
The Complexity of the Disjunction and Existential

Properties in Intuitionistic Logic

Sam Buss∗

Department of Mathematics
University of California, San Diego

Grigori Mints∗∗

Department of Philosophy
Stanford University

February 5, 1999

Abstract

This paper considers the computational complexity of the disjunc-
tion and existential properties of intuitionistic logic. We prove that
the disjunction property holds feasibly for intuitionistic propositional
logic; i.e., from a proof of A ∨ B , a proof either of A or of B can be
found in polynomial time. For intuitionistic predicate logic, we prove
superexponential lower bounds for the disjunction property, namely,
there is a superexponential lower bound on the time required, given
a proof of A ∨ B , to produce one of A and B which is true. In
addition, there is superexponential lower bound on the size of terms
which fulfill the existential property of intuitionistic predicate logic.
There are superexponential upper bounds for these problems, so the
lower bounds are essentially optimal.

MSC codes: 03F05, 03F20, 03F55, 03C40, 68Q15, 68N17.
Keywords: intuitionistic logic, cut-elimination, Craig interpolation, polynomial-
time, Horn resolution, proof complexity, natural deduction, induction speed-up.

1 Introduction

It is a well-known fact [1] that intuitionistic logic satisfies the following
disjunction and existential properties: (throughout this paper, ` represents
intuitionistic provability.)

∗Supported in part by NSF grant DMS-9503247 and grant INT-9600919/ME-103 from
NSF and MŠMT (Czech Republic)
∗∗On sabbatical leave from Stanford University. Supported in part by Rome Labs

under contract F30602-97-C-0146.

1

• If ` A ∨B , then ` A or ` B .

• If ` (∃x)A(x), then ` A(t) for some term t .

We are interested in studying the problem of the complexity of the
disjunction and existential properties. For instance, given that A ∨ B is
intuitionistically valid, how hard is it to identify one of A or B as intuition-
istically valid? Or, given an intuitionistically valid formula (∃x)A(x), how
hard is it to find a term t such that A(t) is intuitionistically valid? For
the case of propositional logic, there is a PSPACE algorithm for the first
problem, since propositional validity is decidable in polynomial space [3, 7].
For the second problem, if the first-order language contains only predicate
symbols and constant symbols, but no function symbols, then the term t can
be taken to be either a constant symbol or a free variable of A(x) so there is
a trivial constant upper bound on the size of the term t . However, if there
is a non-unary function symbol in the language, then there is no recursive
upper bound on the size of t (as a function of A). Likewise, in predicate logic
with at least one non-unary function symbol, there is no recursive bound
on the complexity of deciding the disjunction property (using the fact that
there are r.e. sets which cannot be recursively separated).1 From this last
fact, one can see that in intuitionistic predicate logic, even with no function
symbols, there is no recursive bound on the computational complexity of
finding a term t that fulfills the existential property for a given valid formula
(∃x)A(x); similarly the disjunction property can be non-recursive in theories
without function symbols.2

The previous paragraph discussed complexity bounds in terms of the
formulas A ∨ B or (∃x)A(x). It is, however, more interesting to determine

1Here is a quick sketch of the proof of these two assertions: let U(e, t, x) be a formula
expressing the condition that Turing machine with Gödel number e halts within t steps
outputting x ∈ {0, 1} . It is possible to formulate U(e, t, x) as a first-order formula so that
` U(e, t, x) holds whenever U is true of the values represented by e, t, x ; here m denotes
the term Sm0. Consideration of the formulas ∃t∃xU(e, t, x) which are true illustrates
the fact that t cannot be recursively bounded in terms of the size of ∃t∃xU(e, t, x) , since
otherwise the halting problem would be decidable. To prove the non-recursiveness of the
disjunction property, the set of formulas of the form

(∃t)U(e, t, 0) ∨ (∃t)U(e, t, 1)

which are true shows that deciding on a valid disjunct cannot be a recursive process.
2If there are no function symbols, we can use relation symbols instead of function

symbols and formulate U∗e (x) which asserts that Turing machine e eventually halts with
output x ∈ {0, 1} . Then the sentences (∃x)U∗e (x) illustrate the non-recursiveness of the
existential property, and the sentences U∗e (0) ∨ U∗e (1) illustrate the non-recursiveness of
the disjunction property.

2

the computational complexity of solving the disjunction and existential
properties assuming we are given a proof of A∨B or of (∃x)A , respectively;
and these are the questions we will address in this paper.

There are a variety of related questions here: for example, one could
ask about (a) the complexity of determining a particular one of A or B to
be valid, (b) bounds on the size of the shortest proof of either A or B , or
(c) the computational complexity of producing a proof of either A or B ; in
each of the three cases assuming that a proof of A ∨B is given as input. In
propositional logic, we show below that there is a polynomial time algorithm
which produces a proof of either A or B from a proof of A ∨ B . This
also gives a polynomial time bound for the problem (a) and a polynomial
upper bound for the problem (b) for propositional intuitionistic logic. For
predicate logic, we shall give an superexponential lower bound on the time
required to recognize one of A or B as valid, even given a proof of A ∨ B .
This immediately implies also a superexponential lower bound on the size of
a proof of either A or B and thereby a superexponential lower bound for
the time required to produce such a proof.

For the existential property, we give a superexponential lower bound
on the size of a term t such that A(t) is intuitionistically valid; this
superexponential bound is in terms of the size of a proof of (∃x)A(x).

The above superexponential lower bounds are easily seen to be essentially
optimal, since a proof-normalization procedure can be used to solve the
disjunction and existential properties.

For the special case of predicate logic with no function symbols, we
give an exponential upper bound on the computational complexity of the
disjunction and existential properties.

2 The propositional disjunction property

We formalize intuitionistic propositional calculus as a natural deduction
system with explicit listing of assumptions. In this system, we use a sequent
A1, . . . , An ⇒ B (n ≥ 0) to denote the fact the formula B has been derived
from the assumptions A1, . . . , An . The assumptions A1, . . . , An form a set.

When we speak of a formula F being provable, we mean the sequent
⇒ F .

The axioms of our intuitionistic propositional logic are A ⇒ A and
⊥ ⇒ A , for A any formula.

The inference rules are standard introduction and elimination rules for
∧ , ∨ , and ⊃ . These are the inferences

3

Γ ⇒ A ∧B
Γ ⇒ A

Γ ⇒ A ∧B
Γ ⇒ B

Γ ⇒ A ∆ ⇒ B
Γ, ∆ ⇒ A ∧B

Γ ⇒ A ∨B ∆, A ⇒ C Π, B ⇒ C

Γ, ∆, Π ⇒ C
Γ ⇒ A

Γ ⇒ A ∨B
Γ ⇒ B

Γ ⇒ A ∨B

Γ ⇒ A ⊃ B ∆ ⇒ A
Γ, ∆ ⇒ B

Γ, A ⇒ B

Γ ⇒ A ⊃ B

The four rules in the lefthand side are called elimination rules and the rest
are called introduction rules. A cut in a natural deduction proof consists
of an introduction rule whose conclusion is the principal (i.e., leftmost)
hypothesis of an elimination rule. It is well known that natural deduction
proofs can be normalized, so that the cuts can be removed from natural
deduction proofs [5]. When cuts are permitted, the natural deduction
system is equivalent the to sequent calculus and to Hilbert-style systems in
that proofs in one system can be converted into a proof in another system
by a polynomial time algorithm.

For the rest of this section, we assume that an intuitionistic natural
deduction proof d0 of some formula is fixed.

Definition A sequent S of the form Γ ⇒ A is immediately derivable (i.d.)
according to the following inductive definition:

(a) S occurs in d0 , or

(b) C, Γ ⇒ A and ⇒ C are both i.d., for some formula C .

In other words, the i.d. sequents are obtained from sequents present in
d0 by sequent calculus style cuts with i.d. formulas.

Lemma 1 Every immediately derivable sequent is derivable. Furthermore,
there is a polynomial time algorithm which, given d0 , gives derivations of all
its i.d. sequents.

Proof It is obvious by the induction on the definition of i.d. sequents
that every i.d. sequent is derivable. Furthermore, since the i.d. sequents
are obtained only by sequent calculus style cuts from sequents in d0 , this
is essentially the same as reasoning with Horn clauses using only SLD
resolution, which is easily seen (and well-known) to be polynomially time
complete. a

4

The following statement provides a simple polynomial time method of
finding a provable disjunct from a given proof d0 . Note that no normal form
property is assumed for d0 .

Theorem 2 If d0 :⇒ A ∨B then at least one of A and B is i.d.

As an immediate consequence of Lemma 1 and Theorem 2, we have:

Corollary 3 There is a polynomial time algorithm which, given an proposi-
tional intuitionistic proof of A ∨B , produces a proof of either A or B .

In order to prove Theorem 2 we shall use a restricted normalization
process in which only certain cuts are eliminated. Recall that a cut (maximal
formula) in a natural deduction is a conclusion of an introduction rule which
is the principal formula of an elimination rule (i.e. it contains the connective
to be eliminated). We call a cut assumption-free if its last sequent (the
conclusion of the elimination rule) contains no assumption, i.e. is of the form
⇒ F . Let d1 be the result of eliminating all assumption-free cuts from d0 by
the standard cut-reduction steps (this process is recalled below in the proof
of Lemma 5). The proof d1 exists since every sequence of cut-reductions
terminates.

Lemma 4 If a proof d :⇒ F does not contain assumption-free cuts, then it
ends in an introduction rule.

Proof Suppose that the proof does not end in an introduction rule. Then,
it must end with one of the four elimination rules shown above. The last
sequent has no assumptions, and therefore the leftmost hypothesis of the
introduction rule also has no assumptions. Continue traversing upwards
in the proof tree for as long as we encounter elimination rules, always
choosing the leftmost branch. The sequents we reach in this traversal all
have no assumptions and eventually we must arrive either at an introduction
inference or at an initial sequent. However, it is impossible to arrive at
an initial sequent, since all initial sequents have assumptions. Likewise,
it is impossible to arrive at an introduction rule, since this would be an
assumption-free cut and d has no assumption free cuts.

Therefore, we have obtained a contradiction, so d must end with an
introduction rule. a

Lemma 4 implies that the final inference of d1 is an ∨-introduction,
and thus either ⇒ A or ⇒ B is the penultimate sequent in d1 . To finish

5

the proof of the Theorem 2 it will suffice to show that every sequent in d1

including the premise A or B of the concluding ∨-introduction is i.d. (with
respect to the original proof d0). This fact follows immediately from the
next lemma.

Lemma 5 If d converts to d′ by a single reduction of an assumption-free
cut, then every sequent i.d. with respect to d′ is i.d. with respect to d.

Proof It is certainly sufficient to verify only that every sequent appearing
in d′ is i.d. with respect to d , since the other clause of the definition of i.d.
is obviously preserved. There are three cases to consider corresponding to
possible reductions.

In the case of ∧-reduction the proof is reduced according to:

d∗
...

⇒ A ⇒ B
⇒ A ∧B
⇒ A

reduces to d∗
...

⇒ A

Thus no new sequents appear in d′ and the lemma holds trivially.
In the case of ⊃-reduction the proof is reduced according to:

A ⇒ A

d∗
. . .

... . . .

A ⇒ F
⇒ A ⊃ F ⇒ A

⇒ F

reduces to
⇒ A

d∗′
. . .

... . . .

⇒ F

where there may be multiple occurrences of the axiom A ⇒ A in the subproof
d∗ , and where d∗′ is the same as d′ except with occurrences of A deleted
from the assumptions of sequents. Since A was i.d. in d , each sequent in d′

is i.d. with respect to d .
In the final case of ∨-reduction the proof is reduced according to:

⇒ A
⇒ A ∨B

A ⇒ A

d∗
. . .

... . . .

A ⇒ F B ⇒ F
⇒ F

reduces to
⇒ A

d∗′
. . .

... . . .

⇒ F

Again new sequents in d′ are obtained from sequents in d by deleting
occurrences of i.d. formula A from assumptions. So each sequent in d′ is
i.d. with respect to d . a

That completes the proof of Theorem 2.

6

3 Upper bounds for predicate logic

In the following we deal with the intuitionistic predicate logic with arbitrary
predicate, constant and function symbols formalized as a natural deduction
calculus. The axioms and rules of inference for the natural deduction
proof system for intuitionistic predicate logic are those of the above defined
propositional system plus elimination and introduction rules for quantifiers:

Γ ⇒ (∀x)A(x)
Γ ⇒ A(t)

Γ ⇒ A(b)
Γ ⇒ (∀x)A(x)

Γ ⇒ (∃x)A(x) ∆, A(b) ⇒ C

Γ, ∆ ⇒ C

Γ ⇒ A(t)
Γ ⇒ (∃x)A(x)

In these rules, the symbol b is a free variable, called the eigenvariable of
the inference: it is required that b not occur free in the conclusion of the
inference.

For predicate logic, we modify the definition of immediate derivability to
allow substituting terms for (eigen)variables: Let a proof d0 be fixed.

Definition A sequent S is immediately derivable (i.d.) according to the
following inductive definition:

(a) S occurs in d0 , or

(b) S is of the form Γ ⇒ A and there is a formula C such that C, Γ ⇒ A
and ⇒ C are both i.d.

(c) S is of the form Γ(t) ⇒ A(t) where Γ(b) ⇒ A(b) is i.d.

The next lemma is immediate from the definition of i.d.

Lemma 6 Every immediately derivable sequent is derivable

Theorem 7
(a) If d0 is a proof of ⇒ A ∨B then at least one of A and B is i.d.
(b) If d0 is a proof of (∃x)A(x) then A(t) is i.d. for some term t.

Proof Theorem 7 is proved exactly like Theorem 2: we need only check
the two additional reduction cases that now arise in the proof of Lemma 5.

In the case of a ∀-reduction the proof is reduced according to:

7

d∗
. . .

... . . .

⇒ A(b)
⇒ (∀x)A(x)
⇒ A(t)

reduces to d∗′
. . .

... . . .

⇒ A(t)

The subproof d∗′ is obtained from d∗ by replacing all relevant occurrences
of the variable b with the term t . Thus every sequent in the reduced proof
d′ is i.d. with respect to the original proof d .

In the case of an ∃-reduction the proof is reduced according to:

⇒ A(t)
⇒ (∃x)A(x)

A(b) ⇒ A(b)

d∗′
. . .

... . . .

A(b) ⇒ F

⇒ F

reduces to
⇒ A(t)

d∗′
. . .

... . . .

⇒ F

Again, every sequent in the reduced proof d′ is i.d. with respect to the
original proof d . a

Theorem 7 provides a simple description of the set of i.d. formulas. An
obvious upper bound on the number of i.d. formulas is the total number
of sequents in the proof d1 obtained by elimination of assumption-free cuts
from the original natural deduction d0 . It is well-known that there is (only)
a superexponential blowup in the size of proofs during the normalization
procedure. This gives a superexponential upper bound on the time
complexity of eliminating assumption-free cuts from proof d0 . Therefore,
there is a superexponential time algorithm which, given a proof d0 , produces
a set S of sequents such that every i.d. sequent is a substitution instance of
one of the sequents in S . We call S a complete set of i.d. sequents.

More precisely, define 2 ⇑ c by 2 ⇑ 0 = 0 and 2 ⇑(n + 1) = 22 ⇑ n . Then
we have established the following upper bound.

Theorem 8 There is an algorithm with runtime 2 ⇑(cn), for some con-
stant c, which upon input a proof of n symbols, produces proofs of a complete
set of i.d. sequents for d0 .

By Theorem 7, this superexponential time algorithm solves the disjunction
and existential properties.

In the next section, we shall prove that this superexponential order of
magnitude for the runtime is essentially optimal. However, in the special
case of predicate logic with no function symbols, the terms t which are
used in substituting into i.d. sequents according to the third case of the

8

definition of i.d., may be required (w.l.o.g.) to be one of the variables or
constant symbols which appear in d0 . With this restriction on the terms t ,
there are only exponentially many possible i.d. formulas. Therefore, using
the usual SLD resolution method for Horn clauses, there is an exponential
time algorithm which produces a complete set of i.d. sequents for d0 . This
establishes:

Theorem 9 There is an exponential time algorithm which solves the dis-
junction and existential properties for intuitionistic predicate logic with no
function symbols.

4 The existential property lower bound

This section will describe the superexponential lower bound for the ex-
istential property for intuitionistic predicate logic. The lower bound is
established by exhibiting a family of sentences (∃x)A(x) which have short,
polynomial length proofs such that the formulas A(t) are valid only for
superexponentially long terms t .

By the previous two sections, any lower bound on the existential property
must include also a lower bound on the number of steps in proof normal-
ization; thus it is no surprise that our proof uses the ‘induction speed-up’
method of Solovay (which is similar to the much earlier construction which
Gentzen used for the provability of transfinite induction) which happens also
to be one of the best tools for proving lower bounds on proof normalization
and on cut-elimination. The first uses of the induction speed-up method for
proving such lower bounds were by Orevkov [4] and Statman [8]; see also the
survey of Pudlak [6].

We will choose the predicate language containing the constant symbol 0,
the unary function S , the infix binary function symbol + and two binary
predicate symbols = and e . One can intuitively think of these symbols rep-
resenting zero, successor, addition and equality and of e(x, y) representing
the relation y = 2x . Define G to be the universal closure of the conjunction
of the following formulas:

x + 0 = x x = x
0 + x = x x = y ⊃ y = x
x + Sy = S(x + y) x = y ∧ y = z ⊃ x = z
(x + y) + z = x + (y + z) x = y ⊃ Sx = Sy
e(0, S0) x = y ∧ u = v ⊃ (x + u) = (y + v)
e(x, y) ⊃ e(Sx, y + y) x = y ∧ u = v ∧ e(x, u) ⊃ e(y, v)

9

The axioms in the righthand column are of course just the familiar equality
axioms — we are assuming that our underlying predicate logic does not have
the equality relation as a logical symbol, but only as a non-logical symbol.

We define the following formulas Jm(x) and Km(x) by induction on m :

J0(x) ⇔ 0 = 0

Km(x) ⇔ (∃y)((G ⊃ e(x, y)) ∧ Jm(y))

Jm+1(x) ⇔ (∀z)(Km(z) ⊃ Km(z + x)).

It is easy to see that there are intuitionistic proofs of the following formulas:

K0(0)

(∀x)(K0(x) ⊃ K0(Sx))

J1(0)

(∀x)(J1(x) ⊃ J1(Sx))

J1(S0)

(∀x)(J1(x) ⊃ J1(x + x))

(∀x)(J1(x) ⊃ K0(x))

Continuing by induction on m , the same constructions show there are
proof of the following formulas, and that furthermore these proofs have size
polynomial in m .

Km(0)

(∀x)(Km(x) ⊃ Km(Sx))

Jm+1(0)

(∀x)(Jm+1(x) ⊃ Jm+1(Sx))

Jm+1(S0)

(∀x)(Jm+1(x) ⊃ Jm+1(x + x))

(∀x)(Jm+1(x) ⊃ Km(x))

10

We thus immediately get polynomial size (in m) proofs of

(∀x)(Km+1(x) ⊃ (∃y)((G ⊃ e(x, y)) ∧Km(x)))

and iterating this m times, polynomial size proofs of

(∀x)(∃ym) · · · (∃y1)[G ⊃ (e(x, y1) ∧ e(y1, y2) ∧ · · · ∧ e(ym−1, ym))].

With x = 0, we get thereby also polynomial size proofs of the sentences

(∃ym) · · · (∃y1)[G ⊃ (e(0, y1) ∧ e(y1, y2) ∧ · · · ∧ e(ym−1, ym))]. (1)

Now consider the complexity of the existential property for this last
intuitionistically derivable sentence. If we consider the standard (classical)
model of the integers with zero, successor, addition, true equality and
exponentiation, we see that the only terms that can be substituted into
equation (1) for the variable ym and yield a true formula are the terms with
value 2 ⇑m . Since the only function symbols at our disposal are successor
and addition, any term with value 2 ⇑m must have at least 2 ⇑(m − 1)
symbols. On the other hand, equation (1) has an intuitionistic proof of
n = mO(1) symbols.

Thus we have established that the existential property for intuitionistic
predicate logic has superexponential (i.e., stack of twos of height nε)
complexity.3

5 The disjunction property lower bound

In this section, the superexponential lower bound for the existential property
is extended to a similar superexponential lower bound for the disjunction
property. For the lower bound for the disjunction property, we cannot use
just superexponential growth rate. Instead, we will use a Turing machine for
which it is difficult to predict what state it will be in a future point in time.
We shall pick a fixed Turing machine M which has a single, two-way infinite
tape and has only the two alphabet symbols a and b . The machine M will
have the property that the problem of, given m , determining which state M
will be in after computing for exactly 2 ⇑m steps starting on a blank tape

3Our construction did not minimize the number of non-logical symbols in the language.
With a more complicated version of the same proof, we could use a language with only
a binary function symbol. As we remarked in section 3, the existential property
for a first-order language with no function symbols has at worst exponential-time
computational complexity.

11

(b is the blank symbol) is not in the complexity class TIME(2 ⇑(m − c))
for some constant c . Such a Turing machine can easily be shown to exist
using the Hartmanis-Stearns time hierarchy theorem.

For convenience sake, we use a larger language for predicate logic, which,
in addition to the symbols =, 0, S , + and e , contains constants a and b
for the tape symbols of M , constants q1, . . . , qs which represent the s states
of M , a 4-ary predicate symbol ID , a binary function symbol σ , and a
unary predicate symbol Dfnt . The intuitive idea of σ is that terms of
the form σ(c1, σ(c2, σ(c3, . . .))) represent strings c1c2c3 · · · where each ci is
either a or b . Then the predicate ID(t, q, α, β) is intended to mean that at
time step t , M is in state q , with the string β to the right of the tape head,
and with the string α to the left of the tape head. It is convenient to reverse
the symbol order to the left of the tape head, so that in fact α represents
the string obtained by starting with the symbol under the tape head and
then moving leftward. “ID” stands for “instantaneous description.” The
intuitive idea for Dfnt(x) is that x is the value of a term built up from a ’s,
b ’s and σ ’s in some ‘definite’ or ‘decidable’ way.

The set G∗ is defined to the conjunction of the universal closures of the
following set of formulas:

(a) Every formula in G is included in G∗ , in addition, the equality axioms
for ID , σ and Dfnt are included.

(b) b = σ(b, b). Intuitively, this accounts for the fact that the tape is filled
with blanks (b ’s) everywhere past the ends of the half-tapes.

(c) ID(0, q1, b, b). Intuitively, the machine M starts on a blank tape.

(d) For each transition rule (qi, c, qj , d) of M , where c, d ∈ {a, b} , G∗

includes
ID(x, qi, σ(c, u), v) → ID(Sx, qj , σ(d, u), v).

Intuitively: if in state qi , reading c , then write d and go to state qj .

(e) For each transition rule (qi, c, qj , L) of M , where c ∈ {a, b} and “L”
denotes “move left”, G∗ includes

ID(x, qi, σ(c, u), v) → ID(Sx, qj , u, σ(c, v)).

Intuitively: if in state qi , reading c , then move left one square and go
to state qj .

12

(f) For each transition rule (qi, c, qj , R) of M , where c ∈ {a, b} and “R”
denotes “move right”, and for each d ∈ {a, b} , G∗ includes

ID(x, qi, σ(c, u), σ(d, v)) → ID(Sx, qj , σ(d, σ(c, u)), v).

Intuitively: if in state qi , reading c , then move right one square and
go to state qj .

(g) G∗ includes the formulas Dfnt(b) and

Dfnt(x) ↔ (∃u)(Dfnt(u) ∧ (x = σ(a, u) ∨ x = σ(b, u))).

We let qDfnt(x) abbreviate the formula

x = q1 ∨ x = q2 ∨ · · · ∨ x = qs.

Next we define analogues J∗n(x) and K∗
n(x) of the formulas Jn(x) and

Kn(x) from the previous section. However, instead of starting the inductive
definition with J∗0 (x), the base definition is

K∗
−1(x) ⇔ (∃q)(∃u)(∃v)[G ⊃ (ID(x, q, u, v)∧qDfnt(q)∧Dfnt(u)∧Dfnt(v))].

It is easy to give intuitionistic proofs of

K∗−1(0), and

(∀x)(K∗−1(x) ⊃ K∗−1(Sx))

Then, by induction on m ≥ −1, we define

J∗m+1 ⇔ (∀z)(Km(z) ⊃ Km(z + x))

K∗
m+1 ⇔ (∃y)((G ⊃ e(x, y)) ∧ Jm+1(y))

By arguments very similar to the ones given before, there are intuitionistic
proofs of the following formulas

K∗
m(0)

(∀x)(K∗
m(x) ⊃ K∗

m(Sx))

J∗m+1(0)

(∀x)(J∗m+1(x) ⊃ J∗m+1(Sx))

13

J∗m+1(S0)

(∀x)(J∗m+1(x) ⊃ J∗m+1(x + x))

(∀x)(J∗m+1(x) ⊃ K∗
m(x))

and the proofs of the above formulas are all polynomial size in m . We thus
immediately get polynomial size proofs of

(∀x)(K∗
m+1(x) ⊃ (∃y)((G ⊃ e(x, y)) ∧K∗

m(x)))

and iterating this m times, a polynomial size proof of

(∀x)(∃ym) · · · (∃y1)[K∗
−1(ym)∧

[G ⊃ (e(x, y1) ∧ e(y1, y2) ∧ · · · ∧ e(ym−1, ym))]].

By the definition of K∗−1 , this gives a proof of

(∀x)(∃q)(∃u)(∃v)(∃ym) · · · (∃y1)
[G ⊃ (ID(ym, q, u, v) ∧ qDfnt(q) ∧ (2)

e(x, y1) ∧ e(y1, y2) ∧ · · · ∧ e(ym−1, ym))].

Let φm,i be the sentence (note that x and q have been replaced by 0 and qi)

(∃u)(∃v)(∃ym) · · · (∃y1)
[G ⊃ (ID(ym, qi, u, v) ∧ e(0, y1) ∧ e(y1, y2) ∧ · · · ∧ e(ym−1, ym))].

Then, from equation (2) and the definition of qDfnt , there is a polynomial
size proof of

s∨
i=1

φm,i. (3)

Considering again the standard, classical model with domain the set of inte-
gers and with the non-logical symbols having their intended interpretations,
it is clear that φm,i is a true sentence if and only if Turing machine M is
in state qi at time 2 ⇑ m . Since equation (3) has an intuitionistic proof
of size n = mO(1) , and by the choice of M , we have proved the desired
superexponential lower bound on the complexity of deciding the disjunction
property.

Acknowledgement. We thank for P. Pudlák for the suggesting the investi-
gation of the disjunction property of propositional logic to us. J. Johannsen
helped us with comments and corrections to an earlier version of this paper.

14

References

[1] G. Gentzen, Untersuchungen über das logische Schliessen, Mathema-
tische Zeitschrift, 39 (1934), pp. 176–210, 405–431. English translation
in [2], pp. 68-131.

[2] , Collected Papers of Gerhard Gentzen, North-Holland, 1969. Edited
by M. E. Szabo.

[3] R. E. Ladner, The computational complexity of provability in systems
of modal propositional logic, SIAM Journal on Computing, 6 (1977),
pp. 467–480.

[4] V. P. Orevkov, Lower bounds for lengthening of proofs after cut-
elimination, Zapiski Nauchnykh Seminarov LOMI, 88 (1979), pp. 137–
162. In Russian: English translation: J. Soviet Mathematics 20 (1982)
2337-2350.

[5] D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Almqvist
& Wiksell, Stockholm, 1965.

[6] P. Pudlák, The lengths of proofs, in Handbook of Proof Theory, S. R.
Buss, ed., Elsevier North-Holland, 1998, pp. 547–637.

[7] R. Statman, Intuitionistic propositional logic is polynomial-space com-
plete, Theoretical Computer Science, 9 (1979), pp. 67–72.

[8] , Lower bound on Herbrand’s theorem, Proceedings of the American
Mathematical Society, 75 (1979), pp. 104–107.

15

