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Abstract

This paper studies the complexity of constant depth propositional proofs in the
cedent and sequent calculus. We discuss the relationships between the size of
tree-like proofs, the size of dag-like proofs, and the heights of proofs. The main
result is to correct a proof construction in an earlier paper about transforma-
tions from proofs with polylogarithmic height and constantly many formulas
per cedent.
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1. Introduction

Constant depth Frege systems d-PK are propositional proof systems with a
constant upper bound d on the alternation depth of unbounded fanin conjunc-
tions and disjunctions. These systems have been extensively studied because of
their connections to constant depth Boolean circuits and to first-order fragments
Si
2 and T i

2 of bounded arithmetic; see [10, 1, 3, 6, 8, 9, 11, 4]. In [5], the present
authors gave a synthesis and summary of constructions for constant depth PK
proofs studying different notions of proof size under different assumptions about
proof complexity. The paper [5] studied the size of proofs measured in terms
of numbers of symbols and in terms of numbers of cedents (lines); it considered
tree-like proofs, sequence-like (dag-like) proofs, proofs with constantly many
formulas per cedent, and proofs of restricted height. That paper gave a com-
prehensive discussion of how proofs can be transformed with respect to these
measures of proof complexity.

Unfortunately, one of the constructions in the previous paper was incorrect,
namely Lemma 5 of [5] about converting tree-like depth d+1 PK proofs with
constantly many formulas per cedent into tree-like depth d PK proofs with

1Supported in part by NSF grants CCF-121351 and DMS-1101228, and a Simons Founda-

tion Fellowship 306202.
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only a polynomial blowup in proof size. This is important (and is based on
ideas from Razborov [12] and Kraj́ıček [7]), because it can be a crucial step in
transforming proofs obtained by the Paris-Wilkie translation from first-order
bounded arithmetic proofs into lower depth Frege proofs. The main result of
the present paper is to give a corrected construction, establishing nearly all of
the results claimed in [5].

The results in [5] were stated first for quasipolynomial size proofs and then
for polynomial size proofs. The quasipolynomial bounds are usually the most
relevant for applications to bounded arithmetic, since this is what comes from
the Paris-Wilkie translations of fragments of T2. They are also usually the most
relevant way to measure the size of constant depth Boolean circuits, see [2], since
quasipolynomial size arises naturally from the Furst-Saxe-Sipser translations of
polynomial time hierarchy predicates. Our corrected constructions establish all
of the results claimed for quasipolynomial size PK proofs in [5].

The second set of results claimed in [5] concerned polynomial size proofs. We
are able to give corrected proofs of part of these results, namely the parts relating
sequence size and tree size for propositional proofs. However, we are unable to
prove the part of these results which concerned height restricted proofs. As a
replacement, we state (in Corollary 12) a connection to a different restriction of
propositional proofs which is useful for obtaining polynomial size propositional
proofs from, say, fragments of the bounded arithmetic theories I∆0 or T1.

The remainder of the introduction states the key definitions about constant
depth proofs and (re)introduces notations. The reader can refer to [5] for further
discussions and definitions. After that, we state the main results claimed in [5].
Section 2 explains the error in the earlier construction, and how to fix it in
the setting of quasipolynomial size proofs. Section 3 then gives the necessary
additional arguments to establish the results about polynomial size Frege proofs.

We thank an anonymous referee of one of our other papers for pointing out
the error in [5].

1.1. Definitions of proof systems

We follow the notations from [5], with the sole exception that we use “PK”
instead of “LK” to emphasize the fact that the proof systems are propositional.
We also make some minor inessential changes to the way formulas and deriva-
tions are defined. We work in classical propositional logic, essentially the sequent
calculus, but formulated for simplicity using Tait-style proofs in which the lines,
called “cedents”, are sets of formulas.

Propositional formulas are built from propositional variables pi, negated
variables ¬pi, and unbounded fanin conjunctions

∧
and disjunctions

∨
. All

formulas are classified as being “literals” or “
∨
-formulas” or “

∧
-formulas”. The

literals are the variables and negated variables pi and ¬pi. The
∨
- and

∧
-

formulas are defined inductively by

• If Φ is a nonempty finite set of literals and
∨
-formulas, then

∧
Φ is an∧

-formula.
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• If Φ is a nonempty finite set of literals and
∧
-formulas, then

∨
Φ is an∨

-formula.

The point of these definitions is that adjacent
∧
’s (respectively,

∨
’s) must be

collapsed; for instance, an
∧
-formula cannot be an argument to an

∧
.

We define ∧ to be a binary operation on formulas. If ϕ and ψ are not∧
-formulas, then ϕ ∧ ψ is the formula

∧
{ϕ, ψ}; in addition, ϕ ∧

∧
Ψ denotes∧

({ϕ}∪Ψ), and
∧
Φ∧

∧
Ψ denotes

∧
(Φ∪Ψ). The binary operation ∨ is defined

similarly.
For ϕ a formula, ¬ϕ abbreviates the formula formed from ϕ by interchanging∧
and

∨
, and interchanging atoms and their negations.

For an arbitrary nonempty finite set of formulas Φ, which may contain
∨
-

formulas, let
∨coll

Φ abbreviate the formula which is built from
∨
Φ by collapsing

any adjacent
∨
’s. Formally, let Φcoll be the set of formulas ϕ such that ϕ is in

Φ but not an
∨
-formula, or ϕ ∈ Ψ for some formula

∨
Ψ in Φ. Define

∨coll
Φ

as
∨
Φcoll.

The depth dp(ϕ) of a formula ϕ is the maximal nesting of
∧

and
∨

in ϕ.
Thus, literals have depth 0, and dp(

∧
Φ) = 1 +max{dp(ϕ) : ϕ ∈ Φ}, etc.

A line in a PK-proof is a finite set of formulas called a cedent. We use capital
Greek letters Γ, ∆, . . . to denote cedents. The intended meaning of a cedent Γ is∨
Γ. Cedents are sometimes also called clauses (in the case of refutations). We

often abuse notation by writing Γ, ϕ or Γ ∨ ϕ instead of Γ ∪ {ϕ}, or by writing
ϕ1, . . . , ϕk instead of {ϕ1, . . . , ϕk}, etc.

A set A of nonlogical axioms is a set of cedents. The intended meaning of A
is the conjunction its members. The axioms and rules of inference for PK are
as follows. We write card(X) for the cardinality of a set X .

Logical axioms: Any cedent ϕ,¬ϕ for ϕ a literal.

Nonlogical axioms: The cedent Γ and the cedent
∨coll

Γ for any Γ ∈ A.

∨
-introduction: For ϕ ∈ Φ, and

∨
Φ a formula:

Γ, ϕ∨
Γ,

∨
Φ

∧
-introduction: For

∧
Φ a formula, the inference with card(Φ) many premises:

Γ, ϕ for ϕ ∈ Φ∧
Γ,

∧
Φ

Structural rules: The weakening rule and the cut rule:

Γweakening
Γ,Γ′

Γ,¬ϕ Γ, ϕ
cut

Γ

The formula ϕ in the premises of the cut-rule is called the cut-formula of
this rule. Following [5], we allow both Γ and

∨collΓ as nonlogical axioms; this
is reasonable enough as they have the same meaning. This convention does not

3



affect proof size substantially, and it simplified some technical aspects in our
constructions.

A PK-derivation from A is a tree in which each node is labeled with a cedent.
We picture the tree with the root at the bottom. Cedents at leaf nodes must be
logical axioms or nonlogical axioms from A, and cedents at internal nodes are
inferred by one of the rules of inference from the cedents on the children. If the
root is labeled with Γ, the derivation is a derivation of Γ from A. If the root is
labelled with the empty cedent, then it is a PK refutation of A.

The complexity of a derivation π can be measured in several ways. We
use just “size” when counting the number of occurrences of symbols in the
derivation, and “cedent size” to count the number of occurrences of cedents.
We use the adjectives “tree” and “sequence” to denote whether the proof is
tree-like, or is to be converted to a dag without repetition of cedents. The
tree-cedent-size of π is the number of cedents (hence, nodes) in the tree π; the
sequence-cedent-size is the number of distinct cedents in π. The tree-size is the
total number of symbol occurrences in cedents in π; the sequence-size is the
total number of symbol occurrences in distinct cedents in π. The height of π is
the maximum number of cedents along any path in π.

Constant depth PK proof systems are defined by restricting the depth of
formulas appearing in refutations. We use a parameter S > 0 to bound both
the fanin of

∧
’s and

∨
’s, and the size of derivations. It is useful to treat∧

i<log Sϕi and
∨

i<logSϕi for literals ϕi as being depth 1/2. This motivates
the following definition, which generalizes both the usual notion of depth and
Kraj́ıček’s notion of “Σ-depth” [6].

Definition 1. Let S ∈ N. The classes ΘS
d for d ∈ 1

2N = {0, 12 , 1, 1
1
2 , 2, . . .} are

defined inductively as follows:

1. ϕ ∈ ΘS
0 iff ϕ is a literal.

2. ϕ ∈ ΘS
0.5 iff ϕ is a literal or an

∧
or

∨
of at most logS many literals.

3. ϕ ∈ ΘS
d+1 iff ϕ is in ΘS

d , or it is an
∨

or
∧

of at most S many formulas

from ΘS
d .

Observe that for all d ∈ 1
2N, Θ

S
d is a subset of ΘS

d+ 1
2

, which can be seen by

induction on d. We say that ϕ ∈ Θd if ϕ ∈ ΘS
d for some S. A cedent Γ is in ΘS

d

or Θd iff all the formulas in Γ are in ΘS
d or Θd, respectively. A derivation is in

ΘS
d or Θd iff it contains only cedents in ΘS

d or Θd, respectively.

We refer to ϕ ∈ Θd as ϕ being of depth d.

Definition 2. Let “X-size” mean one of our four size measurements “tree-size”,
“sequence-size”, “tree-cedent-size”, or “sequence-cedent-size”. A derivation π is
a d-PK derivation of X-size S if it has X-size ≤ S and all formulas appearing
in π are in ΘS

d .

Our main theorems are asymptotic results about refutations of families
{An}n of formulas. A size bound S is polynomial, respectively quasipolyno-

mial, if it is of the form S = nO(1), respectively, S = 2(logn)O(1)

.
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1.2. Main Theorems

Our theorems concern (quasi)polynomial size derivations which are (a) dag-
like, or (b) tree-like, or (c) tree-like height logarithmically bounded in terms of
size. The results state that going from (a) to (b), or from (b) to (c) can be done
at a cost of increasing formula depth by 1. Conversely, formula depth can be
decreased by 1 by going from (c) to (b), or from (b) to (a).

The first main result claimed in [5] was:

Theorem 3. (Theorem 2 in [5]) Let d ∈ 1
2N. For n ∈ N, let An be a collection

of Θd-cedents. Then the following conditions (1) and (2) are equivalent:

(1) An has a d-PK refutation of sequence-size quasipolynomial in n, for all n.

(2) An has a (d+1)-PK refutation of tree-size quasipolynomial in n, for all n.

Furthermore, the following conditions (3) and (4) are equivalent:

(3) An has a d-PK refutation of tree-size quasipolynomial in n, for all n.

(4) An has a (d+1)-PK refutation which simultaneously has tree-size quasipoly-

nomial in n and height polylogarithmic in n, for all n.

Note that (3) is the same as (2) except using d-PK instead of (d+1)-PK.
Thus (1) and (2) are also equivalent to

(4′) An has a (d+2)-PK refutation which simultaneously has tree-size quasi-
polynomial in n and height polylogarithmic in n, for all n.

The error in [5] affects the proof of the implications from (4) to (3) and from
(4′) to (2). This is corrected in Section 2.

The analogue of Theorem 3 for polynomial size growth rates was also stated
in [5]. Here is the version which we are presently able to prove:

Theorem 4. (Adapted from Theorem 10 of [5]) Let d ∈ 1
2N, n ∈ N, and

An a collection of Θd-cedents. Then the following conditions (1) and (2) are

equivalent:

(1) An has a d-PK refutation of sequence-size polynomial in n, for all n.

(2) An has a (d+1)-PK refutation of tree-size polynomial in n, for all n.

Theorem 4 is proved in Section 3.
The difference between the above Theorem 4 and Theorem 10 of [5] is that

the latter also claimed an equivalence between d-PK refutations of polynomial
tree-size and (d+1)-PK refutations of simultaneous polynomial tree-size and
logarithmic height with cedents containing constantly many formulas:

Former Statement 5. (From Theorem 10 in [5]) For d ∈ 1
2N, n ∈ N, and An

a collection of Θd-cedents, the following conditions (3) and (4) are equivalent:

(3) An has a d-PK refutation of tree-size polynomial in n, for all n.
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(4) An has a (d+1)-PK refutation which simultaneously has tree-size polynomial

in n, has height logarithmic in n, and has O(1) many formulas in each

cedent, for all n.

We are unable to prove this and leave it here as an open problem. Corol-
lary 12 provides a partial replacement.

2. Quasipolynomial size proofs

We are also unable to correct the proof of the next statement. It will be
replaced by Theorem 8 and Corollary 10 below.

Former Statement 6. (Lemma 5 in [5]) Let d ∈ 1
2N. Assume A is a collection

of ΘS
d -cedents, and A has a ΘS

d+1-PK refutation R of tree-cedent-size ≤ S, where

each cedent in the refutation consists of at most λ many formulas. Then A has

a ΘS
d -PK refutation of tree-cedent-size ≤ Sλ+1.

The erroneous proof in [5] was based on the following construction, which
will also be used for our corrected proof of Theorem 3. Any cedent Γ in the PK
refutation R can be uniquely written in the form ∆∪Σ∪Π where ∆ is Γ∩ΘS

d ,
and where Σ and Π contain only

∨
-formulas and

∧
-formulas (respectively) of

depth > d. The subcedent Σ contains N formulas and equals {
∨

j<ni
Ai,j : i <

N} for integers ni > 0, where the Ai,j ’s are literals or
∧
-formulas of depth ≤ d.

The subcedent Π contains M formulas and is equal to {
∧

j<mi
Bi,j : i < M} for

integers mi > 0, where the Bi,j ’s are literals or
∨
-formulas of depth ≤ d. Each

cedent Γ is replaced by the collection of cedents Γf defined as

∆ ∪ {Ai,j : i < N, j < ni} ∪ {Bi,f(i) : i < M}, (1)

for all functions f such that f(i) < mi for all i < M . The cedents Γf are
evidently all in ΘS

d , and there are m1m2 · · ·mM ≤ Sλ many of them, because
M ≤ λ and since each mi ≤ S.

It was claimed in [5] that the cedents Γf could be combined in a tree-like
way so as to give a new depth d refutation. However, this claim is not true in
general. The straightforward way of combining the translated cedents requires
some cedents to be used multiple times: this would be fine if we were construct-
ing sequence-like proofs, but not for constructing tree-like proofs. To illustrate
this, consider the following counterexample (suggested to us by a referee of an-
other of our papers). Let ϕi = Ai,1 ∧Ai,2, so ¬ϕi is ¬Ai,1 ∨ ¬Ai,2, and assume
that πi is a derivation of ¬ϕi, ϕi+1. Consider the following (tree-like) derivation
of ¬ϕ0, ϕn:

π1
¬ϕ0, ϕ1

π2
¬ϕ1, ϕ2

¬ϕ0, ϕ2

π3
¬ϕ2, ϕ3

¬ϕ0, ϕ3

. . .
¬ϕ0, ϕn−1

πn
¬ϕn−1, ϕn

¬ϕ0, ϕn

(2)
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The above construction of the Γf ’s replaces each of the topmost subderiva-

tions πi, for i = 1, . . . , n, with two derivations πj
i of ¬Ai−1,1,¬Ai−1,2, Ai,j , for

j = 1, 2. These are combined to form derivations π̂j
i of ¬A0,1,¬A0,2, Ai,j as

follows. First, π̂j
1 is πj

1. Second, inductively define π̂j
i+1 by replacing the cut

inference
¬ϕ0, ϕi ¬ϕi, ϕi+1

¬ϕ0, ϕi+1
(3)

of the derivation (2) with two cut inferences to form π̂
j
i+1:

π̂1
i

¬A0,1,¬A0,2, Ai,1

π̂2
i

¬A0,1,¬A0,2, Ai,2

π
j
i+1

¬Ai,1,¬Ai,2, Ai+1,j

¬A0,1,¬A0,2,¬Ai,1, Ai+1,j

¬A0,1,¬A0,2, Ai+1,j

(4)

The problem is that the derivations π̂1
i and π̂2

i are used twice: once to form π̂1
i+1

and once to form π̂2
i+1. The result is that at each inductive step, the numbers

of occurrences π1
1 and π2

1 get doubled (and similarly for other subderivations
inside π̂1

i and π̂2
i ). Thus, the final tree-cedent-sizes of the derivations π̂j

n are
exponential in n instead of polynomial in n.

Although this is a counterexample to the proof idea, it is not a counterex-
ample to the Former Statement 6. Indeed, the cuts in the derivation (2) can be
rearranged in a way such that the blowup as experienced above does not occur:

π1
¬ϕ0, ϕ1

π2
¬ϕ1, ϕ2

πn−1

¬ϕn−2, ϕn−1

πn
¬ϕn−1, ϕn

¬ϕn−2, ϕn

. .
.

¬ϕ2, ϕn

¬ϕ1, ϕn

¬ϕ0, ϕn

It is not hard to check that in this case the above construction does not cause an
exponential blowup in size; in fact, a polynomial size tree-like proof is obtained.

The point is that the unwanted doubling in the above example occurred
asymmetrically. The inference (3) was twice transformed into inferences (4),
once for j = 1 and once for j = 2. This caused a double use of the derivations
π̂1
i and π̂2

i , but did not cause a double use of the derivations π1
i+1 and π2

i+1.
This motivates the following definitions.

Fix a value for d, and let π be a ΘS
d+1-derivation. Suppose

Γ, C Γ,¬C

Γ

is a cut inference in which C is a depth > d
∧
-formula, and thus ¬C is a

depth > d
∨
-formula. Then Γ, C is called a critical cedent. (It does not matter

whether Γ, C is written as the left or right premiss.) Any depth > d
∧
-formula

(such as C) is called a critical formula.
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Definition 7. The critical cut rank of a derivation π is equal to the maximum
number of critical cedents on any path from the root of π to any axiom in π.

The intuition is that the critical cut rank of a cedent controls the amount
of doubling that occurs when applying the above transformation for the Former
Statement 6. This is formalized by the next theorem.

Theorem 8. Let A be a collection of ΘS
d -cedents. Suppose A has a ΘS

d+1-PK

refutation π of tree-size ≤ S and critical cut rank ρ. Then A has a ΘS
d -PK

refutation of tree-size ≤ O(Sρ+3).

There is no need for Theorem 8 to assume any upper bound λ on the number
of formulas in each cedent. This is because the critical cut rank provides an
implicit bound on the number of critical formulas in each cedent. That is, the
number M of

∧
-formulas of depth > d is bounded by ρ, as each critical formula

must be eliminated by a critical cut.
Theorem 8 and Corollary 10 below are stated in terms of “tree-size”; the

same proof method also gives similar statements for “tree-cedent-size”.

Lemma 9. Let A be a formula of size S.

a. The cedent A,¬A has a cut-free PK-derivation of, simultaneously, tree-cedent-

size O(S) and tree-size O(S2).

b. Assume A =
∨
Φ. The cedent ¬A,Φ has a cut-free PK-derivation of, simul-

taneously, tree-cedent-size O(S) and tree-size O(S2).

Proof of Lemma 9. The proof is entirely standard, so we mostly omit it. One
first proves part a. by induction on the size of A. Part b. then follows easily. We
prove only part b. as an example. For each ϕ ∈ Φ, part a. gives a PK-derivation
of ¬ϕ, ϕ; then a weakening gives ¬ϕ,Φ. The formula ¬A is the conjunction of
the ¬ϕ’s for ϕ ∈ Φ, so one more

∧
-inference gives ¬A,Φ as desired.

Proof of Theorem 8. We use exactly the same construction as was described for
the Former Statement 6. Each cedent Γ in the derivation is expressed exactly
as before in the form ∆,Σ,Π; the Ai,j ’s, the Bi,j ’s, N , M , the ni’s and the mi’s
are exactly as before. We again let Γf denote the cedent (1).

Let πΓ be the subderivation of π ending with Γ, and tcs(πΓ) be the tree-
cedent-size of πΓ. Let Acoll = {Φcoll : Φ ∈ A} be the set of collapsed axioms,
where disjunctions in cedents are replaced by the set of disjuncts.

Claim. Let ρ be the critical cut rank of the subderivation πΓ. For f any function

with f(i) < mi for all i < M , the cedent Γf has a ΘS
d -derivation of tree-cedent-

size ≤ 2 · Sρ · tcs(πΓ) from the nonlogical axioms A and Acoll. Each cedent in

this derivation has size O(S).

The claim implies Theorem 8, since the final line of the refutation π is
the empty cedent ∅, and its translation ∅f is just the empty cedent. Each
axiom in Acoll has a ΘS

d -derivation of tree-cedent-size ≤ S, in the following way:
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Let Φ ∈ A be written in the form Ψ0,
∨
Ψ1, . . . ,

∨
Ψk with the Ψi’s consisting

of literals and
∧
-formulas. Thus Φcoll is the cedent Ψ0,Ψ1, . . . ,Ψk. Using

Lemma 9 we can derive ¬
∨
Ψi,Ψi for all i > 0. Using these and weakening and

the axiom Φ we obtain with successive cuts Ψ0,
∨
Ψ1, . . . ,

∨
Ψi,Ψi+1, . . . ,Ψk for

i = k, . . . , 0, deriving Φcoll when i = 0. Adding these derivations of axioms
in Acoll requires only O(S) steps per axiom; in addition, tcs(πΓ) < S. Thus,
the refutation of A has O(Sρ+2) occurrences of cedents, each of size O(S).
Theorem 8 follows.

The proof of the claim proceeds by induction on the number of cedents in πΓ.
The base case of the induction is when Γ is either a logical or nonlogical axiom.
In this case, the critical cut rank ρ equals 0, and either the cedent ∆ is all of Γ
and both Σ and Π are empty, or Σ is

∨coll
Φ for some Φ in A and ∆ and Π are

empty. In either case, Π is empty, so there is only one cedent Γf — with f the
empty function — and it is equal to Γ in the former case, or Φcoll in the latter.

The induction cases where Γ is inferred from a cedent Γ′ by either a weak-
ening or an

∨
-introduction are trivial: the critical cut rank of πΓ is equal to

the critical cut rank of πΓ′ of course. For any appropriate function f , either
Γf = Γ′

f or Γf can be derived from Γ′

f by a weakening or
∨
-introduction.

The induction case for an
∧
-introduction rule which introduces a formula

of depth ≤ d is handled just like the previous cases. Suppose Γ has the form
Γ0,

∧
{BM,j : j < mM} and is inferred by the mM premiss inference

Γ0, BM,j j < mM

Γ0,
∧
{BM,j : j < mM}

where the
∧
-formula has depth > d. There are M many depth > d

∧
-formulas

in Γ0. A function f suitable for defining Γf has domain [M+1] = {0, . . . ,M}.
Let Γf(M) be the f(M)-th premiss of the

∧
-introduction; namely, Γf(M) is

Γ0, BM,f(M). The translation Γf of Γ is the same cedent as the translation
(Γf(M))f ′ of Γf(M), where f ′ = f↾[M ] is the restriction of f to the domain
[M ] = {0, . . . ,M−1}. The critical cut rank does not increase when going to a
premiss, so the induction hypothesis gives a derivation of Γf of tree-cedent-size
≤ 2 · Sρ · tcs(πΓf(M)

) < 2 · Sρ · tcs(πΓ).
The case of a cut on a formula of depth d is also handled similarly to the

cases of weakening and
∨
-introduction. Finally suppose Γ is inferred by a cut

on a depth > d formula:

Γ,
∧
{BM,j : j < mM} Γ,

∨
{¬BM,j : j < mM}

Γ

Let π1 and π2 be the subderivations of the left and right premisses, respectively,
and let S1 and S2 be their tree-cedent-sizes. We have tcs(πΓ) = S1 + S2 + 1.
The critical cut rank of π1 is ≤ ρ−1, and the critical cut rank of π2 is ≤ ρ (and
equality holds in at least one of these cases). Fix any suitable function f with
domain [M ] for defining a translation Γf of Γ. The induction hypothesis for the
right premiss gives a ΘS

d -derivation of

Γf ,¬BM,0,¬BM,1, . . . ,¬BM,mM−1 (5)
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of tree-cedent-size ≤ 2 · Sρ · S2. Now, for each i < mM , let fi be the function
which extends f to the domain [M+1] with the value fi(M) = i. The induction
hypothesis applied to the left premiss using the function fi gives a Θ

S
d -derivation

of
Γf , BM,i (6)

of tree-cedent-size ≤ 2 · Sρ−1 · S1. Combining the cedent (5) and the mM

cedents (6) for i < mM using mM cut inferences gives a ΘS
d -derivation of Γf of

tree-cedent-size bounded by (since mM < S)

2 · (Sρ · S2) + 2 ·mM · (Sρ−1 · S1) + 2 ·mM

≤ 2 · (Sρ · S2) + 2 · S · (Sρ−1 · S1) + 2 · S

≤ 2 · Sρ(S1 + S2 + 1)

= 2 · Sρ · tcs(πΓ).

Note that the factor of 2 in “2 ·mM” comes from the fact that the cuts must
be proceeded by weakening inferences to make the side formulas match. This
completes the proof of the claim, and thereby Theorem 8.

Since the critical cut rank of a derivation is bounded by its height, Theorem 8
immediately implies:

Corollary 10. Assume A is a collection of ΘS
d -cedents and A has a ΘS

d+1-PK

refutation of tree-size ≤ S and height h. Then A has a ΘS
d -PK refutation of

tree-size ≤ Sh+3.

With this corollary, we are now ready to close the gap in the proof of Theo-
rem 3. We give a sketch of the complete proof, relying on statements from [5],
but using Corollary 10 instead of Lemma 5 in [5] (the Former Statement 6). We
first repeat the relevant statements from [5].

Lemma (Lemma 4 in [5]). Assume A has a ΘS
d -PK refutation R of sequence-

size ≤ S. Then A has a ΘS
d+2-PK refutation R′ which is simultaneously of

height logS + O(1) and tree-size O(S4). Furthermore, each cedent in R′ has

O(1) many formulas.

Lemma (Lemma 6 in [5]). Let A be a collection of ΘS
d -cedents. If A has a

ΘS
d+1-PK refutation of tree-size S, then A has a ΘS

d -PK refutation of sequence-

size 3S2.

Corollary (Corollary 9 in [5]). Let A be a collection of ΘS
d -cedents. Suppose

A has a ΘS
d -PK refutation of tree-size S. Then A has a ΘS

d+1-PK refutation of

height O(log S).

Proof of Theorem 3. To prove (1) and (2) are equivalent, use

[5, Lemma 4] shows (1) for d-PK =⇒ (4′) for (d+2)-PK

[5, Lemma 6] shows (2) for (d+1)-PK =⇒ (1) for d-PK

Corollary 10 shows (4′) for (d+2)-PK =⇒ (2) for (d+1)-PK

10



To show that (3) and (4) are equivalent, use:

Corollary 10 shows (4) for (d+1)-PK =⇒ (3) for d-PK

[5, Corollary 9] shows (3) for d-PK =⇒ (4) for (d+1)-PK.

3. Polynomial size proofs

This section proves Theorem 4, and states and proves Corollary 12 about
polynomial size simulations.

Proposition 11. Let A be a collection of ΘS
d -cedents. Suppose A has a ΘS

d -

PK refutation π of sequence-size ≤ S. Then A has a ΘS
d+1-PK refutation of

tree-size O(S4).

A similar statement holds in terms of cedent-size. Namely, a ΘS
d -PK refuta-

tion of sequence-cedent-size ≤ S can be transformed into a ΘS
d+1-PK refutation

of tree-cedent-size O(S3).

Proof. We only give a sketch of the proof, which is based on a construction of
Kraj́ıček [6, Prop 1.1]. A refutation of A of sequence-size ≤ S can be written
as a sequence of cedents Γ1, . . . ,ΓL=∅ where each Γi is a logical axiom, is a
nonlogical axiom Γ or

∨coll
Γ with Γ ∈ A, or is formed from previous cedents

Γ1, . . . ,Γi−1 by applying one of the rules of PK. Let Ai be
∨coll

Γi. We claim
that each cedent ¬A1, . . . ,¬Ai−1, Ai has a cut-free PK derivation from A of
tree-size O(S3). Since the derivations are cut-free, they are ΘS

d -derivations.
We will only consider the case that the last inference has been an

∧
-inference,

as this is the hardest case. All other cases are similar and left to the reader.
Suppose that Γi is the cedent ∆,

∧
j<Jϕj which is derived by an

∧
-inference

from the cedents Γij = ∆, ϕj . We show how to obtain the cut-free PK derivation
of ¬A1, . . . ,¬Ai−1, Ai from A of tree-size O(S3).

We have Ai =
∨collΓi =

∨
Γcoll
i and Γcoll

i = ∆coll ∪ {
∧

j<Jϕj}.
The condition for

∧
j<Jϕj being a formula implies that the ϕj ’s are either

literals or
∨
-formulas. W.l.o.g., we assume that each ϕj for j < J0 is a literal,

and that each ϕj for J0 ≤ j < J is a
∨
-formula of the form ϕj =

∨
k<Kj

ψk,j .

Then Aij is of the form
∨coll

Γij =
∨
Γcoll
ij

with Γcoll
ij

= ∆coll ∪ {ϕj} for j < J0,

and Γcoll
ij

= ∆coll ∪ {ψk,j : k < Kj} for J0 ≤ j < J .

For each formula δ ∈ ∆coll we form the following derivation (⋆δ):

¬δ, δ∨
¬δ,

∨coll
Γi

weakening
¬δ, Ai, ϕj

(⋆δ)

The first inference uses δ ∈ ∆coll ⊆ Γcoll
i . The second inference uses the fact

that Ai is the same as
∨
Γcoll
i , and introduces ϕj by weakening.

For j < J0, we form

11



¬ϕj , ϕj
weakening

¬ϕj , Ai, ϕj

A single
∧
-introduction inference from these derivations and the (⋆δ)’s for δ ∈

∆coll yields ¬Aij , Ai, ϕj , since

¬Aij =
∧
{¬γ : γ ∈ Γcoll

ij
} =

∧
{¬δ : δ ∈ ∆coll} ∧ ¬ϕj .

For J0 ≤ j < J and k < Kj , we form the following derivation (⋆j,k), using
ϕj =

∨
k<Kj

ψk,j :

¬ψk,j , ψk,j∨
¬ψk,j , ϕj

weakening
¬ψk,j , Ai, ϕj

(⋆j,k)

A single
∧
-introduction inference from the (⋆j,k)’s for k < Kj and the (⋆δ)’s for

δ ∈ ∆coll yields ¬Aij , Ai, ϕj , since

¬Aij =
∧
{¬γ : γ ∈ Γcoll

ij
} =

∧
{¬δ : δ ∈ ∆coll} ∧

∧
{¬ψk,j : k < Kj}.

The above gives, for all j < J , derivations of the cedents ¬A1, . . . ,¬Ai−1, Ai, ϕj

by using additional weakening inferences. By inspection, the tree-cedent-size of
each derivation is order the size of Aij , that is O(S). Also by inspection, the
cedents in these derivations have size O(S). Thus each of these derivations has
tree-size O(S2).

The final step is to apply an
∧
-introduction inference to all these derivations

followed by an
∨
-introduction inference:

¬A1, . . . ,¬Ai−1, Ai, ϕj , j < J∧
¬A1, . . . ,¬Ai−1, Ai,

∧
j<Jϕj∨

¬A1, . . . ,¬Ai−1, Ai

The tree-size of this derivation is O(S3).
The final step is to combine the cedents ¬A1, . . . ,¬Ai−1, Ai with L−1 many

cuts to produce the desired refutation. Observe that for i = L, the Claim implies
that we can derive the cedent ¬A1, . . . ,¬AL−1 as ΓL = ∅.

¬A1, . . . ,¬AL−1 ¬A1, . . . ,¬AL−2, AL−1
cut

¬A1, . . . ,¬AL−2

...

¬A1,¬A2 ¬A1, A2
cut

¬A1 A1
cut

∅

As each Aj is a ΘS
d+1-formula, this derivation is a ΘS

d+1-PK refutation of A of
tree-size O(S4), as required.
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Proof of Theorem 4. To prove (1) and (2) are equivalent, use

Proposition 11 shows (1) for d-PK =⇒ (2) for (d+1)-PK

[5, Lemma 6] shows (2) for (d+1)-PK =⇒ (1) for d-PK

Although we are not able to prove the “Former Statement 5” from our previ-
ous paper [5], the results obtained in the present paper allow us to relate d-PK
sequence-size proofs and (d+1)-PK tree-size proofs to (d+2)-PK proofs of con-
stant critical cut-rank. This is useful for applications to Bounded Arithmetic:
An occurrence of an induction inference in a first-order derivation in a Bounded
Arithmetic theory can be unwound into a series of cuts; this can be done ei-
ther with a balanced tree of height logarithmic in the length of the induction,
or in a linear fashion which increases the critical cut-rank of the propositional
derivation by 1. Using the latter method means that unwinding all the induc-
tion inferences in a first-order Bounded Arithmetic proof yields propositional
proofs with constant critical cut-rank. Theorem 8 then implies the existence
of polynomial size tree- or sequence-sized PK derivations of low formula depth.
This last part is stated precisely in Corollary 12:

Corollary 12. Let d ∈ 1
2N. For n ∈ N, let An be a collection of Θd-cedents.

Then the following conditions (1), (2) and (5) are equivalent:

(1) An has a d-PK refutation of sequence-size polynomial in n, for all n.

(2) An has a (d+1)-PK refutation of tree-size polynomial in n, for all n.

(5) An has a (d+2)-PK refutation which simultaneously has tree-size polynomial

in n and constant critical cut-rank, for all n.

The implication from (5) to (2) holds more generally: namely, (5′) implies (3):

(5′) An has a (d+1)-PK refutation which simultaneously has tree-size polyno-

mial in n and constant critical cut-rank, for all n.

(3) An has a d-PK refutation of tree-size polynomial in n, for all n.

Proof. Theorem 8 immediately shows that (5) implies (2), and that (5′) im-
plies (3). The implication (2) implies (1) is part of Theorem 4.

The direction (1) implies (5) follows from a modification of the proof of
Lemma 4 in [5]. We will give a sketch of the modification of that proof. A
refutation of A of sequence-size S can be written as a sequence of cedents
Γ1, . . . ,ΓL=∅ where each Γi is a logical axiom, is a nonlogical axiom Γ or

∨coll
Γ

with Γ ∈ A, or is formed from previous cedents Γ1, . . . ,Γi−1 by applying one

of the rules of PK. Let γi be
∧

j<i

∨coll
Γj . The proof of Lemma 4 in [5] shows

that the cedent ¬γi, γi+1 has a cut-free PK derivation from A of size O(S3).
Combining these with cuts in a linear fashion from right-to-left, starting from
cedent ¬γL−1, γL, yields a (d+2)-PK refutation of A of simultaneous tree-size
O(S4) and critical cut-rank 1.

It is open whether (3) implies (5′) when d equals 0 or 1
2 . For larger d, the

implication is already given from (2) implies (5).
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