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Abstract

Counting is AC0 -reducible to the graph of multiplication. Hence
the graph of multiplication is equivalent under AC0 reductions to
majority and to the function form of multiplication.
Keywords: constant depth circuits, threshhold circuits, circuit com-
plexity, graph of multiplication, computational complexity.

Chandra, Stockmeyer and Vishkin [4] showed that MULTIPLICATION
and BINARY-COUNT and four other problems are equivalent with respect
to constant-depth circuit reducibility (see also Furst, Saxe and Sipser [5]).
In this note we prove that the graph of multiplication is also equivalent to
these six problems, by proving that BINARY-COUNT is AC0 -reducible to
the graph of multiplication.

The problems we are most interested in are:

MULTIPLICATION:

Input: Two integers x , y in binary notation
Output: The product x · y in binary notation

MULTIPLICATION-GRAPH:

Input: Three integers x , y and z in binary notation
Output: Accept if and only if x · y = z .

BINARY-COUNT:

Input: x1, . . . , xn ∈ {0, 1}
Output: The binary representation of the number of xi ’s equal to 1
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The prior constant-depth circuit reduction of BINARY-COUNT to
MULTIPLICATION is based on a method of Furst-Saxe-Sipser. For in-
puts x1, . . . , xn , construct the integers x , y with binary representations
x = (x1

~0x2
~0 · · · xn−1

~0xn)2 and y = (1~01~0 · · · 1~01)2 where ~0 denotes log(n)
many 0’s. In the middle of the binary representation of the product x · y will
be a block of log(n) many bits containing the binary representation of the
sum of the xi ’s. However, the binary representation of x · y contains a lot
of additional information; and it is easy to see that there is a constant depth
circuit which, given x1, . . . , xn and given an integer z , determines if z = x ·y .
Thus, the prior work left open the possibility that there are constant depth
circuits for recognizing the graph of multiplication—this paper shows that
such circuits do not exist.

Part of the reason we are interested in the non-existence of constant depth
circuits for the graph of multiplication is that this implies the ∆b

0 -predicates
of bounded arithmetic [2] are not in AC0 ; this should be contrasted with the
work of Mancivi on ∆b

0 -formulas in one free variable [7].
Recall the following theorem:

Theorem 1 (Chandra-Stockmeyer-Vishkin [4])

(a) MULTIPLICATION ≤AC0 BINARY-COUNT

(b) BINARY-COUNT ≤AC0 MULTIPLICATION

Obviously MULTIPLICATION-GRAPH ≤AC0 MULTIPLICATION. For the
converse reduction we shall prove:

Theorem 2 BINARY-COUNT ≤AC0 MULTIPLICATION-GRAPH.

Recall that TC0 is the set of predicates which can be computed by a family of
unbounded fanin, constant depth circuits formed from NOT gates, AND gates
and MAJORITY gates. In [4] it is also shown that MAJORITY is AC0 -
equivalent to MULTIPLICATION, etc.

Corollary 3 The decision problem MULTIPLICATION-GRAPH is AC0

equivalent to MULTIPLICATION and to BINARY-COUNT. Unbounded
fanin, constant depth circuits with NOT gates, AND gates and gates for
the graph of multiplication capture exactly TC0 .

Proof The proof of Theorem 2 involves a modification of the Furst-Saxe-
Sipser method. Now we let

x = (x10
k1−1x20

k2−1x3 · · · 0kn−1−1xn)2
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and
y = (10kn−1−110kn−2−11 · · · 0k1−11)2

where 0k denotes k occurences of the symbol 0. As before the product x · y
will contain a block of bits encoding the sum of the xi ’s; however, the values
of ki will be chosen that the rest of the product is easily predictable and thus
can not aid in determining the sum of the xi ’s.

Let z be the (binary representation of the) product x · y . The compu-
tation of z by the usual multiplication algorithm reduces to computing the
summation of the values x · 2mj where mj =

∑j
i=1 ki for 0 ≤ j < n . We

shall choose values for ki so that each column of this summation has at most
a single “1” except, of course, that the middle column will contain all the
bits x1, . . . , xn . In addition, each kj will be greater than log n and thus
the sum of the xi ’s in the middle column will not propogate any carries into
a column containing a “1”. Let C =

∑n−1
i=0 ki , it follows that columns C

through C + log n of z contain the binary representation of the number of
xi ’s equal to one. (Columns are numbered from right-to-left starting with 0.)

We define
kj = n2 + j.

Since xj occurs in column
∑n−1

i=j ki of x and since y has a “1” in precisely

columns
∑m−1

i=1 ki for 1 ≤ m ≤ n , the summation for z contains the bit xj in
the columns numbered

g(j,m) =
m−1∑

i=1

ki +
n−1∑

i=j

ki

for 1 ≤ m ≤ n . When j = m , g(j,m) = C ; so each xj occurs in column C
of the summation. To show that in all other columns there is at most a
single non-zero bit, it suffices to show that if (j,m) and (j′,m′) are distinct
pairs with j 6= m then g(j,m) 6= g(j′,m′). Without loss of generality,
m′ < m ≤ j < j′ and thus it suffices to show that

m−1∑

i=m′
ki 6=

j′−1∑

i=j

ki

i.e., that
m−1∑

i=m′
n2 + i 6=

j′−1∑

i=j

n2 + i.

But since
∑n−1

i=1 i < n2 , it must be that the two summations have the same
number of terms; which is impossible.
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We have shown that for x and y as above, the product z contains the
number of nonzero xi ’s in columns C through C + log n ; the other bits of z
are zero except for that for all j 6= m , z has bit value xj in column g(j,m).
Thus BINARY-COUNT can be reduced to MULTIPLICATION-GRAPH by
in parallel trying every possible number of nonzero values of xi ’s and using
graph-of-multiplication gates to determine if the numbers are correct. 2

Let LH denote the logtime hierarchy, i.e., the set of predicates accepted
by logtime, constant alternation Turing machines. LH was originally defined
by Sipser and is a uniform version of AC0 ; see [1, 3] for more information.
To conclude, we observe that the constant depth circuits reducing BINARY-
COUNT to the graph of multiplication are LH -uniform. To see this, it
suffices to note that since

g(j,m) = n2(n + k − j) +
k2 − k

2
+

n2 − n

2
− j2 − j

2

g(j,m) can be computed by constant depth, polynomial size, uniform circuits.
This is because the multiplication function is in constant alternation, linear
time (see Lipton [6] or Wilkie [8]) and because the computation of g(j,m)
involves addition and multiplication of numbers of length O(log n).
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