
The Journal of Symbolic Logic

Volume 00, Number 0, XXX 0000

STRONG ISOMORPHISM REDUCTIONS IN COMPLEXITY THEORY

SAM BUSS, YIJIA CHEN, JÖRG FLUM, SY-DAVID FRIEDMAN, AND MORITZ MÜLLER

Abstract. We give the first systematic study of strong isomorphism reductions, a

notion of reduction more appropriate than polynomial time reduction when, for example,

comparing the computational complexity of the isomorphim problem for different classes

of structures. We show that the partial ordering of its degrees is quite rich. We analyze its

relationship to a further type of reduction between classes of structures based on purely

comparing for every n the number of nonisomorphic structures of cardinality at most n

in both classes. Furthermore, in a more general setting we address the question of the

existence of a maximal element in the partial ordering of the degrees.

§1. Introduction. In many areas of computational complexity, polynomial
time reduction is the appropriate notion for comparing the complexity of prob-
lems. However, suppose that we face, for example, the problem of comparing
the complexity of the isomorphism problem for two classes C and D of graphs.
Here

Iso(C) :=
{
(A,B) | A,B ∈ C and A ∼= B}

is the isomorphism problem for C (more precisely, the set of positive instances of
this problem) and Iso(D) is defined analogously. Probably we would not accept
a polynomial time computable function f : C × C → D × D with

(A,B) ∈ Iso(C) ⇐⇒ f(A,B) ∈ Iso(D)

as the right notion of reduction in this context but we would seek a strong
isomorphism reduction, that is, a polynomial time computable function f : C →
D with

A ∼= B ⇐⇒ f(A) ∼= f(B). (1)

This paper is devoted to the study of this type of reduction. For us the motivation
for this study came from various areas:

Computational complexity : The isomorphism relation (on a class C) is an equiv-
alence relation. In the context of arbitrary equivalence relations a notion of
reduction defined analogously as in (1) (and that for the isomorphism relation
coincides with our notion) has been introduced in [7]. However that paper is
mainly devoted to other problems (see the end of Section 7 for some more de-
tails); concerning the notion of reduction only some open problems are stated
in [7], problems we address in our paper.

c© 0000, Association for Symbolic Logic

0022-4812/00/0000-0000/$00.00

1

2 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

Descriptive set theory : For the isomorphism relation our notion of reduction was
first considered by the fourth author (see [8]) inspired by the analogous notion
from descriptive set theory (see [9]). In descriptive set theory, C and D denote
classes of structures with universe N and the function f satisfying (1) is required
to be Borel (in the topology generated by the first-order definable classes).

Descriptive complexity : The existence of a logic capturing polynomial time re-
mains the central open problem of descriptive complexity theory. For many
classes C of graphs (or of other types of structures), one shows that a logic L
captures polynomial time on C by defining in L an invariantization for C. From
the definition of invariantization (given in Section 4), one immediately gets that
if C is strongly isomorphism reducible to D, then C has an invariantization if D
has one.

This paper contains the first systematic study of strong isomorphism reduc-
tions. In Section 3 and Section 4 we introduce our framework, derive some basic
properties of strong isomorphism reductions, and explain via invariantizations
and canonizations the relationship to logics capturing polynomial time mentioned
above. At various places of our analysis, invariantizations and canonizations will
be valuable tools. Their relationship and the computational complexity of prob-
lems related to these notions have been studied in [2, 3, 7, 11, 15, 16].

We denote by ≤iso the partial ordering on the set of degrees induced by strong
isomorphism reductions. In Section 3 we observe that (the degree of) the class of
graphs is the ≤iso maximum element. Furthermore, by Theorem 4.7 we see that
some “basic algebraic classes of structures” all have the same strong isomorphism
degree. In Section 5 we show that the structure of ≤iso is rich already when
restricting to classes with an invariantization.

Assume that C is strongly isomorphism reducible to D. Since such reductions
are computable in polynomial time we know that for some polynomial p ∈ N[X]
and all n ∈ N the number of isomorphism types of structures in C with at most n
elements is at most the number of isomorphism types of structures in D with at
most p(n) elements. If this condition is satisfied, then following [8] we say that C
is potentially reducible to D. Already in Section 5 this concept is the main tool to
demonstrate the richness of the partial ordering ≤iso . We believe that the notions
of strong isomorphism reducibility and that of potential reducibility are distinct
but can only show this under the hypothesis U2EXP ∩ co-U2EXP 6= 2EXP (see
Section 6). It turns out in Section 7 that we would get P 6= #P if we could
separate the two notions without any complexity-theoretic assumption.

The isomorphism relation is an equivalence relation in NP. In Section 8 we
study reductions (defined in analogy to (1)) between arbitrary equivalence re-
lations in NP. In particular, we show that there is a maximum element in the
corresponding partial ordering if and only if there is an effective enumeration of
these equivalence relations by means of clocked Turing machines. Even if we re-
strict to equivalence relations in P (= PTIME), we cannot show that a maximum
element exists; we can guarantee its existence if a p-optimal propositional proof
system exists. The existence of a maximum element for equivalence relations in
P was addressed in [7, Open Question 4.14].

STRONG ISOMORPHISM REDUCTIONS 3

The authors wish to acknowledge the generous support of the John Templeton
Foundation and the Centre de Recerca Matemàtica through the CRM Infinity
Project. Sam Buss’ work was supported in part by NSF grant DMS-0700533.

§2. Some preliminaries. Throughout the paper Σ denotes the alphabet
{0, 1}, and Σ∗ is the set of strings over this alphabet. For n ∈ N we de-
note by 1n the string 11 . . . 1 of length n. An ordered pair (x, y) of strings
x = x1 . . . xk, y = y1 . . . y` with x1, . . . , y` ∈ Σ is coded (identified) with the
string x1x1 . . . xkxk01y1y1 . . . y`y`. We do similarly for tuples of arbitrary length.
Sometimes statements containing a formulation like “there is a d ∈ N such that
for all x ∈ Σ∗: . . . ≤ |x|d” can be wrong for x ∈ Σ∗ with |x| ≤ 1 (here |x| denotes
the length of the string x). We trust the reader’s common sense to interpret such
statements reasonably.

2.1. Structures and classes of structures. A vocabulary τ is a finite set
of relation symbols, function symbols, and constant symbols. The universe of
a τ -structure A will be denoted by the corresponding Latin letter A and the
interpretation of a symbol s ∈ τ in A by sA.

All structures in this paper are assumed to be finite and to have [n] :=
{1, 2, . . . , n} as universe for some n ∈ N.

Therefore, in a canonical way we can identify structures with nonempty strings
over Σ. In particular, |A| for a structure A is the length of the string A. Fur-
thermore, we may assume that for every vocabulary τ there is a polynomial
qτ ∈ N[X] such that |A| ≤ |A| ≤ qτ (|A|) for every τ -structure A, where for a set
M we denote by |M | its cardinality.

A class C of τ -structures is closed under isomorphism if for all structures A
and B

A ∈ C and A ∼= B imply B ∈ C

(recall that we restrict to structures with universe [n] for some n ∈ N).
In the rest of the paper C (and D) will always denote a class of struc-
tures which is in P, is closed under isomorphism, and contains ar-
bitrarily large (finite) structures. Moreover, all structures in a fixed
class will have the same vocabulary.

Examples of such classes are:
• The classes Set, Boole, Field, Group, Abelian, and Cyclic of sets

(structures of empty vocabulary), Boolean algebras, fields, groups, abelian
groups, and cyclic groups, respectively.

• The class Graph of (undirected and simple) graphs. We view graphs as
τGraph-structures, where τGraph := {E} for a binary relation symbol E.

• The class Ord of linear orderings. Here we use the vocabulary τOrd := {<}
with a binary relation symbol <.

• The class Lop of Linear Orderings with a distinguished Point and the class
Lou of Linear Orderings with a Unary relation. Let τLop := τOrd∪{c} with
a constant symbol c and τLou := τOrd ∪ {P} with a unary relation symbol
P . Then Lop (Lou) is the class of all τLop-structures (τLou-structures) A
with (A,<A) ∈ Ord.

4 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

There is a natural one-to-one correspondence between strings in Σ∗ and struc-
tures in Lou, namely the function which assigns to a string x = x1 . . . xn ∈ Σ∗

the structure A ∈ Lou with universe [n], where <A is the natural ordering on
[n] and PA := {i ∈ [n] | xi = 1}.

§3. Strong isomorphism reductions. We define the notion of strong iso-
morphism reduction already indicated in the Introduction and present first ex-
amples.

Definition 3.1. Let C and D be classes. We say that C is strongly iso-
morphism reducible to D and write C≤iso D, if there is a function f : C → D
computable in polynomial time such that for all A,B ∈ C

A ∼= B ⇐⇒ f(A) ∼= f(B).

We then say that f is a strong isomorphism reduction from C to D and write
f : C≤iso D. If C≤iso D and D≤iso C, denoted by C≡iso D, then C and D have
the same strong isomorphism degree.

Examples 3.2. (a) The map sending a field to its multiplicative group shows
that Field≤iso Cyclic.

(b) Cyclic≤iso Abelian≤iso Group; more generally, if C ⊆ D, then idC :
C≤iso D for the identity function idC on C.

(c) Set≡iso Ord≡iso Cyclic.

Remark 3.3. We can reduce the notion of strong isomorphism reduction to
the notion of polynomial time reduction. For this, we introduce the problem

Iso(C)

Instance: A,B ∈ C.
Problem: Is A ∼= B?

A function f : C → D induces the function f̂ : C ×C → D ×D with f̂(A,B) :=(
f(A), f(B)

)
. Then

f : C≤iso D ⇐⇒ f̂ : Iso(C) ≤p Iso(D),

where f̂ : Iso(C) ≤p Iso(D) means that f̂ is a polynomial time reduction from
Iso(C) to Iso(D).

Of course, it is easy to construct polynomial time reductions from Iso(C) to
Iso(D) that are not of the form f̂ for some f : C≤iso D. Moreover, in Remark 5.2
we shall present classes C and D such that

Iso(C) ≤p Iso(D) but not C≤iso D.

This answers [7, Open Question 4.13].

As already mentioned in the Introduction one of our goals is to study the
relation ≤iso . First we see that this relation has a maximum element:

Proposition 3.4. C≤iso Graph for all classes C.

Proof. Let τ be a vocabulary and S be the class of all τ -structures. It is
well-known that there is a strong isomorphism reduction from S to Graph (even

STRONG ISOMORPHISM REDUCTIONS 5

a first-order interpretation, e.g. see [6, Proposition 11.2.5 (i)]). In particular, its
restriction to a class C of τ -structures shows that C≤iso Graph. a

§4. Invariantizations and canonizations. One of the central aims of al-
gebra and of model theory is to describe the isomorphism type of a structure
by means of an invariant. The underlying notion of invariantization is also rele-
vant in our context. We use it (and the related notion of canonization) to show
that most classes of structures mentioned in Section 2.1 have the same strong
isomorphism degree (cf. Corollary 4.8).

Definition 4.1. An invariantization for C is a polynomial time computable
function Inv : C → Σ∗ such that for all A,B ∈ C

A ∼= B ⇐⇒ Inv(A) = Inv(B).

Lemma 4.2. If C≤iso D and D has an invariantization, then also C has an
invariantization.

Proof. If Inv is an invariantization for D and f : C≤iso D, then Inv ◦ f is an
invariantization for C. a

Lou is a maximum class among those with an invariantization:

Proposition 4.3. For a class C the following are equivalent.
1. C has an invariantization.
2. C≤iso Lou.
3. There is a class D of ordered structures such that C≤iso D.

Here, a class D is a class of ordered structures if its vocabulary contains a binary
relation symbol which in all structures of D is interpreted as a linear ordering of
the universe.

Proof. (1) implies (2) by the natural correspondence between strings in Σ∗

and structures in Lou. That (2) implies (3) is trivial. To see that (3) implies
(1) assume that there is a class D of ordered structures such that C≤iso D. As
ordered structures have no nontrivial automorphisms, every ordered structure
A is isomorphic to a unique structure A′ whose ordering <A′

is the natural
linear ordering on its universe {1, . . . , |A′|}. Thus the mapping on D defined by
A 7→ A′ is an invariantization of D. Now we apply Lemma 4.2. a

It is open whether the class Graph has an invariantization or equivalently
(by Proposition 3.4 and Proposition 4.3) whether Lou is a maximum element of
≤iso . Moreover, it is known [11, 15] that an invariantization for Graph yields a
canonization.

Definition 4.4. A function Can : C → C computable in polynomial time is
a canonization for C if

1. for all A,B ∈ C:
(A ∼= B ⇐⇒ Can(A) = Can(B)

)
;

2. for all A ∈ C: A ∼= Can(A).

Every class C of ordered structures, in particular Lou, has a canonization.
In fact, the mapping A 7→ A′ defined for all ordered structures in the previous
proof is a canonization for C.

6 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

We do not define the notion of a logic capturing P on a class C (e.g. see [6]).
However we mention that canonizations and invariantizations are important in
descriptive complexity theory as:

Proposition 4.5. 1. If C has a canonization, then there is a logic captur-
ing P on C.

2. If Graph has an invariantization, then there is a logic capturing P (on all
finite structures).

Clearly, every canonization is an invariantization. Often the invariantizations
we encounter in mathematics yield canonizations. For example, consider the
class Field of fields. Then an invariant for a field K is the pair (pK, nK), where
pK is its characteristic and nK its dimension over the prime field. As for every
invariant (p, n) one can explicitly construct a canonical field Fpn of this invariant,
we see that the mapping K 7→ Fp

nK
K

is a canonization. This canonization has a
further property, it is a canonization that has a polynomial time enumeration:

Definition 4.6. Let Can be a canonization for the class C. The enumeration
induced by Can is the enumeration

A1,A2, . . .

of the image Can(C) of C such that Ai <lex Aj
1 for i < j. If the mappings

An 7→ 1n and 1n 7→ An are computable in polynomial time, then Can has a
polynomial time enumeration.

Note that the mapping An 7→ 1n is computable in polynomial time if and only
if we get an invariantization Inv of C by setting

Inv(A) := 1n ⇐⇒ Can(A) = An.

The classes Set, Field, Abelian, Cyclic, Ord, and Lop have canonizations
with polynomial time enumerations (for Abelian see [13], for example). The
classes Boole and Lou have canonizations but none with a polynomial time
enumeration: For Boole the function 1n 7→ An will not be computable in
polynomial time, as there are, up to equivalence, “too few” Boolean algebras
of cardinality ≤ n, namely blog nc; for Lou the function An 7→ 1n won’t be
computable in polynomial time, as there are “too many” structures in Lou of
cardinality ≤ n, namely 2n+1 − 1.

Theorem 4.7. Assume that the classes C and D have canonizations with poly-
nomial time enumerations. Then C≡iso D.

Corollary 4.8. The classes Set, Field, Abelian, Cyclic,Ord, and Lop

all have the same strong isomorphism degree.

Proof of Theorem 4.7. Let C and D be classes with canonizations CanC

and CanD which have polynomial time enumerations A1,A2, . . . and B1,B2, . . .
respectively. We define a strong isomorphism reduction f from C to D by:

f(A) = Bn ⇐⇒ CanC(A) = An.

Hence, C≤iso D; by symmetry we get D≤iso C. a
1By <lex we denote the standard (length-)lexicographic ordering on Σ∗.

STRONG ISOMORPHISM REDUCTIONS 7

An analysis of the previous proof shows that we already obtain C≤iso D if the
mappings An 7→ 1n and 1n 7→ Bn are computable in polynomial time. By this,
we get, for example, Boole≤iso Cyclic.

§5. On ≤iso below Lop. As we have seen that the structure of ≤iso between
Lou and Graph is linked with central open problems of descriptive complexity,
we turn our attention to the structure below Lou. In this section we show that
there, in fact even below Lop, the structure is quite rich. In fact, this section is
devoted to a proof of the following result: 2

Theorem 5.1. The partial ordering of the countable atomless Boolean algebra
is embeddable into the partial ordering induced by ≤iso on the degrees of strong
isomorphism reducibility below Lop. More precisely, let B be a countable atom-
less Boolean algebra. Then there is a one-to-one function b 7→ Cb defined on B
such that for all b, b′ ∈ B

• Cb is a subclass of Lop;
• b ≤ b′ ⇐⇒ Cb≤iso Cb′ .

Recall that the partial ordering of an atomless Boolean algebra has infinite
antichains and infinite chains, even chains of ordertype the rationals.

Remark 5.2. By the preceding result, for example we see that there ex-
ist an infinite ≤iso -antichain of classes C below Lop, whose problems Iso(C)
are pairwise equivalent under usual polynomial time reductions. Indeed, even
Iso(C) ∈ P for all C ⊆ Lop.

The reader not interested in the details of the proof of Theorem 5.1 should
read until Lemma 5.5 and can then skip the rest of this section. We obtain
Theorem 5.1 by comparing the number of isomorphism types of structures with
universe of bounded cardinality in different classes. First we introduce the rele-
vant notations and concepts.

For a class C we let C(n) be the subclass consisting of all structures in C with
universe of cardinality ≤ n and we let #C(n) be the number of isomorphism
types of structures in C(n), more formally

C(n) := {A ∈ C | |A| ≤ n} and #C(n) := |C(n)/∼=|
Here, for a class of structures S we denote by S/∼= the set of isomorphism classes
in S.

Examples 5.3. 1. #Boole(n) = blog nc, #Cyclic(n) = n, #Set(n) =
#Ord(n) = n + 1.

2. #Lop(n) =
∑n

i=1 i = (n + 1) · n/2 and #Lou(n) =
∑n

i=0 2i = 2n+1 − 1.
3. For every vocabulary τ there is a polynomial pτ ∈ N[X] such that #C(n) ≤

2pτ (n) for all n ∈ N (see Subsection 2.1).
4. (E.g. see [1]) #Group(n) is superpolynomial but subexponential (more

precisely, #Group(n) ≤ nO(log2 n)).

2Recall that up to isomorphism there is a unique countable atomless Boolean algebra (e.g.
see [10]).

8 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

Definition 5.4. A class C is potentially reducible to a class D, written C≤pot D,
if there is some polynomial p ∈ N[X] such that #C(n) ≤ #D(p(n)) for all n ∈ N.
Of course, by C ≡pot D we mean C≤pot D and D≤pot C.

The following lemma explains the term potentially reducible.

Lemma 5.5. If C≤iso D, then C≤pot D.

Proof. Let f : C≤iso D. As f is computable in polynomial time, there is a
polynomial p such that for all A ∈ C we have |f(A)| ≤ p(|A|), where f(A) denotes
the universe of f(A). As f strongly preserves isomorphisms, it therefore induces
a one-to-one map from

{A ∈ C | |A| ≤ n
}
/∼= to

{B ∈ D | |B| ≤ p(n)
}
/∼=. a

We state some consequences of this simple observation:

Proposition 5.6. 1. Cyclic 6≤iso Boole and Lou 6≤iso Lop.
2. C≤pot Lou for all classes C and Lou ≡pot Graph.
3. The strong isomorphism degree of Group is strictly between that of Lop

and Graph, that is, Lop≤iso Group≤iso Graph, but Lop 6≡iso Group

and Group 6≡iso Graph.
4. The potential reducibility degree of Group is strictly between that of Lop

and Lou, that is, Lop≤pot Group≤pot Lou, but Lop 6≡pot Group and
Group 6≡pot Lou.

Proof. Using the previous lemma we see that

• (1) follows by Examples 5.3 (1), (2);
• (2) from Examples 5.3 (2), (3) and Proposition 3.4;
• Group≤iso Graph holds by Proposition 3.4 and Lop≤iso Cyclic≤iso Group

by Corollary 4.8 and Example 3.2 (b); the remaining claims in (3) follow
from (4) as Lou ≡pot Graph;

• the first claim follows from the first claim in (3) as Lou ≡pot Graph; the
remaining claims follow from Examples 5.3 (2), (4).

a
The following concepts and tools will be used in the proof of Theorem 5.1. We
call a function f : N → N value-polynomial if it is increasing and f(n) can be
computed in time f(n)O(1). Let VP be the class of all value-polynomial functions.

For f ∈ VP the set

Cf :=
{A ∈ Lop | |A| ∈ im(f)

}
is in P and is closed under isomorphism. As there are exactly f(k) pairwise
nonisomorphic structures of cardinality f(k) in Lop, we get

#Cf (n) =
∑

k ∈ N with f(k) ≤ n

f(k).

The following proposition contains an essential idea underlying the proof of The-
orem 5.1, even though it is not used explicitly. Loosely speaking, if the gaps
between consecutive values of f ∈ VP “kill” every polynomial, then there are
classes C and D with C 6≤pot D.

STRONG ISOMORPHISM REDUCTIONS 9

Proposition 5.7. Let f ∈ VP and assume that for every polynomial p ∈ N[X]
there is an n ∈ N such that∑

k ∈ N with f(2k) ≤ n

f(2k) >
∑

k ∈ N with f(2k + 1) ≤ p(n)

f(2k + 1). (2)

Then Cg0 is not potentially reducible to Cg1 , where g0, g1 : N → N are defined
by g0(n) := f(2n) and g1(n) := f(2n + 1).

Proof. By contradiction, assume that there is some polynomial p ∈ N[X]
such that #Cg0(n) ≤ #Cg1(p(n)) for all n ∈ N. Choose n such that (2) holds.
Then

#Cg0(n) =
∑

f(2k)≤n

f(2k) >
∑

f(2k+1)≤p(n)

f(2k + 1) = #Cg1(p(n)),

a contradiction. a
Lemma 5.8. The images of the functions in VP together with the finite subsets

of N are the elements of a countable Boolean algebra V (under the usual set-
theoretic operations). The factor algebra V/≡, where for b, b′ ∈ V

b ≡ b′ ⇐⇒ (b \ b′) ∪ (b′ \ b) is finite,

is a countable atomless Boolean algebra.

Proof. For a function f : N → N we denote by im(f) the image of f . Using
the definition of value-polynomial function we verify that for f, g ∈ VP the sets

N \ im(f), im(f) ∩ im(g), and im(f) ∪ im(g)

are images of value-polynomial functions provided they are infinite. For example,
assume that N \ im(f) is infinite. We choose an algorithm A and a polynomial
p ∈ N[X] such that for every n ∈ N the algorithm A computes f(n) in time
p(f(n)). Let h be the function enumerating N \ im(f) in increasing order, that
is, h : N → (N \ im(f)) is increasing and surjective. We show that h is value-
polynomial too.

A corresponding algorithm inductively computes (h(0),m0), (h(1),m1), . . .
with

f(mn) < h(n) < f(mn + 1)

for all n ∈ N; if f(0) > 0 and hence h(0) = 0, we set (h(0),m0) = (0,−1).
For n ≥ 1 the algorithm gets (h(n),mn) from (h(n − 1),mn−1) by the following
steps:

1. Let k := h(n − 1) + 1 and ` := mn−1.
2. Simulate A on ` + 1 for at most p(k) steps.
3. If A does not halt or if it outputs f(`+1) and f(`+1) > k, then (h(n),mn) =

(k, `).
4. Otherwise (i.e., if f(` + 1) = k), let k := k + 1 and ` := ` + 1, and goto 2.

It should be clear that the algorithm yields (h(n),mn) (more precisely, (h(0),m0),
(h(1),m1), . . . , (h(n),mn)) in time polynomial in h(n).

We leave the proof of the remaining claims to the reader. a

10 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

The lemma just proved shows that the set of images of functions in VP has a
rich structure. We compose the functions in VP with a “stretching” function h,
which guarantees that the gaps between consecutive values “kill” every polyno-
mial. Then we can apply the idea of the proof of Proposition 5.7 to show that
the set of the ≤pot -degrees has a rich structure too.

We define h : N → N by recursion: h(0) := 0 and

h(n + 1) = (h(0) + · · · + h(n))n
.

One easily verifies that h is value-polynomial.
For f, g ∈ VP set

f ⊆∗ g ⇐⇒ im(f) \ im(g) is finite.

By the homogeneity properties of atomless countable Boolean algebras, to prove
Theorem 5.1 it suffices to find a corresponding embedding defined only on the
nonzero elements of V/≡. In general f ⊆∗ g and g ⊆∗ f do not imply Ch◦f =
Ch◦g. However, by the following lemma we get an embedding of V/≡ into the
partial ordering of the ≤iso -degrees as required by Theorem 5.1 by defining the
mapping on a set of representatives, more precisely on a set R ⊆ VP such that

• for every f ∈ VP there is exactly one g ∈ R with f ⊆∗ g and g ⊆∗ f .

Lemma 5.9. The mapping f 7→ Ch◦f from VP to {C ⊆ Lou | C a class} is
one-to-one, and for all f, g ∈ VP:

1. if Ch◦f≤iso Ch◦g, then f ⊆∗ g;
2. if f ⊆∗ g and g 6⊆∗ f , then Ch◦f≤iso Ch◦g.

For the proof of Lemma 5.9 we need an appropriate way to invert increasing
functions f : N → N. We define f−1 : N → N by

f−1(n) := max{i | f(i) ≤ n},
where we set max ∅ := 0. We collect some properties of this inverse in the
following lemma, whose simple proof we omit. We denote by idN the identity
function on N.

Lemma 5.10. 1. If f : N → N is increasing, then f−1 is nondecreasing,
f−1 ≤ idN, f−1 ◦ f = idN and f(f−1(n)) ≤ n for all n ≥ f(0).

2. If f, g : N → N are increasing, then (f ◦ g)−1 = g−1 ◦ f−1.
3. If f ∈ VP, then f−1 is computable in polynomial time.

A further notation is useful: For f : N → N let fΣ : N → N be defined by

fΣ(n) :=
∑
i≤n

f(i).

Lemma 5.11. Let f, g : N → N be functions and assume g is increasing. Then
(f ◦ g)Σ ≤ fΣ ◦ g.

Proof. This is seen by direct calculation:

(f ◦ g)Σ(n) =
∑
i≤n

f(g(i)) =
∑

i≤g(n)
i∈im(g)

f(i) ≤
∑

i≤g(n)

f(i) = fΣ ◦ g(n);

here the second equality uses that g is increasing. a

STRONG ISOMORPHISM REDUCTIONS 11

Furthermore observe that:

Lemma 5.12. If f ∈ VP, then for all n ∈ N we have #Cf (n) = (fΣ ◦f−1)(n).

Proof of Lemma 5.9. The mapping f 7→ Ch◦f is one-to-one: Assume Ch◦f =
Ch◦g. Then im(h ◦ f) = im(h ◦ g) and thus, im(f) = im(g) as h is one-to-one.
Since f and g are both increasing, this yields f = g. We prove the remaining
statements of Lemma 5.9 by the following two claims.

Claim 1: Let f, g ∈ VP and f ⊆∗ g and g 6⊆∗ f . Then Ch◦f≤iso Ch◦g.

Proof of Claim 1: By our assumptions, the set im(h ◦ f) \ im(h ◦ g) is finite (as
f ⊆∗ g implies h◦f ⊆∗ h◦g) and (by injectivity of h) the set im(h◦g)\ im(h◦f)
is infinite. Then Ch◦f≤iso Ch◦g is witnessed by a function sending the (up to ∼=)
finitely many structures in Ch◦f \Ch◦g to Ch◦g \Ch◦f and which is the identity
on all other structures in Ch◦f .

Claim 2: Let f, g ∈ VP and f 6⊆∗ g. Then Ch◦f 6≤iso Ch◦g.

Proof of Claim 2: By contradiction assume Ch◦f≤iso Ch◦g. Then Ch◦f is po-
tentially reducible to Ch◦g by Lemma 5.5. Hence there is p ∈ N[X] such that
#Ch◦f (n) ≤ #Ch◦g(p(n)) for all n ∈ N. We show that this is wrong for some n.
For this purpose we choose k such that

g(0) < f(k), p(h(f(k))) < h(f(k) + 1), and f(k) ∈ im(f) \ im(g) (3)

(by the definition of h and the assumption f 6⊆∗ g such a k exists). Then we get

#Ch◦g(p(h(f(k))))

=(h ◦ g)Σ ◦ (h ◦ g)−1(p(h(f(k)))) (by Lemma 5.12)

=(h ◦ g)Σ ◦ (g−1 ◦ h−1)(p(h(f(k)))) (by Lemma 5.10(2))

≤(h ◦ g)Σ ◦ g−1(f(k)) (by p(h(f(k))) < h(f(k) + 1) (see (3))

and by definition of h−1)

=(h ◦ g)Σ ◦ g−1(f(k) − 1) (as f(k) /∈ im(g))

≤hΣ ◦ g ◦ g−1(f(k) − 1) (by Lemma 5.11)

≤hΣ(f(k) − 1) (by Lemma 5.10(1) as g(0) < f(k))

<h(f(k)) (by definition of h)

≤#Ch◦f (h(f(k))) (by definition of #Ch◦f).

a

§6. Strong isomorphism reducibility and potential reducibility. We
know that Graph≤pot Lou (cf. Proposition 5.6 (2)) while Graph≤iso Lou is
equivalent to Graph having an invariantization (cf. Proposition 4.3). However,
so far in all concrete examples of classes C and D, for which we know the status
of C≤iso D and of C≤pot D, we had that

C≤iso D ⇐⇒ C≤pot D.

So the question arises whether the relations of strong isomorphism reducibility
and potential reducibility coincide. Recall that we require the classes C and D

12 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

to be closed under isomorphism and decidable in polynomial time. Generalizing
the proof idea of Theorem 4.7, we shall see in the next section that indeed the
relations ≤iso and ≤pot coincide if P = #P. We believe that they are distinct
but could only show:

Theorem 6.1. If U2EXP ∩ co-U2EXP 6= 2EXP, then the relations of strong
isomorphism reducibility and that of potential reducibility are distinct.

Recall that

2EXP := DTIME
(

22nO(1)
)

and N2EXP := NTIME
(

22nO(1)
)

The complexity class U2EXP consists of those Q ∈ N2EXP for which there is
a nondeterministic Turing machine of type N2EXP that for every x ∈ Q has
exactly one accepting run. Finally, co-U2EXP := {Σ∗ \ Q | Q ∈ U2EXP}.

The rest of this section is devoted to a proof of this result. We explain the
underlying idea: Assume Q ∈ U2EXP∩ co-U2EXP. We construct classes C and
D which contain structures in the same cardinalities and which contain exactly
two nonisomorphic structures in these cardinalities. Therefore they are poten-
tially reducible to each other. While it is trivial to exhibit two nonisomorphic
structures in C of the same cardinality, from any two concrete nonisomorphic
structures in D we obtain information on membership in Q for all strings of a
certain length. If C≤iso D, we get concrete nonisomorphic structures in D (in
time allowed by 2EXP) by applying the strong isomorphism reduction to two
nonisomorphic structures in C and therefore obtain Q ∈ 2EXP.

Proof of Theorem 6.1. Let Q ∈ U2EXP∩co-U2EXP. Then there exists a
nondeterministic Turing machine M and a constant d ≥ 2 such that (M1)–(M5)
hold:

(M1) The machine M has three terminal states ‘yes,’ ‘no,’ and ‘maybe.’

(M2) For x ∈ Σ∗, every run of M on input x stops after exactly 22|x|d
many steps.

(M3) For x ∈ Q exactly one run of M on x stops in ‘yes’ and none in ‘no.’
(M4) For x 6∈ Q exactly one run of M on x stops in ‘no’ and none in ‘yes.’
(M5) The machine M has exactly two different choices for the next step in every

nonterminal state.
We say that a run of M takes a decision if it ends in ‘yes’ or in ‘no.’

For n ∈ N we set `(n) := 22nd

. For x ∈ Σn, by (M2) and (M5), every run of
M on input x can be identified with a binary string r ∈ {0, 1}`(n). Conversely,
from such a string r we can determine a run of M on x.

Let m(n) := 2n and x1, x2, . . . , xm(n) be the enumeration of all strings of Σn

in the lexicographic ordering. We call a binary string s of length m(n) · `(n) =

2n · 22nd

a decision string if for every i ∈ [m(n)] the ith substring of s of length
`(n) corresponds to a run of M on xi taking a decision; more precisely, if we have
s = s1̂s2̂ · · ·̂ sm(n) with |si| = `(n) for i ∈ [m(n)], then si corresponds to a run of
M on xi taking a decision. By our assumptions (M3) and (M4) we get:

for every n ∈ N there is exactly one decision string of length m(n) · `(n). (4)

STRONG ISOMORPHISM REDUCTIONS 13

We turn every string s of length m(n) · `(n) into a structure A(s) over the
vocabulary τ = {One,Zero, R}, where One and Zero are unary relation symbols
and R is a binary relation symbol. Let

A(s) := [m(n) · `(n)],

RA(s) :=
{
(j, j + 1) | j ∈ [m(n) · `(n) − 1]

}
.

For s a decision string, let

OneA(s) :=
{
j | j ∈ [m(n) · `(n)] and the jth bit of s is one

}
,

ZeroA(s) :=
{
j | j ∈ [m(n) · `(n)] and the jth bit of s is zero

}
,

and let OneA(s) = ZeroA(s) = ∅ otherwise. By (4) for every s, s′ ∈ {0, 1}m(n)·`(n)

A(s) 6∼=A(s′) ⇐⇒ exactly one of s and s′ is a decision string. (5)

Let Dn be the class containing, up to isomorphism, the structures A(s) with
s ∈ {0, 1}m(n)·`(n). The following is straightforward.
(D1) The universe of every structure in Dn has cardinality m(n) · `(n).
(D2) |Dn/∼=| = 2.
We set

D :=
⋃
n∈N

Dn.

Finally, we let

C :=
⋃
n∈N

Cn,

where for n ∈ N every structure in the class Cn is isomorphic to the complete
graph Km(n)·`(n) on m(n) · `(n) vertices or to its complement K̄m(n)·`(n). Then:
(C1) The universe of every structure in Cn has cardinality m(n) · `(n).
(C2) |Cn/∼=| = 2.
Hence, C≤pot D.

Claim: Assume f : C≤iso D. Then there is n0 ∈ N such that for all n ≥ n0

f (Cn/∼=) = Dn/∼=. (6)

By this equality we mean:
• f(A) ∈ Dn for every A ∈ Cn;
• for every B ∈ Dn there exists an A ∈ Cn such that f(A) ∼= B.

Proof of the Claim: First observe that by (C2) and (D2) it suffices to show that
f (Cn) ⊆ Dn for all sufficiently large n ∈ N. As f is computable in polynomial
time there is c ∈ N such that for every n ∈ N and A ∈ Cn

the universe of f(A) has ≤ (
2n · 22nd)c elements.

We choose n0 ∈ N such that for all n ≥ n0(
2n · 22nd

)c

< 2n+1 · 22(n+1)d

.

14 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

Hence, for n ≥ n0

f


 ⋃

q≤n

Cq


 ⊆

⋃
q≤n

Dq.

As
⋃

q≤n Cq and
⋃

q≤n Dq contain, up to isomorphism, the same number of
structures, the Claim follows.

Now assume that f : C≤iso D. Then the following algorithm A witnesses that
Q ∈ 2EXP. Let n0 be as in the Claim. For x ∈ Σn with n ≥ n0 the algorithm
A computes the structures

f
(
Km(n)·`(n)

)
and f

(
K̄m(n)·`(n)

)
;

they are nonisomorphic and in Dn by the Claim. In particular, by (5) we get a
run of M on input x taking a decision; the algorithm A answers accordingly. a

§7. If strong isomorphism reducibility and potential reducibility are
distinct then P 6= #P. In the previous section we have seen that under some
complexity-theoretic assumption the two notions of reduction (strong isomor-
phism reducibility and potential reducibility) are distinct. One might wonder
whether we can separate them without any such complexity-theoretic assump-
tion. We show in this section that this would settle some open problem in
complexity theory; more precisely, we show the statement of the title of this sec-
tion.3 In particular, by Proposition 5.6 (2), if Lou is not a maximum element
of ≤iso , then P 6= #P. We prove the main result in a more general setting.

For a class C consider the equivalence relation E(C) on Σ∗ induced by the
isomorphism relation, that is,

E(C) :=
{
(A,B) | A,B ∈ C and A ∼= B} ∪ {

(x, y) | x, y ∈ Σ∗, x /∈ C and y /∈ C
}
.

(7)

Of course, E(C) is in NP. In this section we consider arbitrary such equivalence
relations on Σ∗ and show that the corresponding two notions of reduction coin-
cide if P = #P. We start by introducing all relevant concepts; we do not restrict
ourselves to equivalence relations in NP, but consider equivalence relations in
an arbitrary complexity class (for an equivalence relation E on Σ∗ we also write
xEy for (x, y) ∈ E).

Definition 7.1. 1. Let CC be an arbitrary complexity class. Then we
denote by CC(eq) the set of equivalence relations E on Σ∗ with E ∈ CC.

2. Let E and E′ be equivalence relations on Σ∗. We say that E is strongly
equivalence reducible to E′ and write E≤eq E′, if there is a function f :
Σ∗ → Σ∗ computable in polynomial time such that for all x, y ∈ Σ∗

xEy ⇐⇒ f(x)E′f(y).

We then say that f is a strong equivalence reduction from E to E′ and write
f : E≤eq E′.

3Recall that P = #P means that for every polynomial time nondeterministic Turing machine
M the function fM such that fM(x) is the number of accepting runs of M on x ∈ Σ∗ is
computable in polynomial time. The class #P consists of all the functions fM.

STRONG ISOMORPHISM REDUCTIONS 15

Clearly, E(C) ∈ NP(eq) for every class C of structures; furthermore, E(Lou) ∈
P(eq). Let Prop and Taut denote the set of all formulas of propositional logic
and the set of tautologies, respectively. Note that Eequiv ∈ co-NP(eq), where

Eequiv := {(α, β) | α, β ∈ Prop and (α ↔ β) ∈ Taut} ∪ {(x, y) | x, y /∈ Prop}.
Clearly, if C and D are classes of structures as in the previous sections, then

C≤iso D ⇐⇒ E(C)≤eq E(D).

We generalize the notion of potential reducibility to equivalence relations.

Definition 7.2. Let E and E′ be equivalence relations on Σ∗. We say that E
is potentially reducible to E′ and write E≤pot E′ if there is a p ∈ N[X] such that
for all n ∈ N the number |Σ≤n/E| of E-equivalence classes containing a string
in Σ≤n :=

{
x ∈ Σ∗ | |x| ≤ n

}
is at most

∣∣Σ≤p(n)/E′∣∣.
Due to our definition (7) of E(C), the new notion coincides with the old one

for equivalence relations of the form E(C):

Proposition 7.3. Let C and C ′ be classes. Then

C≤pot C ′ ⇐⇒ E(C)≤pot E(C ′).

Proof. Recall that the empty string is not (the encoding of) a structure. Let
C be a class of τ -structures and C ′ a class of τ ′-structures. By the assumptions
made in Subsection 2.1, there are polynomials pτ , pτ ′ ∈ N[X] such that for every
τ -structure A

|A| ≤ |A| ≤ pτ (|A|) (8)

and for every τ ′-structure B
|B| ≤ |B| ≤ pτ ′(|B|). (9)

Assume first that C≤pot C ′, say #C(n) ≤ #C ′(p(n)) for some polynomial p.
Then

|Σ≤n/E(C)| ≤ #C(n) + 1 ≤ #C ′(p(n)) + 1 ≤ |Σ≤pτ′ (p(n))/E(C ′)|
(the first inequality holds by (7) and (8), the last one by (7) and (9)). Conversely,
assume that E(C)≤pot E(C ′), say |Σ≤n/E(C)| ≤ ∣∣Σ≤p(n)/E(C ′)

∣∣ with p ∈ N[X].
Then

#C(n) + 1 ≤ |Σ≤pτ (n)/E(C)| ≤
∣∣∣Σ≤p(pτ (n))/E(C ′)

∣∣∣ ≤ #C ′(p(pτ (n))) + 1.

a
Along the lines of the proof of Lemma 5.5, one shows that E≤eq E′ implies

E≤pot E′. For equivalence relations we can show that ≤eq is finer than ≤pot

under weaker assumptions than that of Theorem 6.1:

Proposition 7.4. If NP 6= P, then the relations of strong equivalence reduc-
tion and that of potential reducibility do not coincide on NP(eq).

16 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

Proof. Assume Q ∈ NP \ P. We define EQ by

xEQy ⇐⇒
(
x = y or

(
x = b̂ z and y = (1 − b)̂ z for some z ∈ Q and b ∈ Σ

))
.

By our assumptions on Q, we have EQ ∈ NP(eq). We let E be the identity on
Σ∗. Clearly, EQ≤pot E. As Q /∈ P, we get EQ 6≤eq E, as any f : EQ≤eq E would
yield a polynomial time decision procedure for Q. a

Generalizing the proof idea of Theorem 4.7 we show:

Theorem 7.5. If the relations of strong equivalence reduction and that of po-
tential reducibility do not coincide on NP(eq), then P 6= #P.

To prove this theorem we first generalize the notions of canonization and of
enumeration induced by a canonization.

Definition 7.6. Let E ∈ CC(eq). A function Can : Σ∗ → Σ∗ is a canoniza-
tion for E if it is polynomial time computable and

1. for all x, y ∈ Σ∗:
(
xEy ⇐⇒ Can(x) = Can(y)

)
;

2. for all x ∈ Σ∗: xE Can(x).
Let Can be a canonization of E. The enumeration induced by Can is the
enumeration

x1, x2 . . .

of Can(Σ∗) such that xi <lex xj for i < j.

If E has a canonization, then E ∈ P: to decide whether xEy we compute
Can(x) and Can(y) and check whether Can(x) = Can(y).

Now it is easy to explain the idea underlying the proof of Theorem 7.5. First we
show that (under the assumption P = NP) every E ∈ P(eq) has a canonization
CanE . Then, given E,E′ ∈ P(eq), we define a strong equivalence reduction
f : Σ∗ → Σ∗ from E to E′ as follows: Let x ∈ Σ∗. If CanE(x) is the ith element
in the enumeration induced by CanE , then we let f(x) be the ith element in the
enumeration induced by CanE′ . By the properties of canonizations it should be
clear that

xEy ⇐⇒ f(x)E′f(y)

(we can even replace f(x)E′f(y) by f(x) = f(y)). So it remains to show (under
suitable assumptions) that f is computable in polynomial time and to show that
every equivalence relation has a canonization.

The following lemma was already proven in [2].

Lemma 7.7. If P = NP, then every E ∈ P(eq) has a canonization; in fact,
then the mapping sending each x ∈ Σ∗ to the ≤lex -first member of the E-
equivalence class of x is a canonization.

Proof. Let E ∈ P(eq) and assume P = NP. Then we know that the polyno-
mial hierarchy collapses, P = PH. So it suffices to show that the mapping defined
in the statement of this lemma can be computed by an alternating polynomial
time algorithm A with a constant number of alternations. This is easy: on input
x ∈ Σ∗ the algorithm A guesses existentially y ∈ Σ∗ with |y| ≤ |x| and xEy;

STRONG ISOMORPHISM REDUCTIONS 17

then A guesses universally a further z ∈ Σ∗ with |z| ≤ |x| and xEz; if y≤lex z,
then A outputs y otherwise it rejects. a

Lemma 7.8. Let E ∈ P(eq) be an equivalence relation with a canonization
Can. Then the following problem is in #P:

Instance: x ∈ Σ∗.
Problem: Compute i (in binary) such that Can(x) is the ith element

in the enumeration induced by Can.

Proof. Consider a nondeterministic polynomial time algorithm A which on
input x ∈ Σ∗ runs as follows: It first computes the string y := Can(x). Then
A guesses a string z ∈ Σ∗ with |z| ≤ |y|. Finally it accepts if Can(z) = z and
z ≤lex y. It should be clear that the number of accepting runs of A on x is

|{z | z ≤lex Can(x) and Can(z) = z}|.
a

Proof of Theorem 7.5. Assume that P = #P. Let E,E′ ∈ NP(eq) be
equivalence relations and assume that E≤pot E′, that is, |Σ≤n/E| ≤ |Σ≤p(n)/E′|
for some polynomial p and all n ∈ N. We show E≤eq E′.

As P = #P, we have P = NP. Hence E,E′ ∈ P(eq). Therefore, by Lemma 7.7
there are canonizations CanE of E and CanE′ of E′ and there are polynomial
time algorithms A and A′ that solve the problem of the preceding lemma for
E and E′, respectively. The following nondeterministic polynomial time al-
gorithm computes an f : E≤eq E′. On input x ∈ Σ∗, it computes CanE(x)
and n := |CanE(x)| and guesses a string x′ ∈ Σ≤p(n) with CanE′(x′) = x′.
Simulating A and A′, it checks whether CanE(x) and x′ are at the same posi-
tion in the enumeration induced by CanE and in the enumeration induced by
CanE′ , respectively; in the positive case it outputs x′, otherwise it rejects. As
|Σ≤n/E| ≤ |Σ≤p(n)/E′| such an x′ ∈ Σ≤p(n) with CanE′(x′) = x′ at the same po-
sition as CanE(x) exists. As P = NP, the function f is computable in polynomial
time. a

We briefly point to the papers [2, 3, 7] that deal with related problems. Let
Inv(eq) be the class of equivalence relations having an invariantization (defined
in analogy to Definition 4.1), Can(eq) the class of equivalence relations having a
canonization and finally, Lexfirst(eq) the class of equivalence relations having a
canonization that maps every string to the ≤lex -first element of its equivalence
class. Clearly

Lexfirst(eq) ⊆ Can(eq) ⊆ Inv(eq) ⊆ P(eq). (10)

Lemma 7.7 shows that Lexfirst(eq) = Can(eq) = Inv(eq) = P(eq) if P = #P.
Blass and Gurevich [2], for example, prove that Lexfirst(eq) 6= Can(eq) unless the
polynomial hierarchy collapses, and Fortnow and Grochow [7] show that Can(eq)
= Inv(eq) would imply that integers can be factored in probabilistic polynomial
time. Blass and Gurevich [2, 3] compare the complexity of the “problems un-
derlying the definition of the sets in (10).” Finally, the book [16], among other
things, deals with the question whether two propositional formulas are logically
equivalent up to a permutation of their variables. It is not hard to see that the

18 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

isomorphism problem for a class C can be rephrased in these terms; however no
analogue of ≤iso is considered in [16].

§8. On maximum elements in P(eq) and NP(eq). In this section we
study whether there is a maximum element with respect to strong equivalence
reductions in the classes P(eq) and NP(eq), that is, in the classes of determin-
istic and nondeterministic polynomial time equivalence relations. We already
mentioned that the existence of a maximum element in P(eq) is mentioned as
[7, Open Question 4.14]; the notion of strong equivalence reduction was already
introduced in that paper and called kernel reduction there.

Let Sat be the set of satisfiable propositional formulas. Consider the NP-
equivalence relation

Esat :=
{
(α, β) | α, β ∈ Prop and

(
α = β or α, β ∈ Sat

)}
;

more precisely, to get an equivalence relation on Σ∗, we define Esat to be{
(α, β) | α, β ∈ Prop and

(
α = β or α, β ∈ Sat

)} ∪ {
(x, y) | x, y /∈ Prop

}
.

However, henceforth if we speak of an equivalence relation E whose field Fld(E) :=
{x | (x, x) ∈ E} is a proper subset of Σ∗, we identify it with the equivalence re-
lation E ∪ {

(x, y) | x, y ∈ Σ∗ \ Fld(E)
}
. We use Esat to show:

Proposition 8.1. If the polynomial hierarchy PH does not collapse, then
E(Graph) is not a maximum element in (NP(eq),≤eq); in fact, then Esat 6≤eq

E(Graph).

Proof. For α ∈ Prop and a propositional variable X we have (α ∈ Sat ⇐⇒
αEsatX). By contradiction, assume that f : Esat≤eq E(Graph). We have
f(X) ∈ Graph; otherwise, Sat ∈ P, which contradicts our assumption that
the polynomial hierarchy does not collapse. Then for every α ∈ Prop

α ∈ Sat ⇐⇒ f(α) ∼= f(X).

Thus E(Graph) would be NP-complete. It is well-known [4] that this implies
Σp

2 = PH. a
We show that the existence of a maximum element in (NP(eq),≤eq) is equiv-

alent to the existence of an effective enumeration of NP(eq). This result is also
true for P(eq) and co-NP(eq). Effective enumerations of problems have been used
to characterize promise classes possessing complete languages, that is, maximum
elements under polynomial time reductions (e.g., see [12, 14]). Even though we
are dealing with a different type of reduction, our method is similar. To state our
precise result we introduce some notions. A deterministic or nondeterministic
Turing machine M is clocked (more precisely, polynomially time-clocked), if (the
code of) M contains a natural number time(M) such that ntime(M) is a bound for
the running time of M on inputs of length n. So, by this definition, all runs of a
clocked machine are of polynomial length. Of course, the function M 7→ time(M),
defined on the set of clocked machines, is computable in polynomial time.

Definition 8.2. Let CC ∈ {P,NP, co-NP}. Let L be a set of languages L
with L ⊆ Σ∗. We say that

L0, L1, . . .

STRONG ISOMORPHISM REDUCTIONS 19

is a CC-enumeration of L by clocked Turing machines, if L = {L0, L1, . . . } and
there is a computable function M defined on N such that M(i) for i ∈ N is (the
code of) a clocked Turing machine of type CC accepting Li.

Proposition 8.3. Let CC ∈ {P,NP, co-NP}. Then the following are equiva-
lent:

1. (CC(eq),≤eq) has a maximum element.
2. There is a CC-enumeration E0, E1, . . . of CC(eq) by clocked Turing ma-

chines.

Proof. (1) ⇒ (2): Assume that E is a maximum element in (CC(eq),≤eq)
and let Mmax be a Turing machine of type CC accepting E. Of course, there is
a computable function M′ such that M′(i) for i ∈ N is a deterministic clocked
Turing machine computing a function fi : Σ∗ → Σ∗ such that f0, f1, . . . is an
enumeration of all polynomial time computable functions from Σ∗ to Σ∗. We
define the machine Mmax◦M′(i) in a straightforward manner such that it decides

Ei :=
{
(x, y) | (fi(x), fi(y)) ∈ E

}
.

We let M be the function defined on N with M(i) := Mmax ◦ M′(i). As from
a polynomial bounding Mmax and time(M′(i)) we get a time bound for M(i),
we can assume that M(i) is clocked. It should be clear that E0, E1, . . . has the
desired properties.

(2) ⇒ (1): Let E0, E1, . . . be as in (2) and let M be a corresponding computable
function. By padding if necessary, we may assume that the graph {(1i, 1|M(i)|) |
i ∈ N} is decidable in polynomial time and that i ≤ |M(i)| for all i ∈ N. We
define the relation E as follows (for better reading we denote here, and in the
proof of Lemma 8.6, the string 1`, that is the string 11 . . . 1 of length `, by 〈`〉):
E :=

{(
(M(i), x, 〈(2 + 2|x|)time(M(i))〉), (M(i), y, 〈(2 + 2|y|)time(M(i))〉)

)
∣∣∣ i ∈ N and (x, y) ∈ Ei

}
.

By the effectivity properties of M, we have E ∈ CC(eq) (more precisely E ∪
{(x, y) | x, y ∈ Σ∗ \ Fld(E)} ∈ CC(eq)). Clearly, for i ∈ N the mapping x 7→
(M(i), x, 〈(2 + 2|x|)time(M(i))〉) is a strong equivalence reduction from Ei to E,
hence E is a maximum element. a

Below we will show that (NP(eq),≤eq) has a maximum element if NP =
co-NP. Note that we do not even know whether (P(eq),≤eq) has a maximum
element. The main result concerning this problem that we have reads as follows
(later we recall the definition of p-optimal proof system):

Theorem 8.4. If Taut has a p-optimal proof system, then (P(eq),≤eq) has
a maximum element.

The following observations will lead to a proof of this result.

Definition 8.5. Let M be a deterministic or nondeterministic Turing ma-
chine and n ∈ N. The machine M defines an equivalence relation on Σ≤n if the
set {

(x, y) | x, y ∈ Σ≤n and M accepts (x, y)
}

20 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

is an equivalence relation on Σ≤n.

An analysis of the complexity of the first of the following problems will be
crucial for our purposes.

Equiv(P)

Instance: A deterministic clocked Turing machine M and n ∈ N.
Problem: Does M define an equivalence relation on Σ≤n?

Equiv(NP)

Instance: A nondeterministic clocked Turing machine M and n ∈ N.
Problem: Does M define an equivalence relation on Σ≤n?

Lemma 8.6. 1. If (M, n) ∈ Equiv(P) is solvable by a deterministic algo-
rithm in time nf(‖M‖) for some function f : N → N, then P(eq) has a
maximum element.4

2. If (M, n) ∈ Equiv(NP) is solvable by a nondeterministic algorithm in time
nf(‖M‖) for some function f : N → N, then NP(eq) has a maximum ele-
ment.

Proof. Let A be an algorithm, deterministic for (1) and nondeterministic for
(2), witnessing that (M, n) ∈ Equiv(P) in (1) and (M, n) ∈ Equiv(NP) in (2)
is solvable in time nf(‖M‖) for some f : N → N. An equivalence relation E0 on
Σ∗ is defined by letting uE0v hold if and only if

u = v or
(
u =

(
M, x, (2 + 2 · |x|)time(M), 1t

)
and

v =
(
M, x′, (2 + 2 · |x′|)time(M), 1t′) and (i) – (iii) are fulfilled

)
,

where
(i) M is a clocked Turing machine of type CC, where CC = P for (1) and

CC = NP for (2);
(ii) A accepts (M, |x|) in at most t steps and (M, |x′|) in at most t′ steps;
(iii) M accepts (x, x′).
Clearly, E0 ∈ CC(eq). We show that E0 is a maximum element. Let E ∈ CC(eq)
be arbitrary and let M be a clocked Turing machine deciding E. Then

x 7→ (M, x, (2 + 2 · |x|)time(M), 〈|x|f(‖M‖)〉)
is computable in polynomial time and hence a strong equivalence reduction from
E to E0. a

Theorem 8.7. 1. If E = NE, then P(eq) has a maximum element.
2. If NP = co-NP, then NP(eq) has a maximum element.

Proof. (1) We may assume that n is written in binary in the instances (M, n)
of Equiv(P) (and that a string of length ‖M‖ · log n is given as an additional
input). We consider the following nondeterministic algorithm A accepting the
complement of Equiv(P). On input (M, n), it guesses one of the three axioms of
an equivalence relation, say, the transitivity axiom; then A guesses x, y, z ∈ Σ≤n,
it simulates M on input (x, y), on input (y, z), and on input (x, z) and accepts

4By ‖M‖ we denote the length of a reasonable encoding of M by a string of Σ∗.

STRONG ISOMORPHISM REDUCTIONS 21

if M accepts the first two inputs but not the third one. As we may assume that
‖M‖ ≥ time(M), the algorithm A runs in time ‖M‖ · nO(time(M)) = 2O(‖M‖·log n).
By the assumption E = NE, there is a deterministic algorithm deciding the
complement of Equiv(P) and hence Equiv(P) itself in time 2O(‖M‖·log n). Now
our claim follows from the preceding lemma.

(2) The following alternating algorithm A decides the complement of Equiv(NP):
On input (M, n) (again we may assume that ‖M‖ ≥ time(M)), it existentially
guesses one of the three axioms of an equivalence relation, say, the transitivity
axiom; then A existentially guesses x, y, z ∈ Σ≤n and runs of M accepting (x, y)
and (y, z); furthermore it yields the string 〈n‖M‖〉. Finally A universally simulates
M on input (x, z) and accepts if M rejects. The algorithm A has one alterna-
tion. By our assumption NP = co-NP, its universal part (an algorithm of type
co-NP with inputs M, (x, z), and 〈n‖M‖〉) can be simulated by a nondetermin-
istic algorithm running in time nO(‖M‖). Altogether we get a nondeterministic
algorithm accepting (the complement of) Equiv(NP) in time nO(‖M‖). Now our
claim follows from the preceding lemma. a

We consider the acceptance problem for nondeterministic Turing machines:

Acc≤
Instance: A nondeterministic Turing machine M and n ∈ N.
Problem: Does M accept the empty input tape in ≤ n steps?

Lemma 8.8. The following are equivalent:

1. (M, n) ∈ Acc≤ is solvable deterministically in time nf(‖M‖) for some f :
N → N.

2. (M, n) ∈ Equiv(P) is solvable deterministically in time nf(‖M‖) for some
f : N → N.

Proof. (1) ⇒ (2): Assume that (M, n) ∈ Acc≤ (where M is a nondetermin-
istic machine and n ∈ N) can be solved by an algorithm A in time nf(‖M‖) for
some f : N → N. Then the following algorithm B will witness that Equiv(P) is
decidable in the time claimed in (2). Let (M, n) be an instance of Equiv(P), in
particular M is a deterministic clocked Turing machine. We may assume that
M on input (x, y) runs for exactly |(x, y)|time(M) steps. Let M̃ be the nondeter-
ministic Turing machine that on empty input tape, in the first phase guesses
one of the three axioms of an equivalence relation, say, the transitivity axiom;
then in the second phase M̃ guesses x, y, z ∈ Σ∗; finally in the third phase it
simulates M on input (x, y), on input (y, z), and on input (x, z) and accepts if M
accepts the first two inputs but not the third one. We can assume that M̃ does
this simulation in such a way that it runs for exactly (2+2 ·max{x, y, z})time(M)

steps on each of the tuples (x, y), (y, z), and (x, z).
Let k1, k2(x, y, z), and k3(x, y, z) be the exact time M̃ uses for the first phase,

the second phase and the third phase, respectively. As indicated for the third
phase we may arrange things in such a way that there are (nonconstant) poly-
nomials k′

2, k
′
3 such that

k2(x, y, z) = k′
2(max{|x|, |y|, |z|}) and k3(x, y, z) = k′

3(max{|x|, |y|, |z|})

22 S. BUSS, Y. CHEN, J. FLUM, S.-D. FRIEDMAN, AND M. MÜLLER

and such that if for example M̃ has chosen the symmetry axiom and x, y ∈ Σ∗,
then k′

2(max{|x|, |y|}) is also the exact number of steps M̃ uses for the second
phase. As k′

2 and k′
3 are increasing functions, we get

(M, n) /∈ Equiv ⇐⇒ (M̃, k + k′
2(n) + k′

3(n)) ∈ Acc≤,

which gives the desired bound.

(2) ⇒ (1): For a nondeterministic Turing machine M let M̂ be the deterministic
Turing machine that on input (x, y) with x, y ∈ Σ∗ first checks whether x 6= y;
if so, it accepts; if x = y, it simulates the |x| steps of a run of M on empty input
tape, namely the steps corresponding to (the bits in) x and rejects if in these |x|
steps M accepts; otherwise M̂ accepts. Thus for every n ∈ N

(M, n) ∈ Acc≤ ⇐⇒ M̂ does not define an equivalence relation on Σ≤n.

As from the definition of M̂ we immediately get a polynomial time bound, we
can assume that M̂ is clocked, so that the preceding equivalence immediately
gives the claim. a

A proof system for TAUT is a surjective function S : Σ∗ → TAUT computable
in polynomial time. The proof system S for TAUT is p-optimal if for every proof
system S′ for TAUT there is a polynomial time computable T : Σ∗ → Σ∗ such
that for all w ∈ Σ∗

S(T (w)) = S′(w).

It is not known whether there is a p-optimal proof system for TAUT, even though
it is conjectured there is no such p-optimal proof system. In [5] it has been shown
that:

Proposition 8.9. The following are equivalent:
1. There is a p-optimal proof system for TAUT.
2. (M, n) ∈ Acc≤ is solvable in time nf(‖M‖) for some function f : N → N.

Proof of Theorem 8.4. If there is a p-optimal proof system for TAUT,
by the previous proposition and Lemma 8.8 we see that (M, n) ∈ Equiv(P) is
solvable in time nf(‖M‖) for some function f : N → N. Now the claim follows
from Lemma 8.6. a

REFERENCES

[1] H.U. Besche, B. Eick and E.A. O’Brien. The groups of order at most 2000, Electronic
Research announcements of the American Mathematical Society, 7:1–4, 2001.

[2] A. Blass and Y. Gurevich. Equivalence relations, invariants, and normal forms. SIAM
Journal of Computing, 13:682–689, 1984.

[3] A. Blass and Y. Gurevich. Equivalence relations, invariants, and normal forms, II. Lec-
ture Notes in Computer Science, 171:24–42, 1984.

[4] R. B. Boppana, J. Hastad and S. Zachos. Does co-NP have short interactive proofs?
Information Processing Letters, 25(2):127-132, 1987.

[5] Y. Chen and J. Flum. On p-optimal proof systems and logics for PTIME. In Proceedings
of the 37th International Colloquium on Automata, Languages and Programming (ICALP’10),
Lecture Notes in Computer Science 6199, pp. 321–332, Springer, 2010.

STRONG ISOMORPHISM REDUCTIONS 23

[6] H.-D. Ebbinghaus and J. Flum. Finite Model Theory, Second Edition. Perspectives in
Mathematical Logic, Springer 1999.

[7] L. Fortnow and J. Grochow. Complexity classes of equivalence problems revisited,
arXiv:0907.4775v1 [cs.CC], 2009.

[8] S. Friedman. Descriptive set theory for finite structures, Lecture at the
Kurt Gödel Research Center, 2009, Available at http://www.logic.univie.ac.at/~sdf

/papers/wien-spb.pdf

[9] H. Friedman and L. Stanley. A Borel reducibility theory for classes of countable struc-
tures, Journal Symbolic Logic 54, (1989), 894–914.

[10] S. Givant and P. Halmos. Introduction to Boolean algebras, Springer, 2008.
[11] Y. Gurevich. From invariants to canonization. Bull. Europ. Assoc. Theor. Comp. Sci

63, pp. 115–119, 1997.
[12] J. Hartmanis and L. Hemachandra. Complexity classes without machines: On complete

languages for UP. Theoretical Computer Science 58, 129–142, 1988.
[13] T. Kavitha. Efficient algorithms for abelian group isomorphism and related problems.

In Proceedings of the 23rd Conference on Foundations of Software Technology and Theoreti-
cal Computer Science (FSTTCS’02), Lecture Notes in Computer Science 2914, pp. 277–288,
Springer, 2003.

[14] W. Kowalczyk. Some connections between presentability of complexity classes and the
power of formal systems of reasoning. In Proceedings of Mathematical Foundations of Computer
Science, (MFCS’84), Lecture Notes in Computer Science 176, Springer, pp. 364–369, 1984.

[15] G. Miller. Isomorphism testing for graphs of bounded genus. In Proceedings of the 12th
Annual ACM Symposium on Theory of Computing (STOC’80), 225–235, 1980.

[16] T. Thierauf. The computational complexity of equivalence and isomorphism problems.
Lecture Notes in Computer Science, 1852, Springer, 2000.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA, SAN DIEGO

LA JOLLA, CALIFORNIA 92093-0112, USA

E-mail : sbuss@math.ucsd.edu

BASIC STUDIES IN COMPUTING SCIENCE (BASICS)

DEPARTMENT OF COMPUTER SCIENCE

SHANGHAI JIAOTONG UNIVERSITY

SHANGHAI 200030, CHINA

E-mail : yijia.chen@cs.sjtu.edu.cn

MATHEMATISCHES INSTITUT

ALBERT-LUDWIGS UNIVERSITÄT FREIBURG

79104 FREIBURG, GERMANY

E-mail : joerg.flum@math.uni-freiburg.de

KURT GÖDEL RESEARCH CENTER

WÄHRINGER STRAßE 25

A-1090 WIEN, AUSTRIA

E-mail : sdf@logic.univie.ac.at

CENTRE DE RECERCA MATEMÀTICA

CAMPUS BELLATERRA, EDIFICI C

08193 BELLATERRA (BARCELONA), SPAIN

E-mail : mmueller@crm.cat

