Size-Depth Tradeoffs for Boolean Formulae

Maria Luisa Bonet
Department of Mathematics
Univ. of Pennsylvania, Philadelphia

Samuel R. Buss*
Department of Mathematics
Univ. of California, San Diego

July 3, 2002

Abstract

We present a simplified proof that Brent/Spira restructuring of Boolean formulas can be improved to allow a Boolean formula of size n to be transformed into an equivalent \log depth formula of size $O\left(n^{\alpha}\right)$ for arbitrary $\alpha>1$. Keywords: theory of computation, Boolean formulas, formula complexity, size-depth tradeoff

1 Introduction

A Boolean formula is constructed from variables x, y, \ldots and from Boolean functions (also called 'gate types') such as AND (\wedge), OR (\vee), NOT (\neg), PARITY (\oplus), etc. Equivalently, a Boolean formula is a Boolean circuit with fanout one. A basis B is a finite set of Boolean gate types, and a B-formula is a formula using only gate types from B. When deriving asymptotic size bounds on Boolean formulas, we always work with a fixed basis B and consider only B-formulas.

It has been known for some time (Spira [4] and Brent [1]) that a Boolean formula of size n can be transformed into an equivalent $O(\log n)$ depth formula. Examination of the methods of Brent and Spira shows that this transformation can yield a log depth formula of size $O\left(n^{\alpha}\right)$ with $\alpha=2.1964$. We present a simple proof that for any $\alpha>1$ and arbitrarily close to 1 , a

[^0]Boolean formula of size n has an equivalent $O(\log n)$ depth formula of size $O\left(n^{\alpha}\right)$. We prove this for formulas over the basis AND, OR, NOT and also for formulas over the basis PARITY, AND and 1. Our methods also for work for other bases, e.g., B_{2}, the set of all binary gate types.

This improvement to arbitrary $\alpha>1$ has already been obtained by Bshouty-Cleve-Eberly [2]. The advantage of our proof is that it is much simpler. The reasons that our proof is simpler are (1) we deal only with Boolean formulas while Bshouty-Cleve-Eberly deal with the more general arithmetic case, and (2) we use a much simpler method of choosing breakpoints in formulas based on a construction of Brent. Bshouty et.al. use a more complicated extension of Brent's construction. Our method of choosing breakpoints could also be used in the algebraic case allowing simpler proofs of the essential results of Bshouty,et.al.; however, we do not present this here.

2 Near-linear size, log depth transformations

We shall identify Boolean formulas with rooted trees in which each node is labelled with a Boolean gate type and each leaf is labelled with a variable name. The depth of a formula or a tree is the maximum number of nodes (Boolean gates) of arity ≥ 2 on any branch of the tree. Note that unary gates, such as negations, do not count towards the depth. The leafsize of a formula is the number of occurrences of variables in the formula, which is also equal to the number of leaves in the tree. We use \log and $l n$ to denote logarithms base two and e, respectively.

For expository purposes, we begin by giving the proof of a well-known theorem of Spira. For this, we need the following lemma about choosing breakpoints in a tree (of fanin ≤ 2) that split the tree roughly into half.

Lemma 1 (Lewis-Stearns-Hartmanis [3]) If T is a tree with all nodes having arity at most 2 , and if the leafsize of T is m where $m \geq 2$, then there is a subtree S of T with leafsize s, where

$$
\left\lceil\frac{1}{3} m\right\rceil \leq s \leq\left\lfloor\frac{2}{3} m\right\rfloor .
$$

We let B_{2} be the set of all binary Boolean gate types. Note that any B_{2}-formula must be a binary tree.

Theorem 2 (Spira [4]) Let C be a B_{2}-formula of leafsize m. Then there is an equivalent $\{\wedge, \vee, \neg\}$-formula C^{\prime} such that,

$$
\operatorname{depth}\left(C^{\prime}\right) \leq 2 \cdot \log _{3 / 2} m \approx 3.419 \log m
$$

and such that

$$
\text { leafsize }\left(C^{\prime}\right) \leq m^{\alpha}
$$

where α satisfies $\frac{1+2^{\alpha}}{3^{\alpha}} \leq \frac{1}{2}(\alpha \geq 2.1964$ suffices).
The proof of this theorem is by induction on the leafsize of C. The induction step uses Lemma 1 to find a subformula D of C having leafsize s satisfying $\left\lceil\frac{1}{3} m\right\rceil \leq s \leq\left\lfloor\frac{2}{3} m\right\rfloor$.

We define C_{0} and C_{1} to be B_{2}-formulas obtained from C by the following process: first replace the subformula D by 0 and 1 , respectively. Now eliminate the constants 0 and 1 by collapsing gates that contain a constant as input (this removes at least one Boolean gate and might reduce the leafsize). For a given truth assignment to the variables of C, if D has value 0 then C has value equal to the value of C_{0}, and if D has value 1 , then C has the same value as C_{1}. Therefore C is equivalent to

Figure 1
Now apply the induction hypothesis to C_{0}, C_{1}, D and $\neg D$ to get equivalent formulas $C_{0}^{\prime}, C_{1}^{\prime}, D^{\prime}$ and $(\neg D)^{\prime}$ of logarithmic depth. Clearly C is equivalent to the formula

$$
C^{\prime}:=\left(C_{0}^{\prime} \wedge(\neg D)^{\prime}\right) \vee\left(C_{1}^{\prime} \wedge D^{\prime}\right) .
$$

Also the leafsize of C^{\prime} is equal to the sum of the leafsizes of $C_{0}^{\prime}, C_{1}^{\prime}, D^{\prime}$ and $(\neg D)^{\prime}$. Its depth is two plus the maximum depth of these four formulas.

From this it straightforward to obtain the constants $2 \log _{3 / 2} m$ and α : we leave this calculation to the reader, as we shall do a similar, but more complicated calculation below.

It is possible to make an improvement to the constants in Theorem 2 if we assume that C is a $\{\wedge, \vee, \neg\}$-formula instead of a general B_{2}-formula. This improvement depends on the fact that only one occurrence of subformula D is picked as a breakpoint. Note that if D is a positively occurring subformula of C then C_{0} tautologically implies C_{1}, and otherwise, if D is negatively occurring then C_{1} tautologically implies C_{0}. In the first case, when C_{0} tautologically implies C_{1}, we have that C is equivalent to both of the formulas (see Figure 2):

$$
C_{0} \vee\left(D \wedge C_{1}\right) \quad \text { and } \quad\left(C_{0} \vee D\right) \wedge C_{1}
$$

In the second case, when C_{1} tautologically implies C_{0}, we have that C is equivalent to both of the formulas:

$$
C_{1} \vee\left(\neg D \wedge C_{0}\right) \quad \text { and } \quad\left(C_{1} \vee \neg D\right) \wedge C_{0}
$$

Figure 2
The point is that, unlike in the proof of Spira's theorem sketched above, it is unnecessary to include the subformula D twice in the formula E. This
of course will improve the constant α and give a better bound on the leafsize of C^{\prime}. However, even better (smaller) values for α can be obtained if we also change the choice of breakpoints so that instead of having D be approximately one half the size of C, we choose D to be some larger fraction of C. Intuitively, this will help because the larger piece (that is, D) will be used only once, whereas the smaller piece (that is, C_{0} and C_{1}) will be used twice.

The new breakpoints will be based on the following simple lemma:
Lemma 3 (Brent [1]) Let T be a tree with leafsize m, and $1 \leq s \leq m$. Then there is a subtree D such that D has leafsize $\geq s$ and such that its immediate subtrees have leafsize $<s$.

Proof Any minimal subtree of T of leafsize $\geq s$ will suffice.

Theorem 4 (See also Bshouty-Cleve-Eberly [2]) Let C be a $\{\wedge, \vee, \neg\}$ formula of leafsize m. Then for all $k \geq 2$, there is an equivalent $\{\wedge, \vee, \neg\}$ formula C^{\prime} such that

$$
\operatorname{depth}\left(C^{\prime}\right) \leq(3 k \ln 2) \cdot \log m \approx 2.07944 k \log m,
$$

and such that

$$
\text { leafsize }\left(C^{\prime}\right) \leq m^{\alpha},
$$

where $\alpha=1+\frac{1}{1+\log (k-1)}$.

Proof By induction on the leafsize m. If $m=1, C$ computes either x_{i} or $\neg x_{i}$, and C already has the desired leafsize and depth.

Let us assume now that the theorem applies to leafsizes up to $m-1$, and prove the theorem for m. Brent's lemma provides a subformula D of leafsize $\geq \frac{k-1}{k} m$ and immediate subtrees D_{L} and D_{R} of leafsize $<\frac{k-1}{k} m$: let $*$ denote the gate type of D 's root. Consider now the formulas C_{0} and C_{1} obtained from C by replacing the subformula D by the constants 0 and 1 respectively and then collapsing the gates that use them so that leafsize $\left(C_{0}\right)$, leafsize $\left(C_{1}\right) \leq \frac{1}{k} m$. Now we use the induction hypothesis to obtain formulas $C_{0}^{\prime}, C_{1}^{\prime}, D_{L}^{\prime}$, and D_{R}^{\prime} so that

$$
\text { leafsize }\left(D_{L}^{\prime}\right) \text {, leafsize }\left(D_{R}^{\prime}\right)<\left(\frac{k-1}{k} m\right)^{\alpha}
$$

$$
\text { leafsize }\left(C_{0}^{\prime}\right), \text { leafsize }\left(C_{1}^{\prime}\right) \leq\left(\frac{m}{k}\right)^{\alpha}
$$

and

$$
\begin{gathered}
\operatorname{depth}\left(D_{L}^{\prime}\right), \operatorname{depth}\left(D_{R}^{\prime}\right)<(3 \ln 2) k \log \left(\frac{k-1}{k} m\right) \\
\quad \operatorname{depth}\left(C_{0}\right), \operatorname{depth}\left(C_{1}\right) \leq(3 \ln 2) k \log \left(\frac{m}{k}\right)
\end{gathered}
$$

Depending on whether D occurs positively or negatively as a subformula of C, the formula C^{\prime} is to be defined to be either $C_{0}^{\prime} \vee\left(\left(D_{L}^{\prime} * D_{R}^{\prime}\right) \wedge C_{1}^{\prime}\right)$ or $C_{1}^{\prime} \vee\left(\neg\left(D_{L}^{\prime} * D_{R}^{\prime}\right) \wedge C_{0}^{\prime}\right)$. In either case,

$$
\begin{aligned}
\operatorname{depth}\left(C^{\prime}\right) & =\max \left\{\operatorname{depth}\left(D_{L}^{\prime}\right)+3, \operatorname{depth}\left(D_{R}^{\prime}\right)+3, \operatorname{depth}\left(C_{0}^{\prime}\right)+2, \operatorname{depth}\left(C_{1}^{\prime}\right)+2\right\} \\
& <(3 \ln 2) k \log \left(\frac{k-1}{k} m\right)+3 \\
& =(3 \ln 2) k \log m+(3 \ln 2) k \log \left(\frac{k-1}{k}\right)+3 \\
& =(3 \ln 2) k \log m+3 k \ln 2 \log \left(\frac{k-1}{k}\right)+3 \\
& =(3 \ln 2) k \log m+3 k \ln (1-1 / k)+3 \\
& <(3 \ln 2) k \log m+3(-1)+3 \\
& =(3 \ln 2) k \log m
\end{aligned}
$$

The last inequality holds because $\ln (1-1 / k)<-1 / k$.
For notational convenience, we now write $\|A\|$ for the leafsize of A. We can bound the leafsize of C^{\prime} by:

$$
\left\|C^{\prime}\right\| \leq 2\left(m-\left\|D_{L}\right\|-\left\|D_{R}\right\|\right)^{\alpha}+\left\|D_{L}\right\|^{\alpha}+\left\|D_{R}\right\|^{\alpha} .
$$

To study the worst case, let us set $b=\|D\|=\left\|D_{L}\right\|+\left\|D_{R}\right\|$. Thinking of b as a constant, we can bound $\left\|C^{\prime}\right\|$ by

$$
f\left(\left\|D_{L}\right\|\right)=2(m-b)^{\alpha}+\left\|D_{L}\right\|^{\alpha}+\left(b-\left\|D_{L}\right\|\right)^{\alpha} .
$$

The function f is concave up, so the above expression is maximized at the endpoints which are (1) $\left\|D_{L}\right\|=\frac{k-1}{k} m$ and $\left\|D_{R}\right\|=0$ and (2) $\left\|D_{L}\right\|=0$ and $\left\|D_{R}\right\|=\frac{k-1}{k} m$. In either case, $\left\|C^{\prime}\right\|$ is bounded above by

$$
2(m-\|D\|)^{\alpha}+\left(\frac{k-1}{k} m\right)^{\alpha}+\left(\|D\|-\frac{k-1}{k} m\right)^{\alpha} .
$$

Again this is a concave up as a function of $\|D\|$, so the maximum values are at the endpoints (1) $\|D\|=m$ and (2) $\|D\|=\frac{k-1}{k} m$. In this case, the maximum
is at $\|D\|=\frac{k-1}{k} m$. So the worst case happens when $\left\|C_{0}\right\|$ and $\left\|C_{1}\right\|$ are $\frac{m}{k}$, $\left\|D_{L}\right\|=\frac{k-1}{k} m$ and $\left\|D_{R}\right\|=0$. Thus we have the bound

$$
\text { leafsize }\left(C^{\prime}\right) \leq 2\left(\frac{m}{k}\right)^{\alpha}+\left(\frac{k-1}{k} m\right)^{\alpha}
$$

To finish the proof of Theorem 4 we must prove that for $\alpha=1+\frac{1}{\log (k-1)+1}$, we have $2\left(\frac{m}{k}\right)^{\alpha}+\left(\frac{k-1}{k} m\right)^{\alpha} \leq m^{\alpha}$; this is of course equivalent to showing that $2\left(\frac{1}{k}\right)^{\alpha}+\left(\frac{k-1}{k}\right)^{\alpha} \leq 1$. It is easy to see that the lefthand side of the inequality is a decreasing function of α and to prove the inequality, it will suffice to let α_{0} be the (unique) value, greater than 1 , so that $2\left(\frac{1}{k}\right)^{\alpha_{0}}+\left(\frac{k-1}{k}\right)^{\alpha_{0}}=1$ and prove that $\alpha_{0}<1+\frac{1}{\log (k-1)+1}$. Multiplying the equation defining α_{0} by $k^{\alpha_{0}}$, we get that

$$
\begin{equation*}
k^{\alpha_{0}}-(k-1)^{\alpha_{0}}=2 . \tag{1}
\end{equation*}
$$

Now it must be that that $\alpha_{0}<2$, since $k \geq 2$ and thus $k^{2}-(k-1)^{2}=$ $2 k-1>2$. Define $g_{\alpha_{0}}(k)=k^{\alpha_{0}}$. By the Mean Value Theorem, equation (1) implies that there exists $x,(k-1)<x<k$, such that

$$
g_{\alpha_{0}}^{\prime}(x)=\alpha_{0} x^{\alpha_{0}-1}=2 .
$$

Since $g_{\alpha_{0}}^{\prime}$ is increasing, $g_{\alpha_{0}}^{\prime}(k-1)=\alpha_{0}(k-1)^{\alpha_{0}-1}<2$. Taking logarithms yields:

$$
\begin{aligned}
\log \left(\alpha_{0}(k-1)^{\alpha_{0}-1}\right) & <\log 2=1 \\
\log \alpha_{0}+\left(\alpha_{0}-1\right) \log (k-1) & <1
\end{aligned}
$$

Since $\alpha_{0}-1<\log \alpha_{0}$ for $1<\alpha_{0}<2,\left(\alpha_{0}-1\right)(\log (k-1)+1)<1$. So,

$$
\begin{aligned}
\alpha_{0}-1 & <\frac{1}{\log (k-1)+1} \\
\alpha_{0} & <1+\frac{1}{\log (k-1)+1}
\end{aligned}
$$

which completes the proof of Theorem 4.

Theorem 5 (See also Bshouty-Cleve-Eberly [2]) Let C be a $\{\oplus, \wedge, 1\}$-formula of leafsize m. Then for all $k \geq 2$, there is an equivalent $\{\oplus, \wedge, 1\}$-formula C^{\prime} such that

$$
\operatorname{depth}\left(C^{\prime}\right) \leq(3 \ln 2) \log m
$$

and

$$
\text { leafsize }\left(C^{\prime}\right) \leq m^{\alpha}
$$

where $\alpha=1+\frac{1}{1+\log (k-1)}$.

Proof First notice that if D is a subtree of C, then C is equivalent to:

$$
\left(D \wedge\left(C_{0} \oplus C_{1}\right)\right) \oplus C_{0} .
$$

This is because if D is 0 then C will have the same value as C_{0}, and if D is 1 then C will have the same value as C_{1} which is equivalent to $\left(C_{0} \oplus C_{1}\right) \oplus C_{0}$.

Consider now C_{x} which has a new variable x substituted for D. Consider the branch from x to the root of C as in Figure 3; the A_{1}, \ldots, A_{s} are subformulas of C which are inputs to gates having x in their other input.

Figure 3
We claim that,

$$
C_{0} \oplus C_{1} \equiv A_{i_{1}} \wedge \cdots \wedge A_{i_{r}}
$$

where $\left\{A_{i_{1}}, \cdots, A_{i_{r}}\right\}$ is the subset of $\left\{A_{1}, \cdots, A_{s}\right\}$ that consists of the inputs to \wedge gates. To prove this, first suppose that some $A_{i_{j}}$ has value 0 : then $C_{0} \oplus C_{1}=0$ because the values of that conjunction in C_{0} and in C_{1} are equal, and therefore C_{0} and C_{1} have the same value. On the other hand, suppose all $A_{i j}$'s have value 1: then the values of the \wedge-gates will depend on their other inputs, and thus the value of C_{x} will depend on the value of x, which implies that $C_{0} \oplus C_{1}$ has value 1 .

Let A be the formula $A_{i_{1}} \wedge \cdots \wedge A_{i_{r}}$. The leafsize of A is obviously less or equal than the leafsize of C_{0}. Now we can use the proof of Theorem 4 to prove Theorem 5: the only difference is that instead of using the fact that C is equivalent either to $C_{0} \vee\left(D \wedge C_{1}\right)$ or to $C_{1} \vee\left(\neg D \wedge C_{0}\right)$, we now use the fact that C is equivalent to $(D \wedge A) \oplus C_{0}$. The calculations of the bounds on leafsize and depth of C^{\prime} are identical to those in the proof of Theorem 4.

References

[1] R. P. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach., 21 (1974), pp. 201-206.
[2] N. H. Bshouty, R. Cleve, and W. Eberly, Size-depth tradeoffs for algebraic formulae, in Proceedings of the 32th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, 1991, pp. 334-341.
[3] P. L. II, R. Stearns, and J. Hartmanis, Memory bounds for recognition of context-free and context-sensitive languages, in Sixth Annual IEEE Symp. on Switching Circuit Theory and Logical Design, 1965, pp. 191-202.
[4] P. M. Spira, On time hardware complexity tradeoffs for Boolean functions, in Proceedings of the Fourth Hawaii International Symposium on System Sciences, 1971, pp. 525-527.

[^0]: *Supported in part by NSF grant DMS-9205181

