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In this note, we show the intersimulation of three threshold logics within a
polynomial size and constant depth factor. The logics are PTK, PTK' and
FC, the latter introduced by J. Krajicek in [2].

Definition 1 Propositional threshold logic is given as follows. Formula depth
and size are defined inductively by:

i. a propositional variable z;, i € N, is a formula of depth 0 and size 1.1

ii. if F is a formula then —F is a formula of depth 1 + dp(F') and size 1 +
size(F).

iii. if Fy,...,F, are formulas and 1 < k < n then T} (F1,...,F,) is a for-
mula of depth 1+ max{depth(F;) : 1 < i < n} and size (n + k) + 1 +
Zlgz‘gn size(Fy).

Propositional threshold logic can be viewed as an extension of propositional
logic in the connectives =, A, V, the latter two connectives being defined by

\/ Fi = Tin(Fthn)
1<i<n
N\ FE = THF,... F)
1<i<n
A cedent is any sequence Iy, ..., F, of formulas separated by commas. Ce-

dents are sometimes designated by I', A, ... (capital Greek letters). A sequent is
given by I' A, where ', A are arbitrary cedents. The size [resp. depth] of a ce-
dent F, ..., Fy 18 ) cicp, Size(F;) [resp. maxi<i<n(depth(F;))]. The size [resp.
depth] of a sequent ' F A is size(T') + size(A) [resp. max(depth(T), depth(A))].
The intended interpretation of the sequent I' H A is AT' — VA.

An initial sequent is of the form F' + F where F is any formula of proposi-
tional threshold logic. The rules of inference of PTK, the sequent calculus of

1One could as well allow propositional constants 1 (TRUE) and 0 (FALSE) of depth 0 and
size 1.



propositional threshold logic, are as follows.? By convention, T (A1, ..., A,) is
only defined if 1 <m < n.
structural rules
- AT kst DETLA
A e W e L
weak el A AR & T, A N
g DAAART ot e DETLAAL
T ntract right:
contract lett: TLAAFT & TET,A A
ermute left: LA4BART ermute right: Lrr,4,B A
P © T.BAAFT P S TEI B A A
cut rule
IAFA ' A A
DTV E A A
logical rules
oft: ATEA ot A A
ottt TF-A4,A et TATEA
eft: Ar,..., A, TFA ; .-
Al A A TEA T
Aright: - A; A '+ A,, A ¢ -
gt TFT'(A,,....A,), A orn =
_ A, THA A THA ¢ -
- . T
et TP Ay, .. A TFA o=
THAL... A, A
V-right: Lo for n > 1
S T AL, Ay, A e

2Gentzen’s original sequent calculus for first order logic was called LK (Logischer Kalktil).
The propositional sequent calculus with connectives =, V, A has sometimes been called PK
(propositional Kalkiil), so our propositional threshold Kalkil is denoted PTK.



TP M (Ag, ..., Ay), T FA AL TP Ag, . AR), T A

Ty -left:
TP (A, AL, THA

for2<k<n

THALTE (A, Ay), A L1027 (Ag, .. Ay), A
THT AL, ..., A), A

T}'-right: for2<k<n

The structural rules, cut rule, — rules, A rules and V rules are the same as
for PTK. However, in place of the T} rules of PTK, PTK' has the following
rules.

TM(Ay,..., Ay), T A

Tr-left1:
Ty (A, A, TEA

forl<k<k+{<n

TM(Ar,... Ay, TFA

Ty (A, Ap By, ... By),TEA

T -left2: forl1<k<n<n+m

-Ai,...,0A,, T(By,...,Bn),TFA
T3 -left3: . fori1<k<m<m+n
A1, A TN (A, Ay, B, By), TR A
. PET} (A, ..., An), A
T}-right1: forl1<k<n<n+m
'+ T,f*m(Al,...,An,Bl,...,Bm),A
. PETP (AL, ..., An), A I'FTI"(By,...,Bm), A
T} -right: forl<k<m<m+n

LT (Ary oo Ay B, .o, B), A

In [2], J. Krajicek introduced an extension of the Frege system F', called FC
for Frege with counting. In addition to the usual connectives of F, counting
connectives Cy, (1, ...,x,) are admitted, whose interpretation is that exactly
k of the z; equal 1.

Definition 2 F'C' is the propositional proof system having connectives =, A, V,
D, = together with infinitely many new connectives Cy, x(¢1,...,¢x), for 1 <n
and k < n. The axioms of FC are those of F' (see [1]) together with the new
axioms:

1. AEClyl(A>
2. Cn,O(A17~ .. ,An) = <—\A1 AN _\An)



3. Cn,+17k+1(A17 - ,An+1) =

= [ (Cn,k(A17~ .. 7An) /\An—i-l) \ (Cn,k+1(A1a c. ,An) A\ _‘An-i-l) ]
ifk<n
4. Cryipnt1(Ar, o Angr) = [ (Crn(Ar, - An) AN Apga) |

We intend to show the relation between F'C' and our threshold proof sys-
tems PTK and PTK’; namely that constant depth polynomial size F'C proofs
correspond to polynomial size constant depth PT' K and PT K’ proofs, and vice
versa. We begin by simulating F'C' within PTK’.

Definition 3 Translate the FC formula A by the PTK’ formula A as follows:

FC formula PTK' formula
T T
/\?:1 Ai T#(Tla ce ,Tn)
Vie Ai T7(Ay, -5 An)
ADB TZ(-A, B)
A=DB T3(AD B,BD A)
Chi(Ar,...,A,),0<k<n T3 (TP (Aq, .. A), T (Ar, .. AR))
Con(A1,..., Ap) T (Ay,..., A)
Cho(Ar,.... Ay) T (A, Ar)

For each axiom scheme A of FC, we sketch the PTK’ proof of A (usually
the last few steps from the formula A proved to the equivalent A are easy and

left to the reader). In our notation, Cy, 1 (A) abbreviates Cy, x (A1, ..., Ay), and

T,?(/T) abbreviates T} (A1,...,A,). We often abbreviate A,411 by A, so that
for instance in the first subclaim appearing in the proof of Axiom 3 below,

TP A) F TR (A) A AT (A) A A
abbreviates

TP Ary e Agd) F TR (AL oy A) A Ant, T (Av e Ag) A=A

Axiom 1 z = Cy1(z)



Tk rhkx

x FT(x) THz) o
F -z, T (z) =T (x), 2
F oz VT () F-TiH(x) Ve

F(mx VTLH(z) A (T (2) V o)
This completes the proof of axiom 1.

Axiom 2 C), o(41,...,A4,) = A1 A... A—A, (Recall that A,V associate to the
left.)

Claim C), o(A,B,C) F (mAA-B)A=C

Pt
AF A B+ B
AFT!HA) B+ T{(B) CkC
AFT3(A, B,C) BFT3A,B,C) CFTHC)
~T3(A,B,C) F -A ~T3(A,B,C) F -B CFT3A,B,C)
~T3(A,B,C) F (~A A -B) ~T3(A,B,C) - ~C

~T3(A,B,C) - (A A ~B) A~C

Claim (A A ~B) A =C F Cs0(A, B,C)

Pf
AFA BFB
A -AF B,-BF CkLC
A, -A,-BF B,-A,-BHF C,-CF
A, (ﬁA/\ ﬁB) F B, (ﬁA/\ ﬁB) F C,-A,-B,-CHF
A, (—AA=B),~CF B,(=AA—B),~CF C.(=AN-B),—~CF

A, (FAN-BA-C)F B,(mAAN-BA-C) C,(mFAN-BA-C)F
T3(A,B,C),(~AA-BA-C) F
—“AAN=BA-CF-T}A,B,C)

This completes the proof of axiom 2.

—.

Axiom 3 Cpy1x41(A) = (Cok(A) A Api1) V (Cropg1 (A Apgr) A=A

Claim PTK' proves

Cn+1,k+1(g) F (Cn,k(A’) A An+1) \ (Cn,k:Jrl(ga An+1) A ﬁA~n+1

The claim follows from two subclaims.



Subclaim T} (A) b T (A) A A, T, (A) A=A

Pt k+1
77y (A) F T (A)
A T1?+1( )’_ Tk+1( )
AT ) T () i "
TP A) F T (A),-—A  ——AF A TA-A
T A A TR, (A) T (A) F A, -4
Tl?jll( _‘> AT ( _’) N—A

A 1)

TPHA) F T (A) A=A TR (A)

Combining the last lines of the previous two proofs using A-right, we have

—.

Ty (A) BT (A) A AT (A) A=A

which establishes the subclaim.

Subclaim —T}55 (A) - T, o (A) A=A, ~T7,, A A
Pf First we prove the following.

-,

Ty o( ) Ty o q) Ty o( )I_Tk+2( )
Tk+2( ) - T (4) 7o (A) F T (A)
2( )}_ ngzl( )7_‘ k+1 Tl?jzl( )" —.TQH(A')
ﬁTl?izl( ) ﬁTk+2(fT)7 ﬁTk+1(fT) ﬁTl;TQl(fI) '_ ﬁTl?+2( H)a A
_'Tl:-:_2 ( ) _‘Tk+2( _’)’ ﬁTk+1( _’), A
Second we prove the following.
k+1(_') k+1( ) AF A
ATR (A FTE L (A) AT (A) FT]H(A)
AT (A )’_Tl?jzl( ) AL A
A, T (A) F =T (A) AT, EA
AT ( D) + k+1(A) ANA
ﬁTl?jzl( ﬂ) —4, ﬁTk+1(A‘) NA



Combining the last lines of the previous two proofs using A-right, we have

-, -, -,

ST (A) b =T o (A) A=A =T (A) A A

as desired. Now from both subclaims, it can be shown that

-, -, -, -, -, -,

T (A) A =TS (A) BT (A) AT (A) AN AT (A) AT (A) A —A.

This establishes the claim that

=, =,

Cri1t1(A) F (Cri(A) A A1) V (Crs1 (A) A=Apps)

Claim PTK' proves the converse of the previous, i.e.

=, = =,

(Cni(A) AN Apy1) V (Crogy1(A) A =Any1) F Crga k41(A)

This translates to

-, -,

(T (A) ATy (A) A A) V(T (A) AT (A) A= A) F TN A) AT (A).

The claim follows from two subclaims.

-, -, -, -, -,

Subclaim (T} (A) A =T, (A) A A) V(T (A) AT, o (A) A =A) - T (A)
Pf

AFA . .
AFTi(4) T (A) F T3 (A)
ATRA) FTHA)  ATRA) FTP(A)
A THA) F T A)
AaTI:L( _’)’ ﬁTI:L+1( _') - lej_f( _})
7, (A) T, (4)
Ti A ( ﬂ) - Tl?ill(ff)
-4, T,?H(/T) F TI?—:_ll (E)
AT (A), ST o (A) F T (A)

Now combining the last two proofs using V-left, we have

-, —, -, -,

(A, T (A), =T (A) V (2 A, TR (A), =T o (A)) F T (A)

-, -, -, -, -,

Subclaim (TI:L(A) A _|T]?+1( )ANA)V (T,?+1( ) A Tl?+2( )A—A) ﬁT;?I;( )
Pt



T3 o ) =T )
k+1( ) k+1( ) —A Tk+2( ) k+2( )
TI:L:;( ) + Tk+1( ) —A TIZL-:?( ) + Tk+2( )
1( ) _‘leljzl (A') - ATy 2( ) _‘leljzl (A')
A Tk( ) ﬁTk+1( ) _‘Tlgjzl( H) —|A,T,?+1( ) ﬁTk+2( ) _‘ngzl( H)

(AT (A), 2T 1 (A)) V (RA, T (A), 2T 5 (A)) F T (A)
From the two subclaims, we obtain a proof of

(TP (A) AT (A) N A V(TR (D) AT o (A) A=A) = TEENA) A =T (A)
which establishes

=, =,

(Co(A) N AV (Crgir (A) A=A) F Crgrr (A).

This concludes the proof of axiom 3.

-,

Axiom 4 Cpy1,n41(A) = Crn(A) A A

Claim Cpy1.p11(A) F Cpn(A) A A.
Pf Show T (A) F T (A) A A.

n+1
A1 [ Al An - An An+1 F An+1
A, A F A A, . A A, A, Api FAn
ngf(A) A, T;;jf(A) A, ng}(A) FAn
T (A) - TR (A)

-,

T:}jll(A) TR (A) A Apsa
This completes the proof of the claim.

=, =,

Claim Cy, (A) N AF Crg1n+1(4)
Pf Show T/ (A) A A+ T (A).

n+1
A1 [ Al An - An An+1 F An+1
Ao A B A Ay, oA B Ay Ay, A F A
Tp(A), Anii F AL T(A), Appi B A, TR(A), Anpi B Anps
T(A), Apr BT (A)

This completes the proof of the claims and so establishes the provability of the
translation of Axiom 4 in PTK'.

By depth and size of a proof in a propositional proof system such as F', FC,
PTK', etc. we mean the maximum depth and size of any formula appearing in
the proof (in particular, we do not mean the depth of the proof tree in a sequent
calculus proof).



Theorem 4 Suppose that (P, : n > 1) is a family of FC proofs, where P, is a
depth d(n), size s(n) proof of ¢,,. Then there exists a constant ¢ for which there
exists a family (P, :n > 1) of PTK' proofs, where P!, is a depth ¢+ d(n), size
c- s(n) proof of é,.

Proof. The axioms of FC' have previously been treated, and modus ponens
(the only rule of inference of F'C) is a special case of the cut rule of PTK’.
Analysis of the previous PT K’ proofs of the axioms of F'C gives appropriate
constant c. ]

We now consider the simulation of PT'K by FC.

Definition 5 Translate the PTK formula A by the FC formula A as follows:

PTK formula FC formula
T T
—-A -A
TP (Ay, ..., A) Vi, Cri(Ar, ..., Ay)

A PTK sequent I' H A, which is equivalent to the formula

is translated by the F'C' formula

Aio\ B
i=1

j=1

Theorem 6 Suppose that (P, : n > 1) is a family of PTK proofs, where P,
is a depth d(n), size s(n) proof of ¢,,. Then there exists a constant ¢ for which
there exists a family (P}, : n > 1) of FC proofs, where P} is a depth ¢+ d(n),
size s(n)¢ proof of b

Proof sketch By induction on the number of proof inferences. For each axiom
of PTK, the translation of its sequent is easily provable in FC. Similarly,
an appropriate translation of each proof rule of PT'K is provable in F'C. For
instance, a binary rule

Ay,... Ay, FBi,...,Bn, Ci,...,CpyFDi,..., Dy,
Ei, ... En, F Fi, ..., Fn,




is translated into

(N4> \/ Byn(N\Cio\ Dy
i=1 i=1 =1 i=1
D)

To prove in F'C' the translation of the rule 7}'-left, begin with the tautology

(V CuinTDA)D(\ CuinT)DA

k<i<n k<i<n

Using an axiom of F'C, obtain

\V (AACh1i)V(FAAC, 1)) AT DA

k<i<n

This is equivalent to the following.

((A/\ \/ Cn_ld‘)\/(ﬂA/\ \/ Cn_17i))/\FDA~-~

k<j<n k<i<n

Using the translation into F'C of T}? (and for notational simplicity denoting the
translation of formulas A by themselves), this yields the following.

(ANTP DV (EAANTD))AT DA
By distribution of A this yields
(ANTPPAT)V (RAATE P AT) DA -
By distribution of D this yields
(ANTPPAT) D A)A((RANTP P AT) D A)

D
(T AT)D A
It will be shown in the proof of the next theorem that
L
and so
ANT) PATHAANTP AT
From this, since

TP E(AANTE YV (=ANTEY

10



it is not hard to see that there is an F'C proof of the following.
(ANTPPAT) D A)A (TP AT) D A)
D
(T AT)D A

But this is the translation of rule T'-left into F'C'. The F'C proof of the trans-
lation of 17'-right is similar. |

Theorem 7 Suppose that (P, : n > 1) is a family of PTK' proofs, where P,
is a depth d(n), size s(n) proof of ¢,,. Then there exists a constant ¢ for which
there exists a family (P, : n > 1) of PTK proofs, where P!, is a depth ¢+ d(n),
size ¢ - s(n) proof of ¢n,.

Proof. Note first that

T
=Ty AT
=Tt

and that
TR E T,
T T AT R
=T,

Thus the n - k proof of T} + T;H and T}, , = T} for i <n and j < k together
yield a proof of

(1) I -1t

Case 1: T}-leftl
Since T} has size O(n), there is an n®W) size proof of (1). Now
T, F TP TPTHA
T, THA

Case 2: T'-left2

e, - TP ATPEANTY
T R ANTE T

11



From this, we obtain
T e Ty
and by iteration rule 17'-left2.
Case 3: T)'-left3
T, ~AESANTE ATy, A

1 n
T A —ANTE

by using the T}'-left rule of PTK. Iterating this, we have the proof of the
T-left3 rule of PTK’.

Case 4: T}'-rightl
Immediate from (1).
Case 5: 1}'-right2

Iterating the idea of proof of case 2, we can show that

-,

TP (A) ANT(B) - T (A, B)

From this, case 5 follows.
This completes the proof of the theorem. [

It is not difficult to see that the simulations of FC, PTK and PTK' are
within a polynomial factor of the size and a constant factor of the depth.

12
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