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1 Introduction

The intuitionistic calculus was introduced to capture reasoning in constructive
mathematics. As such it has much more constructive character than classical
logic. This property of the intuitionistic calculus has been extensively studied,
but mostly from the point of view of computability and little has been proved
about computational complexity. The aim of this paper is to show that the
constructive character of intuitionistic logic manifests itself not only on the
level of computability but, in case of the propositional fragment, also on the
level of polynomial time computability.

Recent progress in proof complexity of propositional logic, which concerns
various proof systems, suggest that the study of the complexity of intuitionistic
propositional proofs may be a fruitful area. In particular for several classical
calculi a so-called feasible interpolation theorem was proved [5, 7, 9]. Such
theorems enable one to extract a boolean circuit from a proof; the size of the
circuit is polynomial in the size of the proof. Indeed, feasible interpolation
theorem was proved for the intuitionistic sequent calculus in [8]. The proof
was based on the result of Buss and Mints [3] which shows that the well-known
disjunction property can be witnessed by polynomial algorithms in case of the
propositional fragment of the intuitionistic calculus.

In this paper we further generalize the two results on the intuitionistic propo-
sitional calculus. The ultimate aim is to obtain a realizability theorem for in-
tuitionistic propositional proofs based on polynomial time computations. We
prove a result in this direction (Theorem 3), but we suspect that it is not the best
possible result of this type. On the other hand, we show that boolean circuits
cannot be replaced by a more restricted type of computation (section 5).

Our proof technique is extracted from [3]. In this paper we make it more
explicit (Theorem 1) and use the sequent calculus instead of the natural deduc-
tion system used in [3]. Goerdt [4] has also proved some related extensions of
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the results in [3], but his main result is weaker than our Theorem 1.
In section 6 we prove some corresponding results for first order intuitionistic
logic.

2 Cut elimination

We are working exclusively with propositional logic for now. The sequent cal-
culus for intuitionistic logic is formulated in the usual way. Each sequent has
at most one formula in the succedent. We shall adopt the convention that the
antecedents of sequents are multisets of formulas, and freely use notions like
“ancestor” and “direct ancestor” which can readily be defined similarly to the
definitions in [2]. Our propositional language contains the logical symbols A, V,
D and L. A negation —A is treated as being an abbreviation of A D L. Initial
sequents are A— A with A required to be a propositional variable, and | —>.

Definition Let P be a proof. The closure, cl(P), of P is the smallest set of
sequents which contains the sequents of P and is closed under the cut rule and
weakenings.

Note that for intuitionistic proofs P, the sequents of P are Horn clauses.
Therefore SLD resolution algorithms may be used to solve the following problem
in polynomial time (see [10]): (a) Given P and T, list the set of formulas A in
P such that I'— A4 is in CI(P). Hence also: (b) Given P, T and A4, is—A
in CI(P), and is T'— in CI(P)?

Theorem 1 Let P be a propositional intuitionistic proof of I—>A. Then there
is a cut-free proof P' of T—> A such that cl(P") C cl(P).

Proof We shall prove the theorem by showing that it is possible to eliminate
the cuts in P one at a time, without adding any new sequents to the closure of
the proof. Unlike the usual proof of the cut-elimination theorem where the proof
is transformed by a series of “local transformations” of the proof using induction
on right rank and left rank, we shall use a series of global transformations similar
to the approach used in [2] (although the method used there will not work for
the present proof).

First, consider the case where a cut on an implication A D B is to be removed
from the proof. Consider the subproof of P which ends with the cut inference

CQ - R
I'n—A>DB ADB,Iy,—C
[, Te—C

We call the sequents of @ that contain direct ancestors of A D B in their
succedent, the lower part of Q. At the upper boundary of the lower part of @,
there are k£ many inferences which have a direct ancestor of the cut formula as
principal formula:



. ,Qi
1, A—B
I,—mADB

fori=1,...k. There may also be direct ancestors of the cut formula introduced
by weakening inferences, but no direct ancestor appears in an initial sequent
because of our convention that initial sequents have atomic formulas.

Similarly, in the proof R, consider the subproofs R; which have a direct
ancestor of the cut formula as principal formula:

Aj—A BN —D;
AD B, Aj,A;-—>Dj

for j = 1,...m. There may also be direct ancestors of the cut formula introduced
by weakening inferences.

For each i = 1,...k, form the proof R’ by modifying R as follows: First
replace the last inference of each R; with two cuts:

AL
Aj—>A Hi,A—>B .0l
I,,A;,—B B,A,—D;
Hi; Aj, A;—>DJ

Then modify the rest of the lower part of R by replacing direct ancestors of
the cut formula with the cedent II;. (Direct ancestors of the cut formula which
are introduced by weakening inferences may be so replaced by using a series of
weakening inferences to introduce the formulas in II;.) This changes sequents
of the form A D B, A— D to sequents of the form II;, A—>D. In this way,
we obtain a proof R? with end-sequent II;,I'o,—>C. It is easy to check that
cl(RY) C cl(P).

To finish the elimination of the cut on A D B from P, we replace each
subproof Q* of P with the proof R* and we replace each sequent II—A D B
in the lower part of Q with II,I';—>C". The result is a proof of I'y,I's—C' in
which the cut on A O B has been eliminated. It is easy to check that the closure
of the new proof is a subset of cl(P).

Now consider the case of removing a cut with principal formula a disjunction.
Let some subproof of P end with a cut

Q@ - R
IM—AVB AV B,Ty—C
ry,Iy—C




Define the lower part of @ similarly to the previous case. At the upper
boundary of the lower part of @, there are k¥ many inferences which have a
direct ancestor of the cut formula as principal formula:

. ,Qi
II,—X;
II,—mAVB

for i+ = 1,...k where each X, is either A or B. There may also be direct
ancestors of the cut formula introduced by weakening inferences, but no direct
ancestor appears in an initial sequent.

Similarly, in the proof R, consider the subproofs R; which have a direct
ancestor of the cut formula as principal formula:

A, AN;j—D; B,A,—D;
AV B,Aj, A'—D;

for j = 1,...m. There may also be direct ancestors of the cut formula introduced
by weakening inferences.

For each i = 1,...k, form the proof R! by modifying R as follows. We
assume X; is A: the case where X; is B is completely similar. First, replace the
last inference of each R; by a cut and weakenings:

Qi
Hi—>A A, Aj—>Dj
Hi; Aj—>Dj

Hi; Aj, A;—>DJ

Then modify the rest of the lower part of R by replacing direct ancestors of the
cut formula with the cedent II;. This changes sequents of the form AV B, A— D
to sequents of the form IT;, A—>D. In this way, we obtain a proof R’ with end-
sequent I1;, To—C. It is easy to check that cl(R?) C cl(P).

To finish the elimination of the cut on A V B from P, we replace each
subproof Q* of P with the proof R* and we replace each sequent II—A O B
in the lower part of Q with II,I';—>C". The result is a proof of I'y,I's—C' in
which the cut on AV B has been eliminated. It is easy to check that the closure
of the new proof is a subset of cl(P).

Now consider the case where the cut formula is a conjunction. Let some
subproof of P end with a cut

Q@ 1 R
I"—AAB  AABT,—C
ry,Iy—C




At the upper boundary of the lower part of @), there are k many inferences which
have a direct ancestor of the cut formula as principal formula:

Q- @
I,—A  II—B
I, I,—AAB

fori=1,...k.
Similarly, in the proof R, consider the subproofs R; which have a direct
ancestor of the cut formula as principal formula:

Xj, Aj—>Dj
AAB,A;—D;

for j =1,...m, where X is either A or B.

For each i = 1,...k, form the proof R' by modifying R as follows. We
assume X; is A: the case where X, is B is completely similar. First, replace
the last inference of each R; by a cut and weakenings:

oL
Hi—>A A, Aj—>Dj
Hi; Aj—>Dj

1L, I, A,—D,

Then modify the rest of the lower part of R by replacing direct ancestors of
the cut formula with the cedent II;,II;. This changes sequents of the form
AN B,A—D to sequents of the form II;, IT;, A—D. In this way, we obtain
a proof R with end-sequent IT;, I}, To—>C. Tt is easy to check that cl(R?) C
cl(P).

To finish the elimination of the cut on A A B from P, we replace each
subproof Q! of P with the proof R’ and we replace each sequent II—A A B
in the lower part of Q with II,I';—>C". The result is a proof of I'y,I's—C' in
which the cut on A A B has been eliminated. It is easy to check that the closure
of the new proof is a subset of cl(P).

Finally consider the case where a cut on an atomic formula A is to be removed
from the proof. Let the subproof P end with the cut inference

Q@ - R
I—A  AT,—C
Iy, Io—C



This cut can be eliminated as follows: everywhere where a sequent II— A ap-
pears in () with the succedent A a direct ancestor of the cut formula, replace this
sequent with II,T'o—>C. Where the direct ancestor was in an initial sequent,
the initial sequent is also replaced by a copy of the subproof R. Where the direct
ancestor was introduced by weakening, the formulas in I's, C' are introduced by
weakening inferences. It is easy to verify that this process eliminates the cut
and does not add new sequents to the closure of the proof.

Any case where the cut formula is introduced on either the left or the right
only by weakening inferences is entirely trivial. This includes the elimination of
cuts where the cut formula is 1, since the formula | can be introduced on the
right only by a weakening inference.

3 A realizability theorem

We shall call a formula a disjunction, a conjunction, or an implication, if its
outermost connective is the corresponding connective.

Lemma 2 (a) Let P be a cut-free proof of a sequent T—>By V By such that T
contains only atomic formulas and implications. Then

1. For some i =0,1, T—B; is in CI(P), or,
2. For some implication C D D in T, we have T—C in CI(P).

(b) The same assuming that P is a general proof (not necessarily cut-free)
and T—> By V By is only an element of Cl(P).

Proof (a) Consider the last inference in the proof. W.l.o.g., the last inference
is not a weakening:left. Therefore we may assume the last inference is an ap-
plication of one of the following rules: weakening:right, V:right, or D:left. If it
is weakening:right or V:right, then we get case 1 of the lemma. If it is D:left,
then we get case 2 of the lemma. Indeed, the last two lines of the proof have

the form
Y>—C D,II—ByV B,

C>D, X, II—ByV By

which gives case 2.

(b) From Theorem 1 it follows that we can prove the same without the
assumption that the proof P is cut-free. If we only have I'—By V B; € CI(P),
then we first construct a proof P’ of T— By V By using only sequents from
CI(P) and then apply part (a).

Now we can prove our main theorem. To state the theorem we need to
introduce a special type of interactive computations. Let a proof P of a sequent
I'— By V By be given. An interactive computation is carried out by an oracle
Turing machine, with the aim of constructing a proof of a sequent A— B; for
some 7 = 0 or 1 and a set of propositions A which are subformulas of I" and
are implied by I'. We will call A the set of established formulas. Initially A



will equal T'; and then the computation of the Turing machine will iteratively
update A in cooperation with an oracle. The following are the rules.

1. The Turing machine starts with a proof P of a sequent I'— By V Bj.
We denote the current set of established formulas by A, and initially A
equals I'.

2. The machine may replace a conjunction C' A D in A by the two formulas
C and D.

3. If A contains an implication C' O D and if the machine succeeds in finding
an intuitionistic proof of C' from the established formulas A, then the
machine may replace the formula C O D with D.

4. If A contains a disjunction C'V D, the machine can pose the query C'V D
to the oracle. The oracle is obliged to pick one of the disjuncts. Then the
machine replaces C'V D by the disjunct picked by the oracle.

5. The computation ends when the machine succeeds in finding a proof of
A— B;, for some i =0, 1.

Theorem 3 There exists an oracle machine obeying the rules above which for
every proof P of a sequent T—>By V By finishes the computation in polynomial
time in the size of P.

In order to prove the theorem, we extend the notion of the closure of a proof:

Definition The extended closure of a proof P, denoted by CI*(P), is defined
to equal the closure under weakening and the cut rule of the set S of sequents
defined as follows: S contains all the sequents of P, plus the sequents AANB—> A,
ANB—B, C—CV D, D—CV D and E—F D FE for all formulas A A B,
CV D and E D F which occur (possibly as subformulas) in P.

Since the number of sequents in S is certainly bounded by twice the number
of formulas occurring in the proof, one can test the presence of a sequent in
the extended closure in polynomial time, in the same way as for the ordinary
closure. Also it is clear that Theorem 1 and Lemma 2 still hold with the ordinary
closure replaced by the extended closure.

Proof (of Theorem 3). First observe that when the machine modifies the
sequent according to the rules, the sequent remains in CI*(P) and it is always
reduced to a simpler one. So we need only to show that one of the rules can
always be applied and each round can be done in polynomial time. That follows
from Lemma 2, part 2 and the fact that we can test the presence of a sequent in
CI*(P) in polynomial time, and, in case it is there, we can construct its proof
in polynomial time.

Theorem 3 can be further generalized to arbitrary formulas in the succedent
as follows. Given a sequent of the form I'—> A with a general A, the computation
is defined by the following clauses:



1. if A is a disjunction, then compute as above to get one of the terms of the
disjunction; then replace A by this term;

2. if A is a conjunction, then the computation splits into two branches cor-
responding to the terms of A;

3. if A is an implication, then move the antecedent of the implication to the
antecedent of the sequent;

4. the computation stops, if A is a propositional variable or L.

It follows from Theorem 3 that such a computation always stops after a poly-
nomial number of steps in the size of a proof of the sequent I'—A. Notice
that the parallelism inherent in the treatment of conjunctions can be removed if
clause 2. is replaced by a clause saying that the oracle chooses one of the terms.

4 The disjunction property with Harrop hypothe-
ses and the feasible interpolation theorem

Definition The disjunction problem for propositional intuitionistic logic is the
following problem: Given an intuitionistic proof of a disjunction A V B, deter-
mine one of A and B to be intuitionistically valid.

It is well-known that a disjunction A V B is intuitionistically valid iff A or
B is intuitionistically valid. A classical result of Harrop generalizes this result
to sequents I'— AV B where I is a set of so called Harrop formulas. These are
defined by:

1. every atomic formula is Harrop, | is Harrop;

2. if A and B are Harrop, then A A B is Harrop;

3. if A is arbitrary and B is Harrop, then A D B is Harrop;
4. no other formulas are Harrop.

Some variations on the disjunction property include (a) the disjoint variable
disjunction propertywhere A and B are required to have no variables in common,
or (b) the strong disjunction property where an intuitionistic proof of either A
or B must be produced.

From Buss-Mints [3], we know the strong disjunction property is in PTIME.
In this section we shall prove such a result for sequents whose antecedents consist
of disjunctions of Harrop formulas. It is a corollary of Theorem 3. In Section 5
we shall prove converse results, in particular a lower bound on the complexity
of the disjunction property.



Theorem 4 There is a polynomial time algorithm which for a given intuition-
istic proof P of a sequent

Ay, ..., Ay, — BV ...V By, (1)
where Ay are Harrop formulas, constructs a proof P’ of
Ay, ..., A, —B;,
for some 1 <i<m.

Proof The algorithm from Theorem 3 can obviously be generalized so that
when it is applied to a sequent I'— By V ...V B,,, it eventually produces a
proof of A—>B;, for some i and some established formulas A. Since I' consists
of only Harrop formulas, it is easy to see that only Harrop formulas can be
obtained as established formulas. In particular, it never happens in the course of
computation that we get a disjunction in the antecedent, and thus the machine
never queries the oracle about a disjunction. In addition, all antecedents, in
particular the last one, are ClT-derivable from I'. Hence A, ..., A,—>B; is in
Cl*(P) for some 4, which fact can be tested in polynomial time.

Corollary 5 Let P be an intuitionistic proof of
A171 V...V Al,lu .. -7An,1 V...V An,ln —B1V,...V B, (2)

with all Ay, ; Harrop. Then for every ji,...,Jn, where 1 < ji <y, there exists
an i, 1 <i <m, such that

A17j17 ceey An,jn —>Bi (3)

is intuitionistically valid. Moreover such an assignment ji,...,j, — i can be
computed in polynomial time in the size of P and also proofs of the corresponding
sequents (3) can be computed in polynomial time.

Proof Given a proof P of (2) and ji, ..., j, we can construct easily a proof of
Ale, .. "A7l7jn —B1V...VB,
by adding the proofs of the sequents
Agj. —Ap1 V...V Ay,
Now the corollary follows from Theorem 4.

Corollary 6 (Feasible Interpolation Theorem) Suppose an intuitionistic
proof P of
1V Ty, ..., oy V x, —BgV B (4)

is given. Then it is possible to construct a circuit C(Z) whose size is polynomial
in the size of P such that for every input @ € {0,1}", if C(@) = i, then B;(Z/d)
(i.e., B; where we substitute for variables x; L, ifx; =0 and T, if x; = 1) is
a tautology.



We do not require that the variables x; are the only common variables of By
and Bj, but we do not know of any application of the case when the formulas
share more variables.

The interpretation of the statement, when T are the only common variables,
is as follows. Suppose By(Z, ) V B1(Z, ) is a classical tautology. Then for any
substitution of truth values for the common variables one of the two subformulas
must be a tautology. In the intuitionistic calculus such a disjunction cannot be a
tautology, unless, trivially, one of the subformulas is. But it is possible that (4)
is an intuitionistically valid sequent, since the excluded middle laws for variables
x; express that we “know the truth values of these variables”. The statement
demonstrates the constructive character of the intuitionistic calculus: having a
proof of (4) and “knowing” the variables x; we should be able to tell which of
the subformulas is true.

Corollary 7 If NPNcoNP ¢ P/poly (more generally, if there exists a pair of
disjoint NP sets which cannot be separated by a P/poly set), then the lengths
of shortest proofs in the intuitionistic propositional calculus cannot be bounded
by a polynomial of the size of the proved formula.

Proof This is proved from Corollary 6 using ideas of Mundici [6]. Suppose
that @ is a predicate in NP N coNP. Then there are families of formulas
By,i(Z,9) and Bi (¥, Z), with the ¢ specifying the number of ¥ variables, such
that 3y By i(z,¥) is equivalent to Q(Z) and 3ZB; ;(x, Z) is equivalent to ~Q(Z).
The formulas By ; V Bi; are tautologies and hence intuitionistically provable.
If there is a polynomial bound on the size of the intuitionistic proofs of these
tautologies, then, by Corollary 6, @ is in P/poly. a

It is generally accepted as plausible conjectures that factoring and discrete
logarithm cannot be computed in polynomial time. Both conjectures imply
NP NcoNP ¢ P/poly. Note that the well-known PSpace-completeness of the
propositional intuitionistic calculus implies that there is no polynomial bound
on the proofs assuming PSpace € NP. These two complexity theoretical as-
sumptions do not seem to be comparable.

Corollary 8 Assuming that factoring is not computable in polynomial time,
there is more than polynomial speed-up between classical and intuitionistic propo-
sitional calculus, i.e., there are intuitionistic tautologies that have polynomial
size proofs in the classical sequent calculus, but no polynomial size proofs in the
intuitionistic sequent calculus.

Proof Bonnet, Pitassi and Raz [1] constructed tautologies which have poly-
nomial size proofs in the classical sequent calculus and which cannot have such
proofs in any system admitting feasible interpolation, provided that factoring is
hard.

Let us note that such a speed-up follows also from the assumption that
PSpace € NP, but the last corollary gives more concrete examples on which
this speed-up is achieved.

10



5 The P-hardness of the disjunction property
The following is, in some sense, a converse to Corollary 2.

Theorem 9 Let C(x1,...,2,) a boolean circuit be given. Then it is possible to
construct in logarithmic space formulas By, By and an intuitionistic proof P of
(4) such that for all @ € {0,1}", we have C(&@) = ¢ if and only if B;(d,u) is
an intuitionistic tautology. Further, when C(d) = i, the intuitionistic proof of
B;(@, @) can can be constructed in polynomial time given C and a.

Proof Given a circuit C with inputs z1, ..., z,, we construct the formulas By
and B as follows. Without loss of generality the only gates in C are NOT gates
and AND gates. With each input signal and each gate in C, associate a distinct
Boolean variable y; (i = 1,...,m). With each y; we associate two or three
formulas, depending on how y; is computed in C:

In case y; is an input signal z;, the two formulas associated with y; are

x; Dy; and —x; D Dy

In case y; is the output of a NOT gate with input y;, the two formulas associated
with y; are:
y; O~y and —y; Dy

In case y; is the output of an AND gate with inputs y; and y;, the three formulas
associated with y; are:

Yi ANy Dy and —y; Doy, and -y D .

Now define the formula C(Z, %) to be the conjunction of all the formulas asso-
ciated with the y;’s. Let Bo(Z, %) be the formula C(Z,§) D ym and let By (Z, )
be the formula C(Z, ) D —Wm, where y,,, is the output signal. For conciseness,
let EM (Z) be the conjunction of the formulas z; V —z;.

We shall show that a proof of the sequent

EM(Z)— Bo(Z,9) V B1(Z, 9).

can be constructed in logarithmic space. Then the rest of the theorem follows
easily from the construction of the sequent.

To construct the proof, proceed inductively on ¢ giving intuitionistic proofs
of the sequents

EM(Z)—(C(Z,9) > i) V (C(Z,9) O —i).

Both the base step and the inductive steps are easy, we shall consider only the
inductive steps. Let y; be the output of a NOT gate with input y;, then the
sequents

C(&,9) > yj—>0(fayq) O i

and
C(fﬂlj) D) _‘yj—>0(fa:lj) D Yi-

11



have simple, short intuitionistic proofs. Let y; be the output of an AND gate
with inputs y; and y;. We first derive

EM(Z)—(C(Z,9) D y; Ayr) V (C(Z,9) D ~y;) V (C(Z, §) O ~ur)

and then we apply the clauses for the gate in a similar fashion as above.
Thus we get only

EM (%) — Bo(Z,9) V B1(Z, %),

ie., the formulas in the disjunction share also the variables ¢. In order to get
(4) we only need to prove inductively slightly more complicated sequents

EM(Z)—[(C(& ) > yi) AC(& 2) D 2)] V[(C(E, ) > —yi) AC(F, 2) > =2)],

and otherwise proceed similarly. For ¢ = m such a sequent is clearly stronger
than the sequent (4) that we need.

The construction can be performed in logarithmic space, since each step of
the proof is explicitly and easily determined by the circuit.

Corollary 10 The disjunction property is P-hard with respect to logarithmic
space reductions. In fact, the disjoint variable disjunction property is P-hard.

Proof The previous theorem gives actually a logarithmic space reduction of
the P-complete problem circuit value to the disjunction problem.

6 Cut elimination for first-order logic

In this section we extend the definition of the closure of a proof to sequent
calculus proofs in first-order logic and prove the analogue of Theorem 1 that
cut elimination can be performed on intuitionistic proofs without adding new
sequents to the closure of the proof.

Definition Let P be a sequent calculus proof in first-order logic. The closure,
cl(P), of P is the smallest set of sequents which contains the sequents of P and
is closed under the cut rule, under weakening, and under term substitution.

By “term substitution”, we mean uniformly substituting a term for a free vari-
able in the sequent.

Unlike the situation for propositional logic, we no longer have a polynomial
time algorithm for deciding membership of sequents in the closure of P.

Theorem 11 Let P be a first-order intuitionistic proof of T—>A. Then there
is a cut-free proof P' of T—> A such that cl(P") C cl(P).

Proof The general idea of the proof is exactly like the proof of Theorem 1. We
will consider only the new cases where the cut to be eliminated has a cut formula
with outermost connective a quantifier. Without loss of generality, the proof is

12



in free variable normal form and is converted back to free variable normal after
each elimination of a cut.

The cases of eliminating cuts on formulas which have outermost connective
propositional, or which are atomic are exactly as in the proof of Theorem 1, so
we do not repeat them here.

Instead, first consider the case where the cut formula has outermost connec-
tive a universal quantifier. Let some subproof of P end with a cut

L Q R
I —(Vz)A(z) (Vz)A(z), Ty—C
Iy, Iy—C

At the upper boundary of the lower part of @), there are k many inferences which
have a direct ancestor of the cut formula as principal formula:
. ,Qi
1I,— A(bz)
I, — (V) A(z)

for i = 1,...k, where the b;’s are distinct eigenvariables.
Similarly, in the proof R, consider the subproofs R; which have a direct
ancestor of the cut formula as principal formula:

A(ty), Aj—D;
(Vz)A(z), Aj—D;

forj=1,...m.

Foreach i = 1,. ..k, form the proof R* by modifying R as follows. First, form
the proof Q'(t;/b;) by replacing each occurrence of b; with ¢;. Then, replace
the last inference of each R; by

ERRCACTLD)
I;— A(t) A(ty), Aj—D;
11;, Aj—>Dj

Then modify the rest of the lower part of R by replacing direct ancestors of
the cut formula with the cedent II;. Weakening inferences which introduce
direct ancestors are replaced by weakenings which introduce the formulas in II;.
This changes sequents of the form (Va)A(z), A—D to sequents of the form
II;, A—D. In this way, we obtain a proof R’ with end-sequent II;, To,—C. It
is easy to check that cl(R?) C cl(P).

To finish the elimination of the cut on VxA(z) from P, we replace each
subproof Q¢ of P with the proof R and we replace each sequent IT— (V) A(x)

13



in the lower part of @ with II,I';—>C". The result is a proof of I'y,I's—C' in
which the cut on (Vz)A(x) has been eliminated. It is easy to check that the
closure of the new proof is a subset of cl(P).

Now consider the case where the cut formula has outermost connective n
existential quantifier. Let some subproof of P end with a cut

L Q R
I —(3z)A(z) (Fx)A(z), Ty—C
Iy, Iy—C

At the upper boundary of the lower part of @), there are k many inferences which
have a direct ancestor of the cut formula as principal formula:

o QY
Hi—>A(ti)
1= G AW

fori=1,...k.
Similarly, in the proof R, consider the subproofs R; which have a direct
ancestor of the cut formula as principal formula:

A(bj), Aj—D;
(3z)A(z), Aj—D;

forj=1,...m.

For each i = 1,...k, form the proof R’ by modifying R as follows. First,
form the proof R;(t;/b;) from R; by replacing each occurrence of b; with ¢;.
Then, replace the last inference of each R;(t;/b;) by

. ,Qi
IL,— A(t;) A(ti), Aj—D;
Hi; Aj—>Dj

Then modify the rest of the lower part of R by replacing direct ancestors of the
cut formula with the cedent IT;. As usual, weakening inferences which introduce
direct ancestors are replaced by weakenings which introduce the formulas in II;.
This changes sequents of the form (3x)A(x), A—D to sequents of the form
II;, A—D. In this way, we obtain a proof R’ with end-sequent II;, To,—C. It
is easy to check that cl(R?) C cl(P).

To finish the elimination of the cut on dxA(z) from P, we replace each
subproof Q¢ of P with the proof R and we replace each sequent II— (3x) A(x)
in the lower part of Q with II,I';—>C". The result is a proof of I'y,I's—C' in
which the cut on (3z)A(x) has been eliminated. It is easy to check that the
closure of the new proof is a subset of cl(P).
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