Threshold logic proof systems

Samuel Buss Peter Clote

May 19, 1995

In this note, we show the intersimulation of three threshold logics within a polynomial size and constant depth factor. The logics are $P T K, P T K^{\prime}$ and $F C$, the latter introduced by J. Krajíček in [2].

Definition 1 Propositional threshold logic is given as follows. Formula depth and size are defined inductively by:
i. a propositional variable $x_{i}, i \in \mathbf{N}$, is a formula of depth 0 and size 1. ${ }^{1}$
ii. if F is a formula then $\neg F$ is a formula of depth $1+d p(F)$ and size $1+$ $\operatorname{size}(F)$.
iii. if F_{1}, \ldots, F_{n} are formulas and $1 \leq k \leq n$ then $T_{k}^{n}\left(F_{1}, \ldots, F_{n}\right)$ is a formula of depth $1+\max \left\{\operatorname{depth}\left(F_{i}\right): 1 \leq i \leq n\right\}$ and size $(n+k)+1+$ $\sum_{1 \leq i \leq n} \operatorname{size}\left(F_{i}\right)$.

Propositional threshold logic can be viewed as an extension of propositional logic in the connectives \neg, \wedge, \vee, the latter two connectives being defined by

$$
\begin{aligned}
\bigvee_{1 \leq i \leq n} F_{i} & \equiv T_{1}^{n}\left(F_{1}, \ldots, F_{n}\right) \\
\bigwedge_{1 \leq i \leq n} F_{i} & \equiv T_{n}^{n}\left(F_{1}, \ldots, F_{n}\right)
\end{aligned}
$$

A cedent is any sequence F_{1}, \ldots, F_{n} of formulas separated by commas. Cedents are sometimes designated by Γ, Δ, \ldots (capital Greek letters). A sequent is given by $\Gamma \vdash \Delta$, where Γ, Δ are arbitrary cedents. The size [resp. depth] of a cedent F_{1}, \ldots, F_{n} is $\sum_{1<i<n} \operatorname{size}\left(F_{i}\right)\left[\right.$ resp. $\left.\max _{1 \leq i \leq n}\left(\operatorname{depth}\left(F_{i}\right)\right)\right]$. The size [resp. depth] of a sequent $\Gamma \digamma \bar{\Delta}$ is $\operatorname{size}(\Gamma)+\operatorname{size}(\Delta)[\operatorname{resp} . \max (\operatorname{depth}(\Gamma), \operatorname{depth}(\Delta))]$. The intended interpretation of the sequent $\Gamma \vdash \Delta$ is $\wedge \Gamma \rightarrow \vee \Delta$.

An initial sequent is of the form $F \vdash F$ where F is any formula of propositional threshold logic. The rules of inference of $P T K$, the sequent calculus of

[^0]propositional threshold logic, are as follows. ${ }^{2}$ By convention, $T_{m}^{n}\left(A_{1}, \ldots, A_{n}\right)$ is only defined if $1 \leq m \leq n$.

structural rules

$$
\text { weak left: } \quad \frac{\Gamma, \Delta \vdash \Gamma^{\prime}}{\Gamma, A, \Delta \vdash \Gamma^{\prime}} \quad \text { weak right: } \quad \frac{\Gamma \vdash \Gamma^{\prime}, \Delta^{\prime}}{\Gamma \vdash \Gamma^{\prime}, A, \Delta^{\prime}}
$$

contract left: $\quad \frac{\Gamma, A, A, \Delta \vdash \Gamma^{\prime}}{\Gamma, A, \Delta \vdash \Gamma^{\prime}} \quad$ contract right: $\quad \frac{\Gamma \vdash \Gamma^{\prime}, A, A, \Delta^{\prime}}{\Gamma \vdash \Gamma^{\prime}, A, \Delta^{\prime}}$
permute left: $\frac{\Gamma, A, B, \Delta \vdash \Gamma^{\prime}}{\Gamma, B, A, \Delta \vdash \Gamma^{\prime}} \quad$ permute right: $\quad \frac{\Gamma \vdash \Gamma^{\prime}, A, B, \Delta^{\prime}}{\Gamma \vdash \Gamma^{\prime}, B, A, \Delta^{\prime}}$
cut rule

$$
\frac{\Gamma, A \vdash \Delta \quad \Gamma^{\prime} \vdash A, \Delta^{\prime}}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}}
$$

logical rules

$$
\begin{aligned}
& \text { ᄀ-left: } \quad \frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \neg A, \Delta} \quad \neg \text {-right: } \frac{\Gamma \vdash A, \Delta}{\neg A, \Gamma \vdash \Delta} \\
& \wedge \text {-left: } \frac{A_{1}, \ldots, A_{n}, \Gamma \vdash \Delta}{T_{n}^{n}\left(A_{1}, \ldots, A_{n}\right), \Gamma \vdash \Delta} \text { for } n \geq 1 \\
& \text { ^-right: } \frac{\Gamma \vdash A_{1}, \Delta \quad \ldots \quad \Gamma \vdash A_{n}, \Delta}{\Gamma \vdash T_{n}^{n}\left(A_{1}, \ldots, A_{n}\right), \Delta} \text { for } n \geq 1 \\
& \text { V-left: } \quad \frac{A_{1}, \Gamma \vdash \Delta}{T_{1}^{n}\left(A_{1}, \ldots A_{n}\right), \Gamma \vdash \Delta} \quad \text { for } n \geq 1 \\
& \text { V-right: } \frac{\Gamma \vdash A_{1}, \ldots, A_{n}, \Delta}{\Gamma \vdash T_{1}^{n}\left(A_{1}, \ldots, A_{n}\right), \Delta} \text { for } n \geq 1
\end{aligned}
$$

[^1]T_{k}^{n}-left: $\frac{T_{k}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Gamma \vdash \Delta \quad A_{1}, T_{k-1}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Gamma \vdash \Delta}{T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Gamma \vdash \Delta}$ for $2 \leq k<n$ T_{k}^{n}-right: $\frac{\Gamma \vdash A_{1}, T_{k}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Delta \quad \Gamma \vdash T_{k-1}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Delta}{\Gamma \vdash T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Delta}$ for $2 \leq k<n$

The structural rules, cut rule, \neg rules, \wedge rules and \vee rules are the same as for $P T K$. However, in place of the T_{k}^{n} rules of $P T K, P T K^{\prime}$ has the following rules.

$$
\begin{gathered}
T_{k}^{n} \text {-left1: } \frac{T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Gamma \vdash \Delta}{T_{k+\ell}^{n}\left(A_{1}, \ldots, A_{n}\right), \Gamma \vdash \Delta} \text { for } 1 \leq k<k+\ell \leq n \\
T_{k}^{n} \text {-left2: } \frac{T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Gamma \vdash \Delta}{T_{k+m}^{n+m}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right), \Gamma \vdash \Delta} \text { for } 1 \leq k \leq n<n+m \\
T_{k}^{n} \text {-left3: } \frac{\neg A_{1}, \ldots, \neg A_{n}, T_{k}^{m}\left(B_{1}, \ldots, B_{m}\right), \Gamma \vdash \Delta}{\neg A_{1}, \ldots, \neg A_{n}, T_{k}^{m+n}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right), \Gamma \vdash \Delta} \text { for } 1 \leq k \leq m<m+n \\
T_{k}^{n} \text {-right1: } \frac{\Gamma \vdash T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Delta}{\Gamma \vdash T_{k}^{n+m}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right), \Delta} \text { for } 1 \leq k \leq n<n+m \\
T_{k}^{n} \text {-right: } \frac{\Gamma \vdash T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Delta \quad \Gamma \vdash T_{\ell}^{m}\left(B_{1}, \ldots, B_{m}\right), \Delta}{\Gamma \vdash T_{k+\ell}^{n+m}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right), \Delta} \text { for } 1 \leq k \leq m<m+n
\end{gathered}
$$

In [2], J. Krajíček introduced an extension of the Frege system F, called $F C$ for Frege with counting. In addition to the usual connectives of F, counting connectives $C_{n, k}\left(x_{1}, \ldots, x_{n}\right)$ are admitted, whose interpretation is that exactly k of the x_{i} equal 1 .

Definition $2 F C$ is the propositional proof system having connectives \neg, \wedge, \vee, \supset, \equiv together with infinitely many new connectives $C_{n, k}\left(\phi_{1}, \ldots, \phi_{n}\right)$, for $1 \leq n$ and $k \leq n$. The axioms of $F C$ are those of F (see [1]) together with the new axioms:

1. $A \equiv C_{1,1}(A)$
2. $C_{n, 0}\left(A_{1}, \ldots, A_{n}\right) \equiv\left(\neg A_{1} \wedge \ldots \wedge \neg A_{n}\right)$
3. $C_{n+1, k+1}\left(A_{1}, \ldots, A_{n+1}\right) \equiv$

$$
\equiv\left[\left(C_{n, k}\left(A_{1}, \ldots, A_{n}\right) \wedge A_{n+1}\right) \vee\left(C_{n, k+1}\left(A_{1}, \ldots, A_{n}\right) \wedge \neg A_{n+1}\right)\right]
$$

if $k<n$
4. $C_{n+1, n+1}\left(A_{1}, \ldots, A_{n+1}\right) \equiv\left[\left(C_{n, n}\left(A_{1}, \ldots, A_{n}\right) \wedge A_{n+1}\right)\right]$.

We intend to show the relation between $F C$ and our threshold proof systems PTK and PTK'; namely that constant depth polynomial size $F C$ proofs correspond to polynomial size constant depth $P T K$ and $P T K^{\prime}$ proofs, and vice versa. We begin by simulating $F C$ within $P T K^{\prime}$.

Definition 3 Translate the $F C$ formula A by the $P T K^{\prime}$ formula \bar{A} as follows:

$F C$ formula	$P T K^{\prime}$ formula
x	x
$\bigwedge_{i=1}^{n} A_{i}$	$T_{n}^{n}\left(\overline{A_{1}}, \ldots, \overline{A_{n}}\right)$
$\bigvee_{i=1}^{n} A_{i}$	$T_{1}^{n}\left(\overline{A_{1}}, \ldots, \overline{A_{n}}\right)$
$A \supset B$	$T_{1}^{2}(\neg \bar{A}, \bar{B})$
$A \equiv B$	$T_{2}^{2}(\overline{A \supset B}, \overline{B \supset A})$
$C_{n, k}\left(A_{1}, \ldots, A_{n}\right), 0<k<n$	$T_{2}^{2}\left(T_{k}^{n}\left(\overline{A_{1}}, \ldots, \overline{A_{n}}\right), \neg T_{k+1}^{n}\left(\overline{A_{1}}, \ldots, \overline{A_{n}}\right)\right)$
$C_{n, n}\left(A_{1}, \ldots, A_{n}\right)$	$T_{n}^{n}\left(\overline{A_{1}}, \ldots, \overline{A_{n}}\right)$
$C_{n, 0}\left(A_{1}, \ldots, A_{n}\right)$	$\neg T_{1}^{n}\left(\overline{A_{1}}, \ldots, \overline{A_{n}}\right)$

For each axiom scheme A of $F C$, we sketch the $P T K^{\prime}$ proof of \bar{A} (usually the last few steps from the formula \tilde{A} proved to the equivalent \bar{A} are easy and left to the reader). In our notation, $C_{n, k}(\vec{A})$ abbreviates $C_{n, k}\left(A_{1}, \ldots, A_{n}\right)$, and $T_{k}^{n}(\vec{A})$ abbreviates $T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right)$. We often abbreviate A_{n+1} by A, so that for instance in the first subclaim appearing in the proof of Axiom 3 below,

$$
T_{k+1}^{n+1}(\vec{A}) \vdash T_{k}^{n}(\vec{A}) \wedge A, T_{k+1}^{n}(\vec{A}) \wedge \neg A
$$

abbreviates

$$
T_{k+1}^{n+1}\left(A_{1}, \ldots, A_{n+1}\right) \vdash T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right) \wedge A_{n+1}, T_{k+1}^{n}\left(A_{1}, \ldots, A_{n}\right) \wedge \neg A_{n+1}
$$

Axiom $1 x \equiv C_{1,1}(x)$

$$
\begin{aligned}
& \frac{\frac{x \vdash x}{x \vdash T_{1}^{1}(x)}}{\frac{\vdash \neg x, T_{1}^{1}(x)}{\vdash \neg x \vee T_{1}^{1}(x)}} \quad \frac{\frac{x \vdash x}{\vdash\left(\neg x \vee T_{1}^{1}(x)\right) \wedge\left(\neg T_{1}^{1}(x) \vee x\right)}}{\frac{\vdash \neg T_{1}^{1}(x), x}{\vdash \neg T_{1}^{1}(x) \vee x}}
\end{aligned}
$$

This completes the proof of axiom 1.
Axiom $2 C_{n, 0}\left(A_{1}, \ldots, A_{n}\right) \equiv \neg A_{1} \wedge \ldots \wedge \neg A_{n}$ (Recall that \wedge, \vee associate to the left.)

Claim $\overline{C_{n, 0}(A, B, C)} \vdash \overline{(\neg A \wedge \neg B) \wedge \neg C}$
Pf
$\frac{\frac{A \vdash A}{\frac{A \vdash T_{1}^{1}(A)}{A \vdash T_{1}^{3}(A, B, C)}} \frac{\frac{B \vdash B}{B \vdash T_{1}^{1}(B)}}{\neg T_{1}^{3}(A, B, C) \vdash \neg A}}{\frac{\neg T_{1}^{3}(A, B, C) \vdash(\neg A \wedge \neg B)}{\neg T_{1}^{3}(A, B, C) \vdash \neg B}} \underset{\neg T_{1}^{3}(A, B, C) \vdash(\neg A \wedge \neg B) \wedge \neg C}{\frac{C \vdash C}{C \vdash T_{1}^{1}(C)}} \frac{\neg T_{1}^{3}(A, B, C) \vdash \neg C}{C \vdash T_{1}^{3}(A, B, C)}$

Claim $\overline{(\neg A \wedge \neg B) \wedge \neg C} \vdash C_{3,0}(A, B, C)$
Pf

$$
\begin{gathered}
\frac{\frac{A \vdash A}{A, \neg A \vdash}}{\frac{\frac{B \vdash B}{A, \neg A, \neg B \vdash}}{A,(\neg A \wedge \neg B) \vdash}} \frac{\frac{\frac{B, \neg B \vdash}{A,(\neg A \wedge \neg B), \neg C \vdash}}{A,(\neg A \wedge \neg B \wedge \neg C) \vdash}}{\frac{\frac{B, \neg A, \neg B \vdash}{B,(\neg A \wedge \neg B) \vdash}}{B,(\neg A \wedge \neg B), \neg C \vdash}} \frac{\frac{C \vdash C}{B,(\neg A \wedge \neg B \wedge \neg C) \vdash}}{\frac{C, \neg A, \neg B, \neg C \vdash}{C,(\neg A \wedge \neg B), \neg C \vdash}} \frac{\frac{T}{C,(\neg A \wedge \neg B \wedge \neg C) \vdash}}{C(A, B, C),(\neg A \wedge \neg B \wedge \neg C) \vdash} \\
\neg A \wedge \neg B \wedge \neg C \vdash \neg T_{1}^{3}(A, B, C)
\end{gathered}
$$

This completes the proof of axiom 2.
Axiom $3 C_{n+1, k+1}(\vec{A}) \equiv\left(C_{n, k}(\vec{A}) \wedge A_{n+1}\right) \vee\left(C_{n, k+1}\left(\vec{A}, A_{n+1}\right) \wedge \neg A_{n+1}\right.$
Claim $P T K^{\prime}$ proves

$$
\overline{C_{n+1, k+1}}(\vec{A}) \vdash \overline{\left(C_{n, k}(\vec{A}) \wedge A_{n+1}\right) \vee\left(C_{n, k+1}\left(\vec{A}, A_{n+1}\right) \wedge \neg A_{n+1}\right.}
$$

The claim follows from two subclaims.
$\underline{\text { Subclaim }} T_{k+1}^{n+1}(\vec{A}) \vdash T_{k}^{n}(\vec{A}) \wedge A, T_{k+1}^{n}(\vec{A}) \wedge \neg A$
Pf

$$
\begin{gathered}
\frac{T_{k+1}^{n}(\vec{A}) \vdash T_{k+1}^{n}(\vec{A})}{\neg A, T_{k+1}^{n}(\vec{A}) \vdash T_{k+1}^{n}(\vec{A})} \\
\frac{\neg A, T_{k+1}^{n+1}(\vec{A}) \vdash T_{k+1}^{n}(\vec{A})}{\frac{T_{k+1}^{n+1}(\vec{A}) \vdash T_{k+1}^{n}(\vec{A}), \neg \neg A}{\frac{T_{k+1}^{n+1}(\vec{A}) \vdash A, T_{k+1}^{n}(\vec{A})}{\frac{T_{k+1}^{n+1}(\vec{A}) \vdash A, T_{k+1}^{n}(\vec{A}) \wedge \neg A}{\vdash A, \neg A}}} \quad \frac{\frac{A \vdash A}{T_{k+1}^{n+1}(\vec{A}) \vdash A, \neg A}}{\frac{T_{k}^{n}(\vec{A}) \vdash T_{k}^{n}(\vec{A})}{T_{k+1}^{n+1}(\vec{A}) \vdash T_{k}^{n}(\vec{A})}} T_{k+1}^{n+1}(\vec{A}) \vdash T_{k+1}^{n}(\vec{A}) \wedge \neg A, T_{k}^{n}(\vec{A})}
\end{gathered}
$$

Combining the last lines of the previous two proofs using \wedge-right, we have

$$
T_{k+1}^{n+1}(\vec{A}) \vdash T_{k}^{n}(\vec{A}) \wedge A, T_{k+1}^{n}(\vec{A}) \wedge \neg A
$$

which establishes the subclaim.
$\underline{\text { Subclaim }} \neg T_{k+2}^{n+1}(\vec{A}) \vdash \neg T_{k+2}^{n}(\vec{A}) \wedge \neg A, \neg T_{k+1}^{n} \wedge A$ Pf First we prove the following.

$$
\begin{array}{ll}
\frac{T_{k+2}^{n}(\vec{A}) \vdash T_{k+2}^{n}(\vec{A})}{T_{k+2}^{n}(\vec{A}) \vdash T_{k+2}^{n+1}(\vec{A})} \\
\frac{\neg T_{k+2}^{n+1}(\vec{A}) \vdash T_{k+2}^{n+1}(\vec{A}), \neg T_{k+1}^{n}}{\neg \neg T_{k+2}^{n}(\vec{A}), \neg T_{k+1}^{n}(\vec{A})} & \frac{T_{k+2}^{n}(\vec{A}) \vdash T_{k+2}^{n}(\vec{A})}{T_{k+2}^{n}(\vec{A}) \vdash T_{k+2}^{n+1}(\vec{A})} \\
\neg \neg T_{k+2}^{n+1}(\vec{A}) \vdash \neg T_{k+2}^{n}(\vec{A}) \\
\neg T_{k+2}^{n+1}(\vec{A}) \vdash \neg T_{k+2}^{n}(\vec{A}) \vdash A \\
\hline \neg T_{k+2}^{n}(\vec{A}), \neg T_{k+1}^{n}(\vec{A}), A
\end{array}
$$

Second we prove the following.

$$
\frac{\frac{T_{k+1}^{n}(\vec{A}) \vdash T_{k+1}^{n}(\vec{A})}{A, T_{k+1}^{n}(\vec{A}) \vdash T_{k+1}^{n}(\vec{A})} \quad \frac{A \vdash A}{A, T_{k+1}^{n}(\vec{A}) \vdash T_{1}^{1}(A)}}{\frac{A, T_{k+1}^{n}(\vec{A}) \vdash T_{k+2}^{n+1}(\vec{A})}{\frac{A, \neg T_{k+2}^{n+1}(\vec{A}) \vdash \neg T_{k+1}^{n}(\vec{A})}{A, \neg T_{k+2}^{n+1}(\vec{A}) \vdash \neg T_{k+1}^{n}(\vec{A}) \wedge A}} \frac{\neg T_{k+2}^{n+1}(\vec{A}) \vdash \neg A, \neg T_{k+1}^{n}(\vec{A}) \wedge A}{A, \neg T_{k+2}^{n+1} \vdash A}}
$$

Combining the last lines of the previous two proofs using \wedge-right, we have

$$
\neg T_{k+2}^{n+1}(\vec{A}) \vdash \neg T_{k+2}^{n}(\vec{A}) \wedge \neg A, \neg T_{k+1}^{n}(\vec{A}) \wedge A
$$

as desired. Now from both subclaims, it can be shown that

$$
T_{k+1}^{n+1}(\vec{A}) \wedge \neg T_{k+2}^{n+1}(\vec{A}) \vdash T_{k}^{n}(\vec{A}) \wedge \neg T_{k+1}^{n}(\vec{A}) \wedge A, T_{k+1}^{n}(\vec{A}) \wedge \neg T_{k+2}^{n}(\vec{A}) \wedge \neg A
$$

This establishes the claim that

$$
\overline{C_{n+1, k+1}(\vec{A})} \vdash \overline{\left(C_{n, k}(\vec{A}) \wedge A_{n+1}\right) \vee\left(C_{n, k+1}(\vec{A}) \wedge \neg A_{n+1}\right)}
$$

Claim $P T K^{\prime}$ proves the converse of the previous, i.e.

$$
\overline{\left(C_{n, k}(\vec{A}) \wedge A_{n+1}\right) \vee\left(C_{n, k+1}(\vec{A}) \wedge \neg A_{n+1}\right)} \vdash \overline{C_{n+1, k+1}(\vec{A})}
$$

This translates to
$\left(T_{k}^{n}(\vec{A}) \wedge \neg T_{k+1}^{n}(\vec{A}) \wedge A\right) \vee\left(T_{k+1}^{n}(\vec{A}) \wedge T_{k+2}^{n}(\vec{A}) \wedge \neg A\right) \vdash T_{k+1}^{n+1}(\vec{A}) \wedge \neg T_{k+2}^{n+1}(\vec{A})$.
The claim follows from two subclaims.
$\underline{\text { Subclaim }}\left(T_{k}^{n}(\vec{A}) \wedge \neg T_{k+1}^{n}(\vec{A}) \wedge A\right) \vee\left(T_{k+1}^{n}(\vec{A}) \wedge T_{k+2}^{n}(\vec{A}) \wedge \neg A\right) \vdash T_{k+1}^{n+1}(\vec{A})$ Pf

$$
\begin{gathered}
\frac{\frac{A \vdash A}{A \vdash T_{1}^{1}(A)}}{\frac{A, T_{k}^{n}(\vec{A}) \vdash T_{1}^{1}(A)}{A, T_{k}^{n}(\vec{A}) \vdash T_{k+1}^{n+1}(\vec{A})} \frac{T_{k}^{n}(\vec{A}) \vdash T_{k}^{n}(\vec{A})}{A, T_{k}^{n}(\vec{A}) \vdash T_{k}^{n}(\vec{A})}} \begin{array}{c}
A, T_{k}^{n}(\vec{A}), \neg T_{k+1}^{n}(\vec{A}) \vdash T_{k+1}^{n+1}(\vec{A}) \\
\frac{T_{k+1}^{n}(\vec{A}) \vdash T_{k+1}^{n}(\vec{A})}{T_{k+1}^{n}(\vec{A}) \vdash T_{k+1}^{n+1}(\vec{A})} \\
\neg A, T_{k+1}^{n}(\vec{A}) \vdash T_{k+1}^{n+1}(\vec{A}) \\
\neg A+\vec{A}), \neg T_{k+2}^{n}(\vec{A}) \vdash T_{k+1}^{n+1}(\vec{A})
\end{array}
\end{gathered}
$$

Now combining the last two proofs using V-left, we have

$$
\left(A, T_{k}^{n}(\vec{A}), \neg T_{k+1}^{n}(\vec{A})\right) \vee\left(\neg A, T_{k+1}^{n}(\vec{A}), \neg T_{k+2}^{n}(\vec{A})\right) \vdash T_{k+1}^{n+1}(\vec{A})
$$

$\underline{\text { Subclaim }}\left(T_{k}^{n}(\vec{A}) \wedge \neg T_{k+1}^{n}(\vec{A}) \wedge A\right) \vee\left(T_{k+1}^{n}(\vec{A}) \wedge T_{k+2}^{n}(\vec{A}) \wedge \neg A\right) \vdash \neg T_{k+2}^{n+1}(\vec{A})$ $\underline{\text { Pf }}$

$$
\begin{array}{rr}
\frac{T_{k+1}^{n}(\vec{A}) \vdash T_{k+1}^{n}(\vec{A})}{T_{k+2}^{n+1}(\vec{A}) \vdash T_{k+1}^{n}(\vec{A})} & \frac{\neg A, T_{k+2}^{n}(\vec{A}) \vdash T_{k+2}^{n}(\vec{A})}{\neg A, T_{k+1}^{n+1}(\vec{A}) \vdash T_{k+2}^{n}(\vec{A})} \\
\frac{\neg T_{k+1}^{n}(\vec{A}) \vdash \neg T_{k+2}^{n+1}(\vec{A})}{A, T_{k}^{n}(\vec{A}), \neg T_{k+1}^{n}(\vec{A}) \vdash \neg T_{k+2}^{n+1}(\vec{A})} & \frac{\neg A, T_{k+1}^{n}(\vec{A}), \neg T_{k+2}^{n}(\vec{A}) \vdash \neg T_{k+2}^{n+1}(\vec{A})}{\left(A, T_{k}^{n}(\vec{A}), \neg T_{k+1}^{n}(\vec{A})\right) \vee\left(\neg A, T_{k+1}^{n}(\vec{A}), \neg T_{k+2}^{n}(\vec{A})\right) \vdash \neg T_{k+2}^{n+1}(\vec{A})}
\end{array}
$$

From the two subclaims, we obtain a proof of

$$
\left(T_{k}^{n}(\vec{A}) \wedge \neg T_{k+1}^{n}(\vec{A}) \wedge A\right) \vee\left(T_{k+1}^{n}(\vec{A}) \wedge T_{k+2}^{n}(\vec{A}) \wedge \neg A\right) \vdash T_{k+1}^{n+1}(\vec{A}) \wedge \neg T_{k+2}^{n+1}(\vec{A})
$$

which establishes

$$
\overline{\left(C_{n, k}(\vec{A}) \wedge A\right) \vee\left(C_{n, k+1}(\vec{A}) \wedge \neg A\right)} \vdash \overline{C_{n, k+1}(\vec{A})}
$$

This concludes the proof of axiom 3 .
Axiom $4 C_{n+1, n+1}(\vec{A}) \equiv C_{n, n}(\vec{A}) \wedge A$
Claim $\overline{C_{n+1, n+1}(\vec{A})} \vdash \overline{C_{n, n}(\vec{A}) \wedge A}$.
Pf Show $T_{n+1}^{n+1}(\vec{A}) \vdash T_{n}^{n}(\vec{A}) \wedge A$.

$$
\begin{aligned}
\frac{A_{1} \vdash A_{1}}{A_{1}, \ldots, A_{n+1} \vdash A_{1}} & \frac{A_{n} \vdash A_{n}}{T_{n+1}^{n+1}(\vec{A}) \vdash A_{1}}
\end{aligned} \frac{A_{n+1} \vdash A_{n+1}}{A_{1}, \ldots, A_{n+1} \vdash A_{n}} \frac{T_{n+1}^{n+1}(\vec{A}) \vdash A_{n}}{\frac{A_{1}, \ldots, A_{n+1} \vdash A_{n+1}}{T_{n+1}^{n+1}(\vec{A}) \vdash A_{n+1}}}
$$

This completes the proof of the claim.
Claim $\overline{C_{n, n}(\vec{A}) \wedge A} \vdash \overline{C_{n+1, n+1}(\vec{A})}$
Pf Show $T_{n}^{n}(\vec{A}) \wedge A \vdash T_{n+1}^{n+1}(\vec{A})$.

$$
\begin{aligned}
\frac{A_{1} \vdash A_{1}}{A_{1}, \ldots, A_{n+1} \vdash A_{1}} & \frac{A_{n} \vdash A_{n}}{T_{n}^{n}(\vec{A}), A_{n+1} \vdash A_{1}}
\end{aligned} \frac{\frac{A_{n+1} \vdash A_{n+1}}{A_{1}, \ldots, A_{n+1} \vdash A_{n}}}{T_{n}^{n}(\vec{A}), A_{n+1} \vdash A_{n}} \quad \xlongequal{A_{1}, \ldots, A_{n+1} \vdash A_{n+1}} \frac{T_{n}^{n}(\vec{A}), A_{n+1} \vdash A_{n+1}}{T_{n}^{n}(\vec{A}), A_{n+1} \vdash T_{n+1}^{n+1}(\vec{A})}
$$

This completes the proof of the claims and so establishes the provability of the translation of Axiom 4 in $P T K^{\prime}$.

By depth and size of a proof in a propositional proof system such as $F, F C$, $P T K^{\prime}$, etc. we mean the maximum depth and size of any formula appearing in the proof (in particular, we do not mean the depth of the proof tree in a sequent calculus proof).

Theorem 4 Suppose that $\left\langle P_{n}: n \geq 1\right\rangle$ is a family of $F C$ proofs, where P_{n} is a depth $d(n)$, size $s(n)$ proof of ϕ_{n}. Then there exists a constant c for which there exists a family $\left\langle\underline{P_{n}^{\prime}}: n \geq 1\right\rangle$ of $P T K^{\prime}$ proofs, where P_{n}^{\prime} is a depth $c+d(n)$, size $c \cdot s(n)$ proof of $\overline{\phi_{n}}$.

Proof. The axioms of $F C$ have previously been treated, and modus ponens (the only rule of inference of $F C$) is a special case of the cut rule of $P T K^{\prime}$. Analysis of the previous $P T K^{\prime}$ proofs of the axioms of $F C$ gives appropriate constant c.

We now consider the simulation of $P T K$ by $F C$.
Definition 5 Translate the $P T K$ formula A by the $F C$ formula \tilde{A} as follows:

A $P T K$ sequent $\Gamma \vdash \Delta$, which is equivalent to the formula

$$
\bigwedge_{i=1}^{n} A_{i} \supset \bigvee_{j=1}^{m} B_{j}
$$

is translated by the $F C$ formula

$$
\bigwedge_{i=1}^{n} \tilde{A}_{i} \supset \bigvee_{j=1}^{m} \tilde{B}_{j}
$$

Theorem 6 Suppose that $\left\langle P_{n}: n \geq 1\right\rangle$ is a family of PTK proofs, where P_{n} is a depth $d(n)$, size $s(n)$ proof of ϕ_{n}. Then there exists a constant c for which there exists a family $\left\langle P_{n}^{\prime}: n \geq 1\right\rangle$ of $F C$ proofs, where P_{n}^{\prime} is a depth $c+d(n)$, size $s(n)^{c}$ proof of $\tilde{\phi_{n}}$.

Proof sketch By induction on the number of proof inferences. For each axiom of PTK, the translation of its sequent is easily provable in FC. Similarly, an appropriate translation of each proof rule of $P T K$ is provable in $F C$. For instance, a binary rule

$$
\frac{A_{1}, \ldots, A_{n_{1}} \vdash B_{1}, \ldots, B_{n_{2}} \quad C_{1}, \ldots, C_{n_{3}} \vdash D_{1}, \ldots, D_{n_{4}}}{E_{1}, \ldots, E_{n_{5}} \vdash F_{1}, \ldots, F_{n_{6}}}
$$

is translated into

$$
\begin{gathered}
\left(\bigwedge_{i=1}^{n_{1}} \tilde{A}_{i} \supset \bigvee_{i=1}^{n_{2}} \tilde{B}_{i}\right) \wedge\left(\bigwedge_{i=1}^{n_{3}} \tilde{C}_{i} \supset \bigvee_{i=1}^{n_{4}} \tilde{D}_{i}\right) \\
\\
\left(\bigwedge_{i=1}^{n_{5}} \tilde{E}_{i} \supset \bigvee_{i=1}^{n_{6}} \tilde{F}_{i}\right)
\end{gathered}
$$

To prove in $F C$ the translation of the rule T_{k}^{n}-left, begin with the tautology

$$
\left(\bigvee_{k \leq i \leq n} C_{n, i} \wedge \Gamma \supset \Delta\right) \supset\left(\bigvee_{k \leq i \leq n} C_{n, i} \wedge \Gamma\right) \supset \Delta
$$

Using an axiom of $F C$, obtain

$$
\bigvee_{k \leq i \leq n}\left(\left(A \wedge C_{n-1, i-1}\right) \vee\left(\neg A \wedge C_{n-1, i}\right)\right) \wedge \Gamma \supset \Delta \cdots
$$

This is equivalent to the following.

$$
\left(\left(A \wedge \bigvee_{k \leq j<n} C_{n-1, j}\right) \vee\left(\neg A \wedge \bigvee_{k \leq i<n} C_{n-1, i}\right)\right) \wedge \Gamma \supset \Delta \cdots
$$

Using the translation into $F C$ of T_{k}^{n} (and for notational simplicity denoting the translation of formulas A by themselves), this yields the following.

$$
\left(\left(A \wedge T_{k-1}^{n-1}\right) \vee\left(\neg A \wedge T_{k}^{n-1}\right)\right) \wedge \Gamma \supset \Delta \cdots
$$

By distribution of \wedge this yields

$$
\left(\left(A \wedge T_{k-1}^{n-1} \wedge \Gamma\right) \vee\left(\neg A \wedge T_{k}^{n-1} \wedge \Gamma\right)\right) \supset \Delta \cdots
$$

By distribution of \supset this yields

$$
\begin{gathered}
\left(\left(A \wedge T_{k-1}^{n-1} \wedge \Gamma\right) \supset \Delta\right) \wedge\left(\left(\neg A \wedge T_{k}^{n-1} \wedge \Gamma\right) \supset \Delta\right) \\
\\
\left(T_{k}^{n} \wedge \Gamma\right) \supset \Delta
\end{gathered}
$$

It will be shown in the proof of the next theorem that

$$
T_{k}^{n-1} \vdash T_{k-1}^{n-1}
$$

and so

$$
A \wedge T_{k}^{n-1} \wedge \Gamma \vdash A \wedge T_{k-1}^{n-1} \wedge \Gamma
$$

From this, since

$$
T_{k}^{n-1} \vdash\left(A \wedge T_{k}^{n-1}\right) \vee\left(\neg A \wedge T_{k}^{n-1}\right)
$$

it is not hard to see that there is an $F C$ proof of the following.

$$
\begin{gathered}
\left(\left(A \wedge T_{k-1}^{n-1} \wedge \Gamma\right) \supset \Delta\right) \wedge\left(\left(T_{k}^{n-1} \wedge \Gamma\right) \supset \Delta\right) \\
\supset \\
\left(T_{k}^{n} \wedge \Gamma\right) \supset \Delta
\end{gathered}
$$

But this is the translation of rule T_{k}^{n}-left into $F C$. The $F C$ proof of the translation of T_{k}^{n}-right is similar.

Theorem 7 Suppose that $\left\langle P_{n}: n \geq 1\right\rangle$ is a family of PTK' proofs, where P_{n} is a depth $d(n)$, size $s(n)$ proof of ϕ_{n}. Then there exists a constant c for which there exists a family $\left\langle P_{n}^{\prime}: n \geq 1\right\rangle$ of PTK proofs, where P_{n}^{\prime} is a depth $c+d(n)$, size $c \cdot s(n)$ proof of ϕ_{n}.

Proof. Note first that

$$
\frac{T_{k}^{n} \vdash T_{k}^{n}}{} \frac{\frac{T_{k}^{n} \vdash T_{k-1}^{n}}{T_{k}^{n} \vdash A, T_{k-1}^{n}}}{T_{k}^{n} \vdash T_{k}^{n+1}}
$$

and that

$$
\frac{T_{k}^{n-1} \vdash T_{k-1}^{n-1} \frac{T_{k-1}^{n-1} \vdash T_{k-1}^{n}}{A, T_{k-1}^{n-1} \vdash T_{k-1}^{n}}}{T_{k}^{n} \vdash T_{k-1}^{n}}
$$

Thus the $n \cdot k$ proof of $T_{j}^{i} \vdash T_{j}^{i+1}$ and $T_{j+1}^{i} \vdash T_{j}^{i}$ for $i<n$ and $j<k$ together yield a proof of

$$
\begin{equation*}
T_{k}^{n} \vdash T_{k}^{n+1} \tag{1}
\end{equation*}
$$

Case 1: T_{k}^{n}-left1
Since T_{k}^{n} has size $O(n)$, there is an $n^{O(1)}$ size proof of (1). Now

$$
\frac{T_{k+\ell}^{n} \vdash T_{k}^{n} \quad T_{k}^{n}, \Gamma \vdash \Delta}{T_{k+\ell}^{n}, \Gamma \vdash \Delta}
$$

Case 2: T_{k}^{n}-left2

$$
\frac{T_{k+1}^{n} \vdash T_{k+1}^{n} \quad A, T_{k}^{n} \vdash A \wedge T_{k}^{n}}{T_{k+1}^{n+1} \vdash A \wedge T_{k}^{n}, T_{k+1}^{n}}
$$

From this, we obtain

$$
T_{k+1}^{n+1} \vdash T_{k}^{n}
$$

and by iteration rule T_{k}^{n}-left2.
Case 3: T_{k}^{n}-left3

$$
\frac{T_{k+1}^{n}, \neg A \vdash \neg A \wedge T_{k+1}^{n} \quad A, T_{k}^{n}, \neg A \vdash}{T_{k+1}^{n+1}, \neg A \vdash \neg A \wedge T_{k+1}^{n}}
$$

by using the T_{k}^{n}-left rule of $P T K$. Iterating this, we have the proof of the T_{k}^{n}-left3 rule of $P T K^{\prime}$.

Case 4: T_{k}^{n}-right1
Immediate from (1).
Case 5: T_{k}^{n}-right2
Iterating the idea of proof of case 2, we can show that

$$
T_{k}^{n}(\vec{A}) \wedge T_{\ell}^{m}(\vec{B}) \vdash T_{k+\ell}^{n+m}(\vec{A}, \vec{B})
$$

From this, case 5 follows.
This completes the proof of the theorem.
It is not difficult to see that the simulations of $F C, P T K$ and $P T K^{\prime}$ are within a polynomial factor of the size and a constant factor of the depth.

References

[1] S. A. Cook and R. Reckhow. On the relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44:36-50, 1977.
[2] J. Krajíček. On Frege and extended Frege systems. In P. Clote and J. Remmel, editors, Feasible Mathematics II, pages 284-319. Birkhäuser, 1994.

[^0]: ${ }^{1}$ One could as well allow propositional constants 1 (TRUE) and 0 (FALSE) of depth 0 and size 1.

[^1]: ${ }^{2}$ Gentzen's original sequent calculus for first order logic was called LK (Logischer Kalkül). The propositional sequent calculus with connectives \neg, \vee, \wedge has sometimes been called $P K$ (propositional Kalkül), so our propositional threshold Kalkül is denoted PTK.

