemmas needed for the proof of the Main Theorem.

The sequent calculus uses the logical symbols ∧ , ∨ , ¬ , ⊃ , ∃ and ∀ ; it
has free variables denoted a, b, c, . . . and bound variables denoted x, y, z, . . . .
Terms are formed from constant symbols, free variables and function symbols;
semiterms are like terms but may also contain bound variables. Formulas are
defined as usual with the proviso that only bound variables may be quantified
and only free variables may appear free. Semiformulas are defined similarly
except both free and bound variables may occur free in a semiformula; note
that in general a subformula of a formula is actually a semiformula. A sequent
is a line of the form

A1, . . . , Ak→B1, . . . , B`

where the Ai ’s and Bj ’s are formulas; its intended meaning is
∧
i
Ai ⊃ ∨

i
Bi .

We permit k or ` to be zero. A (possibly empty) series of formulas separated
by commas is a cedent; in the sequent above, A1, . . . , Ak is the antecedent and
B1, . . . B` is the succedent.

A sequent calculus proof is a series of sequents; each sequent must either
be an axiom or be derived by one of the rules of inference given below. To
avoid ambiguity, a proof also specifies explicitly how each sequent to derived
by indicating which axiom or which rule and hyptheses are used. The size of
a proof is the number of sequents in the proof.

It is actually more common to treat sequent proofs as trees of sequents;
however, we define them here to be sequences of sequences or, equivalently,
directed acyclic graphs. The results below also show that the Main Theorem
also applies to the sequent calculus using proof trees. A sequent proof is said
to be tree-like if every occurence of a sequent in the proof other than the
endsequent is used exactly once as a hypothesis of an inference. Obviously
any proof can be transformed into a tree-like proof by duplicating subproofs
to derive intermediate results multiple times.

The logical axioms are sequents of the form A→A . The equality axioms
are sequents of the form →t1 = t1 or t1 = t2→t2 = t1 or

s1 = t1, . . . , sk = tk, P (s1, . . . sk)→P (t1, . . . tk)
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or
s1 = t1, . . . , sk = tk→f(s1, . . . sk) = f(t1, . . . tk)

where si and ti are terms, P is a k -ary predicate symbol and f is a k -ary
function symbol. Since P may be equality (=), these axioms imply the
transitivity of equality.

Letting capital Greek letters Γ, ∆, Π, Λ, . . . stand for cedents, the valid
rules of inference are:

¬ :left
Γ→∆, A

¬A, Γ→∆
¬ :right

A, Γ→∆
Γ→∆,¬A

∧ :right
Γ→∆, A Γ→∆, B

Γ→∆, A ∧ B

∧ :left
A, Γ→∆

A ∧ B, Γ→∆
B, Γ→∆

A ∧ B, Γ→∆

∨ :left
A, Γ→∆ B, Γ→∆

A ∨ B, Γ→∆

∨ :right
Γ→∆, A
Γ→∆, A ∨ B

Γ→∆, B
Γ→∆, A ∨ B

⊃ :left
Γ→∆, A B, Γ→∆

A ⊃ B, Γ→∆

⊃ :right
A, Γ→∆, B

Γ→∆, A ⊃ B

∃ :left
A(b), Γ→∆

(∃x)A(x), Γ→∆
∃ :right

Γ→∆, A(t)
Γ→∆, (∃x)A(x)

∀ :left
A(t), Γ→∆

(∀x)A(x), Γ→∆
∀ :right

Γ→∆, A(b)
Γ→∆, (∀x)A(x)

In the ∃ :left and ∀ :right inferences the free variable b is called the eigenvari-
able and must not appear in the lower sequent. The variable x must be freely
substitutable into A for all four quantifier inferences.
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Cut
Γ→∆, A A, Π→Λ

Γ, Π→∆, Λ

Weakening:
Γ→∆

A, Γ→∆
Γ→∆
Γ→∆, A

Exchange:
Γ, A,B, Π→∆
Γ, B,A, Π→∆

Γ→∆, A,B, Λ
Γ→∆, B,A, Λ

Contraction:
A,A, Γ→∆

A, Γ→∆
Γ→∆, A,A
Γ→∆, A

The final four types of rules, Cut through Contraction, are called structural
inferences; the rest are called logical inferences.

The principal formula of an inference is the formula in the lower sequent of
the inference upon which the inference acted; for example, the ∀ :left inference
above has (∀x)A(x) as principal formula. Note that cut inferences have no
principal formula and exchange inferences have two principal formulas. The
auxilliary formula(s) of an inference are the formulas in the upper sequent
which are used by the inference — the rest of the formulas (in Γ, ∆, Π, Λ)
are the side formulas.

The above completes the definition of the sequent calculus LKe . The
system obtained by removing the equality symbol = and its associated initial
sequents is called LK .

We wish to develop a theory of how the influence of a formula spreads
through a proof. This will be done by defining a directed graph called the
logical flow graph‡. The logical flow graph has as nodes the subformulas
occurring in the proof. For convenience, suppose we have a fixed proof P
in hand; we define an s-formula to be an occurrence of a subformula of a
formula occurring in P . (The “s-” stands for “semi-” or “sub-”.) It should
be stressed that an s-formula is an occurrence of a semiformula in a proof
as compared to the semiformula itself which may occur many times in the
proof. An s-formula A is a variant of B if A can be obtained from B by
changing some of the semiterms in B . The logical flow graph (defined below)
will have as nodes the s-formulas in P ; two s-formulas will be connected by an

‡Concepts similar to our definition of logical flow graph have already been introduced
by J.-Y. Girard [3] who discusses tracing the flow of formulas through linear logic proofs.
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edge only if they are variants of each other. Furthermore, any two s-formulas
connected by an edge will be in (distinct) sequents of some inference or will
both be in an axiom on opposite sides of the sequent arrow (→ ).

We define the logical flow graph by specifying the edges: First, in an axiom
A→A there is an edge directed from the lefthand A to the righthand A . In
an equality axiom

s1 = t1, . . . , sk = tk, P (s1, . . . sk)→P (t1, . . . , tk)

there is an edge directed from the P (~s) to the P (~t). In all other equality
axioms (and when P is equality in the above axiom), there is an edge from
each formula in the antecedent to the formula in the succedent. Second, in
any logical or structural inference listed above, there is an edge directed from
the i-th formula in the cedent denoted Γ or Π in the lower sequent to the
corresponding formula in the upper sequent. And, in each inference, there is
an edge directed from the i-th formula in the cedent denoted ∆ or Λ in the
upper sequent to the corresponding formula in the lower sequent. Third, in
any inference if A (sometimes B ) is an auxilliary formula which appears in
the succedent of an upper sequent of the inference then there is a edge directed
from that A (or B ) to the corresponding s-formula in the lower sequent. And
if A (sometimes B ) is an auxilliary formula which appears in the antecedent
of an upper sequent of an inference then there is a edge directed towards
that A (or B ) from the corresponding s-formula in the lower sequent.

Before finishing the definition of the logical flow graph, lets illustrate two
examples of the third part of the definition. In the ∧:right inference there is
an edge from the upper A to the lower A and an edge from the upper B to
the lower B . In an ∃:left there is an edge from the A(x) to the A(b). Note
there is no edge directed away from the s-formula (∃x)A(x).

Fourth, in a cut inference there is an edge directed from the cut formula A
in the succedent of the lefthand upper sequent to the occurrence of A in the
antecedent of the righthand upper sequent.

Fifth and finally, suppose there is a directed edge from an s-formula A1

to A2 and suppose B1 is a subformula of A1 . Since A1 and A2 are variants
there is a subformula B2 of A2 which corresponds to the subformula B1 of A1 ;
B1 and B2 are, of course, variants. If B1 occurs positively in A1 then there
is an edge from B1 to B2 . If B1 occurs negatively in A1 then there is an edge
directed from B2 to B1 . Recall that B1 occurs positively (negatively) in A if
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the B1 occurs an even (odd) number of times in the scope of a negation or in
the lefthand operand of an implication. Of course B1 occurs positively in A1

if and only if B2 occurs positively in A2 .
The above concludes the definition of the logical flow graph. As an example

consider the following proof:

A→A
¬A,A→
¬A,A→B

A→(¬A) ⊃ B

B→B
¬A,B→B

B→(¬A) ⊃ B
A ∨ B→(¬A) ⊃ B

The logical flow graph restricted to the formulas A and B is shown below
(edges for ¬A and ¬A ⊃ B are not shown):

A A

¬A,A

¬A,A B

A (¬A) ⊃ B

B B

¬A,B B

B (¬A) ⊃ B

A ∨ B→(¬A) ⊃ B

Looking at just the subgraph for A , there is a path from the A in the final
antecedent up to the logical axiom for A and back down to the A in the
succedent of the endsequent. And there is a path of length two from the
subformula A of the ¬A introduced with a Weak:left inference. Although
this is a very simple example, it should be clear that the logical flow graph
traces the influence of A through the proof.

The concept of the logical flow graph will be useful in the next section for
proving lower bounds on the number of inferences in a proof. First a few more
definitions and some lemmas must be established.

Definition An s-formula occurs positively if and only if it is in a sequent
Γ→∆ and either occurs positively in a formula in ∆ or negatively in a
formula in Γ. Otherwise the s-formula occurs negatively.
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Definition Let P be a proof and let E be an edge in the logical flow graph
of P directed from A to B . Note that either (1) there is a unique common
inference J containing both A and B such that J gave rise to E or (2) A and
B are in an axiom. (There may be more than one inference containing both
A and B but there is only one that caused E to be in the logical flow graph.)
If A is in an upper sequent of J and B is in the lower sequent of J then
we say E is a downward edge. If B is in an upper sequent and A in a lower
sequent then E is an upward edge. If A and B are both in upper sequents
(so J is a cut) or if A and B are in an axiom then E is a lateral edge.

Proposition 4 Let P be a proof. Every downward edge connects two s-
formulas which occur positively. Every upward edge connects s-formulas which
occur negatively. Every lateral edge is incident on an s-formula which occurs
positively and on an s-formula which occurs negatively.

Proposition 5 Let P be a proof and A an s-formula in P .

(a) Suppose A occurs positively in P . Then each edge directed towards A in
the logical flow graph is either lateral or downward; all incoming edges
have the same direction. If the incident edges are downward, there may
be 0, 1 or 2 of them. Furthermore, if P is tree-like, the outdegree of A
in the logical flow graph will be one (or zero if A is in the endsequent or
in a sequent not used in the proof).

(b) Suppose A occurs negatively in P . Then either there is one lateral edge
directed away from A or there are up to two upward edges directed away
from A. Furthermore, if P is tree-like, the indegree of A will be one (or
zero if A is in the endsequent or in a sequent not used in the proof).

Propositions 4 and 5 are easily proved by examining the definition of the
logical flow graph. For example, in Proposition 5 when A occurs positively,
A will have lateral incoming edges only if A appears in an axiom. Otherwise
the indegree is zero if and only if A is a subformula of a formula introduced by
a weakening inference. The indegree is two if A is a subformula of a formula
which is merged with an identical formula by a contraction, ∨:left or ∧:right
inference. There is one incoming downward edge in the other cases. Similar
considerations apply to Proposition 5(b).
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For the rest of this section we shall let > be an abbreviation for some
(arbitrary) valid formula and ⊥ be an abbreviation for its negation. So >
and ⊥ are formulas such that →> and ⊥→ are LK -provable. We are not
however adding these to our language for first-order logic; in particular, it is
important for Propositions 6 and 10 that atomic formulas A and B are not
> or ⊥ .

Definition Given a proof P , a forward (respectively, backward) path is a
non-trivial path in the logical flow graph of P which traverses edges in the
forward (backward) direction. By path we always mean non-trivial path. The
s-formula B is forward-reachable from the s-formula A if and only if B is A
or there is a forward path from A to B . B is backward-reachable from A if
A is forward-reachable from B .

Proposition 6 Let P be a proof of Γ→∆ and let A be an atomic s-formula
appearing negatively (respectively, positively) in Γ→∆ such that A does
not have equals (=) as its relation symbol. Then either there is a forward
(respectively, backward) path from A to another s-formula B in Γ→∆ or the
sequent Γ∗→∆∗ obtained by replacing A with > (respectively, ⊥) is valid.

The gist of Proposition 6 is that if A occurs negatively in Γ→∆ and is
essential to the validity of the sequent then there is a forward path from A
back to another s-formula B in Γ→∆; note that B must occur positively
in Γ→∆. Note that this proposition implies the elementary fact that if B
is a valid formula and if a predicate symbol Q appears only positively in B
then every atomic subformula Q(· · ·) of B may be replaced by ⊥ and the
resulting formula will still be valid. This fact has a simple model-theoretic
proof; Proposition 6 gives a proof-theoretic proof.

Proof of Proposition 6. We shall only treat the case of A occuring negatively;
the other case is handled similarly. Suppose there is no forward path fromA
back to the endsequent.

Claim: There is a tree-like proof P1 of Γ→∆ such that in the logical flow
graph of P1 there is no forward path from A to another s-formula in Γ→∆.

Proof of Claim: P1 is formed by converting P to a tree-like proof in the
following manner: Find the first sequent in P which is used multiple times as
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a hypothesis and duplicate the subproof of this sequent as necessary to remove
the multiple usage of that sequent. Iterate this process until a tree-like proof
is obtained. It is easy to see that this transformation can not create a new
path from A back to the endsequent (although if such a path existed it might
be destroyed). This proves the claim.

Since A is atomic, it is of the form Q(s1, . . . , sk) for some predicate
symbol Q . Form P2 from P1 by replacing every s-formula forward-reachable
from A by > . To prove Proposition 6 it suffices to show that the endsequent
of P2 is valid. To accomplish this we show that P2 can be modified to be a
correct proof. There are several ways in which P2 might fail to be a proof:
First, an equality axiom forward-reachable from A might have been changed
to (for example):

r1 = t1, . . . , rk = tk,>→>.

This is no longer an axiom, but it is valid; indeed, →> is valid. Second,
where P1 had a contraction, P2 might contain (for example):

Γ→∆, C ′, C ′′

Γ→∆, C∗

where C ′ , C ′′ and C∗ are obtained from a formula C replacing some
subformulas of the form Q(· · ·) by > . If a subformula Q(· · ·) is negatively
occuring in C and it is replaced by > in any one of the formulas C ′ , C ′′ or
C∗ then it will also be replaced by > in all three of them; this is because P1

is tree-like and the only edges in the logical flow graph of P1 directed towards
the occurences of negatively occuring subformulas of C ′ and C ′′ come from
the corresponding subformulas of C∗ . Furthermore if Q(· · ·) is a positively
occuring subformula of C and is replaced by > in either C ′ or C ′′ then it
will also be replaced in C∗ . Thus C∗ can be obtained from either one of C ′

and C ′′ by changing some positively occuring subformulas to > . It follows
that C ′ ⊃ C∗ and C ′′ ⊃ C∗ are valid. Hence the above “inference” in P2 is
sound. Third, ∨:right and ∧:left inferences contain implicit contractions of
the side formulas; these are handled in the same way as contractions. Because
P2 is tree-like, these three cases are the only way in which P2 can fail to be a
valid proof and its final sequent must be valid. (Note that if P1 contains an
inference

Γ→∆
Π→Λ
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then a negatively occuring s-formula in Γ→∆ is forward-reachable from A
only via a path which goes through Π→Λ. This will not necessarily be true
of a non-tree-like proof§.)
Q.E.D. Proposition 6

Proposition 7 Let P be a proof and A∨B be an s-formula occuring negatively
in the endsequent Γ→∆ of P . Then at least one of the following holds:

(a) There is a forward path from A ∨ B to another s-formula in Γ→∆,

(b) There is an ∨:left inference with principal formula A∗ ∨ B∗ forward-
reachable from A ∨ B , or

(c) Γ→∆ is still valid after A ∨ B is replaced by >.

There is a dual version of Proposition 7 regarding A∧B occuring positively
in Γ→∆; it is stated with “backward”, “∧:right”, and “⊥” replacing
“forward”, “∨:left” and “>”.

Proof of Proposition 7. Suppose there is no forward path from A ∨ B back
to the endsequent and that there is no ∨:left inference satisfying (b). We
show that the result of changing A∨B to > in Γ→∆ is valid—the proof is
similar to the proof of Proposition 6. First form a tree-like proof P1 of Γ→∆
by duplicating subproofs of P1 as necessary. There will still be no forward
path from A∨B back to the endsequent and no inference satisfying (b). Now
form P2 from P1 by replacing every s-formula forward-reachable from A ∨ B
with > . Just as in the proof of Proposition 6 every “inference” in P2 is valid
and hence the endsequent of P2 is valid.
Q.E.D. Proposition 7

Propositions 6 and 7 are special cases of the following more general result.

Proposition 8 Let P be a proof and A an s-formula occuring negatively
(respectively, positively) in the endsequent Γ→∆ of P . Then (at least) one
of the following holds:

(a) There is a forward (respectively, backward) path from A to another
s-formula in Γ→∆,

§Our construction works for non-tree-like proofs as well, but the proof is less clear.
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(b) There is an s-formula forward- (respectively, backward-) reachable
from A which is the principal formula of a logical inference, or

(c) Γ→∆ is still valid if the s-formula A is replaced by > (respectively,
⊥).

Basically, Proposition 8 states that if an s-formula A of Γ→∆ is not
used in an essential way in the proof of Γ→∆ then Γ→∆ maybe weakened
by changing A to > or ⊥ as appropriate and still remain valid. The proof of
Proposition 8 is similar to the proofs Propositions 6 and 7 and is omitted.

The next proposition gives a related result for negatively occuring s-
formulas which are conjunctions.

Proposition 9 Let P be a proof and A ∧ B be an s-formula occuring
negatively in the endsequent Γ→∆ of P . Then at least one of the following
holds:

(a) There is a forward path from A ∧ B to another s-formula in Γ→∆,

(b) There are at least two ∧:left inferences with principal formulas forward-
reachable from A ∧ B ,

(c) Γ→∆ is still valid if A ∧ B is replaced by A, or

(d) Γ→∆ is still valid if A ∧ B is replaced by B .

Again there is a dual version of Proposition 9 regarding an s-formula A ∨ B
occuring negatively in the endsequent of P .

Proof of Proposition 9. Suppose that neither (a) nor (b) hold and that the
only (if any) ∧:left inference with principal formula forward-reachable from
A ∧ B is of the form

A∗, Π→Λ
A∗ ∧ B∗, Π→Λ

(The case where B∗ appears in the upper sequent instead of A∗ is handled
similarly.) Obtain a tree-like proof P1 of Γ→∆ by duplicating subproofs
of P as necessary. As before, there will be no forward path from A ∧ B back
to the endsequent of P1 . Also, every ∧:left inference with principal formula
forward-reachable from A∧B will be identical to the one in P . Now form P2
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from P1 by replacing each s-formula A′ ∧ B′ forward-reachable from A ∧ B
by A′ . P2 can fail to be a proof in several ways: First, the ∧:right inference
will become

A∗, Π→Λ
A∗, Π→Λ

which is clearly a valid “inference”. Second, a contraction of a formula C
in P1 may become an “inference” of the form (for example):

Π→Λ, C ′, C ′′

Π→Λ, C∗

Here C ′ , C ′′ and C∗ are formed by replacing some subformulas of the form
Ai ∧ Bi by Ai . Now if Ai ∧ Bi is a negatively occuring subformula of C
which is replaced by Ai in any one of C ′ , C ′′ or C∗ then it will be replaced
by Ai in all three formulas; this is because P1 is tree-like and the only edges
in the logical flow graph directed towards a negatively occuring subformula in
the upper sequent come from the lower sequent of the contraction inference.
If Ai ∧ Bi is a positively occuring subformula of C and it is replaced by Ai

in either C ′ or C ′′ , then it is also replaced by Ai in C∗ . Thus C∗ can be
obtained from C ′ by replacing some positively occuring subformulas of the
form Ai ∧ Bi by Ai ; hence C ′ ⊃ C∗ is valid. Similarly, C ′′ ⊃ C∗ is valid.
Hence the above “inference” in P2 is valid. The implicit contractions of side
formulas in ∨:left and ∧:right inferences are handled the same way. Hence
the final sequent of P2 is valid.
Q.E.D. Proposition 9

Suppose A ∨ B occurs negatively in the endsequent Γ→∆ of a proof P
with A and B atomic formulas not involving equality. According to
Proposition 6, under certain circumstances there are forward paths πA and
πB from A and B back to the endsequent. We shall say that the two paths
parallel each other for as long as they travel together along a path from A∨B .
Of course there may be no path from A ∨ B back to the endsequent and πA

and πB may be forced to stop paralleling each other and diverge at an ∨:left
inference. The next proposition states sufficient conditions for there to be
paths πA and πB that parallel each other until an ∨:left inference separates
them.
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Proposition 10 Suppose P is a proof with endsequent Γ→∆ and A ∨B is
a negatively occuring s-formula in Γ→∆ with A and B atomic formulas not
involving the equality sign. Then at least one of the following holds:

(a) There is a forward path form A ∨ B back to Γ→∆,

(b) There are forward paths πA and πB from A and B , respectively, back to
Γ→∆ such that πA and πB parallel each other until they diverge at an
∨:left inference, or

(c) Γ→∆ is still valid after A ∨ B is replaced by >.

Proof As usual, it will suffice to prove the theorem for the cut-free proof P1

obtained by duplicating subproofs of P as necessary. This is because any
path in P1 can be mapped back down to a path in P . It will suffice to show
that there is an ∨:left inference

A∗, Π→Λ B∗, Π→Λ

A∗ ∨ B∗, Π→Λ

in P1 with a forward path from A ∨ B to A∗ ∨ B∗ and with forward paths
from A∗ and from B∗ back to Γ→∆. So suppose not. For each ∨:left
inference of the form above with principal inference forward-reachable from
A ∨ B , if no path exists from A∗ (respectively, B∗ ) to Γ→∆, replace
A∗ (respectively B∗ ) and every s-formula forward-reachable from it by > .
And replace every s-formula forward-reachable from the A ∨ B in Γ by > .
The same argument used for proving Propositions 6 and 7 shows that this
transforms P1 into a valid “proof”; note that the inference displayed above
will become vacuous with one of its upper sequents equal to the lower sequent.
Unless (a) holds, the resulting endsequent is Γ→∆ with the s-formula A∨B
replaced by > .
Q.E.D. Proposition 10

4 The Undecidability Proof for k-Provability

We shall first prove Main Theorem 1 for the system LK with no equality
axioms. To do this, we reduce the second-order unification problem with
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partial substitution problem to the k -provability problem for LK. Given a
second-order unification problem satisfying the special restriction consisting
of equations

βij(ρj//aij) = σj

for j = 1, . . . ,m , we shall produce a formula Φ and an integer N such that→Φ has a proof of ≤ N lines if and only if the unification problem has a
solution. The formula Φ will always be valid and have a very straightforward
proof; however, a solution to the unification problem will give a slightly
shorter proof (in terms of number of sequents in the proof).

Recall that the βi ’s are second-order variables, ai ’s are first-order variables
and ρj and σj are terms involving βi ’s, ai ’s and function and constant
symbols. We shall also use the βi ’s as bound variables in the sequent calculus.
Let Uj be the semiformula

Pj(σj, ρj) ∨ Pj(βij , aij) ∨ Pj(z
1
j , b

1
j) ∨ Pj(z

2
j , b

2
j) ∨ Pj(z

3
j , b

3
j) ∨ Pj(z

4
j , b

4
j)

where Pj is a binary relation symbol and z1
j , . . . , z

4
j are new bound variables

and b1
j , . . . , b

4
j are new free variables. (We adopt the convention that

conjunction and disjunction always associate from right to left.) Then Φ is
the formula

∀z1
1∀z2

1 · · · ∀z3
m∀z4

m∀β1 · · · ∀βk

m∧
j=1

Uj


 ⊃


 m∧

j=1

∃y∃xPj(x, y)




where β1, . . . , βk are the second-order variables appearing in the unification
problem.

By Theorem 3 we need only consider unification problems of the form
Ω ∪ {β1 = Sn0} ; note that in this case, Φ can be written as A(Sn0) where
A(x) depends only on Ω.

Φ is obviously a valid formula; the question is what the minimum size
proof of Φ is. Lets begin by outlining a (non-optimal) proof of Φ. For
arbitrary terms t1, . . . , tk, r

1
1, . . . , r

4
m let U(~t, ~r) be the result of substituting

the t′is for the βi ’s and the rp
i ’s for the zp

i ’s in Uj . Then →Φ will be derived
by k + 4m ∀:left inferences and one ⊃:right inference from

m∧
j=1

Uj(~t, ~r)→ m∧
j=1

∃y∃xPj(x, y).
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This can be derived from the m sequents

Uj(~t, ~r)→ ∃y∃xPj(x, y)

by m − 1 ∧:right inferences and 2(m − 1) ∧:left inferences; this derivation
begins with

Um(~t, ~r)→∃y∃xPm(x, y)

Um−1(~t, ~r) ∧ Um(~t, ~r)→∃y∃xPm(x, y)

Um−1(~t, ~r)→∃y∃xPm−1(x, y)

Um−1(~t, ~r) ∧ Um(~t, ~r)→∃y∃xPm−1(x, y)

Um−1(~t, ~r) ∧ Um(~t, ~r)→∃y∃xPm−1(x, y) ∧ ∃y∃xPm(x, y)

and continues this pattern m − 1 times. Now Uj(~t, ~r) is of the form

Pj(σ
∗
j , ρ

∗
j) ∨ Pj(tij , aij) ∨ Pj(r

1
j , b

1
j) ∨ Pj(r

2
j , b

2
j) ∨ Pj(r

3
j , b

3
j) ∨ Pj(r

4
j , b

4
j)

where ρ∗
j and σ∗

j are the terms obtained from ρj and σj after the

βi ’s are changed to ti ’s. The sequent Uj(~t, ~r)→∃y∃xPj(x, y) can be
derived by using five ∨:left inferences to combine sequents of the form
P (v, w)→∃y∃xPj(x, y). These latter sequents, of course, have simple proofs,
each containing one logical axiom and two ∃:left inferences. This proof of
Uj(~t, ~r)→∃y∃xPj(x, y) has exactly 23 sequents (all distinct since, because of
the special restriction, ρ∗

j will not be equal to aij or any bi
j ).

Counting the number of inferences and axioms in the above proof of Φ we
see that there are (k + 4m + 1) + (3m− 3) + 23m sequents. So the proof of Φ
has k + 30m − 2 sequents. However, this proof of Φ is not the most efficient
proof. Suppose the terms ~t are chosen so that setting βi = ti provides a
solution to

βij(ρj//aij) = σj

for some particular value of j . Since this equation is satisfied there must be
some set S of occurences of aij in tij such that changing each aij in S to ρ∗

j

yields the term σ∗
j . Let v(w) denote the result of substituting w into tij for

each aij ∈ S . Thus v(ρ∗
j) = σ∗

j . If we further suppose that the terms ri
j are
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equal to v(bi
j) for i = 1, 2, 3, 4 there is a shorter derivation of the sequent

Uj→∃y∃xPj(x, y): First derive the six sequents

Pj(σ
∗
j , ρ

∗
j)→∃yPj(v(y), y)

Pj(tij , aij)→∃yPj(v(y), y)

Pj(r
i
j, b

i
j)→∃yPj(v(y), y).

This takes a total of six inferences and six logical axioms. Then use five
∨:left inferences to derive Uj→∃yPj(v(y), y). Finally use the following four
inferences and one logical axiom:

Uj→∃yPj(v(y), y)

Pj(v(a), a)→Pj(v(a), a)
Pj(v(a), a)→∃xPj(x, a)
Pj(v(a), a)→∃y∃xPj(x, y)

∃yPj(v(y), y)→∃y∃xPj(x, y)

Uj→∃y∃xPj(x, y)

where a is a free variable not occuring in tij . This derivation of
Uj→∃y∃xPj(x, y) contains 22 sequents, one less than the earlier derivation
which had 23 sequents.

If the second-order unification has a solution, then by appropriate choices
for the tj ’s and ri

j ’s, the formula Φ can be proved with a proof containing
(k + 4m + 1) + (3m − 3) + 22m = k + 29m − 2 sequents. So we let N be
k + 29m − 2; we need to show that if the unification problem has no solution
then any proof of Φ requires at least N + 1 lines. (However, if there is a
solution to all but one of the unification equations, Φ will have a proof of
exactly N + 1 lines.)

Suppose P is a proof of Φ. We say that a term t is assigned to βi in P if
there is an inference in P of the form

A(t), Γ→∆
(∀βi)A(βi), Γ→∆

such that there is a forward path from the s-formula ∀βi · · · ∀βk
∧

Uj in the
endsequent to the (∀βi)A(βi) in the inference displayed above. We call
such an inference a term-assigning inference and its lower sequent is called a
term-assigning sequent. Of course, more than one t may be assigned to βi

in P .
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By Propositions 7 through 9, P must contain at least one ⊃:right
inference, k + 4m ∀:left inferences, m − 1 ∧:right inferences, 2m − 2 ∧:left
inferences and 5m ∨:left inferences. Since any sequent is derived by a unique
inference this accounts for k + 12m − 2 sequents in P . (Note that we also
know there are at least 2m ∃:left inferences in P ; however, these will be
counted separately below.)

To further count sequents in P we will form m + 1 disjoint classes
S1, . . . , Sm and XS of sequents such that no member of these classes is
one of the k + 12m− 2 sequents already accounted for. Nor will these classes
contain any term-assigning sequent. The idea is that Sj is the set of sequents
used to handle the derivation of

Uj→∃y∃xPj(x, y)

although, in general, the proof P might not actually contain this sequent.
The set XS will be a set of “excess sequents”.

Claim: The classes S1, · · · , Sm and XS can be defined so that the cardinality
of each Sj is at least 17 and so that if each Sj has cardinality exactly 17 and
if XS is empty then there are terms t1, . . . , tk assigned to β1, . . . , βk so that

tij(ρ
∗
j//aij) = σ∗

j

where ρ∗
j and σ∗

j are obtained from ρj and σj by replacing each βi by ti for
all i.

Before proving the claim, lets show that it suffices to prove the Main
Theorem 1. If the Sj ’s have cardinality 17 and are disjoint, the proof P has
(k+12m−2)+17m sequents which have already been accounted for or are in
the Sj ’s. In order to have exactly N = k + 29m− 2 sequents this must be all
of the sequents of P ; this implies that there are no excess sequents and XS
is empty and there is exactly one term assigned to βi for each i = 1, . . . , k .
That is because no Sj contains a term-assigning sequent and we only counted
one term-assigning inference for each value of i . Now, by the claim, the
terms assigned to the βi ’s provide a solution to the second-order unification
problem. If, on the other hand, XS is nonempty or any Sj contains more
than 17 sequents or any βi is assigned more than one term, then P has more
than N lines. Thus we have established that →Φ has a proof of ≤ N if and
only if the unification problem has a solution.
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It remains to prove the Claim. Fix for the moment a value for j . In Φ
there are six atomic subformulas of the form Pj(· · ·) on the lefthand side of
the implication ⊃ and only one on the righthand side. Let v1 = σj , w1 = ρj ,
v2 = βij , w2 = aij , v2+i = zi

j , w2+i = bi
j ; so the six atomic subformulas on the

right are Pj(vi, wi) for 1 ≤ i ≤ 6. (We are suppressing a second subscript, j ,
on the v ’s and w ’s to avoid excessive notation.) By Proposition 7, there exists
at least one forward path from each Pj(vi, wi) on the left to the Pj(x, y) on
the right. We are going to choose six forward paths πi , for i = 1, . . . 6, from
the s-formula Pj(vi, wi) to Pj(x, y). These paths must satisfy the following
three restrictions:

(R1) The initial parts of the paths π1, . . . , π6 parallel each other for as long
as possible — they diverge at ∨:left inferences.

(R2) If Pj(τi, τ
′
i)∨· · ·∨Pj(τ6, τ

′
6) is an s-formula that paths πi, . . . , π6 (i < 6)

pass through while still paralleling each other then τ ′
i , . . . , τ

′
6 are distinct

semiterms.

(R3) It is not possible to replace any one of the six paths by a shorter path
and still have conditions (R1) and (R2) hold.

It is not immediately obvious that there are paths that satisfy the three con-
ditions; it will suffice to show that there are paths that fulfill conditions (R1)
and (R2) since by shortening these paths one at a time until no further
shortening is possible we obtain paths satisfying all three conditions.

Proposition 11 Fix j and let P be a proof of Φ. In P ’s logical flow graph,
there are six paths πi from Pj(vi, wi) to Pj(x, y) that satisfy conditions (R1)
and (R2).

Proof As usual it will suffice to assume P is tree-like; otherwise, P may
be transformed into a tree-like proof and paths in the logical flow graph of
the tree-like proof can be mapped back to paths in P ’s logical flow graph.
Suppose that there is no set of six paths that satisfy (R1) and (R2). We shall
show below that there is an LKe -proof P ∗ of the formula Φ∗ obtained from Φ
by replacing Uj either with > or with

∧
1≤n<s≤6

wn 6= ws.
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Recall that w2, . . . , w6 are distinct free variables and w1 = ρ∗
j is distinct from

them by the special restriction. Therefore, Φ∗ is not valid and we have a
contradiction. Thus our assumption that the six paths do not exist will be
shown to be wrong. (Note that P ∗ is an LKe -proof even though P may not
involve identity.)

Consider the six subformulas

Ai =
6∨

n=i

Pj(vn, wn)

of Uj occurring in the endsequent of P . If B is an s-formula in P forward-

reachable from Ai then B is of the form
6∨

n=i
Pj(τn, τ

′
n); we say that B is

R2-bad if τ ′
n and τ ′

s are identical semiterms for some n 6= s . We say that
a path in the logical flow graph is R2-bad if some s-formula on the path is
R2-bad. And an s-formula B forward-reachable from some Ai is R2-good if
and only if there is a path from Ai to B which is not R2-bad. (So R2-good is
not the opposite of R2-bad.) An s-formula B is R2-borderline if it is R2-bad
and there is an edge in the logical flow graph from an R2-good formula to B .
An s-formula Pj(—) is viable if there is a forward path from it to the Pj(x, y)
in the endsequent of P .

We modify P to form P ∗ by the following transformations:

(1) If B is a maximal s-formula forward-reachable from one of the Ai ’s such
that one of B ’s disjuncts is not viable, replace B by > .

(2) Any remaining non-viable s-formulas Pj(—) are replaced by > .

(3) Suppose that B is a maximal s-formula in P of the form

6∨
n=i

Pj(τn, τ
′
n)

with i ≤ 5 and that B is not altered by (1) or (2). If B is not R2-good
it is replaced by

Bbad =

(
6∨

n=i

Pj(τn, τ
′
n)

)
∧


 ∧

i≤n<s≤6

τ ′
n 6= τ ′

s


 ,

and if B is R2-good it is replaced by Bgood =
∧

n<s
τ ′
n 6= τ ′

s .
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The first two transformations apply to meeting condition (R1); compare with
the proof of Proposition 10. The third transformation is used to handle
condition (R2). We now claim that P ∗ is a “proof” in that every inference
in P ∗ is sound. There are several ways in which P ∗ can fail to be a valid
LKe -proof. Firstly, consider an inference in P of the form

Pj(τi, τ
′
i), Π→Λ

∨
i<n

Pj(τn, τ
′
n), Π→Λ

∨
i≤n

Pj(τn, τ ′
n), Π→Λ

If
∨

i≤n
Pj(τn, τ

′
n) was replaced by > in P ∗ then so is at least one of the indicated

formulas in the upper sequents; thus this is a vacuous inference in P ∗ with one
of the upper sequents equal to the lower sequent. The subproof of the other
upper sequent can be ignored or discarded since P is tree-like. If

∨
i≤n

Pj(τn, τ
′
n)

is not R2-good then in P ∗ the inference is replaced by

Pj(τi, τ
′
i), Π→Λ

( ∨
i<n

Pj(τn, τ
′
n)

)
∧

( ∧
i<n<s

τ ′
n 6= τ ′

s

)
, Π→Λ

( ∨
i≤n

Pj(τn, τ ′
n)

)
∧

( ∧
i≤n<s

τ ′
n 6= τ ′

s

)
, Π→Λ

which is a sound “inference”. And if
∨

i≤n
Pj(τn, τ

′
n) is R2-good we must treat

the cases i < 5 and i = 5 separately. For i < 5, we have that the inference
becomes

Pj(τi, τ
′
i), Π→Λ

∧
i<n<s

τ ′
n 6= τ ′

s, Π→Λ

∧
i≤n<s

τ ′
n 6= τ ′

s, Π→Λ

in P ∗ ; this inference is sound (with the left upper sequent unnecessary for
the soundness). If i = 5, then by our hypothesis that there are no paths
satisfying (R1) and (R2) we must have that some s-formulas on the path from
Pj(v6, w6) to Pj(τ6, τ

′
6) were not viable. And because P is tree-like we were

able to discard a subproof of P containing the inference under consideration;
hence this inference is not needed in the proof P ∗ . Secondly, P ∗ will not
be a correct proof at a sequent containing an R2-borderline formula; such
a sequent must be the upper sequent of a quantifier inference that causes
an R2-good formula in the lower sequent to become R2-bad in the upper
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sequent. But the formula Bbad is actually equivalent to Bgood when B is

R2-bad, because two of the semiterms τ ′
n , τ ′

s are equal (n 6= s). Hence the
“inference” in P ∗ is sound. Thirdly we have to consider contractions in P ∗

that may be contracting unequal formulas (this is similar to the proofs of
Propositions 6-10). Contractions can occur explicitly in contraction inferences
and implicitly in ∨:left and ∧:right inferences. Suppose, for example, that
P contains a contraction inference

Π→Λ, B1, B2

Π→Λ, B3

where B1 = B2 = B3 are three occurrences of the same formula. In P ∗ this
becomes

Π∗→Λ∗, B∗
1 , B

∗
2

Π∗→Λ∗, B∗
3

Let C1, C2, C3 be corresponding (equal) subformulas of B1, B2, B3 . Suppose
each Ci is replaced by C∗

i in P ∗ with at least one Ci 6= C∗
i . If Cn occurs

positively in Bn then there are edges in the logical flow graph from C1 and
from C2 to C3 and these are the only edges out of C1 and C2 (since P is
tree-like) and the only edges into C3 . Thus C3 is transformed to > by
transformations (1) and (2) iff either (both) C1 and C2 is (are). Also if
one of C1 or C2 is R2-good then C3 is R2-good. If however, Ci is not
R2-good we still have LKe |= (Ci)bad ⊃ (C3)good . In all cases we have that

LKe |= C∗
i ⊃ C∗

3 for i = 1, 2. On the other hand, if Cn occurs negatively
in Bn then the directions of the edges in the logical flow graph are reversed.
Thus if C3 is tranformed to > by (1) or (2) then both C1 and C2 are.
Also, C3 is R2-good if and only if either (both) of C1 and C2 is (are).
In any case, we have that LKe |= C∗

3 ⊃ C∗
i for i = 1, 2. By repeating this

analysis for all appropriate subformulas C1, C2, C3 of B1, B2, B3 , we have that
LKe |= B1 ⊃ B3 and LKe |= B2 ⊃ B3 . Hence this contraction “inference”
preserves validity and is sound.
Q.E.D. Proposition 11

Returning to the proof of our main theorem, we now need to establish
the Claim. The general idea for proving the Claim is to attempt to associate
three sequents in P with each path πi . If we are able to do this then we have
18 sequents in Sj . However, we will not always be successful in finding three
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sequents per path πi — in these cases we must either associate more than
three sequents with the other paths or find sequents which, although they can
not be associated with just one of the paths, can be put in Sj . For example,
we will often want to associate two sequents with each of the six paths and
associate an additional five sequents with the paths as a group: this will yield
17 sequents in Sj .

Fix two values 1 ≤ i < n ≤ 6 and consider πi and πn . Since πi and πn

both end at the Pj(x, y) in Φ, there must be an s-formula ψ which is the
first one in the path πi which is also in the path πn . Since πn is a shortest
path (condition (R3)), ψ is in addition the first s-formula on πn which is also
on πi . Furthermore, without loss of generality, πi and πn coincide from ψ
onward. The s-formula ψ must be of the form Pj(τ1, τ2) for some semiterms
τ1 and τ2 . There are several possibilities to consider:

Case (1): If ψ occurs as a subformula of the formula (∃y)(∃x)Pj(x, y)
then each path must contain two ∃:right inferences to introduce the two
existential quantifiers. Furthermore, both paths must pass though at least
one axiom of the form Pj(· · ·)→Pj(· · ·) before the ∃:right inferences. This
associates three inferences with each of πi and πn .

Case (2): Other cases where ψ is in the scope of two or more quantifiers
are handled similarly.

Case (3): If ψ occurs as a subformula of a formula of the form (∃y)Pj(τ, y)
then by the reasoning above, each of πi and πn has two sequents associated
with it; namely, a logical axiom and an ∃:right inference. We may assume
that πi and πn are going downward as they reach ψ (otherwise there are Cut
inferences on πi and πn where the paths turn upwards after going downward
through the ∃:right inferences). Now we claim that there must be at five
sequents on the paths after ψ before the endsequent Φ is reached. Namely,
one Cut inference to turn the paths upward again, one ∃:left inference to strip
off the (∃y), one axiom to turn the path downward and two ∃:right inference
to put (∃y)(∃x) on. However, these five inferences can not be associated with
πi and πn separately but must be shared among all six paths.

We have argued that, in this case (3), each of πi and πn has two associated
sequents and that there are five additional sequents which may be put into Sj .
This counting of sequents is in fact optimal; furthermore, to achieve this small
number of sequents either some sort of unification must occur or there are
excess sequents we can put in XS . Indeed at the beginning of the path πi is
an s-formula Pj(vi, wi) where vi is a semiterm. Following (upwards) along πi ,
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various ∀:left inferences assign terms t1, . . . , tm to β1, . . . , βm and assign terms
to zj

i ’s. We can assume that the process of ∀:left inferences assigning terms
is uninterupted by any downward path segments and therefore uninterupted
by any inferences which introduce a quantifier; otherwise, the logical axiom
and the Cut inferences used to change the direction of the path and the
lower sequent of any quantifier introduction inference can be put in XS .
Eventually, the ∀:left term-assigning inferences transform vi into a term v∗

i

with no bound variables. A similar process gives v∗
n . Now there must be a

common term q(x) such that q(wi) = v∗
i and q(wn) = v∗

n if our lower bound
on the number of sequents associated with πi and πn is be achieved. This is
because only then can ∃:right inferences transform Pj(v

∗
i , wi) and Pj(v

∗
n, wn)

into (∃y)Pj(τ, y) — here τ will be q(y). But because we are dealing with
LK -proofs and there are no equality axioms, the only way to change a term
is by quantifier inferences. The lower sequent of such quantifier inference can
be put into XS . Thus we have shown that if Sj has cardinality 17 then
either there are sequents we can put in XS or the term assignments along
the initial part of πi and πn provide a solution to the unification equation
vi(wn/wi) = vn .

Case (4): Other cases where ψ is Pj(τ, y) for y a bound variable are
handled similarly.

Case (5): Finally we must consider the case where ψ is a (sub)formula
of the form Pj(τ, t) where t is a term with no bound variables and τ is a
semiterm which may in general contain variables bound in the formula in
which ψ occurs. Since wi 6= wn either wi or wn must have been changed
along the path from Pj(vi, wi) or Pj(vn, wn); we shall show that at least four
sequents can be associated with the change from wi or wn to t . Because πi

and πn parallel each other for as long as possible (by condition (R1)), they
will diverge at an ∨:left inference while travelling upwards. By condition
(R2) at the ∨:left inference where the paths πi and πn diverge, the s-formulas
are Pj(v

′
i, w

′
i) and Pj(v

′
n, w

′
n) with w′

i 6= w′
n . Hence one of w′

i or w′
n must

be changed to t : this requires a logical axiom to change the path direction
downward, an ∃:right or ∀:left inference to quantify the wi or wn , a Cut
inference to turn back upwards, and another quantifier inference to remove
the quantifier. (Here we use the fact that LK has no equality axioms.) These
inferences and axiom give four sequents which can be associated with one of
the paths and put into Sj .
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The above concludes the analysis of the intersection of two paths
πi and πn . This analysis actually needs to be performed five times to merge
all six paths for atomic s-formulas involving Pj . This should be done by
considering first intersections first (in order of travel along the paths). The
result is that either (a) there are at least three sequents associated with each
path or if case (5) applies each time there are four sequents associated with
five of the paths, and hence there are ≥ 18 total sequents to put in Sj , or
(b) each path has at least two associated sequents and there are five additional
“shared” sequents. Also, if exactly 17 sequents are in Sj , case (b) holds and
P contains a “solution” to βij(ρj//aij) = σj .

It may appear that the Claim is now proved; however, there is a small
gap in our argument so far: we still need to show that the Sj ’s are disjoint.
Unfortunately, the above argument does not work since the ∃:right inferences
in case (1) above and the first ∃:right inference and the ∃:left of case (3)
might be put into more than one Sj . For instance, it may be that in case (3)
the s-formula ψ above occurs in a formula

(∃z)(Pj(τ, z) ∨ Pj′(τ
′, z))

with j′ 6= j . And if the Pj′(x, y) is a point where two paths for Pj′(· · ·) merge
then we will have put the ∃:right and ∃:left inferences which introduce and
eliminate the (∃z) into both Sj and Sj′ .

To fix this problem, we need to count the inferences which are necessary
to introduce and eliminate the disjunction and put these into Sj′ . Consider
what happens along a path that leads to Pj′(τ

′, z). The path begins at the
endsequent and must pass through an axiom of the form Pj′(· · ·)→Pj′(· · ·)
before reaching an ∨:right inference to introduce the disjunction. There is an
additional ∨:left inference on each path leading to Pj(τ, z). This gives a total
of three sequents which we can associate with the path leading to Pj′(τ

′, z)
and which are put into Sj′ . Note we haven’t even counted inferences necessary
to eliminate the disjunction.

A similar and slightly more complicated argument works for the implica-
tion connective (⊃) replacing ∨ ; we leave this to the reader.

The case where a conjunction links Pj(· · ·) and Pj′(· · ·) is similar but
more complicated. First along a forward path leading to Pj′(τ

′, z) there
is an axiom and an ∧:right inference; this provides only two sequents to
associate with the path and put into Sj′ . To eliminate the conjunction
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requires two ∧:left inferences; there is also an axiom Pj′(· · ·)→Pj′(· · ·) and
two ∃:right inferences which introduce the quantifiers in the endsequent (i.e.,
in Φ). Furthermore, before the reaching the endsequent, the subformula
Pj(τ, z)∧Pj′(τ

′, z) must be split into two copies, one on the Pj -path and one
on the Pj′ -path (as in Proposition 9). Splitting into two can occur either
(1) by a contract:left inference on an upward path, or (2) while on a downward
path. The latter requires no extra inferences since it can be that the sequent
is merely used twice as a hypothesis. However, in case (2), there are two Cut
inferences required to turn upward towards the ∧:right inferences (because
both copies of the conjunction need to be handled with a ∧:left).

Thus there are at least six inferences associated with eliminating the
conjunction along the forward paths. These six sequents may be shared
among the six paths for Pj′ and put into Sj′ . Thus Sj′ will contain a total of
18 inferences.

So far we have discussed the very simple case of a formula with one binary
connective linking two atomic subformulas Pj(· · ·) and Pj′(· · ·); however, in
principle, arbitrary Boolean combinations of multiple predicates might occur.
(Actually this will always be grossly inefficient, but we need merely find the
requisite 18 sequents for each Sj .) Luckily, our technique extends to handling
complicated formulas. In any Boolean formula with n atomic subformulas
there are n − 1 binary connectives. We set up a one-to-one correspondence
between the binary connectives and n − 1 of the atomic subformulas by
assigning a given binary connective to the first atomic subformula of its
second operand. Now in a proof P of the sequent →Φ if there is a formula
with n − 1 binary connective and n atomic subformulas, for each atomic
subformula Pj′(· · ·) associated with one of the binary connectives we find
three sequents to associate with each path to the s-formula Pj′(· · ·) by the
analysis used above. For the one atomic subformula Pj(· · ·) not associated
with a binary connective we use the original analysis which found either
17 or 18 sequents to put in Sj .

That completes the proof of the Claim and of Main Theorem 1. It remains
to prove the Main Theorem for LKe , the logical calculus for first-order logic
with equality.

Main Theorem 12 Let LKe be Gentzen’s sequent calculus with the nonlog-
ical equality symbol, a unary function symbol S , a binary function symbol
and infinitely many unary relation symbols. For every recursively enumerable

32



set X there is a formula A(x) and an integer k such that for all n, n ∈ X if
and only if →A(Sn0) has an LKe -proof with ≤ k distinct sequents.

Proof The proof is almost exactly like the proof of Main Theorem 1 except
we need to modify Φ somewhat so as to make sure that the equality axioms
can’t help prove Φ. What is done is replace every subformula of Φ of the
form Pj(—) by

(· · · ((Pj(—) ∧ >) ∧ >) ∧ · · · ∧ >).

where there are N disjunctions in this formula. (N is the same number as for
the previous proof.) Since the equality axioms only apply to atomic formulas
at least N ∨:left inferences would be needed to apply even one equality axiom
to a formula containing a Pj .
Q.E.D. Main Theorem 12

The proof above for LKe is somewhat unsatisfactory since it depends on
the fact that equality axioms only apply to atomic formulas. It seems likely
that the k -provability problem remains undecidable even for more general
equality axioms. In connection with this let us state an open problem.
Suppose a formula φ does not involve the equality symbol and has an LKe -
proof of k lines; does φ necessarily have a proof of ≤ k lines in which no
equality symbol occurs?

5 Conclusion

Our proof of the undecidability of the k -provability problem for the
sequent calculus depended of course on the details of the definition of the
sequent calculus; however, it doesn’t seem to exploit any unusual features of
the sequent calculus. For LKe , our proof did exploit the fact that equality
axioms only apply to atomic formulas; however, this is a common feature of
many systems of first-order logic. Thus it seems reasonable that our method
of proof might work for other systems of first-order logic. The main proviso
is that the system of first-order logic should have some general version of cut
or modus ponens and substitution axioms; Farmer [1] has proved decidability
results for first-order proof systems with restricted substitution axioms and
Kraj́ıček and Pudlák [6] show that the k -provability problem is decidable
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for the cut-free sequent calculus. (Recall that substitution axioms are of the
form (∀x)A ⊃ A(t/x); the ∀:left rule in the sequent calculus corresponds to
the substitution axioms.) Another feature of the sequent calculus that our
proof exploited is the fact that quantifier rules can only add or remove one
quantifier at a time.

Our original motivation for looking at the k -provability problem was to
approach Kreisel’s problem. For this, we had hoped to show, for instance,
that there is a formula φ(x) such that each φ(Sn0) either has a proof of
≤ n lines or has no proof with ≤ 2n lines and such that it is undecidable
which case holds. Such a result would likely be very useful in extending the
undecidability of k -provability to other systems of first-order logic. It should
be noted that there is no hope of proving such a result with 2n replaced
by a function which grows faster than the superexponential function; this
is because if there is a proof of n lines then there is a cut-free proof with
number of lines bounded by a stack of O(n) 2’s and, as mentioned above, the
k -provability problem for cut-free proofs is decidable.
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