
A Simple Supercritical Tradeoff between Size and
Height in Resolution

Sam Bussa,1, Neil Thapenb

aDepartment of Mathematics, U.C. San Diego, USA
bInstitute of Mathematics, Czech Academy of Sciences, Czech Republic

Abstract

We describe CNFs in n variables which, over a range of parameters, have small
resolution refutations but are such that any small refutation must have height
larger than n (even exponential in n), where the height of a refutation is the
length of the longest path in it. This is called a supercritical tradeoff between
size and height because, if we do not care about size, every CNF is refutable in
height n. A similar result appeared in [Fleming, Pitassi and Robere, ITCS ’22],
for different formulas using a more complicated construction.

Small refutations of our formula are necessarily highly irregular, making it a
plausible candidate to separate resolution from pool resolution, which amounts
to separating CDCL with restarts from CDCL without. We are not able to
show this, but we show that a simpler version of our formula, with a similar
irregularity property, does have polynomial size pool resolution refutations.

1. Introduction

We define families of unsatisfiable CNF formulas, Γa,b, Γa,b,c and Φb,c,d for
which small resolution refutations require large height and, correspondingly, low
height refutations require exponential size. For Φb,c,d, these size-height tradeoffs
are called “supercritical” since the height lower bounds can be larger than the
number of variables, which is the natural upper bound on refutation height,
c.f. [2, 17, 11]. Similar supercritical size-height tradeoff have been independently
obtained by Fleming, Pitassi and Robere [11] using an xor-ification method of
Razborov [17] that xor-ifies by reusing variables, but our proofs are simpler and
more direct.

The principle Γa,b is an induction principle related to PLS [14]. The second
principle Γa,b,c is a substitution instance of Γa,b obtained via or-fication, that
is, by replacing some of the variables in Γa,b with disjunctions of new variables.

Email addresses: sbuss@ucsd.edu (Sam Buss), thapen@math.cas.cz (Neil Thapen)
1Supported in part by Simons Foundation grant 578919.
2Supported by the Czech Academy of Sciences (RVO 67985840) and GAČR grant 23-

04825S.

Preprint submitted to Elsevier December 18, 2023

The third principle Φb,c,d is obtained from Γa,b,c by identifying variables. In
other words, Φb,c,d can be obtained from Γa,b by an or-ification that reuses
variables. Our or-ification with reuse of variables is considerably simpler than
the xor-ification of [17]: variables are reused in a pattern based on the base-d
representations of integers and this does not depend on expander graphs. For a
general statement of our tradeoff result, see Corollary 10 below.

The supercriticality of the height lower bounds means that, for suitable pa-
rameters, short resolution refutations of Φb,c,d must be highly irregular, contain-
ing paths that query the same variable many times, simply because the height
of the refutation is much more than the number of distinct variables; for similar
reasons, small proofs of Γa,b,c must be highly irregular, for suitable parameters.
These principles are thus potential candidates for solving an open problem about
the relation between resolution and the CDCL algorithms used in SAT solving,
by separating the systems of pool-resolution [20] or regWRTI [8, 4, 5, 6], which
model CDCL without restarts, from unrestricted resolution. We discuss this
problem in Section 5 and show that the principles Γa,b,c do have polynomial
size pool resolution refutations, and so do not give such a separation. However
this remains open for the more complex principles Φb,c,d.

We recall some standard definitions. A literal is a propositional variable x
or its negation ¬x. A clause is a disjunction of literals, and a CNF (conjunctive
normal form) formula is a set of clauses, treated as a conjunction of clauses.
The width of a clause is the number of literals in it. We will often write clauses
using a “sequent-style” notation; for example, x1∧· · ·∧xk → y1∨· · ·∨yℓ means
the clause ¬x1 ∨ · · · ∨ ¬xk ∨ y1 ∨ · · · ∨ yℓ.

A resolution refutation of a CNF F is a sequence of clauses, where each
clause is either from F or is derived from earlier clauses by a resolution or
weakening rule, and where the last clause is the (unsatisfiable) empty clause.
The resolution rule allows deriving the clause C ∨ D from C ∨ x and D ∨ ¬x,
where x is any variable. The weakening rule allows deriving D from C whenever
D ⊇ C. Such a refutation naturally has the structure of a directed acyclic graph,
with the initial clauses of F as sources and the final empty clause as its sink.
The height of the refutation is the number of edges in the longest path from
any source to the sink (this measure is often called depth; we prefer to reserve
depth for the logical depth of formulas appearing in a refutation). The size of
the refutation is simply the number of clauses.

2. The CNF families

For a, b > 1, the CNF Γa,b is a principle about an a × b rectangular grid.
Columns in the grid are numbered with values x = 0, . . . , b−1; we assume b is a
power of two. The a many rows in the grid are numbered with i = 0, . . . , a−1;
we picture row 0 as the top row, and row a−1 as the bottom row. Each node
(i, x) in the grid corresponds to a propositional variable Gi,x. If Gi,x is true,
we say the node (i, x) is given the value 1; otherwise Gi,x is false, and we say
(i, x) is given the value 0. There are also propositional variables describing a

2

function f : [b] → [b] mapping columns to columns, via a binary encoding. (The
notation [b] means {0, . . . , b−1}.) That is, for each column x there are log b
many variables f(x)0, . . . , f(x)log b−1 giving the value of f(x) in binary. For
a column x′ we will use the notation (f(x) = x′) for the conjunction of log b
literals which asserts that the bits of f(x) match the bits of x′.

Definition 1. The unsatisfiable CNF Γa,b consists of

1. The singleton clause ¬G0,0

2. For each i < a− 1 and each pair x, x′ < b the clause3

(f(x) = x′) ∧ ¬Gi,x → ¬Gi+1,x′

3. For each x < b the singleton clause Ga−1,x.

This expresses that the node at (0, 0) at the top left is 0; that if (i, x) is 0 then
(i+1, f(x)) is 0; and that every node on the bottom row is 1. This is clearly
a contradiction, and is very close to what has been called the house-sitting
contradiction [10, 7], the iteration principle [9], or the sink-of-dag principle [14].
The novel aspect of Γa,b is that there is one common function f for all rows,
instead of having different functions for f at each row, as one might expect.

The definition of Γa,b,c uses a third parameter c ≥ 2 and variables Gy
i,x for

all i < a, x < b and y < c. Then Γa,b,c is the result of replacing the variable
Gi,x in Γa,b with the disjunction G0

i,x ∨ · · · ∨Gc−1
i,x and expanding the result as

a CNF:

Definition 2. The unsatisfiable CNF Γa,b,c consists of

1. For each y < c, the singleton clause ¬Gy
0,0

2. For each i < a− 1, each pair x, x′ < b and each y′ < c, the clause

(f(x) = x′) ∧ (
∧

y<c
¬Gy

i,x) → ¬Gy′

i+1,x′

3. For each x < b the clause
∨

y<c G
y
a−1,x.

The principle Γa,b,c is something like CPLS [12, 18] (and our presentation
in this section is modelled on [18]), except that CPLS contains extra functions
which allow the analogs of items 2. and 3. to be written with small width, which
is something we do not need here.

The node (i, x) now corresponds to G0
i,x ∨ · · · ∨Gc−1

i,x . In this sense each
column x of the grid in Γa,b,c contains ac distinct G-variables.

The construction of the final CNF Φb,c,d uses a substitution which reduces
this number of variables substantially, and thereby allows for supercritical proof
height lower bounds. Let d ≥ 2 be a new parameter and suppose a = dc. We
introduce new variables all Hy

j,x for j < d, x < b and y < c.

3Here we are using sequent notation for clauses. The sequent displayed here means precisely
the clause ¬(f(x) = x′) ∨Gi,x ∨ ¬Gi+1,x′ where ¬(f(x) = x′) denotes the disjunction of the
negations of the log b many literals whose conjunction expresses that f(x) = x′.

3

Definition 3. Suppose a = dc. The unsatisfiable CNF Φb,c,d is Γa,b,c after the
following substitution. For each i < a, let i0, . . . , ic−1 be the digits of i when
written in base d with, for definiteness, the least significant digit first. Then
Φb,c,d is formed from Γa,b,c by replacing every occurrence of each Gy

i,x, with the
new variable Hy

iy,x
.

After the substitution the clause corresponding to (i, x) changes from G0
i,x∨

· · · ∨ Gc−1
i,x to H0

i0,x
∨ · · · ∨ Hc−1

ic−1,x
. So whereas in Γa,b,c each column contains

ac many G-variables, in Φb,c,d each column contains only dc many H-variables.
For appropriate choices of the parameters, this can be an exponential reduction
in the number of variables.

We remark that the fact that the tuples of indices i0, . . . , ic−1 of the H-
variables appear in each column in lexicographic order is not actually used in
our tradeoff arguments below, as they would still work if these tuples were
reordered arbitrarily. In fact we anticipate that a version of these CNFs in
which the tuples are randomly permuted may be useful for some lower bounds.

Proposition 4. The formula Φb,c,d has

� bcd + b log b variables

� c + (dc − 1)b2c + b ≤ dcb2c clauses, of width at most c + log b + 1

� a resolution refutation of size O(dcb2c) and width c + log b + 1.

Proof. The numbers of variables and clauses of Φb,c,d are immediate from the
definition. Since Φb,c,d is a substitution instance of Γa,b,c, the upper bound
on proof size will be proved by bounding the size of a proof of Γa,b,c. Letting
a = dc, the bounds on proof size come from the natural inductive refutation
of Γa,b,c where a = dc. The refutation of Γa,b,c works with each row i in turn,
starting at the bottom row i = a−1. For each i, the b many clauses

∨
y<c G

y
i,x

for x < b are derived.4 For the base case, i = a−1, this is precisely an initial
clause 3. of Γa,b,c..

The clauses for row i are derived from the clauses for row i+1 using the initial
clauses 2. The argument is straightforward and splits into b many subcases
depending on the values of f(x)j specifying the value of f(x) in binary. Finally,
the clause for row i = 0 and column x = 0 contradicts the initial clauses 1.

The size and width bounds on the refutation of Γa,b,c are evident by inspec-
tion. In particular, the log b terms in the width comes from handling the bitwise
encoding of the function f .

3. Width versus height

We will first show that every small-width refutation of the simple principle
Γa,b must have large height. Then we will observe that this is still true, with

4Similar refutations are given for CPLS in [18].

4

the same width and height parameters, for the full principles Γa,b,c and Φb,c,d.
In the next section, an easy random restriction argument will turn this into a
size-height tradeoff for Φb,c,d.

Consider the following Prover-Delayer game played on the variables of Γa,b.
We divide the variables into blocks. For each column x, all the variables Gi,x

in the column form a block, and all the variables f(x)0, . . . , f(x)log b−1 form a
second block. So there are 2b blocks in total. We only consider assignments that
assign whole blocks, and for this reason we may talk about assigning values to
f(x) rather than to individual bits f(x)j .

At the beginning of each turn in the game, the Prover’s memory contains
an assignment to all variables in some set of blocks (this is empty at the start
of the game). The Prover can either

� Query a new block, in which case the Delayer reveals an assignment to
block’s variables and this is added to the Prover’s memory, or

� Forget all variables in a block, erasing them from memory.

The Prover wins when the partial assignment in memory falsifies an axiom
of Γa,b. The Delayer’s goal is to force the Prover to make as many queries as
possible before winning. The Delayer is free to give different answers each time
a block is queried.

We define the block-width of a Prover-strategy to be the maximum number of
blocks the Prover has in memory at once. Thus the Prover has a simple strategy
of block-width 3, which will win in about 2a turns. This is to first query the
G-block in column 0, to which the Delayer must reply with an assignment that
sets node (0, 0) to 0, to avoid falsifying axiom 1. The Prover can then propagate
this 0 down the grid by querying the f -block for the column the current lowest
0 is in, then querying the G-block for the column f points to. He does not need
to remember the answers to old queries. He also has a strategy of block-width
b + 1, which requires only b + 1 queries. This is to query all G-blocks. If no 0
appears, this violates axiom 1; a 0 in the bottom row violates axiom 3; otherwise
he queries the f -block for the column in which the lowest 0 appears, and the
answer must violate axiom 2.

Lemma 5. There is a strategy for the Delayer which forces the Prover either
to use block-width at least b/2, or to make at least a− 1 queries to f -blocks.

Proof. We will make the simplifying assumption that the Prover’s first query
is to G-block 0 (that is, the G-block in column 0), and that this block is never
forgotten. This increases the block-width of the Prover’s strategy by at most 1.
So suppose the Prover’s strategy has width w < b/2. We will use this assumption
to lower bound the number of queries to f -blocks.

We write α for the partial assignment currently in the Prover’s memory
and t for the number of times that the Prover has queried a value of f so far.
We define an f -path of length k ≥ 1 to be a sequence x0, . . . , xk such that
f(xj) = xj+1 in α for each j < k. The Delayer tries to maintain the following
invariants of α, as long as t ≤ a− 1.

5

A1. f is a partial injection with no cycles.

A2. For every x, either G-block x is not set by α, or it is set so that at most
one row s is 0 and every other row is 1.

A3. Suppose G-block x0 is set with a 0 in row s. Then s ≤ t. If furthermore
there is an f -path x0, . . . , xk in α, then s + k ≤ t.

A4. Suppose x0, . . . , xk is a path in α and G-blocks x0 and xk are both set
and have 0s respectively in rows s and s′. Then s′ = s + k.

Forgetting a piece of information preserves the invariants. The Delayer re-
sponds to queries as follows.

The Prover queries f(x). Call column x′ good if G-block x′ is not set and
x′ is not on any f -path. By the limit on the block-width, at most 2w columns
x′ are not good, namely one for each G-block set in α and two for each f -block.
Therefore at least one good x′ must exist. The Delayer chooses any good x′ and
replies that f(x) = x′. This preserves A2 trivially, and A1 and A4 because x′

is good. It preserves A3 because t has increased by one.
The Prover queries G-block x. The Prover’s first query has this form, with

x = 0, and in this case the Adversary replies that the top row is 0 and all
other rows are 1. Otherwise, if x is on a path which already has a set G-block
with a 0 row in it, the Adversary replies with an assignment which puts a 0
in the appropriate row in G-block x to satisfy A4, and a 1 in every other row
in the block. By A3 such an assignment exists as long as t ≤ a−1. This does
not affect A1 and preserves A2, A3 and A4 by construction. If there is no
such column on the path, the Adversary replies with an assignment setting all
variables in the column to 1.

Theorem 6. Any resolution refutation of Γa,b of width strictly below b/2 must
have height at least a.

Proof. Suppose such a refutation π exists. We make π into a strategy for the
Prover in the standard way. That is, we work backwards from the final (empty)
clause of π; each resolution step turns into a query of the block in which the
resolved variable appears; and the Prover forgets a block whenever we reach a
clause in which no variables from that block appear. Thus the block-width of
the strategy is at most the width of π, and the game cannot last for more queries
than the height of π. But the Delayer-strategy outlined in Lemma 5 forces the
Prover to make at least a queries — precisely, he must make at least a−1 queries
to f -blocks, in addition to which he must query at least one G-block to violate
an axiom and win the game.

Having shown the height-width tradeoff for the simple formula Γa,b, we now
show that it holds for the full formula Φb,c,d.

Theorem 7. Any resolution refutation of Φb,c,d of width strictly below b/2 must
have height at least dc.

Proof. Letting a = dc, the proof is essentially the same as that of the previous
theorem. We define a Prover-Delayer game played on the variables of Φb,c,d. As

6

before, we divide the variables into 2b blocks with, in each column, one block
for all the f -variables and another block for all the H-variables. The Prover can
either query a full block, or forget one or more full blocks, and wins when the
current assignment falsifies an axiom of Φb,c,d. We claim that Lemma 5 above
also holds for this game, that is, that there is a strategy for the Delayer which
forces the Prover either to use block-width at least b/2, or to make at least a−1
queries to f -blocks.

The strategy is the same as the strategy described in the proof of Lemma 5,
except that there the Delayer set G-blocks, in which each node in the column
corresponds to a single variable Gi,x, while now she must set H-blocks, in which
each node corresponds to c variables H0

i0,x
. . . Hc−1

ic−1,x
, behaving as a disjunction,

and where each variable appears in several rows in the same block. However,
there were only two kinds of assignment the Delayer had to make to a G-block in
the proof of Lemma 5: either set every node to 1; or set the node in some given
row s to 0, and set every other node to 1. To imitate this strategy, it is enough
to have a + 1 possible assignments to each H-block x: one which satisfies the
disjunction at every node in the column; and, for each s < a, one which falsifies
the disjunction at row s, and satisfies the disjunction at every other node. By
construction of the formula Φb,c,d, this is easy. In the first case, we just set every
variable in the block to 1. In the second case, we set every variable in row s
to 0, and set every other variable in the block to 1. This works, because every
row other than s contains some variable that does not appear in row s.

The theorem then follows by the same proof as Theorem 6.

Lemma 5 gave a lower bound on the number of queries to f -blocks; thus our
bound on proof height is in actuality a lower bound on the maximum number
of resolutions on f -variables along a path in the proof. It is possible to get a
lower bound on H-variables as well as f -variables:

Theorem 8. Any resolution refutation of Φb,c,d of width w < b/2 must have
a path in which there are at least dc many resolutions on f -variables and dc/w
many resolutions on H-variables.

Proof sketch. We may extend Lemma 5 to also lower-bound the number of
queries to G-variables made by the Prover. For this, the Delayer’s strategy
is unchanged, but the Delayer maintains one more invariant:

A5. Suppose s is the maximum row with a 0 in any G-block. Then the number
of queries made so far to G-blocks is at least s/w.

This is maintained because the only time (other than at the first query) the
Delayer sets a new G-block with a 0 row is when it is on a path which already
contains a G-block with a 0 row, and paths have maximum length w.

4. Size versus height

Theorem 9. Any resolution refutation of Φb,c,d of size less than 2b
1
4 must have

height at least a = dc.

7

Before proving the theorem we describe the supercritical tradeoffs that follow
from it, using the estimates from Proposition 4.

For a simple example, given a parameter m, set b = d = m and c = 3. Then
Φb,c,d has Θ(m2) variables, O(m5) clauses, and a refutation of size O(m5); but

any refutation of size less than 2m
1/4

must have height at least m3. In particular,
measured by the number of variables, a polynomial-sized proof exists but any
subexponential-sized proof must have superlinear height.

The next corollary constructs a more general family of examples, showing
that our tradeoffs are in broadly the same regime as those in [11]. In particular,
we can force the height to be exponential in the number of variables, although
at the cost of the number of clauses also being exponential.

Corollary 10. For n, k with 1 ≤ k < n/(log n)2, there is a CNF with Θ(n) vari-
ables, nk+2 clauses and a refutation of size O(nk+2), for which any refutation

of size less than 2(n/k)
1/8

must have height at least nk.

Proof. The CNF is Φb,c,d with c = k log n, b = n/c, and d = 2 (we are ignoring
issues with rounding, and that b should strictly be a power of 2). Observe
log n ≤ b ≤ n/ log n. Referring to Proposition 4, we have bcd + b log b variables,
where bcd = 2n and b log b ≤ n. We upper bound the number of clauses and
refutation size using dcb2c = 2k logn(n/c)2c = nk+2/c. For the tradeoff, we
have n/k = (bk log n)/k ≤ b2. Thus, by the theorem, any refutation of size less

than 2(n/k)
1/8

has height at least 2k logn.

Proof of Theorem 9. Let Π be a refutation of Φ := Φb,c,d of size less than 2b
1
4 .

We will define a random restriction which, with high probability, makes Π “nar-
row” in the following sense: no clause will contain variables from b/4 different
f -blocks, or from b/4 different H-blocks. This will be enough to then apply a
width lower bound argument like the one in the proof of Theorem 7.

Fix w = b/4. Set δ = 1/3 and let p = bδ/b = b−2/3. We do the restriction in
two, almost independent, stages, to deal with the two different kinds of variables.

Stage 1. Independently for each column x, with probability p put x into a
set S1. For each x ∈ S1 choose a random column x′. Set f(x) and f(x′) both
to x′. Set all variables in H-blocks x and x′ to 1.

For this construction we want that |S1| ≤ 2bδ and that S1 does not contain 0
or any of the chosen columns x′. The first condition is true with exponentially
high probability (in b), and given that the first is true, the second is true with

probability at least (1 − p)2b
δ ≥ (e−2p)2b

δ

= e−4b2δ−1

= e−4b−1/3

which asymp-
totically approaches 1.

If either condition fails, we abandon the construction. Otherwise, we first
observe that we have a restriction which does not falsify any axiom of Φb,c,d.
Now let C be any clause containing literals z1, . . . , zw from variables in f -blocks
for distinct columns x1, . . . , xw. Each f(xi) is set to some random value with
probability p. Hence the probability that zi is satisfied (that is, is set true) is p/2,
and the probability that no literal in C is satisfied is at most (1 − p/2)w <

8

e−
1
2pw = e−

1
8 b

1
3 . The refutation Π contains at most 2b

1
4 clauses so, by the

union bound, with high probability if we apply this restriction to Π we get a
refutation of the restricted Φ in which no clause mentions variables from w or
more f -blocks.

Stage 2. Independently for each column x, with probability p put x into
a set S2. Then for each x ∈ S2, randomly divide the interval [0, c) into two
“halves”, one of size ⌈c/2⌉ and the other of size ⌊c/2⌋. For each index y in the
first half, set every variable of the form Hy

j,x in H-block x to 1. Set all remaining
variables in H-block x to 0. Set f(x) = x.

We want |S2| ≤ 2bδ and that S2 does not contain 0, any column from S1, or
any of the columns x′ from stage 1, and we abandon the construction if any of
these conditions fail. By a similar calculation to before, with probability close
to 1 we do not abandon it.

As before this restriction (unless it was aborted) does not falsify any axioms.
For any H-literal z, the probability that z is set is p and, given that it is set,
the probability that it is satisfied is at least 1/3 (it is 1/3 only if z is negative
and c = 3). Therefore, if a clause involves H-variables from w or more columns,
it is satisfied with probability at least (1− p

3)w = (1− b−2/3/3)b/4. Hence, by a
similar calculation as above, with high probability, applying this restriction to Π
yields a refutation of the restricted Φ in which no clause mentions H-variables
from w or more different columns.

Now let ρ be the restriction given by combining the two stages. We have a
refutation Π↾ρ of Φ↾ρ in which each clause mentions f -variables from at most
b/4 columns and H-variables from at most b/4 columns. We now repeat the
proof of Theorem 7, with a few small changes.

Say that the restriction ρ affects a column x if x ∈ S1, x ∈ S2, or x was the
value assigned to some f -block x′ for x′ ∈ S1. Then ρ affects less than a constant
fraction of columns, and for every column x it affects, it either sets at least one
variable to 1 in every row of H-block x, or it does not set any variables in the
block at all. The Delayer now avoids in her strategy every column x affected
by ρ, and because ρ does not set any row to 0, she does not care that f may have
collisions and cycles on these columns, since this will never falsify any axiom.

Π↾ρ gives rise to a Prover strategy in which the Prover knows at most b/4
f -blocks and b/4 H-blocks. So if the Prover queries f(x), and we want to count
the number of “good” columns, at most b/4 columns are not good because the
Prover knows about that H-block; at most b/2 are not good because they are on
a path known by the Prover; and only a small fraction, much less than b/4, are
not good becuase they are affected by ρ and the Delayer is not allowed to touch
them. Hence a good column still exists. The rest of the proof is unchanged,
and shows that Π ↾ ρ, and hence Π, has large height, namely height at least
a = dc.

As in [17, 11], we can also use this construction to show a double-exponential
lower bound on treelike proof size, over proofs of small width.

9

Theorem 11. Any treelike resolution refutation of Φb,c,d of width strictly less
than b/4 must have size at least 2d

c

.

Proof sketch. In the proof of Theorem 7, when the Prover queries f(x), at
most 2w columns are not good, where w is the block-width of the Prover’s
strategy. If w < b/4 then more than half of the columns are good. The query
arose from a resolution on some variable f(x)j among the log b variables rep-
resenting the bits of f(x). So there must be a good column x′ for which this
bit is 1, and a good column x′′ for which this bit is 0, and the Adversary could
potentially reply to the query with either x′ or x′′. This is enough to give the
lower bound on treelike size by adapting the proof of the Impagliazzo-Pudlák
game [16].

5. CDCL without restarts

The CDCL algorithm [13] is at the core of most modern SAT solvers. Given
a set of clauses, it grows a partial assignment, called the trail, until it contradicts
a clause in the set; from this it learns a new clause implied by the current set,
forgets some recently assigned values from the trail, and begins growing it again.
Eventually it either builds an assignment which satisfies every clause, or learns
the empty clause and declares the initial set to be unsatisfiable. An important
additional heuristic, which seems in practice to be necessary for effective SAT
solving, is to frequently restart, meaning, throw away the current trail and begin
again, keeping just the learned clauses.

It is known [3, 15] that, for an unsatisfiable CNF F , the length of the shortest
run of CDCL on F is polynomially related to the size of the shortest resolution
refutation of F , provided that CDCL is allowed unlimited restarts. This is open
for CDCL without restarts. In particular it is possible that disallowing restarts
means that CDCL computations must be exponentially longer than resolution
refutations, on some CNFs. The pool resolution proof system was defined in [20]
as a restricted version of resolution which captures CDCL without restarts, in
such a way that we could resolve the question above by either showing that
pool resolution simulates resolution, or showing superpolynomial bounds in pool
resolution for a CNF with short resolution refutations.

A resolution refutation is regular if, on every path through the refutation
from an axiom to the final clause, no variable is resolved on twice. Pool reso-
lution simulates regular resolution [20], so natural candidates for superpolyno-
mially separating resolution from pool resolution are CNFs which are already
known to separate resolution from regular resolution. There are not many such
CNFs known. Three examples, from [1, 19] are the guarded graph tautologies,
the Stone tautologies, and the guarded pebbling tautologies. All three have
been shown to have polynomial size pool resolution refutations [4, 5, 6].

We observe that it follows from Theorem 9 that, for suitable choices of pa-
rameters, Φb,c,d has no subexponential-size regular resolution refutations. This
is simply because a regular refutation cannot have height greater than the num-
ber of variables. (Strictly, for this to be true we should not count weakening

10

steps when we measure height; but the height lower bounds in this paper do not
count weakenings.) Indeed, any small refutation must be highly irregular, with
variables reused many times. Setting a = dc, even for the formula Γa,b,c any
small refutation must be highly irregular, as it must have paths that resolve on
f -variables dc times, and this is greater than the number of f -variables.

We show that nevertheless, like the three CNF families mentioned above,
Γa,b,c has polynomial size pool resolution refutations. We have not been able
to show a similar results for Φb,c,d and it remains a possible candidate for the
separation.

We will not use the original definition of pool resolution but will work with
an equivalent system called regRTL (standing for regular resolution trees with
lemmas). There are also generalizations of these concepts that allow certain
types of weakenings or “w-resolution” inferences, but we will not need them
here – see [8]. We recall some definitions from [8]. A resolution proof is now
represented as an (ordered) tree T with nodes labelled with clauses. The root
node of T is at the bottom, and is labelled with the empty clause. The post-
order ordering <T of the clauses in T is defined as follows: if u is a clause in T ,
v and w are clauses in the left and right subtrees (respectively) above U , then
v <T w <T u; intuitively, clauses earlier in the post-order represent clauses
learnt earlier in the CDCL computation.

Definition 12. ([20, 8]) A pool resolution refutation, or regRTL refutation, of
a set of clauses F is a resolution proof tree T such that: (a) each leaf is labeled
with either a clause of F or a clause C (called a “lemma”) that appears earlier
in the tree in the <T ordering; (b) each internal node is obtained by resolution
from its two children; (c) the proof tree is regular, in that no branch in T uses
the same resolution variable twice; (d) the root is labelled with the empty clause.

Theorem 13. The formulas Γa,b,c have polynomial size regRTL refutations.

Proof. We first restate the axioms of Γa,b,c in a slightly different notation where
in particular, to improve clarity of the figures below, we introduce a symbol
Gi,x to stand for the disjunction

∨
z<c G

z
i,x. The axioms become

1. ¬Gy
0,0 for y < c

2. (f(x) = x′) ∧Gy
i+1,x′ → Gi,x for i < a−1, x, x′ < b and y < c

3. Ga−1,x for x < b.

Broadly, the refutation works its way up from the bottom row of the grid
of Γa,b,c, row a−1, to the top row, row 0. For each row i it derives all clauses
Gi,x for x < b.

For i = a − 1, these are just axiom 3. For i < a − 1, we will make use of a
treelike subproof Ai,x which derives Gi,x assuming we already have {Gi+1,x′ :
x′ ∈ [b]}. The structure of Ai,x is shown in Figure 1. For each x′ ∈ [b], it
introduces all axioms {(f(x)=x′), Gy

i+1,x′ → Gi,x}y∈[c] and resolves these with

Gi+1,x′ on the variables Gy
i+1,x′ to derive (f(x)=x′) → Gi,x. Thus we have

{(f(x)=x′) → Gi,x}x′∈[b] and we can derive Gi,x from these by resolving away

11

{
Gi+1,x′

}
x′∈[b]

{
(f(x)=x′), Gy

i+1,x′ → Gi,x

}x′∈[b]

y∈[c]

(Axiom)

{
(f(x)=x′) → Gi,x

}
x′∈[b]

Gi,x

Figure 1: The structure of the tree Ai,x. This is an abstracted diagram where we do not show
individual resolution steps. Clauses in Γa,b,c are labelled as axioms. The other leaf clauses
are available as learned clauses.

all the variables (f(x))j of f(x), since the antecedents run through all possible
patterns of signs on these variables.

It would be easy to make the trees Ai,x into a resolution refutation of Γa,b,c,
if we did not care about it being treelike or satisfying the regularity condition;
essentially this is what is described in Proposition 4. But this naive refutation
is not treelike, as it reuses the clauses Gi,x in an uncontrolled way, and is not
regular, as paths through it typically will resolve several times on the same f -
variables. Instead we will introduce a scaffolding of clauses, which do not derive
anything very useful themselves, but which give us the structure of a tree with
appropriate places to put the trees Ai,x as subtrees in a way that satisfies the
rules of regRTL.

We inductively define a sequence of trees Ta−1, . . . , T1, where Ti is a deriva-
tion of Gi−1,0 and contains Ti+1 as a subtree. Our final refutation of Γa,b,c

consists of T1, which as just stated derives G0,0, followed by resolution steps
with all instances of axiom 1, that is, with all clauses in {¬Gy

0,0}y∈[c], giving the
empty clause. The structure of Ti, for i < a − 1, is shown in Figure 2 and we
now go through its important properties.

The base-case tree Ta−1 has the same structure as in the figure, except
that we delete the subtrees on the left marked as Ti+1, Ai,1, . . . , Ai,b−1; we do
not need them, since we are given the clauses Ga−1,0, . . . ,Ga−1,b−1 directly as
axioms. We have not described the subtrees of the form By

i,x in the figure yet
— we postpone this to the end of the proof.

Tree Ti has as a backbone a sequence of clauses of the form G0
i,0, . . . , G

0
i,x →

Gi−1,0. For each x < b − 1 this clause has exactly c + 1 parents, as shown
in the figure, and is derived from them by c resolution steps over the variables
G0

i,x, . . . , G
c−1
i,x . The details of these resolutions are not shown, but preserve that

Ti+1 and the trees Ai,x appear as left subtrees.
Tree Ti contains Ti+1 as a leftmost subtree in the post-order, and inductively

Ti+1 contains every clause in Gi+1,x for x ∈ [b]. Thus we are allowed to reuse
these clauses anywhere else in Ti+1, and in fact we use them in the subtrees of
the form Ai,x shown in the figure.

12

The trees Ai,x only include resolutions on f -variables and on G-variables
from row i + 1 (that is, of the form Gy

i+1,x′). Inductively, Ti+1 only includes
resolutions on f -variables and on G-variables from rows j ≥ i + 1. Otherwise,
all resolutions in the body of Ti are on G-variables from row i, with no variable
resolved twice. Thus we satisfy the regularity condition on the parts of Ti

described so far.
It remains to handle the “loose ends” left in Ti, that is, the clauses of the

form G0
i,0, . . . , G

0
i,x−1, G

y
i,x→Gi−1,0 on the right and at the top of the tree. We

will describe trees By
i,x that derive these. Note that By

i,x is allowed to use the
clauses {Gi,x′}x′∈[b] since these were derived in an earlier part of the proof in
the post-order, at the conclusions of the trees Ai,x and Ti+1. Note also that on
the path from the root of Ti to the conclusion of By

i,x, the only resolutions that

occur are on variables of the form Gy′

i,x′ with x′ ≤ x, so we will avoid resolving

on these inside By
i,x.

The structure of By
i,x is shown in Figure 3. It is a variant of the tree Ai−1,0,

with the main difference that we avoid resolving away as many G-variables.

First, for each x′ > x, from Gi,x′ and the axioms {(f(0)=x′), Gy′

i,x′ → Gi−1,0}y′∈[c]

we derive (f(0)=x′) → Gi−1,0 by resolving on the variables Gy′

i,x′ . Then we re-
solve on the variables (f(0))j to combine the clauses (f(0)=x′) → Gi−1,0 for
x′ > x, the axioms (f(0)=x′), G0

i,x′ → Gi−1,0 for x′ < x, and the single axiom
(f(0)=x), Gy

i,x → Gi−1,0 (which is where y appears), to get the desired result.
Thus we satisfy the regularity condition.

This completes the description of the RegRTL refutation. It is polynomial
size by construction.

References

[1] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair
Urquhart. An exponential separation between regular and general reso-
lution. Theory of Computing, 3(5):81–102, 2007.

[2] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space trade-offs
in resolution: Superpolynomial lower bounds for superlinear space. SIAM
Journal on Computing, 43(4):1612–1645, 2016.

[3] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understand-
ing and harnessing the potential of clause learning. Journal of Artificial
Intelligence Research, 22:319–351, 2004.

[4] Maria Luisa Bonet and Samuel R. Buss. An improved separation of regular
resolution from pool resolution and clause learning. In Proc. 15th Inter-
national Conference on Theory and Applications of Satisfiability Testing –
SAT 2012, Lecture Notes in Computer Science #7317, pages 45–57, 2012.

[5] Maria Luisa Bonet, Samuel R. Buss, and Jan Johannsen. Improved sepa-
rations of regular resolution from clause learning proof systems. Journal of
Artificial Intelligence Research, 49:669–703, 2014.

13

Gi−1,0

G0
i,0→Gi−1,0

Gi,0

Ti+1 {
Gy

i,0→Gi−1,0

}
y∈[1,c)

By
i,0

G0
i,0, G

0
i,1→Gi−1,0

Gi,1

Ai,1 {
G0

i,0, G
y
i,1→Gi−1,0

}
y∈[1,c)

By
i,1

G0
i,0, . . . , G

0
i,b−2→Gi−1,0

G0
i,0,G

0
i,b−1→Gi−1,0

B0
i,b−1

Gi,b−1

Ai,b−1 {
G0

i,0, . . . , G
0
i,b−2, G

y
i,b−1→Gi−1,0

}
y∈[1,c)

By
i,b−1

Figure 2: The structure of the tree Ti, for i < a− 1.

14

{
Gi,x′

}
x′∈[x+1,b)

{
(f(0)=x′), Gy′

i,x′→Gi−1,0

}x′∈[x+1,b)

y′∈[c]

(Axiom)

{
(f(0)=x′)→Gi−1,0

}
x′∈[x+1,b)

G0
i,0, . . . , G

0
i,x−1, G

y
i,x→Gi−1,0

(f(0)=x), Gy
i,x→Gi−1,0

(Axiom)

{
(f(0)=x′), G0

i,x′→Gi−1,0

}
x′∈[0,x)

(Axiom)

Figure 3: The structure of the tree By
i,x.

[6] Sam Buss and Leszek Ko lodziejczyk. Small stone in pool. Logical Methods
of Computer Science, 10(2):Paper 2, 2014.

[7] Samuel R. Buss. Lower bounds on Nullstellensatz proofs via designs. In
P. Beame and S. Buss, editors, Proof Complexity and Feasible Arithmetics,
pages 59–71. American Mathematical Society, 1998.

[8] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with
lemmas: Resolution refinements that characterize DLL-algorithms with
clause learning. Logical Methods in Computer Science, 4, 4:13(4:13):1–18,
2008.

[9] Samuel R. Buss and Jan Kraj́ıček. An application of Boolean complexity to
separation problems in bounded arithmetic. Proc. London Math. Society,
69:1–21, 1994.

[10] Matt Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the Groeb-
ner basis algorithm to find proofs of unsatisfiability. In Proceedings of
the Twenty-eighth Annual ACM Symposium on the Theory of Computing,
pages 174–183, 1996.

[11] Noah Fleming, Toniann Pitassi, and Robert Robere. Extremely deep
proofs. In Proc. 13th Innovations in Theoretical Computer Science Con-
ference, ITCS, LIPIcs 215, pages 70:1–23, 2022.

[12] Jan Kraj́ıček, Alan Skelley, and Neil Thapen. NP search problems in low
fragments of bounded arithmetic. Journal of Symbolic Logic, 72(2):649–
672, 2007.

15

[13] João P. Marques-Silva and Karem A. Sakallah. GRASP — A new search
algorithm for satisfiability. IEEE Transactions on Computers, 48(5):506–
521, 1999.

[14] Christos H. Papadimitriou. On the complexity of the parity argument
and other inefficient proofs of existence. Journal of Computer and System
Sciences, 48(3):498–532, 1994.

[15] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning
SAT solvers as resolution engines. Artificial Intelligence, 172(2):512–525,
2011.

[16] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms
for k -SAT (preliminary version). In Proc. 11th AM-SIAM Symposium on
Discrete Algorithms (SODA), pages 128–136, 2000.

[17] Alexander A. Razborov. A new kind of tradeoffs in propositional proof
complexity. J. ACM, 62(3):16:1–14, 2016.

[18] Neil Thapen. A trade-off between length and width in resolution. Theory
of Computing, 12(5):1–14, 2016.

[19] Alasdair Urquhart. A near-optimal separation of regular and general reso-
lution. SIAM Journal on Computing, 40(1):107–121, 2011.

[20] Allen Van Gelder. Pool resolution and its relation to regular resolution and
DPLL with clause learning. In Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR 2005), Lecture Notes in Computer Science
3835, pages 580–594. Springer-Verlag, 2005.

16

