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Abstract 

Intuitionistic theories IS: of Bounded Arithmetic a re  introduced and i t  is  shown 

tha t  the  definable functions of IS: a re  precisely the  0: functions of the  polvnomial 

hierarchy. This is an extension of earlier work on the  classical Bounded Arithmetic and 

was first conjectured by S. Cook. In contrast t o  the  classical theories of Bounded 

b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic 

theories concern all the  definable functions. 

The method of proof uses 0;-realizability which is inspired by the  recursive 

realizability of S.C. Kleene 131 and D. Nelson 151. I t  also involves polynomial hierarchy 

functionals of finite type which a re  introduced in this paper. 

* Research supported in part by NSF Grant DMS 85-11465. 



S1. Background Introduction - 

We begin by reviewing some of the  main results of Buss [1.21. In [I], very weak 

theories of arithmetic, called collectively Bounded Arithmetic, are  formulated. These 

1 
theories have the  non-logical symbols 0, S, +, - ,  #, L ~ X J ,  I X I  and 6 ,  where 

I X I  = rlog2(x+l)7, the length of the  binary representation of x, 

1 
L Z X J  = x divided by two, rounded down, 

x#y = 21x1 l y l  

and the  res t  of the  symbols have their usual meanings; namely, zero, successor, plus, times 

and "less than or equal to". The syntax of first order logic is enlarged t o  include bounded 

guantifiers of the  forms (Vx6t) and (3xSt)  where t is an arbitrary term not containing x. 

Bounded quantifiers of the  form (Vx6 l t I )  or  (3x6 l t I )  a r e  called sharply bounded 

guantifiers. The usual quantifiers a re  called unbounded quantifiers. 

A formula is bounded if and only if all of i ts  quantifiers are  bounded. The bounded 

formulae a r e  classified into a hierarchy XP and II: by counting alternations of bounded 

quantifiers, ignoring sharply bounded quantifiers. This is analogous to  the  definition of the  

arithmetic hierarchy where one counts. the  alternation of unbounded quantifiers ignoring 

bounded quantif ers. 

The 2:-PIND axioms a r e  the  formulae 

b where A is a Xi-formula. The first order theory S: is defined to have the  language 

b above and to  be axiomatized by the  Xi-PIND axioms and an additional, finite s e t  of open 

k axioms [I]. We say that  5: can XP-define a function f: N + if and only if there 

b exists a Xi-formula A(2.y) such that  

1 s I- ( \ (~) (~!Y)A( ; .Y) .  and 



(2) For all z ,  H I= ~ ( z , f ( z ) ) .  

In [ I ]  i t  is  shown tha t  S: can 2:-define precisely the  0:-functions (for 21). The 

0:-functions a re  the  functions a t  the i-th level of the  polynomial hierarchy [I]. In 

particular, 0: is t h e  s e t  P of functions computable in polynomial time. (We differ from 

the  usual convention that  P is the  s e t  of polynomial time recognizable predicates; for  us, P 

also denotes the  s e t  of functions which a r e  computable by a polynomial time transducer.) 

q'- 
In general, 0: is P 

The theories Si a r e  most advantageously viewed a s  Gentzen-style natural deduction 

systems. A formal proof in a natural deduction system contains sequents of the  form 

where each A. and B. is a formula. The meaning of such a sequent is 
J J 

In addition t o  the  usual inference rules for natural deduction. the  Z:-PIND inference is 

b where A is a Xi-formula, r and A represent sequences of formulae separated by commas, t 

is any term and the  f ree  variable b occurs only a s  indicated. 

The intuitionistic natural deduction system is defined t o  be the  usual natural 

deduction system with the  additional restriction that  a t  most one formula may appear in the  

antecedent of a sequent (i.e., a f ter  the  +). In other words, only sequents of the  form 



may appear in an intuitionistic natural deduction proof. (See Takeuti [61 for more details.) 

b Definition. A formula A is hereditarily Ci if and only if every subformula of A is 

b b a Ci-formula. The s e t  of all hereditarily 2; formulae is denoted HZi. 

b Since any formula is a subformula of itself, every hereditarily Ci formula is a 

b C -formula. 

b The HE:-PIND axiom and the  HZi-PIND inference rule a r e  defined in the  obvious 

b way. I t  is easy t o  see  tha t  the  HEi-PIND axiom is intuitionistically equivalent t o  the  

HZ!-PIND inference rule: this is proved by the  method of proof of Theorem 4.2 of [I]. 

Definition. Suppose i2O. Then IS: is an intuitionistic theory of Bounded 

Arithmetic formalized by a Gentzen-style intuitionistic sequent calculus. The language of 

IS: is the  same as  the  language of s:. The axioms of IS: a re  the  s:-provable 

sequents 

A1,..-,AIL -+ B 

such that  A1,...,Ad and B are  hereditarily Z: formulae. In addition, 1s: admits the  

b HC -PIND inference. 

Of course, i t  is unimportant tha t  IS: is formalized a s  a Genteen sequent calculus 

instead of a s  a Hilbert-style system. We prefer the  Gentzen formulation for the  

proof-theoretic arguments presented below. 

Note that  IS: satisfies a restricted version of the  law of excluded middle. Namely, 

b b 
if A E Ci - Vni - or more generally, if both A and -A are  hereditarily L:, then 



and 

Let i be a fixed positive integer for the remainder of this paper. 

Definition. (i31). A formula ( 3 y ) ~ G . y )  is  0;-fulfillable if and only if there is a 

u:-function f such that  for  all ;: E uk. A(a.f(;)) is valid. 

The main result of this paper is  

Theorem 2. (Dl). If A is  any formula and 1~:t-(3y)A then (3y)A is  

u:-fulfillable. 

1 In particular, if IS2 I- (~;)(3y)AG,y) then there is  a polynomial-time computable 

k function f: N "' so that  for all E u k ,  A(Z,f(;'n)) is  true. 

I t  is  an  immediate corollary of Theorem 2 and of the results in [I] tha t  the 

definable functions of IS: a re  precisely the 0; functions. The definition of a function f 

being definable in IS: is that  there is an arbitrary formula A(2.y) so  that  A(:.f(fi)) is 

true for all values of fi and such that  IS: proves (V;)(~!Y)A(?.Y). 

I t  is  instructive t o  compare Theorem 2 with what is  known for 5:. BY Theorem 

5.1 of [I], if A is a c!-formula and skk(3y)A then (3y)A is 0:-fulfillable. Theorem 2 

is  similar but concerns the theory IS: and allows A to  be an arbitrary formula. 

Theorem 2 was f irst  conjectured by Stephen Cook after  hearing some of the results - 
of this author's dissertation. The proof presented here is  based on this author's original 



method of proof of Theorem 5.5 of [I], the  main theorem of his dissertation. However, this 

original proof was never published since this author found a simpler proof and used i t  in 

[ll. 

S2. Eliminating Implication - 

The logical symbols used for the  construction of formulae in a Gentzen natural 

deduction system are  n, v, ', 3, tl and 3. In order t o  simplify our definitions and proofs 

in this article, we wish t o  omit the  implication symbol, 3, from the  language. In a 

classical theory this can be trivially done; however, in an intuitionistic theory this is more 

difficult. In fact ,  it can be shown that  there is no formula 0 which does not contain > 
such that  both 

and 

03(~39)  

a re  intuitionistically provable 141. But for our purposes, i t  will suffice t o  prove Proposition 

1 and 2. 

Proposition I, Let A be any formula which may include the  logical implication 

symbol, 3. Then there a re  formulae AR and AL such that  

(a) AR and AL do not involve 3, 

(b) AR and AL a re  classically equivalent t o  A, 

(c) AL>A and ADAR a r e  intuitionistically provable. 

Proof. BY induction on the  complexity of A: if A is atomic then define AR and AL 

to  be A itself. Otherwise define 



I t  is now easy to  prove Proposition 1. For example, t o  prove tha t  (B3C)L is correctly 

defined, suppose B3BR and CL3C a re  intuitionistically provable. Then consider the  

following intuitionistic proof: 

Thus ('BRvCL) 3 ( B X )  is  intuitionistically provable. We leave the other cases t o  the 

reader. 

b Promition 2, Let A be any hereditarily Ci formula. Then there is a hereditarily 

b C i  formula B so tha t  

(a) The implication symbol, 3, does not appear in B. 

(b) IS: proves A3B and B3A. 

Roof. Jus t  take B to  be AL as  defined in the  proof of Proposition 1. 

It is  now clear how we may eliminate the implication symbol, 3 ,  from the  Gentzen 

natural deduction system. S u ~ p o s e  for  instance that  IS: proves (Vx)A. By Proposition 1 



there is an IS: proof of (3x)AR, and by Proposition 2 i t  may be assumed without loss of 

generality that the implication symbol, 3, does not appear in any principal formula of an 

induction inference. Furthermore, without loss of generality we can require that no axiom 

(initial sequent) involves 3; for example, the axiom A>B + 'AvB can be derived by 

where the last inference is a cut against the sequent -+'AvA (not shown) which is an 

b b b  axiom since A>B is hereditarily Ci,  hence A E CiT\IIi and 'AvA is hereditarily 

Thus the implication symbol, 3, does not appear in the axioms, the induction 

inferences or the conclusion of the proof; so by cut elimination (Theorem 4.3 of [I]) there 

is an IS: proof of (3x)AR in which the implication symbol does not appear a t  all. Since A 

and AR are classic all^ equivalent. i t  is clear that (3x)AR is 0;-fulfillable if and only if 

(3x)A is. Hence it will suffice to  prove Theorem 2 under the assumption that the 

implication symbol, 3, is not in the first order language a t  all. 

Accordingly, we shall prove Theorem 2 under the assumption that formulae do not 

involve the implication symbol, 3. 

S3. Polynomial-hierarchy Functionals - 

In this section a theory of polynomial-hierarchy functionals is developed. The 

principal difference between the theory of polynomial-hierarchy functionals and the classical 

(recursive) functionals is that the computational complexity of functions and functionals is 

restricted. For the rest of this section i will be a fixed positive integer. We define 

below p-types, 0:-functionals, and extended 0:-functionals. 



Definition. A suitable polynomial is  a polynomial in one variable with non-negative 

integer coefficients. If q and s a r e  suitable polynomials, then qos ,  q m s  and q+s denote 

their composition, product and sum, respectively. 

Definition. The p-types a r e  defined inductively by 

(1) o is  a p-type. 

(2) If ,..., rk a r e  p-types, then ,..., rk> a is  p-type. 

(3) If 7 and o are  p-types and r is a suitable polynomial, then 7 5 0  is  a 

P-type. 

Intuitively, TAU is  the  class of all functions with domain 7 ,  range o and 

computational complexity bounded by r. When kEN we write ok t o  denote o, ..., o with 

k k repetitions: so  <o > is  a p-type. 

We shall assume that  some Godel coding has been defined for p-types. The precise 

details of the  Godel coding a r e  not important a s  long a s  it is efficient and straightforward; 

in particular, we assume that  polynomial algorithms exist t o  manipulate the  Godel numbers 

of p-types. We shall not distinguish notationally between a p-type and i t s  Godel number; 

i t  should always be clear from the  context which is  meant. 

We also need t o  assign Godel numbers t o  Turing machines. Again, this can be done 

in a number of ways, and must be done s o  tha t  polynomial time algorithms can be used t o  

manipulate the  Godel numbers. Turing machines will be assumed t o  have one read-only 

input tape, an output tape, and one o r  more work tapes. In addition, a Turing machine has 

an oracle which is  accessed via a query tape and a query s ta te ,  an accepting s t a t e  and a 

rejecting s ta te ;  except for  this oracle the  Turing machine is  deterministic. 

Definition. Let ni be a canonical 2;- l-complete predicate. So n2 could be 

SAT and nl the  empty set .  Let m be the  Godel number of a Turing machine M,. Then 

0: is the  unary function which is computed by the  Turing machine Mm with ni as i ts  

oracle. 



Note 0; may be a partial function. When m is  not a valid Giidel number, l e t  

0: be  t h e  constant zero function. 

We shall frequently wri te  just rm instead of 0; since i is a fixed positive integer 

fo r  t he  r e s t  of this article. 

Definition. Let m be a Giidel number of a Turing machine. The  runtime of 0:(z) 

is equal t o  t h e  number of s teps  t h e  Turing machine Mm uses with oracle ni on input z. 

Let  I zl  denote t h e  length of t he  binary representation of z, so  l zl = Tlog2(z+l)1. 

If r is  a suitable polynomial, then t h e  runtime of #:(z) bounded & r if and only if t he  

runtime of 0:(z) i s  less than o r  equal t o  r ( l  z l  ). 

Definition. A (Giidel number of a) 0:-functional of p-type rc i s  an  ordered pair 

<rc.m> so  t h a t  rc is  t he  Godel number of a P-type and mEN and so  t h a t  t h e  following 

inductive definition is  satisfied: 

(1) If rc = o then m may be any natural number. 

(2) If n. = <rl , . . . , rk> then m must be a k-tuple <ml, ..., mk> where < r a m . >  is  a 
3' 3 

0:-functional fo r  lGjGk. 

(3) If K = TAU then m must be a Gadel number of a Turing machine Mm s o  tha t  

fo r  every (Giidel number of a )  0:-functional z of P-type r the  runtime of 0:(z) 

is  bounded by r and t h e  value of 0;(z) i s  ( the  Giidel number of )  a 0:-functional 

of P-type a. 

Definition. A unary function f is  a 0:-functional of p-type 7 if and only if 

there  exists mEN s o  t h a t  f(x)=0:(x) f o r  all XEW and <T.rn> is  a a:-functional. 



As an example, consider the  function f defined so that  

@m(n) if x = < < o - % , o > , < m , n > >  
a n d  the runtime of @,(n) is < r(lnl). f(x) = 

otherwise 

Then for any suitable polynomial r and p-type 7 ,  there is a suitable polynomial s ,  say 

2 s=1000(r +l) ,  so tha t  f is a 0:-functional of p-type < 0 5 7 , 0 > 3 r .  Furthermore, 

for any p-type rr which is not of the  form rr = <o&7,0>, there is a polynomial s, say 

s(n) = 1000(n+l), so that  f is a 0:-functional of p-type r r A o .  Note, however, tha t  f 

is  not even a 0:-function a s  i t s  runtime is  not bounded by a polynomial uniformly for all 

p-types of inputs. 

Definition. Let 7 be a p-type. The runtime of 7 ,  runt  i me(.r), is  defined 

inductively by: 

(a) runt  i m e ( o )  = 0 

k 
(b) runt  i me(<.rl, . . . , T ~ )  = C runt  i me(.rj) 

j = l  

(c) runt  ~ m e ( r ~ 5 ~ ~ )  = r + runt  ime(r2). 

Note tha t  the  runtime of 7 is always a suitable polynomial. 

Definition. The function @A is an extended 0;-functional if and only if there 

is  a suitable polynomial p so that  for every p-type 7 there exists a p-type u such that  

(a) runt  i me(u) < po run t  i me(r) ,  and 

(b) <7*o,m> is  a 0;-functional where s = po runt  ime(7). 

The polynomial p bounds the  runtime of the  extended 0:-functional @:. 



Our example above of a function f which was a 0:-functional was in f ac t  an 

example of an extended 0:-functional. That  example illustrated what is perhaps the  

single most important property of extended 07-functionals, so we res ta te  i t  in Proposition 

Proposition 3, (i3 1). 

i i 
(a) If 0: and 0, a re  extended 0:-functionals then their composition ' 0:o 0, is 

an extended 0 :-functional. 

(b) Let f be the  function defined by 

@:(n) i f  x = < < ~ - % . ~ > . < m . n > >  
a n d  O i ( n )  h a s  r u n t i m e  6 r ( l n l )  f(x) = m 

o t h e r w i s e .  

Then f is an extended 0:-functional. 

Proof. 

(a) Let pm and pn bound the  runtimes of 0, and 0,. Let 7 be any p-type. Then 

there e d s t s  a p-type o1 so tha t  < r 5 o l , n >  is a 0:-functional where r=pnoruntime(r). 

There also exists a p-type o2 so tha t  < o l ~ 0 2 . m >  is  a 0:-functional where 

s=pmoruntime(ol). Furthermore, the  runtime of ol is S pno runtime(7) and the  runtime 

of o2 is S pmoruntime(ol); hence the runtime of o2 is S pmo pno runtime(7). 

Consider a Turing machine M which computes O m o O n  in the  straightforward 

manner and l e t  k be the  Godel number of M, so 0k = 0,00,. The runtime of 0k is 

bounded by q(r,s) for  some fixed polynomial q. Now le t  p be q(pn,pmopn). 

We claim tha t  0k is an extended 0;-functional with runtime bounded by p. This is 



immediate from the definition of p and the  f a c t  tha t  p(z) 3 pmopn(z) for all z€H. 

Par t  (b) is also easy t o  prove and we omit the  details here (see the  example above). 

We need one further definition which allows a notational convenience for handling 

vectors of functionals and numbers. 

+ 
Definition. If x is a vector of 0:-functionals and nl, ..., nk a r e  non-negative 

integers, then <?c;;> denotes the  0:-functional 

54. Realization of g Formula - 

In this section, we define what i t  means t o  0:-realize a formula and prove some 

basic properties. We begin by reviewing a definition in 55.1 of Buss [I]. 

Suppose A(?) is  a L:-formula where ? is a k-tuple containing all of the  f ree  

* 
variables in A. A formula Wi t n e s s :  * is  defined in [ I ]  with k+l  f r ee  variables; the  

+ 
intended meaning of Wi t n e s s i *  c(w. t )  is tha t  w codes a "witness" to, or  a "proof" of, 

the  truth of A(?). Indeed, the  following conditions hold: 

+ 
b (2) Wi t n e s ~ : ' ~ ( w . ? )  is defined by a Ai-formula in the  theory of s:. 

(3) There is a term tA so  that  S: proves 



+ 
Intuitively, W i t n ess: ' '(w.;) holds if and only if w codes values for the  existentially 

quantified variables of A which make AG) true. The reader should refer t o  [I] for the  

+ 
i,c definition of W i  t n e s s ,  if he wishes t o  fully understand the  proofs of Propositions 4, 

5 and 6 below. 

Definition. Let xEN and A be an arbitrary formula. Then x 0;-realizes A is  

defined by the  following inductive definition: 

Case If A = A(:) has f r ee  variables c1. .... ck where k+O, then x must equal <r.m>. 

k the  Giidel number of a 0:-functional of p-type 7 = < o  >*u, and for ail 

 ZEN^. @ (<;a>) must 0:-realize A(;). m 

Case &2J If A has no f ree  variables, then: - 

Case @aJ If A is  hereditarily E:, NCW i t ness:(m) and x is  <o.m> then x 

0 : -realizes A. 

Case If A = (tlx)B(x) and if x 0:-realizes B(c) where c is a new free  variable, - 
then x 0 :-realizes A. 

Case @ If A = BAC and <rl.ml> and <72,m2> 0:-realize B and C. respectively, and - 
if x = <<7 ,7 >,<m ,m >>, then x 0:-realizes A. 1 2  1 2  

Case (2d): If A = BvC, x i s  <<0,7~,7~>,<m~,rn~,rn~>> and either 

(i) mo = 0 and < r  l.ml> 0:-realizes B, o r  

(ii) mo + 0 and < ~ ~ , r n ~ >  0:-realizes C 

then x 0;-realizes A. 



Case If A = (3x)B(x), x is <<o,r>,<ml,m2>> and <+,m2> 0:-realizes B(ml) then - 
x 0;-realizes A. 

Case (2f): If A = (VxSt)B(x) and x 0:-realizes (Vx)( lxStvB(~))  then x 0:-realizes - 
A. 

Case && If A = (3xSt)B(x) and x 0:-realizes (3x)(xSt~B(x)) then x 0:-realizes A. 

Case If A = 'B and B is not 0;-realizable then any x = <o,m> 0:-realizes A. 

Note that whenever x 0:-realizes a formula A, x is a 0:-functional. However, 

the P-type of x is not uniquely determined by A. For example, if B is hereditarily L: 

and A = (3xSt)B(x) is a closed, true formula then there are 0:-functionals of p-types o 

i and <o,o> which 0:-realize A. Namely, if W i  t nessA(m)  then <o,m> 0;-realizes 

i c A, and if W i  t n e s s s  i (m2.ml) and mlSt then ~ ~ o . o ~ . ~ m l . ~ 0 . r n 2 ~ ~ ~  0:-realizes A. 

Definition. A formula A is 0:-realizable if and only if there exists an xEH 

which 0:-realizes A. 

Following the reasoning of Kleene I31, i t  is easy to see that i t  is possible for a 

formula to  be (classically) true and yet not 0:-realizable; conversely, a formula may be 

0:-realizable but (classically) false. 

+ 
i , c  The next proposition is a simple consequence of the definition of W i  t n e s s ,  

and is readily proved by the methods of 55.1 of [I]. 

Pm-ition &. Let A(?) be a formula in z ~ M ? .  Then there is a 0:-function 



g such that 

+ 
i . c (g(+ + u ( ~ 2 ) [ ~ ( 2 )  3 W i  t n e s s ,  c),c)l. 

In spite of our remarks above about the independence of truth and 

0;-realizabilit~, the next proposition shows that these notions are equivalent for 

b hereditarily C sentences. 

Prowsition 5, Let A be a closed, hereditarily 2; formula. Then A is 

0:-realizable if and only if A is true. 

Proof. 
b c Suppose A is true. Since A is closed and C1, there is a number w such that 

W  i t n e s  s :(w). Hence <o.w> 0 ;-realizes A. 

3 For the converse direction we argue by induction on the complexity of A. The argument 

splits into cases depending on the outermost logical connective of A and the p-type of the 

0;-functional which 0 ; -realizes A. 

Case A is 0;-realized by <o.m>. There are two possibilities. The first is - 
that W i t ness:(m) and hence A is true. The second is that A = -B and B is not 

0;-realizable. But then B must be false by the first half of this proposition. So, again, 

A is true. 

Case j& Suppose A is (3xSt)B(x) and <<o.r>.<ml.m2>> 0;-realizes A. Then - 

<7,m2> 0:-realizes mlSt~B(ml). So by the induction hypothesis mlSt~B(ml)  is true. 

Hence A is true. 



Case & Suppose A is (Vx<t)B(x) and < o A ~ , m >  0;-realizes A. For all 

n€N, Cm(n) 0:-realizes 'n<tvB(n) and by the induction hypothesis. 'n<tvB(n) is 

true for all nEN. Hence A is true. 

The rest of the cases are also easy and are left t o  the reader. m 

b I t  is an immediate consequence of Proposition 5 that whenever a hereditarily Ci 

formula ~ ( 2 )  is 0:-realizable then i t  is true for all values of 2. Thus it  is not 

unreasonable to  expect that there is an effective procedure which given an xEN which 

* 
07-realizes A(;) produces a WEN so that W i  t a e s s :  * '(w.Z). This is stated more 

fully as Proposition 6. 

Promition Let AG) be a hereditarily E: formula where cI,....ck are the only 

free variables in A. Then there is an extended 0:-functional f A  so that whenever 

 EN^ and x 0:-realizes A(;) then fA(<x:;>) is (the G d e l  number of) a 

0:-functional of P-type o which 0:-realizes AG), and moreover, fA(<x;z>) is of the 

+ 
form <o.m> where N R Wi t n ess: * '(m,fi). 

Note that i t  follows from Proposition 5.3 of S5.1 of [I] that there is a term tA in 

the language of S2 such that we can assume without loss of generality that 

fA(<x;Z>)(tA(Z) for all x and a. 

Proof. The proof is by induction on the complexity of A, so assume that if B and 

C are formulae less complex than A then fg and fC are extended 0;-functionals 

satisfying the conditions of Proposition 6. 

The input to  fA is the Giidel number of a 0;-functional. We define fA so that 



* 
i f  y = < < o . x > ; a >  w h e r e  N C W ~  t n e ~ s : ' ~ ( x . ~ )  

i f  y - <<7, j> ;a>  a n d  t h e  a b o v e  c o n d i t i o n  f a i l s  

o t h e r w i s e  

where sA is defined below. The definition of gA is by cases depending on the outermost 

logical connective of A. 

b b  
Case Suppose A E ZiT\Ui. BY Proposition 4 there is a 0:-function g so 

that  

So define gA(7.j,t) = <o,g(z)>. Now by Proposition 5, if < r , B  0;-realizes Am), then 

* * * 
A(;) is true and thus W i  t n e ~ s : ' ~ ( ~ ( n ) , n ) .  

b b  Case & Suppose A is B .  Since A is hereditarily Z:. A E Z i n n i .  

Hence Case (1) applies. 

Case U Suppose A(?) = (3x<tG))B(x,-d). Then the p-type 7 must be of the 

form <o,u>; otherwise <7,j> can not possibly 0:-realize Am). Furthermore, we must 

* * have j = < j  1 2  , j  > so that  <u,j2> 0:-realizes jl~t(G)AB(jl.n). Let C(co,c) be the  formula 

co< t ( t ) A ~ ( c o . t )  and define gA by 

< 0 , < j l , ~ ( 2 , z ) > >  i f  7 = < o , u > ,  j = < j A . j 2 >  

a n d  f C ( < < u , j 2 > ; j l , n > )  = < o s ~ >  

o t h e r w i s e .  

i Note that  B(2,z) is the  Godel beta function and whenever Wi t n e s s D A E ( z )  then 



Wi t ness;(d(2.z)). It  is apparent from the definition of Wi t ness: and the induction 

hypothesis that the definition of gA makes fA satisfy Proposition 6. 

Case & Suppose AG) = BGI~cG).  In order for <r.j> to 0;-realize A(;) - 

we must have r = <o,rl ,r2> and either <rl.s(2.j)> 0:-realizes ~ ( 2 )  or ~ r ~ ~ B ( 3 . j ) )  

0:-realizes ~ ( 2 ) .  Accordingly, we define gA so that 

I < o , < z B r O > >  i f  7 = < 0 , r ~ , 7 ~ > .  B ( l , j )  = 0 ,  
* and f g ( < < 7 1 , B ( 2 , j ) > ; n > )  < 0 . z B >  

gA(r,j,Z) = < o . < o . z c > >  i f  r = <09r1  . r 2 > .  ~ ( 1 . j )  t 0 .  I * and  f C ( < < r 2 . B ( 3 , j ) > ; n > )  < o , z C >  

l o  otherwise. 

Case & The case where A = BAC is similar to Case (4) and is left to the reader. - 

* Case Suppose A@) = (VxE lt(t)l ) B ( X , ~ ) .  Let C(co.c) be the formula 

* 
coElt(~)l~B(8(cO.c). In order for <r,j> to 0:-realize A(;) T must be of the form 

0 5 0  and for all nOEH fj(<o:n0>) 0;-realizes C(n0.z). 

Define gA so that if r is 0 5 0  then 

where 

Otherwise set gA(r.j.Z) = 0. F'rom the induction hypothesis and the definition of 

wi t ness: it is straightforward to see that when x 0;-realizes A m )  then fA(<x:z>) 

0;-realizes A(;) and is of p-type o. Furthermore, the kind of reasoning used to prove 



Proposition 3 shows that fA  is an extended 0;-functional. Q.E.D. W 

S5. K .-Realization of g Formula - 

Although we have spent a lot of time on the concept of 0:-realization we shall 

actually need the closely related concept of Ki-realization. We shall modify slightly the 

definition of 0;-realize to define Ki-realize; this is based on an idea of Kleene's 131. The 

reason we need to use the notion of Ki-realization is that under certain circumstances, 

Ki-realizability implies validity; see Proposition 8 below. 

Definition. The definition of "x Ki-realizes A" is formed by altering the definition 

of "x 0;-realizes A" by replacing "0;-realize" everywhere by "Ki-realize" and by 

replacing Cases (2d) and (2e) by: 

Case (2d): If A = BvC and x is <<o,r1,r2>,<mo,ml,m2>> and either - 
(i) mo = 0 and <rl.ml> $-realizes B and IS: proves B, or 

(ii) mo i 0 and <r2,m2> Ki-realizes C and IS: proves C. 

then x $-realizes A. 

Case (2e): If A = (3x)B(x), x is <<o.r>,<ml,m2>>, and <r,m2> Ki-realizes B(ml) and 

IS: proves B(ml) then x Ki-realizes A. 

Definition. A formula A is Ki-realizable if and only if there exists an XEN 

which Ki-realizes A. 

Prowsition Propositions 5 and 6 hold when "0:-realize" and "0:-realizable" 

are replaced everywhere by "Ki-realize" and "Ki-realizable". 



Roof. One can readily verify that  the  proofs of Propositions 5 and 6 can easily 

be modified t o  prove Proposition 7. 

The next proposition is the  reason we need the concept of Ki-realizability. 

Promsition &. If (3x)A(x,t) is Ki-realizable then i t  is 0;-fulfillable (and hence 

valid). 

Roof. k Suppose <<o > - k o  .r>.m> Ki-realizes (3x)A(x.cl.. ... ck). Then for all 

z € N ~ ,  @ m (<:a>) is a 0;-functional of p-type <o.+> which Ki-realizes (~X)A(X.;). 

So there are 0;-functions f and g so that  

and IS: proves ~ ( f G ) , z ) .  Since every theorem of IS: is true, f is a 0:-function 

which fulfills (3x)A(x,;). Q.E.D. 

S6. The Main Theorems and Roof --- 

We are  now ready t o  s t a te  and prove Theorem 1. The main result, Theorem 2, is 

an immediate corollary of Theorem 1 and Proposition 8. 

Theorem 1, ( i2l) .  Let A~G).....A~G)-+BG) be a seq&nt provable by IS: where 

cl, ..., ck  are  all the  f ree  variables in A1,...,Ad and B. Then there is an extended 

0;-functional cm so that  whenever :€Nk and xl. .... xl Ki-realize AIG).....AQ(?i), 

respectively, and each of A ~ ( ; ) , . . . . A ~ ( ~ )  is provable by IS: then @,(<::a>) Ki-realizes 



Note that in Theorem 1. Q may be 0 or B may be missing. In the latter case, the 

k conclusion of Theorem 1 should be interpreted as saying that for all ;EN , a t  least one 

i of A ~ ( ; ) , . . . , A ~ ~ )  is either not Ki-realizable or not IS2-provable. Of course this is 

trivial since IS: is consistent. 

Theorem 1 also holds if we replace "Ki-realizes" by "0;-realizes" and drop the 

condition that each A~(:) be IS:-provable. This is proved by almost exactly the same 

argument as is used below to prove Theorem 1. 

As we remarked above, Theorem 1 is proved in a way very similar to  this author's 

first proof (which was never published) of Theorem 5.5 of [I]. However, i t  differs in some 

important respects; in particular, the cut elimination theorem is not used! 

Proof of Theorem 1. The proof is by induction on the number of inferences in an 

1s:-proof P of Al.....AI+B. The argument splits into a large number of cases depending 

on the last inference of P. 

Case Suppose P has no inferences. Then A1, ..., AQ-B is a theorem of - 
b S: and each of Alp ..., AQ and B is hereditarily Ei. By Theorem 5.5 of (11, there is a 

-b 

0;-function h so that whenever H t= W i t ness: ' C(vj,:) for 1 S X I  then 
j 

For l,<j,<Q, let gj be the function guaranteed to exist by Propositions 6 and 7 such 

-b i,c -b -b that whenever x. K. realizes A~(:) then W i t n es s A (sj(xj.n),n) and so that the mapping J 1- 
j 



is an extended 0:-functional. Define m so that  

Case (2, (hzleft). Suppose the last  inference of P is 

By the  induction hypothesis there is an mOEN so that  if xj  Ki-realizes A j 6 )  and 

IS:FA~(:") for l<KQ then d (<?::">I Ki-realizes B. Define g t o  be the  0;-function 
mo 

so that  

<o,d(l,z)> if x = <O,Z> 

if x = < < u ~ , u ~ > , < ~ ~ , ~ ~ > >  - 
otherwise 

Define m t o  be the Godel number of the function defined by 

Then gm is an extended 0:-functional and satisfies the  desired conditions. 

Case @ (":left). Suppose the  last inference of P is 

Let mo and ml be the numbers given by the  induction hypothesis so that  if p is 0 or 1 and 

if xj  Ki-realizes A j 6 )  and IS: proves A j 6 )  for all appropriate j, then 



* 
Cm (<xP,x2,. ... xQ ;n>) Ki-realizes ~ 6 ) .  Recall that  if x Ki-realizes A ~ ~ ) ~ A ~ C ~ )  then 

P 
* 

l B C  (2.2) or x = ~ ~ o , ~ ~ . ~ ~ ~ . < z ~ . z ~ . z ~ ~ >  where either x = <o.z> where W i t n e s s A o v A  
1 

< T  ,z > Ki-realizes A (2) where p is 1 or 2 depending on whether z0 is zero or 
P P P-1 

non-zero. Define mEM so that  

* * * 
+ + (<gO(x1,n),x2,...,xQ;n>) i f  h ( x l , n )  = 0 Cm(<x;n>) = * + 

( < g l ( x 1 , n ) , x 2 ,  ..., x Q ; n > )  o t h e r w i s e  

where 

B ( 1 , z )  i f  a = < 0 , T 1 , T 2 >  
* 

h(<a,z>,z) = 1 i f  0-0 a n d  ~ i t n e s s ~ ~ ~ ( ~ ( 2 . z ) . ~ )  
1 

0 o t h e r w i s e  

and, for i = 1, 2, 

I t  is not hard to  see  that  Cm satisfies the conditions of Theorem 1; indeed, whenever xl 

* 
Ki-realizes AO(z)vA1(z) then either h(xl.z )=o and go(xl,n) Ki-realizes ~ ~ ( 2 )  or 

h(xl ,~)#O and gl(xl,z) Ki-realizes A ~ G ) .  

Case & (3:left). Suppose the last inference of P is 

where the f ree  variable co appears only as  indicated. By the induction hypothesis, there is 

an m0EN so that  whenever A(no,:) and A j 6 )  are  provable by IS:, xl Ki-realizes 



+ 
A(no,n) and x, Ki-realizes A j 6 )  for 2<&Q, then 0 (<?;no,'ib) Ki-realizes BG). 

mo 

If x Ki-realizes (3x)A(x,;), i t  must be the  case that  x = <<o.o>,<z 1' z 2 >> where 

<e.z2> $-realizes A(zl.Z) and IS: t- A(zl.$). Define g and h t o  be oY-functions so  

tha t  

and 

Let m be the Giidel number of the  function defined by 

It is easy to  see  tha t  the  desired conditions a re  satisfied. 

Case When the  last  inference of P is an  (3S:left) inference the  argument is - 
much like the  proof of Case (4); albeit complicated by the  f a c t  tha t  the principal formula 

of the  inference may be hereditarily z:. We leave the  details to  the  reader. 

Case & (V:left). Suppose the last  inference of P is 

The induction hypothesis is that  there is  an mOEN so that  if ~ ( t6 ) .2 )  and all of A,P) are  

i + + IS2-provable and if xl Ki-realizes A(t(n).n) and xj  Ki-realizes A j 6 )  for 2<jbn, then 

0 (<z;?i>) Ki-realizes ~ 6 ) .  Recall that  if x Ki-realizes (VX)A(X,;) then x is 
mo 

<o-%,z> where for all no. #,(no) Ki-realizes A(n0,i!i). Define mEN so  that 



* 
( < 0 , ( t ( a ) ) , x 2 ,  ..., X ( ' " > )  i f  X 1  = <o,z> 

Om(<:;ib) = { @mo 
0 otherwise . 

Case 1I1, (V,<:left). The proof for  this case is much like that  of Case (6 ) ,  but - 
slightly complicated by the  f a c t  tha t  the  principal formula may be hereditarily ~ 4 .  We 

leave the  details for the  reader. 

Case (a (':left). Suppose the  last inference of P is 

A l ,  ""A +B 

' B , A l , .  . . ,Ap---+ 

As we remarked above, this case is  trivial since IS: is  consistent. 

Case (9h (":right). Suppose the last  inference of P is 

Let 0 be an extended 0:-functional satisfying the  induction hypothesis. Let g be a 
mo 

0:-function so that  

So if x Ki-realizes ~ ( 2 ) .  then dx)  Ki-realizes B ( ~ ) v c ( ~ ) .  Finally le t  mEW be the 

Gb'del number of the  function 

Case (10).  right). S U P P O S ~  the  last inference of P is 



Let 0 and 0 be extended 0:-functionals satisfying the induction hypothesis for the 
1 m2 

left  and right upper sequents, respectively. Define g t o  be a 0;-function so that  

So if xl and x2 Ki-realize B~(:) and ~ ~ ( 2 ) .  respectively. then g(xl.x2) Ki-realizes 

Bl(:)~B2C"). So le t  m be the Godel number of the function defined by 

Case (11). (3:right). Suppose the last  inference of P is 

The induction hypothesis is tha t  there is an extended 0;-functional 0 so that  if xi 
mo 

1 * * Ki-realizes Aj(Z) and IS2  I- AP) for l d X l  then 0 (<;;a>) Ki-realizes B(t(n),n). Of 
mo 

* * 
course. these conditions imply B(t(n).n) is IS:-provable. Let m be the Godel number of 

the function defined by 

Om(<Z;Z>) = 0 (<Z:Z>), t(Z)) 
mo 

where g is a 0:-function such that  



It is easy t o  verify tha t  0, satisfies t h e  desired conditions. 

Case (12). The case where the  final inference of P is an (%:left) inference is - 
very much like Case (11). 

Case (13). (V:right). Suppose the  last  inference of P is 

where the  f ree  variable co appears only as indicated. BY the  induction hypothesis, there is  

an extended 0:-functional 0 such that  whenever x j  = <lj,yj> Ki-realizes ~ ~ ( 2 )  and 
mo 

IS: proves A ~ G )  for IS&&, then 0 (<:;no,;>) Ki-realizes ~ ( n ~ , ; ) .  Let po be a mo 
suitable polynomial which bounds the  runtime of 0 

mo' 
Define m t o  be the  Godel number of the  function defined by 

where 

r = pOoruntime(<?>) 

n = p-type of 0 (<:;0,%) mo 

and An 0 ( < z : n o . ~ > )  is the  Godel number of the  Turing machine which computes the  
O mo 

function 



I t  is clear tha t  0, is an extended 0:-functional by Proposition 3. Also it is readily seen 

tha t  0, satisfies the  desired conditions of Theorem 1. 

Case (14). The case where the  last  inference is a (V<:right) inference is handled - 
similarly t o  Case (13) and we omit the  details. 

Case (15). (Cut). Suppose t h e  last  inference of P is  

By the  induction hypothesis there a re  extended 0:-functionals I and 0 so tha t  if 
mo ml 

x j  Ki-realizes Aj(:) and 1s;kAj(:) for I<&&,  then 0 (d;:>) Ki-realizes c(:), and so 
mo 

that  when in addition xo Ki-realizes c(:) then 0 (<xo.z::>) Ki-realizes ~ ( 2 ) .  (Note tha t  
ml 

if IS: proves Aj(:) for all j. then c(;) is 1s:-provable.) 

So we define m so  tha t  

Case (16). (HZ!-PIND). Suppose the  last inference of P is 

where the  f ree  variable co appears only as indicated and B is a hereditarily 2: formula. 

The induction hypothesis is  tha t  there is an  extended 07-functional so  tha t  whenever x j  

1 * 1 -, Ki-realizes Aj(:), xo Ki-realizes B ( L ~ ~ J . ~ ) .  1 and I S : C B ( L ~ ~ ~ J , ~ ) ,  for  



* 
I E Y Q ,  then @ (d.xo;n0,n>) Ki-realizes B(n0.;). 

mo 
First note that  if Alm),...,AQm) and ~ ( 0 . 2 )  a re  1s:-provable, then B(n0.;) is a 

i theorem of IS2 for any nOEN. Second, since B is hereditarily L:, Propositions 6 and 7 

assert  that  there is an extended 0;-functional @ such that  whenever x Ki-realizes 
ml 

* 
B(no.n) then @ (<x;no.;>) is a 0:-functional of p-type o which also Ki-realizes 

1 

* 
B(no,n). Furthermore, by Proposition 5.3 of [I], we may assume that  there is a term tB in 

the language of IS: such that  @ (<x;no.z>) E tB(no.d) for all x, no and a. Next 
ml 

define h to  be the extended 0;-functional so that  

* So h has all the  properties of @ mentioned above and in addition h(<~,xo;nO.n>) is of mo 
p-type o and is less than or equal t o  tB(no.z). 

Define the function g inductively by 

* I t  is clear that  when xi Ki-realizes Aj(;). IS: proves A.(n), xo Ki-realizes ~ ( 0 . 2 )  and 
J 

+ IS: proves ~(0,;) for all I E Y Q ,  then g ( ~ . x o . n o . ~ )  Ki-realizes B(no.n). Also, 

+ 
g(~,x0.n0.n) is always less than or equal to  tB(no.z). Now define m to  be the Giidel 

number of the  function defined so that  



It remains t o  check that  Cm is an extended 0;-functional. But this follows from the  

f a c t  tha t  g was defined by limited iteration (see [I]) from the  extended 0;-functional h. 

Case (17). The remaining cases, (exchange:left), (weak:left), (weak:right) and - 
(contraction:left), a re  all very simple and we leave them t o  the  reader. 

Q.E.D. H 

S7. Some O ~ e n  Questions -- 

When we compare Theorem 2 above t o  Theorem 5.1 of [I], it is evident that  

Theorem 2 is closely analogous t o  a weakening of the  lat ter  theorem. But can the  res t  of 

the  analogy be proved; that  is to  say, is  the  following conjecture true? 

Conjecture t Suppose 19: k (3y)A(y.?). Then there is  a formula ~ ( a , ? )  such 

that  IS: proves the  following three formulae: 

As in [I], when n€H le t  I, be a closed term in the  language of IS: s o  that  the  

1 value of In is n and so that  S 2  can EY-define the  (polynomial time) function mapping n to  

the  Giidel number of In. When 2 is  a vector then I, is the  vector of terms I ...., I 
x X1 Xk' 

A different way t o  strengthen Theorem 2 in the  case i=l  would be t o  prove the  

next conjecture. 

1 Conjecture 2, (i=l). Suppose IS2 proves (~Y)A(Y,?). Then there exist polynomial 

1 time functions f and g so that  for all d€Hk, f m )  is the  Giidel number of an IS2-proof 



1 
Let  Prf (w.v) be t h e  A!-defined predicate of S2 which asserts tha t  w is t h e  

1s; 

Giidel number of a n  1s;-proof of t he  formula with Giidel number v [I]. We strengthen 

Conjecture 2 as: 

1 Colliscture & (i=l). Suppose I S  proves ( 3 y ) ~ ( y , t ) .  Then 

It i s  not likely tha t  Conjectures 2 and 3 can  be directly generalized for  arbitrary 

1 i D l .  Indeed, t h e  generalizations obtained by substituting IS; for  IS2. S2 for  s:, and 

0; for  "polynomial time" imply tha t  NP = co-NP when i>l.  

On t h e  other  hand, t h e  author conjectures t h a t  some generalizations of Conjecture 2 

and 3 do hold for  i> l ;  however, t he  generalizations are too complicated t o  be worth 

explaining here. (Hint: axiomatize IS: in a different way.) 
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