
Cut Elimination In Situ
Revised version. Comments appreciated.

Sam Buss∗

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

sbuss@math.ucsd.edu

December 5, 2013

Abstract

We present methods for removing top-level cuts from a sequent
calculus or Tait-style proof without significantly increasing the space
used for storing the proof. For propositional logic, this requires con-
verting a proof from tree-like to dag-like form, but it most doubles
the number of lines in the proof. For first-order logic, the proof size
can grow exponentially, but the proof has a succinct description and is
polynomial-time uniform. We use direct, global constructions that give
polynomial time methods for removing all top-level cuts from proofs.
By exploiting prenex representations, this extends to removing all cuts,
with final proof size near-optimally bounded superexponentially in the
alternation of quantifiers in cut formulas.

1 Introduction

Gentzen’s technique of cut elimination, together with the closely related nor-
malization, is arguably the most important construction of proof theory. The
importance of cut elimination lies partly in its connections to constructivity,
and indeed cut elimination is algorithmic and can be carried out effectively.
The present paper focuses on algorithms for cut elimination in the setting
of pure propositional logic and pure first-order logic. We introduce methods
for removing top-level cuts from a proof without significantly increasing the

∗Supported in part by NSF grants DMS-1101228 and CCF-1213151 and by a grant
from the Simons Foundation (#208717 to Sam Buss).

1

space used for generating the proof. Of course, it is well-known that elimi-
nating top-level cuts can make proof size grow exponentially, so it requires
some special care to describe the resulting proof without any significant in-
crease in space. For propositional logic, our methods require converting a
proof from tree-like to dag-like form, but at most double the number of lines
in the proof. For first-order logic, the proof size can grow exponentially; in
fact, both the number of lines in the proof and the size of the terms can
grow exponentially. However, our constructions give polynomial size dag
representations for the terms, and succinct descriptions of the proof that
give a polynomial time uniform description of the proof and its terms.

Along with the small space usage, our cut elimination methods give
direct, global constructions. We define direct, concrete descriptions of the
proof that results from eliminating the top-level cuts. Our construction is
“global” in that it operates on the entire proof and eliminates all top-level
cuts at once.

Our constructions synthesize and generalize a number of prior results
from proof complexity and continuous cut elimination. Our immediate mo-
tivation arose from the desire to find global versions of the polynomial time
algorithms for the continuous cut elimination used by Aehlig-Beckmann [1]
and Beckmann-Buss [4]. Continuous cut elimination was developed by Mints
[12, 11] for the analysis of higher order logics, and [1] introduced its use for
the analysis of bounded arithmetic. In particular, [1, 4] required polynomial
time constructions of proofs. Like Mints, they create proofs step-by-step and
use a special Rep (for “repetition” or “repeat”) inference to slowdown the
construction of proofs. In contrast, we shall give direct (not step-by-step)
constructions, and avoid the use of a Rep inference.

There is extensive prior work giving upper bounds on the complexity of
cut elimination in propositional and first-order logic, including [13, 14, 8, 6,
17, 18, 7, 16, 5, 2]. Some of the best such bounds measure the complexity
of proofs in terms of the height of proofs [13, 17, 18, 7, 16, 5]. Loosely
speaking, these results work by removing top-level connectives from cut
formulas, at the cost of exponentiating the height of the proof, and repeating
this to remove all cuts from a proof. Zhang [17] and Gerhardy [7] bound
the height of cut free proofs in terms of the nesting of quantifiers in cut
formulas; namely, if quantifiers are nested to depth d without any intervening
propositional connectives, then cut elimination requires a height increase of
only an exponential stack of 2’s of height d+2. They further show that cut-
elimination can remove a top-level block of ∃ and ∨ (respectively, ∀ and ∧)
connectives at the cost of a single exponential increase in proof height.

In contrast, the present paper works with proof size rather than proof

2

height. Somewhat counterintuitively, blocks of arbitrarily nested ∃ and ∧
connectives (respectively, ∀ and ∨ connectives) can be removed all at once,
with a single exponential increase in proof size.

Kraj́ıček [9, 10], Razborov [15], and Beckmann-Buss [3] have given com-
plexity bounds for reducing the depth (alternation of ∨’s and ∧’s) of for-
mulas in constant depth propositional Frege or Tait-style proofs. Reduc-
ing the depth of formulas in a proof is essentially equivalent to removing
the outermost blocks of like (propositional) connectives from cut formulas.
Kraj́ıček [9] and later Beckmann-Buss [3] show that the depth of formulas in
a constant depth proof can be reduced from d+1 to d at the cost of convert-
ing the proof from tree-like format to dag-like format with only a polynomial
increase in proof size. Our Theorem 3 below is similar to Lemma 6 of [3]
in this regard, but gives a more explicitly uniform construction, and works
even if there are multiple nested outermost like quantifiers that need to be
eliminated.

This paper deals with cut elimination for a Tait-style calculus instead
a Gentzen sequent calculus. In the setting of classical logic, our results all
apply immediately to cut elimination in a Gentzen sequent calculus.1 We
assume the reader has some familiarity with sequent calculi or Tait calculi,
but Section 2 begins with formal definitions of our Tait-style proof system,
including definitions of proof size and cut formula complexity. It also de-
scribes the basic ideas behind the later constructions. Section 3 shows that,
for tree-like propositional proofs, outermost like connectives in cut formulas
can be removed at the cost of converting the proof to dag-like form, while
at most doubling the number of lines in the proof. Sections 4 and 5 extend
this to first-order logic, but now, instead of forming a dag-like proof of the
same size, the number of lines in the proof can become exponentially larger.
However, the exponentially long proof still has a direct, global, polynomial-
time specification. For expository purposes, Section 4 first shows how to
eliminate all top-level like quantifiers from cut formulas. Section 5 then
combines the earlier constructions to show how to eliminate all outermost
∀ and ∨ connectives. In light of the duality of the Tait calculus, this is
the same as removing all top-level ∃ and ∧ connectives. Our constructions
use direct methods that reduce the cut-formula complexity for multiple cuts
simultaneously.

So far, we have discussed only the problem of removing the top-level

1Tait systems do not work as well as the Gentzen sequent calculus for non-classical
systems such as intuitionistic logic. Thus our results would need to be modified to apply
to intuitionistic logic, for instance.

3

connectives from cut formulas. Obviously, the process could be iterated
to remove all cuts. Define the alternating quantifier depth of a formula
as the maximum number of alternating blocks of existential and universal
quantifiers along any branch in the tree representation of the formula (with
negations pushed to the atoms, but allowing ∧ and ∨ connectives to ap-
pear arbitrarily along the branch). Let aqd(P) be the maximum alternating
quantifier depth of any cut formula in the proof P . Section 6 proves that it
is possible to convert P into a cut free proof of the same end cedent, with

the size of P bounded by 2
|P |
d for d = aqd(P) + O(1). Here |P | is the num-

ber of lines in P , and the superexponential function 2ad is defined by 2a0 = a
and 2ai+1 = 22

a

i . This improves on what can be obtained straightforwardly
using the constructions of Sections 3-5 or from the prior bounds obtained
by Zhang [17], Gerhardy [7], and Beckmann-Buss [5], since we bound the
height of the stack of two’s in terms of the number of alternations of quanti-
fiers without regard to intervening ∧’s or ∨’s. The basic idea for the proof in
Section 6 is to first modify P so that all cut formulas are in prenex form, and
then apply the results of Section 4. The results of Section 6 do not depend
on either Section 3 or 5; but we do appeal to constructions of [17, 7, 5] to
handle removing cuts on quantifier free formulas.

2 Preliminaries

2.1 Tait calculus

Our first-order Tait system uses logical connectives ∧, ∨, ∃ and ∀, and
a language of function symbols, constant symbols, and predicate symbols.
Terms and atomic formulas are defined as usual. A literal is either an atomic
formula P (~s) or a negated atomic formula P (~s). Formulas are formed using
connectives ∧, ∨, ∀ and ∃. The negation of complex formulas is inductively
defined by defining (p), B ∧C, B ∨ C, (∃x)A, and (∀x)A to be the formulas
p, B ∨ C, B ∧ C, (∀x)A, and (∃x)A, respectively.

We adopt a convention from the Gentzen sequent calculus and assume
that first-order variables come in two sorts: free variables (denoted with
letters a, b, c, . . .) and bound variables (denoted with letters x, y, . . .). Free
variables cannot be quantified and must appear only freely. A bound vari-
able x may occur in formulas only within the scope of a quantifier (∀x) or
(∃x) that binds it.

A line of a Tait calculus proof, called a cedent, consists of a set of for-
mulas. The intended meaning of a cedent is the disjunction of its members.
The allowable rules of inference are shown in Figure 1. It should be noted

4

that an initial cedent A,A must have A atomic. We allow Tait proofs to be
either tree-like or dag-like. The usual conditions for eigenvariables apply to
∀ inferences. The formulas introduced in the lower cedents of inferences are
called the principal formula of the inference: these are the formulas A ∧B,
A ∨ B, (∃x)A(x) and (∀x)A(x) in Figure 1. The formulas eliminated from
the upper cedent are called auxiliary formulas: these are the formulas A, B,
A(s), A(b), A, and A in the figure. The auxiliary formulas of a cut inference
are called cut formulas. Formulas that appear in the sets Γ and Γi are called
side formulas.

The ∧ and cut inferences have two cedents as hypotheses, which are
designated the left and right upper cedents. For a cut inference, we require
that the outermost connective of the left cut formula A not be an ∧ or ∃
connective; equivalently, the outermost connective of the right cut formula A
is not ∨ or ∀. This restriction on A’s outermost connective causes no loss of
generality, since the order of the upper cedents can always be reversed. (We
sometimes display cuts with upper cedents out of order, however.) For an
∧ inference, the left-right order of the upper cedents is dictated by the order
of the conjunction; except in the case where A and B are the same formula,
and then the upper cedents are put in some arbitrary left-right order.

The left-right ordering of upper cedents allows us to define the post-
ordering of the cedents of a tree-like proofs. The postordering of the nodes
of a tree T is the order of the nodes output by the following recursive traver-
sal algorithm: Starting at the root of T , the traversal algorithm first recur-
sively traverses the child nodes in left-to-right order, and then outputs the
root node. The postorder traversal of the underlying proof tree induces an
ordering of the cedents in the proof.

Axioms (initial cedents) and weakening inferences are ignored when mea-
suring the size or height of P . Thus, the size, |P |, of a Tait proof P is defined
as the number of ∨, ∧, ∀, ∃, and cut inferences in P . The height, h(P), of P
is the maximum number of these kinds of inferences along any branch of P .

The fact that cedents are sets rather than multisets or sequences means
that if a formula is written twice on a line, it appears only once in the cedent.
For instance, in the ∨ inference, is it possible that A ∨B is a member of Γ.
It is also possible that A (say) appears in Γ, in which case both A and
A ∨ B appear in the conclusion of the inference. This latter possibility,
however, makes our analysis of cut elimination more awkward, since we will
track occurrences of formulas along paths in the proof tree. The problem
is that there will be an ambiguity about how to track the formula A in
the case where it “splits into two”, for example in an ∨ inference by both
being a member of Γ and being used to introduce A ∨ B. The ambiguity

5

Axiom: A,A ΓWeakening:
Γ,∆

A,Γ1 B,Γ2
∧:

A ∧B,Γ1,Γ2

A,B,Γ
∨:

A ∨B,Γ

A(s),Γ
∃:

(∃x)A(x),Γ

A(b),Γ
∀:

(∀x)A(x),Γ

A,Γ1 A,Γ2
Cut:

Γ1,Γ2

Figure 1: The rules of inference for a Tait system. The lines of the proof are
to be interpreted as sets of formulas. The formula A of the axiom rule must
be atomic. The free variable b of the ∀ inference is called an eigenvariable
and may not occur in the lower cedent.

can be avoided by considering proofs that satisfy the following “auxiliary
condition”:

Definition A Tait proof P satisfies the auxiliary condition provided that no
inference has an auxiliary formula also appearing as a side formula. Specifi-
cally, referring to Figure 1, the auxiliary condition requires the following to
hold:

a. In an ∨ inference, neither A nor B may occur in Γ.

b. In an ∧ inference, neither A nor B may occur in Γ1 or Γ2.

c. In an ∃ inference, A(s) may not occur in Γ.

d. In a cut inference, neither A nor A may occur in Γ1 or Γ2.

Note that the eigenvariable condition already prevents A(b) from occurring
in the side formulas of a ∀ inference.

Lemma 1 Let P be a [tree-like] Tait proof. Then there is a [tree-like] Tait
proof P ′ satisfying the auxiliary condition proving the same conclusion as P .
Furthermore, |P ′| ≤ |P | and h(P ′) ≤ h(P).

The proof of the lemma is straightforward using the fact that weakening
inferences do not count towards proof size or height.

A path in a proof P is a sequence of one or more cedents occurring in P ,
with the (i+1)st cedent a hypothesis of the inference inferring the ith cedent,

6

for all i. A branch is a path that starts at the conclusion of P and ends at
an initial cedent.

Suppose P is tree-like and satisfies the auxiliary condition. Also suppose
a formula A occurs in two cedents C1 and C2 in P , and let A1 and A2 denote
the occurrences of A in C1 and C2, respectively. We call A1 a direct ancestor
of A2 (equivalently, A2 is a direct descendant of A1) provided there is a path
in P from C2 to C1 such that the formula A appears in every cedent in the
path.2 If A1 is the principal formula of an inference, or occurs in an axiom,
that we say A1 is a place where A2 is introduced. If A2 is an auxiliary
formula, then we say A2 is the place where A1 is eliminated. In view of the
tree-like property of P , every formula occurring in P either has a unique
place where it is eliminated or has a direct descendant in the conclusion
of P . However, due to the implicit use of contraction in the inference rules,
formulas occurring in P may be introduced in multiple places.

The notions of direct descendant and direct ancestor can be generalized
to “descendant” and “ancestor” by tracking the flow of subformulas in a
proof. If I is an ∧, ∨, ∃, or ∀ inference, then the principal formula of I
is the (only) immediate descendant of each auxiliary formula of I. Then,
the “descendant” relation is the reflective, transitive closure of the union
of the immediate descendant and direct descendant relations. Namely, a
formula A′ occurring in P is a descendant of a formula A occurring in P iff
there is a sequence of formula occurrences in P , starting with A and ending
with A′ such that each formula in the sequence is the immediate descendant
or a direct descendant of the previous formula in the sequence. We also call
A an ancestor of A′.

The definitions of descendant and ancestor apply to formulas that appear
in cedents. Similar notions also apply to subformulas. Suppose A and B
are formulas appearing in cedents with B a descendant of A. Let C be a
subformula of A. We wish to define a unique subformula D of B, such that
C corresponds to D. This unique subformula is intended to be defined in
the obvious way, with each subformula in an upper cedent of an inference
corresponding to a subformula in the lower sequent. Assume P is tree-like
and satisfies the auxiliary condition. The “corresponds” relation is defined
by taking the reflexive, transitive closure of the following conditions.

• The formula A(s) in an ∃ inference corresponds to the subformula A(x)
in the lower sequent.

• In a ∀ inference, the formula A(b) corresponds to the subformula A(x).

2This definition works because P satisfies the auxiliary condition.

7

• In an ∧ or ∨ inference, the formulas A and B in the upper cedent(s)
correspond to the subformulas A and B shown in the lower cedent.
Except for an ∨ inference in which A and B are the same formula,
the auxiliary formula corresponds to the subformula denoted A in the
lower cedent. That is, in this case, the ∨ inference is treated as if it
were defined as

A,Γ

A ∨B,Γ

• If C is a subformula of a side formula, namely of a formula A in Γ, Γ1,
or Γ2 in Figure 1, then C corresponds to the same subformula of the
occurrence of A in the lower cedent.

• If A and B appear in the upper and lower cedent of an inference and
A corresponds to B and if C is the i-th subformula of A, then C
corresponds to the i-th subformula D of B, where the subformulas of
C and D are ordered (say) according to the left-to-right positions of
their principal connectives.

It is often convenient to assume proofs use free variables in a controlled
fashion. The following definition is slightly weaker than the usual definition,
but suffices for our purposes.

Definition A proof P is in free variable normal form provided that each
free variable b is used at most once as an eigenvariable, and provided that
when b is used as an eigenvariable for inference I, then b appears in P only
above I (that is, each occurrence of b occurs in a cedent reachable from I
by some path in P). The variables c that appear in P but are not used as
eigenvariables are called the parameter variables of P .

Any tree-like proof P may be put into free variable normal form without
increasing its size or height; furthermore, this can be done while enforcing
the auxiliary condition.

2.2 The basic constructions

This section describes the basic ideas and constructions used for the cut-
elimination results obtained in Sections 3 and 4.

The first important tool is a generalization of the well-known inversion
lemmas for the outermost ∀ and ∨ connectives of a formula. Assume we
have a tree-like proof P , in free variable normal form, that ends with the

8

cedent Γ, A ∨B. Then there is a proof P ′ of Γ, A,B, with P ′ also tree-like,
and with |P ′| ≤ |P | and h(P ′) ≤ h(P). Similarly, if P ends with Γ, (∀x)A(x)
and t is any term, then there is a proof P ′′ of Γ, A(t), with P ′′ also tree-
like and satisfying the same conditions on its size and height. The proofs
are quite simple: P ′ is obtained from P by replacing all direct ancestors
of A ∨ B with A,B and removing all ∨ inferences that introduce a direct
ancestor of A ∨ B. Likewise, if t does not contain any eigenvariables of P ,
then P ′′ is formed by replacing all direct ancestors of (∀x)A(x) with A(t),
and removing the ∀ inferences that introduce these direct ancestors and
replacing their eigenvariables with t.

Iterating this construction allows us to formulate an inversion lemma
that works for the entire set of outermost ∨ and ∀ connectives. If B is a
subformula of A, we call B an ∨∀-subformula of A if every connective of A
containing B in its scope is an ∨ or a ∀. Similarly, a connective ∨ or ∀ is
said to be ∨∀-outermost if it is not in the scope of any ∃ or ∧ connective.
Let P be a tree-like proof of Γ, A, and let B1, . . . , Bk enumerate the minimal
∨∀-subformulas of A in left-to-right order. The subformulas Bi are called
the ∨∀-components of A. Note that each Bi is atomic or has as outermost
connective an ∧ or an ∃.

Lemma 2 Let P , A, B1, . . . , Bk be as above. Let σ be any substitution map-
ping free variables to terms. Then there is a proof P ′ of Γσ,B1σ, . . . , Bkσ
such that P ′ is tree-like and |P ′| ≤ |P | and h(P ′) ≤ h(P).

The lemma is proved by iterating the inversion lemmas for ∨ and ∀.

Section 3 will give the details how to simplify cuts in a propositional Tait
calculus proof by removing all outermost ∨ (or, all outermost ∧) connectives
from cut formulas. As a preview, we give the idea of the proof, which
depends on the inversion lemma for ∨. Namely, suppose the proof P ends
with a cut on the formula A∨ (B ∨C), as shown in Figure 2. The right cut
formula, in the final line of the subproof R, is in the dual form A∧ (B ∧C)
of course. Now suppose that in the subproof R there are the two pictured
∧ inferences that introduce the formulas (B ∧ C) and then A ∧ (B ∧ C).

By the inversion lemma for ∨, the proof Q can be transformed into a
proof Q′ of A,B,C,Γ1 with no increase in size or height. The cut in P can
thus be removed by replacing the ∧ inferences in R with cuts to obtain the
proof P ′ shown in Figure 3. Note that this has replaced the ∧ inference
introducing B ∧ C with two cuts, one on B and one on C, and replaced
the ∧ inference introducing A ∧ (B ∧ C) with a cut on A. Overall, two

9

Q. . .
... . .

.

A ∨ (B ∨ C),Γ1

. . .
... . .

.

A,Γ3

B,Γ5 C,Γ6
∧:

B ∧ C,Γ5,Γ6

...

B ∧C,Γ4
∧:

A ∧ (B ∧ C),Γ3,Γ4

. . .
... . .

.R

A ∧ (B ∧ C),Γ2
Cut

Γ1,Γ2

Figure 2: A simple example of ∨ cut to be eliminated. Q and R are the
subproofs deriving the hypotheses of the cut.

∧ inferences and one cut inference in P have been replaced by three cut
inferences in P ′. More generally, due to contractions, there can be k1 ≥ 1
inferences in P that introduce B ∧ C, and k2 ≥ 1 inferences that introduce
A ∧ (B ∧ C): these k1 + k2 many ∧ inferences and the cut inference in P
are replaced by 2k1 + k2 many cut inferences in P ′. Thus the size of P ′ is
no more than twice the size of P . The catch though, is that P ′ may now be
dag-like rather than tree-like.

Finally, it should be noted that P ′ is obtained from P by moving the
subproof Q′ and the subproof deriving A,Γ3 “rightward and upward” in
the proof. This is crucial in allowing us to remove multiple cuts at once.
Intuitively, the final cut of P plus all the cuts that lie in the subproofsQ or R
can be simplified in parallel without any unwanted “interference” between
the different cuts.

Figure 4 shows a proof P from which the outermost ∨ and ∀ (dually, ∧
and ∃) connectives can be removed from cut formulas. The left subproof Q
can be inverted to give a proof Q′ of A(r, s), B(r, t),Γ1 , and this is used to
form the proof P ′ shown in Figure 5. In this simple example, an ∧ inference,
three ∃ inferences, and the cut inference are replaced by just two cut infer-
ences. As in the ∨ example, the proof P ′ is formed by moving (instantiations
of) subproofs of P rightward. In particular, the subproof in P ending with
(∃y)A(r, y),Γ3 has become a proof of B(r, t),Γ1,Γ3 and has been moved
rightward in the proof so as to be cut against B(r, t),Γ6.

The general case of removing quantifiers is more complicated however.
For instance, there might be multiple places where the formula (∃y)A(x, y)

10

Q′ . . .
... . .

.

A,B,C,Γ1

. . .
... . .

.

A,Γ3
Cut:

B,C,Γ1,Γ3 B,Γ5
Cut:

C,Γ1,Γ3,Γ5 C,Γ6
Cut:

Γ1,Γ3,Γ5,Γ6

...

Γ1,Γ3,Γ4

...

Γ1,Γ2

Figure 3: The proof P ′ obtained after eliminating the cut of Figure 2.

is introduced, using k1 terms s1, . . . , sk1 . Likewise, there could be k2 terms tj
used for introducing the formula (∃y)B(x, y), and k3 terms rℓ for introducing
the (∃x). In this case we would need k1k2k3 many inversions of Q, namely,
proofs Qi,j,ℓ of A(rℓ, si), B(rℓ, tj),Γ1 for all i ≤ j1, j ≤ k2, and ℓ ≤ k3. The
result is that P ′ can have size exponential in the size of P ; there is, however,
still a succinct description of P ′ which can be obtained directly from P .
This will be described in Section 4.

3 Eliminating like propositional connectives

This section describes how to eliminate an outermost block of propositional
connectives from cut formulas. The construction applies to proofs in first-
order logic.

Definition Suppose B is a subformula occurring in A. Then B is an ∨-
subformula of A iff B occurs in the scope of only ∨ connectives. The notion
of ∧-subformula is defined similarly.

An ∨-component (resp., ∧-component) of A is a minimal ∨-subformula
(resp., ∧-subformula) of A.

Definition An ∨/∧-component of a cut formula in P is an ∨-component of
a left cut formula in P or an ∧-component of a right cut formula in P .

Theorem 3 Let P be a tree-like Tait calulus proof of Γ. Then there is a dag-
like proof P ′, also of Γ, such that each cut formula of P ′ is an ∨/∧-component

11

Q. . .
... . .

.

(∀x)((∀y)A(x, y) ∨ (∀y)B(x, y)),Γ1

A(r, s),Γ5
∃:

(∃y)A(r, y),Γ5

. . .
... . .

.

(∃y)A(r, y),Γ3

B(r, t),Γ6
∃:

(∃y)B(r, y),Γ6

. . .
... . .

.

(∃y)B(r, y),Γ4
∧:

(∃y)A(r, y) ∧ (∃y)B(r, y),Γ3,Γ4
∃:

(∃x)((∃y)A(x, y) ∧ (∃y)B(x, y)),Γ3,Γ4

...

(∃x)((∃y)A(x, y) ∧ (∃y)B(x, y)),Γ2
Cut

Γ1,Γ2

Figure 4: A simple example of cuts using ∨ and ∃ to be eliminated.

of a cut formula of P , and such that |P ′| ≤ 2 · |P | and hence h(P ′) ≤
2 · |P |. Furthermore, given P as input, the proof P ′ can be constructed by a
polynomial time algorithm.

Note that P ′ is obtained by simplifying all the cut formulas in P that have
outermost connective ∧ or ∨.

Without loss of generality, by Lemma 1, P satisfies the auxiliary condi-
tion. The construction of P ′ depends on classifying the formulas appearing
in P according to how they descend to cut formulas. For this, each formula B
in P can be put into exactly one of the following categories (α)-(γ).

(α) B has a left cut formula A as a descendant and corresponds to an ∨-
subformula of A, or

(β) B has a right cut formula A as a descendant and corresponds to an
∧-subformula of A, or

(γ) Neither (α) nor (β) holds.

Definition Let B be an occurrence of a formula in P , and suppose B is
in category (β) with a cut formula A as a descendant. The formula A is
a conjunction

∧k
i=1Ci of its k ≥ 1 many ∧-components (parentheses are

suppressed in the notation). The formula B is a subconjunction of A of the
form

∧ℓ
i=mCi where 1 ≤ m ≤ ℓ ≤ k. The ∧-components of A to the right of

B are Cℓ+1, . . . , Ck. The negations of these, namely Cℓ+1, . . . , Ck, are called
the pending implicants for B.

12

Q′ . . .
... . .

.

A(r, s), B(r, t),Γ1 A(r, s),Γ5
Cut:

B(r, t),Γ1,Γ5

...

B(r, t),Γ1,Γ3 B(r, t),Γ6
Cut:

Γ1,Γ3,Γ6

...

Γ1,Γ3,Γ4

...

Γ1,Γ2

Figure 5: The results of eliminating the cuts in Figure 4.

Each formula B in P will be replaced by a cedent denoted ∗(B). For B in
category (α), ∗(B) is the cedent consisting of the ∨-components of B. For B
in category (β), ∗(B) is the (possibly empty) cedent containing the pending
implicants for B. For B in category (γ), ∗(B) is the cedent containing just
the formula B.

Definition The jump target of a category (β) formula B in P is the first
cut or ∧ inference below the occurrence of B which has some descendant
of B as an auxiliary formula in its right upper cedent. The jump target will
be either:

D,Γ1 D,Γ2

Γ1,Γ2

or
C,Γ1 D,Γ2

C ∧D,Γ1,Γ2
(1)

where the formula D is either equal to B (a direct descendant of B) or is of
the form ((· · · (B∧B1)∧· · ·∧Bk−1)∧Bk) with k ≥ 1 (since only ∧ inferences
can operate on B until reaching the jump target). The left upper cedent of
the jump target (that is, D,Γ1 or C,Γ1) is called the jump target cedent.
The auxiliary formula of the left upper cedent, that is D or C, is called the
jump target formula.

We shall consistently suppress parentheses when forming disjunctions
and conjunctions. For instance, the formula ((· · · (B∧B1)∧· · ·∧Bk−1)∧Bk)
above would typically be written as just B∧B1∧· · ·∧Bk. It should be clear
from the context what the possible parenthesizations are.

13

Lemma 4 Suppose B is category (β) formula in P . Let C1, . . . , Ck be as
above, so B =

∧ℓ
i=mCi and the pending implicants of B are Cℓ+1, . . . , Ck.

Consider B’s jump target, namely one of the inferences shown in (1), and
let E be the jump target formula, that is, either D or C. Then ∗(E) is equal
to the cedent Cm, . . . , Ck.

Proof If the jump target of B is a cut inference, then D is
∧k

i=1Ci. In this
case, E = D is the formula C1 ∨ · · · ∨ Ck, and m = 1. It follows that E
is category (α), and ∗(E) = C1, . . . , Ck, so the lemma holds. On the other
hand, if the jump target is an ∧ inference, then D equals Cm ∧ · · · ∧ Cr for
some r ≤ k, and E = C equals

∧m−1
i=j Ci for some 1 ≤ j < m. In this case,

E is category (β), and ∗(E) again equals Cm, . . . , Ck. 2

Proof (of Theorem 3). The cedents of P ′ are formed by modifying each
cedent ∆ of P to form a new cedent ∆∗, called the ∗-translation of ∆. A
formula B occurs in or below ∆ if it is in ∆ or is in some cedent below ∆
in P . For each ∆ in P , the cedent ∆∗ is defined to include the formulas
∗(B) for all formulas B which occur in or below ∆.

Theorem 3 is proved by showing that the cedents ∆∗ can be put together
to form a valid proof P ′. This requires making the following modifications
to P : (1) For any inference in P that introduces an ∧-component of a right
cut formula, we must insert at that point in P ′ a cut on that ∧-component
using (the ∗-translation of) its jump target cedent. (2) When forming P ′,
we remove from P every ∧ inference that introduces an ∧-subformula of a
right cut formula, every ∨ inference that introduces an ∨-subformula of a
left cut formula, and every cut inference of P . (3) Weakening inferences are
added as needed. These changes are described in detail below, where we
describe how to combine the cedents ∆∗ to form the proof P ′. We consider
separately each possible kind of inference in P .

For the first case, consider the case where ∆ is an initial cedent B,B.
(Surprisingly, this is the hardest case of the proof.) Our goal is to show how
the cedent ∆∗ is derived in P ′. As a first subcase, suppose neither B nor B
is in category (β), so neither descends to an ∧-component of a right cut
formula. Since B is atomic, and B and B are each in category (α) or (γ),
we have ∗(B) = B and ∗(B) = B, respectively. The cedent ∆∗ is equal to
B,B,Λ, where Λ contains the formulas ∗(E) for all formulas E that occur
below the cedent B,B. The proof P ′ merely derives B,B,Λ from B,B
by a weakening inference. (Recall that weakening inferences do not count
towards the size or height of proofs.)

14

For the second subcase, suppose exactly one of B and B are in cate-
gory (β). Without loss of generality, we may assume B is of category (β),
and B is not. The formula B descends to a right cut formula

∧k
i=1Bi, and

corresponds uniquely to one of its ∧-components Bℓ. We have 1 ≤ ℓ ≤ k,
and Bℓ+1, . . . , Bk are the pending implicants of B = Bℓ. Since B is atomic
and not in category (β), ∗(B) = B = Bℓ. Thus, ∆

∗ is equal to

Bℓ+1, . . . , Bk, Bℓ,Λ. (2)

As before, the cedent Λ is the set of *-translations of formulas that appear
below ∆ in P .

The jump target for B has the form

D,Γ1 D,Γ2
Cut:

Γ1,Γ2

or
C,Γ1 D,Γ2

∧:
C ∧D,Γ1,Γ2

(3)

By Lemma 4, the ∗-translation of the upper left cedent has the form

Bℓ, . . . , Bk,Λ
′ (4)

where Λ′ contains the formulas ∗(E) for all formulas E occurring in or below
the lower cedent of the inference (3). Of course, Λ′ ⊆ Λ. Thus, in P ′, the
cedent ∆∗ is derived from the cedent (4) by a weakening inference.

In the third subcase, both B and B are in category (β). As in the
previous subcase, ∗(B) has the form Bℓ+1, . . . , Bk, and the ∗-translation of
its jump target cedent has the form

Bℓ, . . . , Bk,Λ
′

with Bℓ = B. Likewise, ∗(B) has the form B′
ℓ′+1, . . . , B

′
k′ and the ∗-

translation of B’s jump target cedent has the form

B
′
ℓ′ , . . . , B

′
k′ ,Λ

′′

where B′
ℓ′ = B. These two cedents combine with a cut on the formula B to

yield the inference

Bℓ, . . . , Bk,Λ
′ B

′
ℓ′ , . . . , B

′
k′ ,Λ

′′

Bℓ+1, . . . , Bk, B
′
ℓ′+1, . . . , B

′
k′ ,Λ

′,Λ′′

Since Λ′,Λ′′ ⊆ Λ, the cedent ∆∗ is derivable with one additional weakening
inference. This completes the argument for the case of an initial cedent.

15

Note that in the first two subcases, the initial cedent is eliminated, while
bypassing a cut or ∧ inference. In the third subcase, the initial cedent is
replaced with a cut inference on an atomic formula.

For the second case of the proof of Theorem 3, consider a weakening
inference

Γ
Γ,∆

in P . Here, the upper and lower sequents have exactly the same ∗-translations;
that is, Γ∗ is the same as (Γ,∆)∗. Thus the weakening inference can be omit-
ted in P ′.

Now consider the case of an ∧ inference in P :

A,Γ1 B,Γ2

A ∧B,Γ1,Γ2

For the first subcase, suppose that A ∧ B is in category (α) or (γ), so
∗(A ∧B) is just A ∧ B. In this case, A and B are both in category (γ), so
also ∗(A) = A and ∗(B) = B. The ∗-translation of the ∧ inference thus
becomes

A,Λ, A ∧B B,Λ, A ∧B

A ∧B,Λ

for suitable Λ, and this is still a valid inference. (The formula A∧B appears
in the upper cedents since the ∗-translations of the cedents A,Γ1 and B,Γ1

must contain ∗(A ∧B) = A ∧B.)
As the second subcase, suppose A∧B is category (β), and thus A and B

are also category (β). Expressing the formula B as a conjunction of its
∧-components yields B = B1 ∧ B2 ∧ · · · ∧ Bk for k ≥ 1. Let the pending
implicants of A ∧B be C1, . . . , Cℓ with ℓ ≥ 0. The formula B has the same
pending implicants as A∧B. Similarly, ∗(A) is B1, . . . , Bk, C1, . . . , Cℓ. Thus
the ∗-translations of the cedents in the ∧ inference become

B1, . . . , Bk, C1, . . . , Cℓ,Λ C1, . . . , Cℓ,Λ

C1, . . . , Cℓ,Λ

for suitable Λ. The dashed line is used to indicate that this is no longer a
valid inference. However, since the lower cedent is the same as the upper
right cedent, this inference can be completely omitted in P ′.

Next consider the case of a cut inference in P :

A,Γ1 A,Γ2

Γ1,Γ2

16

Clearly, A is of category (α), and A is of category (β). Since A has no
pending implicants, ∗(A) is the empty cedent; thus the ∗-translation of the
three cedents has the form

∗(A),Λ Λ

Λ

The cut inference therefore can be completely omitted in P ′.
Now consider the case of an ∨ inference in P :

A,B,Γ

A ∨B,Γ

There are three subcases to consider. First, if A∨B is in category (γ), then
so are A and B. The ∗-translation of the two cedents has the form

A,B,Λ, A ∨B

A ∨B,Λ
(5)

This of course is a valid inference, and remains in this form in P ′.
The second subcase is when A ∨ B is category (α). Expressing A and

B as disjunctions of their ∨-components yields A = A1 ∨ · · · ∨ Ak and
B = B1 ∨ · · · ∨Bℓ with k, ℓ ≥ 1. The ∗-translation of the ∨ inference is

A1, . . . , Ak, B1, . . . , Bk,Λ

A1, . . . , Ak, B1, . . . , Bk,Λ

and so this inference can be omitted in P ′.
The third subcase is when A ∨ B is category (β). In this subcase, A

and B are both category (γ). We have ∗(A) = A and ∗(B) = B. And,
∗(A ∨B) is C1, . . . , Ck, where the Ci’s are the pending implicants of A∨B,
with k ≥ 0. Thus, the ∗-translation of the cedents in the ∨ inference has
the form

A,B,Λ, C1, . . . , Ck

C1, . . . , Ck,Λ

Of course, this is not a valid inference. Note that the formulas Ci must
be included in the upper sequent since they are part of ∗(A ∨B). From
Lemma 4, the upper left sequent of the jump target of A∨B has ∗-translation
of the form

A ∨B,C1, . . . , Ck,Λ
′,

17

where Λ′ ⊆ Λ. The following inferences are used in P ′ to replace the ∨ in-
ference:

A ∨B,C1, . . . , Ck,Λ
′

A,B,Λ, C1, . . . , Ck

A ∨B,Λ, C1, . . . , Ck
Cut:

C1, . . . , Ck,Λ

(6)

This cut is permitted in P ′ since A ∨ B is an ∧-component of a right cut
formula in P . Note that the ∨ inference in P has been replaced in P ′ with
two inferences, namely a cut and an ∨ inference.

Now consider the case of a ∀ inference in P

A(b),Γ

(∀x)A(x),Γ

This case is handled similarly to the case of an ∨ inference. The formula A(b)
is category (γ), so ∗(A(b)) = A(b). If the formula (∀x)A(x) is category (α)
or (γ), then ∗((∀x)A(x)) = (∀x)A(x). In this case, the ∗-translation of the
∀ inference gives

A(b),Λ, (∀x)A(x)

(∀x)A(x),Λ

for suitable Λ. This is still a valid inference, and is used as is in P ′. Suppose,
on the other hand, that (∀x)A(x) is category (β). In this case, the ∗-
translation of the ∀ inference has the form

A(b),Λ, C1, . . . , Ck

C1, . . . , Ck,Λ

where C1, . . . , Ck are the pending implicants of (∀x)A(x). Note this is not
a valid inference. By Lemma 4, the ∗-translation of the upper left cedent of
the jump target of (∀x)A(x) is equal to

(∃x)A(x), C1, . . . , Ck,Λ
′,

where Λ′ ⊆ Λ. The following inferences are used in P ′ to replace the ∀ in-
ference:

(∃x)A(x), C1, . . . , Ck,Λ
′

A(b),Λ, C1, . . . , Ck

(∀x)A(x),Λ, C1, . . . , Ck
Cut:

C1, . . . , Ck,Λ

(7)

18

Note that since P is in free variable normal form, the variable b does not
appear in the lower cedent of the new ∀ inference. The ∀ inference in P has
been replaced in P ′ with two inferences: a cut and a ∀ inference.

The case of an ∃ inference in P is handled in exactly the same way as a
∀ inference. We omit the details.

The above completes the construction of P ′ from P . By construction,
the inferences in P ′ are valid. To verify that P ′ is globally a valid proof, we
need to ensure that it is acyclic, so there is no chain of inferences that forms
a cycle. This follows immediately from the fact that the inferences in P ′

respect the post-order traversal of P . In particular, the upper left cedent of
the jump target of a formula B comes before the cedent containing B in the
post-order traversal of P . Therefore, P ′ is well-founded.

It is clear that P ′ can be constructed in polynomial time from P . The
size of P ′ can be bounded as follows. First, each initial sequent in P can
add at most one cut inference to P ′. Each ∧ inference in P can become at
most one ∧ inference in P ′. Each ∨, ∀, and ∃ inference in P can become up
to two inferences in P ′. Each cut in P is replaced, at least locally, by zero
inferences in P ′. Let nAx, nCut, n∧, n∨, n∀, and n∃ denote the numbers
of initial sequents, cuts, ∧, ∨, ∀, and ∃ inferences in P . Then |P | equals
nCut+n∧+n∨+n∀+n∃, and |P ′| is bounded by nAx+n∧+2(n∨+n∀+n∃).
Since w.l.o.g. there is at least one cut in P and since nAx = nCut + n∧ +1,
it follows that |P ′| ≤ 2 · |P |. Q.E.D. Theorem 3. 2

4 Eliminating like quantifiers

We next show how to eliminate the outermost block of quantifiers from cut
formulas.

Definition An ∃-subformula (resp., ∀-subformula) of A is a subformula that
is contained in the scope of only ∃ (resp., ∀) quantifiers. An ∃-component
(resp., ∀-component) of A is a minimal ∃- or ∀-subformula (respectively). A
∀/∃-component of a cut formula in P is a ∀-component of a left cut formula
in P or an ∃-component of a right cut formula in P .

Theorem 5 Let P be a tree-like Tait calculus proof of Γ. Then there is
a dag-like proof P ′, also of Γ, such that each cut formula of P ′ is a ∀/∃-
component of a cut formula of P , and such that |P ′| ≤ 4|P |/5 ≤ (1.32)|P | and
h(P ′) ≤ |P |. As a consequence of the height bound, P ′ can also be expressed
as a tree-like proof of size ≤ 2|P |. Similarly, h(P ′) ≤ 2h(P).

19

Without loss of generality, P is in free variable normal form and satisfies the
auxiliary condition. Each formula B in P can be put in one of the following
categories (α)-(γ):

(α) B has a left cut formula A as a descendant and corresponds to a ∀-
subformula of A, or

(β) B has a right cut formula A as a descendant and corresponds to an
∃-subformula of A, or

(γ) Neither (α) nor (β) holds.

Definition An ∃ inference as shown in Figure 1 is critical if the auxiliary
formula A(s) does not have an ∃ as its outermost connective. The formula
A(s) is also referred to as ∃-critical. If A(s) is furthermore of category (β),
then the ∃-jump target of A(s) is the cut inference which has a descendant
of A(s) as a (right) cut formula. The ∃-jump target cedent of A(s) is the
upper left cedent of the jump target of A(s). This is also referred to as the
∃-jump target cedent of the cedent ∆ containing A(s).

We now come to the crucial new definition for handling cut elimination
of outermost like quantifiers. The intuition is that we want to trace, through
the proof P , a possible branch in the proof P ′. Along with this traced out
path, we also need to keep a partial substitution assigning terms to variables:
this substitution will track the needed term substitution for forming the
corresponding cedent in P ′. First we define an “∃-path” and then we define
the associated substitution.

Definition A cut inference is called to-be-eliminated if the outermost con-
nective of the cut formula is a quantifier. An ∃-path π through P consists of
a sequence of cedents ∆1, ∆2,. . . , ∆m from P such that ∆1 is the endsequent
of P and such that for each i < m, one of the following holds:

• ∆i is the lower cedent of a to-be-eliminated cut inference, and ∆i+1 is
its right upper cedent, or

• ∆i is the lower cedent of an inference other than a to-be-eliminated
cut, and ∆i+1 is an upper cedent of the same inference, or

• ∆i is the upper cedent of an ∃-critical inference, and ∆i+1 is the ∃-
jump target cedent of ∆i.

The ∃-path is said to lead to ∆m.

20

It is easy to verify that, for ∆i in π, the ∃-path π contains every cedent in P
below ∆i.

The cedents in an ∃-path are in reverse post-order from P . The effect
of an ∃-path is to repeatedly traverse up to an ∃-critical inference — always
going rightward at to-be-eliminated cuts — and then jump back down to the
associated ∃-jump target cedent. The most important information needed
to specify the ∃-path is the subsequence of cedents ∆i1 , ∆i2 ,. . . , ∆ik , i1 <
i2 < · · · < ik which are ∃-critical and for which ∆iℓ+1 is the ∃-jump target
cedent of ∆iℓ . The entire ∃-path can be uniquely reconstructed from this
subsequence plus knowledge of the last cedent ∆m in π.

There is a substitution σπ associated with the ∃-path π = 〈∆1, . . . ,∆m〉.
The domain of σπ is the set of free variables appearing in or below ∆m

plus the set of outermost universally quantified variables occurring in the
category (α) formulas in ∆m.

Definition The definition of σπ is by induction on the length of π. First,
let (∀xi) · · · (∀xℓ)A be a formula in ∆m in category (α) with i ≤ ℓ such
that A does not have outermost connective ∀. Since it is in category (α),
this formula has the form (∀xi) · · · (∀xℓ)A(b1, . . . , bi−1, xi, . . . , xℓ), and has
a descendant of the form (∀x1) · · · (∀xℓ)A(x1, . . . , xℓ) which is the left cut
formula of a cut inference. Since the cut is to-be-eliminated, π must reach the
upper left cedent by way of a “jump” from an ∃-critical cedent ∆i ∈ π. As
pictured, the associated ∃-critical formula must have the form A(s1, . . . , sℓ):

(∀xi) · · · (∀xℓ)A(b1, . . . , bi−1, xi, . . . , xℓ),Γ

. . .
... . .

.

(∀x1) · · · (∀xℓ)A(x1, . . . , xℓ),Γ1

A(s1, . . . , sℓ),Γ
′

(∃xℓ)A(s1, . . . , sℓ−1, xℓ),Γ
′

. . .
... . .

.

(∃x1) · · · (∃xℓ)A(x1, . . . , xℓ),Γ2

Γ1,Γ2

Note that the terms s1, . . . , sℓ are uniquely determined by π, since they are
found by following the path from the upper right cedent of the cut inference
to the cedent ∆i, and setting the si’s to be the terms used for ∃ inferences
acting on the descendants of A(~s).

Let π′ be π truncated to end at A(~s),Γ. The substitution σπ is defined
to map the bound variables xi, . . . , xℓ to the terms siσπ′ , . . . , sℓσπ′ . (Strictly
speaking, the substitution σπ acts on the occurrences of variables, since the
same variable may be used in multiple quantifiers and in different formulas;
this is suppressed in the notation however.)

21

For b a free variable appearing in or below ∆m, the value σπ(b) is defined
as follows. If there is a ∀ inference, below ∆m,

A(b),Γ

(∀x)A(x),Γ

that uses b as an eigenvariable, and if (∀x)A(x) is category (α), then define
σπ(b) to equal the value of σπ′(a), where π′ is π truncated to end at the
lower cedent of the ∀ inference. For example, in the proof displayed above,
σπ(bi) = si. Otherwise, if there is no such ∀ inference, define σπ(b) = b.

Definition Let A be a formula appearing in a cedent ∆ of P . Let π be an
∃-path leading to ∆. Then ∗π(A) is defined as follows:

• If A is in category (α) and has the form A = (∀x1) · · · (∀xℓ)B with
ℓ > 0 and B not starting with a ∀ quantifier, then define ∗π(A) to be
the formula Bσπ, namely the formula obtained by replacing each xi
with σπ(xi) and each free variable b with σπ(b).

• If A is in category (β) and has outermost connective ∃, then ∗π(A) is
the empty cedent.

• Otherwise ∗π(A) is the formula Aσπ, namely obtained by replacing
each free variable b with σπ(b).

For A appearing below ∆, we define ∗π(A) to equal ∗π′(A) where π′ is π
truncated to end at the cedent ∆′ containing A. The ∗π-translation, ∗π(∆),
of ∆ is the cedent containing exactly the formulas ∗π(A) for A appearing in
or below ∆ in P .

We can now give the proof of Theorem 5. The proof P ′ will be formed
from the cedents ∗π(∆) where ∆ ranges over the cedents of P , and π ranges
over the ∃-paths leading to ∆. The inferences in P ′ will respect the post-
ordering of P , and P ′ will be a dag.

As before, we must show how to connect up the cedents ∗π(∆) to make P ′

into a valid proof. The argument again splits into cases based on the type
of inference used to infer ∆ in P . The cases of initial cedents, ∨ inferences,
∧ inferences, and weakenings are all immediate. These inferences remain
valid after their cedents are replaced by their ∗π-translations, since initial
cedents contain only atomic formulas, and since the ∗π-translations respect
propositional connectives.

Consider the case where ∆ is inferred by a ∀ inference in P :

22

A(b),Γ

(∀x)A(x),Γ

The ∃-path π ends at the lower cedent ∆. Define π′ to be the ∃-path that
extends π by one step to the upper cedent ∆′. If (∀x)A(x) and A(b) are
not in category (α), then σπ′(b) = b and the inference is still valid since the
∗π′-/∗π-translations of A(b) and (∀x)A(x) are equal to C(b) and (∀x)C(x) for
C defined by C(b) = A(b)σπ = A(b)σπ′ . Thus, in this case, the result is still
a valid ∀ inference. Otherwise, A(b) and (∀x)A(x) are both in category (α).
In this case, ∗π(A(b)) = ∗π((∀x)A(x)); the ∀ inference has equal upper and
lower cedents and is just omitted from P ′.

Now consider the case where ∆ is inferred in P with an ∃ inference:

A(s),Γ

(∃x)A(x),Γ

Define π′ as in the previous case. If A(s) and (∃x)A(x) are not in cate-
gory (β), then the ∗π-translation leaves the quantifier on x untouched, and
the ∗π′-/∗π-translation of the inference is still a valid inference in P ′. Oth-
erwise, both formulas are in category (β). If A(s) has an ∃ as its outmost
connective, then ∗π′(A(s)) and ∗π((∃x)A(x)) are both empty, and the ∗π′-
and ∗π-translations (respectively) of the upper and lower cedents are iden-
tical, and the ∃ inference can be omitted in P ′. If A does not have an ∃ as
its outermost connective, then the ∗π′-/∗π-translations of the cedents in the
inference are

∗π′(A(s)),Λ

Λ

where Λ contains the formulas ∗π(B) for all formulas B, other than A(s),
which occur in or below ∆ in P . The upper left cedent of the ∃-jump target
of A(s) has the form

Γ1, (∀x1) · · · (∀xℓ)A(x1, . . . , xℓ),

where x = xℓ and A(s) = A(s1, . . . , sℓ) with s corresponding to the term sℓ.
Let π′′ be the ∃-path that extends π′ by the addition of this upper left
cedent. The ∗π′′-translation of the upper left cedent has the form

Λ1, A(s1, . . . , sℓ)σπ′′ .

Here Λ1 ⊆ Λ, and A(s1, . . . , sℓ)σπ′′ is the same as ∗π′(A(s)). Hence, a cut
inference gives

23

Λ1, A(s1, . . . , sℓ)σπ′′ ∗π′(A(s)),Λ

Λ

The ∃ inference in P is thus replaced with a cut inference in P ′, but on a
formula of lower complexity than the cut in P .

Finally consider the case of a cut inference in P as shown in Figure 1
with left cut formula A and right cut formula A. First suppose it is not a
to-be-eliminated cut. Let π1 and π2 be the ∃-paths which extend π by one
step to include the upper left or right cedent of the cut, respectively. Then
∗π1

(A) and ∗π2
(A) are complements of each other, and the cut remains valid

in P ′. Otherwise, the cut is to-be-eliminated, and π2 is again a valid ∃-path.
The right cut formula A is category (β) and has outermost connective ∃.
Thus ∗π2

(A) is the empty cedent, so the ∗π2
-translation of the right upper

cedent and the ∗π-translation of the lower cedent are identical. In this case,
the cut can be removed completely from P ′.

The above completes the construction of P ′. The next lemma will be
used to bound its size.

Lemma 6 let ∆ be a cedent in P . The number of ∃-paths π to ∆ in P is
≤ (1.32)|P |.

Proof Recall that an ∃-path π to ∆ can be uniquely characterized by its
final cedent ∆m = ∆ and its subsequence ∆i1 , . . . ,∆ik of cedents which are
∃-critical and have ∆iℓ+1 the ∃-jump target cedent of ∆iℓ . We will bound the
number N of ways to select the ∃-critical cedents in this subsequence. For
this, we group the ∃-critical cedents of P according to their ∃-jump target.
Let there be m many to-be-eliminated cut inferences in P , and suppose that
the i-th such cut has ni many ∃-critical cedents associated with it. The i-th
cut also has at least one ∀ inference associated with it that introduces a
∀ quantifier in its left cut formula. Therefore |P | ≥

∑m
i=1(ni + 2). Each

∃-path π can jump from at most one of the ni ∃-critical cedents associated
with the i-th cut. It follows that there are at most

∏m
i=1(ni + 1) many ∃-

paths; namely, there are at most ni +1 choices for which one, if any, of i-th
cut’s associated ∃-critical cedents are included in π.

To upper bound the value N =
∏m

i=1(ni + 1), take the logarithm, and
upper bound

∑m
i=1 ln(ni + 1) subject to

∑m
i=1(ni + 2) ≤ |P |. For integer

values of x, (ln x)/(x+1) is maximized at x = 4. Thus, lnN ≤ |P | · (ln 4)/5;
that is, N ≤ |P | · 4|P |/5 ≤ (1.32)|P |. 2

The size bound of Theorem 5 follows immediately from the lemma. Namely,
P ′ contains at most one cedent for each path to each cedent ∆ in P , and

24

thus |P ′| ≤ |P | · (1.32)|P |. The height bound h(P ′) ≤ |P | follows from the
construction of P , since paths π traverse cedents of P in reverse postorder,
and each ∧, ∨, ∃, ∀, and cut inference along π contributes at most inference
to P ′. (Note that cuts contribute an inference only when used as a jump
target.) Q.E.D. Theorem 5

The proof P ′ was constructed in a highly uniform way from P . Indeed,
P ′ can be generated with a polynomial time algorithm f that operates as
follows: f takes as input a string w of length ≤ |P | many bits, and outputs
whether the string w is an index for a cedent ∆w in P ′, and if so, f also
outputs: (a) the cedent ∆w with terms specified as dags, and (b) what kind
of inference is used to derive ∆w, and (c) the index w′ or indices w′, w′′ of the
cedent(s) from which ∆w is inferred in P ′. For (a), note that the cedent ∆w

can be written out in polynomial length only if terms are written as dags
(that is, circuits) rather than as trees (that is, as formulas). This is because
the iterated application of substitutions may cause the terms σπ(b) to be
exponentially big when written out as formulas instead of as circuits. Also
note that, although some inferences in P ′ become trivial and are omitted
in P ′, we can avoid using Rep inferences in P ′ by the simple convention
that indices w that would lead to Rep inferences are taken to not be valid
indices. (An example of this would be a w encoding an ∃-path leading to a
to-be-eliminated cut.)

This means of course that there is a polynomial space algorithm that
lists out the proof P ′.

5 Eliminating and/exists and or/forall blocks

This section gives an algorithm for eliminating outermost blocks of ∨/∀
(equivalently, ∧/∃) connectives from cut formulas, where the ∨ and ∀ (resp.,
∧ and ∃) connectives can be arbitrarily interspersed.

Definition A subformula B of A is an ∨∀-subformula of A if B is in the
scope of only ∨ and ∀ connectives. The ∨∀-components of A are the minimal
∨∀-subformulas of A. The ∧∃-subformulas and ∧∃-components of A are
defined similarly.

An ∨∀/∧∃-component of a cut formula in P is either an ∨∀-component
of a left cut formula of P or an ∧∃-component of a right cut formula of P .

Theorem 7 Let P be a tree-like Tait calculus proof of Γ. Then there is a
dag-like proof P ′, also of Γ, such that each cut formula of P ′ is an ∧∃/∨∀-
component of a non-atomic cut formula of P , and such that |P ′| ≤ 4|P |/5 ≤

25

(1.32)|P | and h(P ′) ≤ |P |. Consequently, P ′ can also be expressed as a
tree-like proof of size ≤ 2|P |.

Note that all cuts in P are simplified in P ′. The atomic cuts in P are elimi-
nated when forming P ′. However, new cuts are added on ∧∃/∨∀-components
of cuts in P , and some of these might be cuts on atomic formulas. If all cuts
formulas in P are atomic, then P ′ is cut free.

W.l.o.g., P is in free variable normal form and satisfies the auxiliary
condition. Each formula B in P can be put in one of the following categories
(α)-(γ):

(α) B has a left cut formula A as a descendant and corresponds to an ∨∀-
subformula of A, or

(β) B has a right cut formula A as a descendant and corresponds to an
∧∃-subformula of A, or

(γ) Neither (α) nor (β) holds.

Definition The jump target of a category (β) formula B occurring in P
is the first cut or ∧ inference below the cedent containing B that has some
descendant of B as the auxiliary formula D in its right upper cedent. The
jump target will again be of the form (1). Its right auxiliary formula D
has a unique subformula B′ which corresponds to B. B′ occurs only in the
scope of ∃ connectives and ∧ connectives, and only in the first argument of
∧ connectives. (The last part holds since otherwise the jump target would
be an ∧ inference higher in the proof.) The jump target cedent is defined as
before.

Suppose a category (β) formulaB has descendantD as the right auxiliary
formula of its jump target. Let the ∧∃-components of D be Dm, . . . ,Dk in
left-to-right order. The ∧∃-components of B in left-to-right order can be
listed as Bm, . . . , Bℓ, with each Bi corresponding to Di, with 1 ≤ m ≤ ℓ ≤ k.
The formulas Dℓ+1, . . . ,Dk are the pending implicants of B. The pending
quantifiers of B are the quantifiers (∃x) which appear to the right of the
subformula Dℓ in D and are outermost connectives of ∧∃-subformulas of D.
Let B′ be the subformula of D that corresponds to B; the current quantifiers
of B are the quantifiers (∃x) in D which contain B′ in their scope.

The pending implicants of B will be used similarly as in the proof of The-
orem 3, but first we need to define ∧∃-paths and substitutions σπ similarly
to the proof of Theorem 5. Now, σπ must also map the pending quantifier
variables to terms.

26

Definition An upper cedent ∆ of an ∧ or ∃ inference is critical if the
auxiliary formula in ∆ is either atomic or has outermost connective ∨ or ∀.

Definition A cut inference in P is non-atomic if its cut formulas are not
atomic. An ∧∃-path π through P consists of a sequence ∆1, . . . ,∆m of
cedents from P such that ∆1 is the end cedent of P and such that, for each
i < m, one of following holds:

• ∆i is the lower cedent of non-atomic cut inference, and ∆i+1 is its
right upper cedent, or

• ∆i is the lower cedent of an inference other than a non-atomic cut,
and ∆i+1 is an upper cedent of the same inference, or

• ∆i is a critical upper cedent of an ∧ or ∃ inference with auxiliary
formula A, and ∆i+1 is the jump target cedent of A.

The next definition of σπ is more difficult than in the proof of Theo-
rem 5 because the substitution has to act also on the pending implicants of
category (β).

Definition Let π be ∧∃-path as above. The domain of the substitution
σπ is: the free variables appearing in or below ∆m, the variables of the ∨∀-
outermost quantifiers of each category (α) formula in ∆m, and the variables
of the pending quantifiers of each category (β) formula in ∆m.3 The def-
inition of σπ is defined by induction on the length of π. For π containing
just the end cedent, σπ is the identity mapping with domain the parameter
variables of P . Otherwise, let π′ be the initial part of π up through the
next-to-last cedent ∆m−1 of π, and suppose σπ′ is already defined. There
are several cases to consider.

a. Suppose ∆m−1 and ∆m are the lower cedent and an upper cedent of
some inference other than a ∀ inference. The σπ is same as σπ′ .

b. Suppose ∆m−1 and ∆m are the lower cedent and an upper cedent of a
∀ inference as shown in Figure 1. If the principal formula (∀x)A(x) is
category (α), then σπ extends σπ′ by letting σπ(b) = σπ′(x) where (∀x)
is the quantifier introduced by the ∀ inference. Otherwise, σπ(b) = b.
And, σπ is equal to σπ′ for all other variables in its domain.

3As before, strictly speaking, a variable might be quantified at multiple places, and σ

acts on variables according to how they are bound by a quantifier, but we suppress this
in the notation.

27

c. Otherwise, ∆m is the jump target cedent of ∆m−1. Suppose the jump
target is an ∧ inference

C,Γ1 D,Γ2

C ∧D,Γ1,Γ2

For b a free variable in C,Γ1, the value σπ(b) is defined to equal σπ′(b).
Similarly, for any pending quantifier (∃x) of any category (β) formula
in Γ1 and for any ∨∀-outermost quantifier (∀x) of any category (α)
formula in Γ1, set σπ(x) = σπ′(x).

We also must define the action of σπ on the pending quantifiers of the
category (β) formula C. Let D1 be the first (leftmost) ∧∃-component
of D. The cedent ∆m−1 has the form B1,Γ3 where B1 is an ances-
tor of D and corresponds to D1. Write D1 = D1(x1, . . . , xj) where
(∃x1),. . . , (∃xj) are the current quantifiers forD1. ThenB1 = B1(s1, . . . , sj)
where the si’s are the terms used for ∃ inferences acting on descen-
dants of B1. The (∃xi)’s are pending quantifiers of C, and σπ(xi) is
defined to equal siσπ′ . The rest of the pending quantifiers of C are
the pending quantifiers of B1 in the cedent ∆m−1: for these variables,
σπ is defined to equal the value of σπ′ .

d. Suppose that ∆m is the left upper cedent of the jump target of ∆m−1,
and the jump target is a cut inference

D,Γ1 D,Γ2

Γ1,Γ2

Let π′ be as before, and set σπ(b) = σπ′(b) for all free variables
of the lower cedent. For any pending quantifier (∃x) of any cat-
egory (β) formula in Γ1 and for any ∨∀-outermost quantifier (∀x)
of any category (α) formula in Γ1, set σπ(x) = σπ′(x). Now, let
D1 = D1(x1, . . . , xj) and B1 = B1(s1, . . . , sj) as in the previous case.
Consider any ∨∀-outermost quantifier (∀y) of D. If y is one of the xi’s,
define σπ(y) = siσπ′ . Otherwise, (∃y) is a pending quantifier of D1,
and a pending quantifier of B1 in ∆m−1, and we define σπ(y) = σπ′(y).

Definition Suppose A is a formula occurring in cedent ∆ in P , and π is
an ∧∃-path leading to ∆. The formula ∗π(A) is defined as follows:

• If A is category (β), then ∗π(A) is the cedent containing the formulas
Bσπ for each pending implicant B of A.

28

• If A is category (α), then ∗π(A) is the cedent containing Bσπ for each
∨∀-component B of A.

• Otherwise ∗π(A) is Aσπ.

The notation ∗π(A) is extended to apply also to A appearing in a cedent ∆′

below the cedent ∆. Let π′ be the initial subsequence of π leading to ∆′.
Then define ∗π(A) = ∗π′(A). The ∗π-translation of ∆ consists of the formu-
las ∗π(A) such that A appears in or below ∆ in P .

The next lemma is analogous to Lemma 4.

Lemma 8 Suppose B is a category (β) formula in a cedent ∆ in P , and let
π be an ∧∃-path to ∆. Also suppose B does not have outermost connective
∧ or ∃. Let C1, . . . , Cm be the pending implicants of B. Let ∆′ be B’s
jump target cedent, and E be the auxiliary formula in ∆′. Then there is an
∧∃-path π′ to ∆′ such that ∗π′(E) equals the cedent Bσπ, C1σπ, . . . , Cmσπ.

Proof The jump target of B is either a cut or an ∧ inference as shown in (1),
with B corresponding to the first ∧∃-component C0 of D. The remaining
∧∃-components of D are C1,. . . ,Cr where 0 ≤ r ≤ m. Of course, their
negations are (some of the) pending implicants of B.

Suppose the jump target is a non-atomic cut inference. Then we have
r = m. Since B does not have outermost connective ∧ or ∃ and since the cut
formula D is non-atomic, B is not the same as D. Consider the lowest direct
descendant of B; it appears in a cedent ∆′′, and is the auxiliary formula of
an ∃ inference, or the left auxiliary formula of an ∧ inference. In either
case, ∆′′ is critical. Let π′′ be the ∧∃-path consisting of the initial part of π
to ∆′′. Set π′ to be the ∧∃-path that follows π′′ and then jumps from ∆′′

to the upper left cedent ∆′ of the jump target. The left cut formula E
is equal to D, and the ∨∀-components of E are C0, . . . , Cm. The cedent
∗π′(E) consists of the formulas Ciσπ′ . For i = 0, σπ′ was defined so that
C0σπ′ = Bσπ. Likewise, for i > 0, we have Ciσπ′ = Ciσπ′′ . Also, by cases
a. and b. of the definition of σπ, we have Ciσπ′′ = Ciσπ. Thus the lemma
holds.

Second, suppose the jump target is a cut on an atomic formula. The
right cut formula is equal to B of course; the left cut formula E is equal
to B. Letting π′ be as above, ∗π′(E) is equal to Bσπ′ = Bσπ as desired.

Now suppose the jump target is an ∧ inference, as in (1), where E = C.
If D is atomic, then D is a direct descendant of B (possibly even the same
occurrence as B). In this case, let ∆′′ be the cedent containing D (the upper

29

right cedent of the ∧ inference), let π′′ be the initial part of π′ leading to ∆′′,
and let π′ be π′′ plus the upper left cedent ∆′. (Note that ∆′ is the jump
target cedent of D.) Then, the pending implicants of C in ∆′ are D = B and
C1, . . . , Cm. We have Dσπ′ = Dσπ′′ = Dσπ and also Ciσπ′ = Ciσπ′′ = Ciσπ,
so the lemma holds. Now suppose D is not atomic. Then define π′, π′′,
and ∆′′ exactly as in the case above where jump target of B was a cut
inference. The pending implicants of C are C0, . . . , Cm, and, as before,
we have C0σπ′ = Bσπ′′ = Bσπ and Ciσπ′ = Ciσπ′′ = Ciσπ, satisfying the
conditions of the lemma. 2

Proof (of Theorem 7.) The proof combines the constructions from the
proofs of the two previous theorems. For each cedent ∆ in P and each
∧∃-path leading to ∆, form the cedent ∆π as the ∗π-translation of ∆. Our
goal is to show that these cedents can be combined to form a valid proof P ′.
The proof splits into cases to handle the different kinds of inferences in P
separately. In each case, we have a cedent ∆ and an ∧∃-path π leading to ∆,
and need to show how ∆π is derived in P ′.

For the first case, consider an initial cedent ∆ of the form B,B in P . As
the first subcase, suppose neither B nor B is category (β). Then ∆π is the
cedent Bσπ, Bσπ,Λ where Λ is the cedent of formulas ∗π(E) for E a formula
appearing below ∆ in P . This is obtained in P ′ by applying a weakening to
the initial cedent Bσπ, Bσπ.

For the second subcase, suppose B is category (β) and B is not. The
formula B has a right cut formula as descendant, and corresponds to the ℓ-th
∧∃-component Dℓ of D. Let the pending implicants of B be Dℓ+1, . . . ,Dk.
By Lemma 8, there is an ∧∃-path π′ to the upper left cedent ∆′ of the
jump target such that the auxiliary formula E in ∆′ has ∗π′(E) equal to
Bσπ,Dℓσπ, . . . ,Dkσπ. Thus, ∆

π and (∆′)π
′

are

Bσπ,Dℓ+1σπ, . . . ,Dkσπ,Λ

and
Bσπ,Dℓ+1σπ, . . . ,Dkσπ,Λ

′

where Λ′ ⊆ Λ. In P ′, the first cedent is derived from the second by a
weakening inference.

In the third subcase, both B and B are category (β). We have ∗π(B) still

equal to Dℓ+1σπ, . . . ,Dkσπ, and now ∗π(B) is equal to D
′′
ℓ′′+1σπ, . . . ,D

′′
k′′σπ

with the D
′′
i ’s the k′′ pending implicants of B. Using Lemma 8 twice, we

have ∧∃-paths π′ and π′′ leading to cedents ∆′ and ∆′′ such that (∆′)π
′

and

30

(∆′′)π
′′

(respectively) are

Bσπ,Dℓ+1, . . . ,Dkσπ,Λ
′

and
Bσπ,D

′′
ℓ′′+1, . . . ,D

′′
k′′σπ,Λ

′′

where Λ′,Λ′′ ⊆ Λ. In P ′, using a cut and then a weakening gives ∆π as
desired.

Second, consider the (very simple) case where the cedent ∆ is inferred
by a weakening inference

∆′

∆

where ∆ ⊂ ∆′. The path π to ∆ can be extended by one more cedent to be
a path π′ to the cedent ∆′. The cedents ∆π and (∆′)π

′

are identical. Thus
the weakening inference in P is just omitted in P ′.

Now consider the case where ∆ is the lower cedent of an ∧ inference
in P :

A,Γ1 B,Γ2

A ∧B,Γ1,Γ2

Let ∆1 and ∆2 be the left and right upper cedents, respectively, and let
π1 and π2 be the ∧∃-paths obtained by adding ∆1 or ∆2, respectively, to
the end of π. First, suppose A ∧ B is category (α) or (γ), so ∗π(A ∧B) is
(A∧B)σπ. Then A and B are both category (γ), and ∗π1

(A) = Aσπ1
= Aσπ

and ∗π2
(B) = Bσπ2

= Bσπ. Thus, in P ′, the ∧ inference becomes

Aσπ,Λ, (A ∧B)σπ Bσπ,Λ, (A ∧B)σπ
(A ∧B)σπ,Λ

and this is still a valid ∧ inference.
For the second subcase, suppose A∧B, thus A and B, are category (β).

The formula B in ∆2 has the same pending implicants C1, . . . , Cℓ as the
formula A ∧ B in ∆. Also, Ciσπ2

= Ciσπ. Thus ∆π is the same as (∆2)
π2 .

This means that the ∧ inference can be omitted in P ′.
Next consider the case where ∆ is the lower cedent of a cut in P :

A,Γ1 A,Γ2

Γ1,Γ2

31

Let ∆1 and ∆2 be the left and right upper cedents, respectively, and π1
and π2 be the extensions of π to ∆1 and ∆2. The occurrence of A is cate-
gory (β) of course, and ∗π2

(A) is the empty cedent. Thus, the cedents ∆π

and (∆2)
π2 are identical, and the cut inference may be omitted from P ′.

Next consider the case where ∆ is the lower cedent of an ∨ inference:

A,B,Γ

A ∨B,Γ

In this, and the remaining cases, let ∆′ be the upper cedent of the inference,
and let π′ be π extended to the cedent ∆′. For the ∨ inference, σπ′ is
identical to σπ. As a first subcase, suppose A ∨B is category (γ), and thus
A and B are as well. In this subcase, ∗π(A ∨B) = (A∨B)σπ, ∗π′(A) = Aσπ,
and ∗π′(B) = Bσπ. The ∗π-translation of the two cedents thus forms a valid
∨ inference in P ′.

The second subcase is when A ∨B, A, and B are category (α). Letting
A1, . . . , Ak be the ∨∀-components of A, and B1, . . . , Bk′ be those of B, the
∗π-translation of the ∨ inference has the form

A1σπ, . . . , Akσπ, B1σπ, . . . , Bk′σπ,Λ

A1σπ, . . . , Akσπ, B1σπ, . . . , Bk′σπ,Λ

and this can be omitted from P ′.
The third subcase is when A ∨ B is category (β). Then A and B

are category (γ), and ∗(A) = Aσπ and ∗(B) = Bσπ. Also, ∗(A ∨B) is
C1σπ, . . . , Ckσπ, where the Ci’s are the pending implicants of A∨B. Thus,
the ∗π-translation of the cedents in the ∨ inference has the form

Aσπ, Bσπ,Λ, C1σπ, . . . , Ckσπ

C1σπ, . . . , Ckσπ,Λ
(8)

Of course, this is not a valid inference. Let ∆′′ be the upper left cedent of
the jump target of A ∨ B. From Lemma 8, there is an ∧∃-path π′′ leading
to ∆′′ so that the ∗π′′-translation of ∆′′ is

(A ∨B)σπ, C1σπ, . . . , Ckσπ,Λ
′

where Λ′ ⊆ Λ. In P ′, this cedent and the upper cedent of (8) are combined
with an ∨ inference and a cut to yield the lower cedent of (8), similarly to
what was done in (6).

Now consider the case where ∆ is the lower cedent of a ∀ inference

A(b),Γ

(∀x)A(x),Γ

32

First suppose (∀x)A(x) is category (γ), so ∗π((∀x)A(x)) = (∀x)A(x)σπ =
(∀x)A(x)σπ′ . The formulaA(b) is category (γ) and σπ′(b) = b, thus ∗π′(A(b)) =
A(b)σπ. The ∀ inference of P becomes

A(b)σπ,Λ, (∀x)A(x)σπ
(∀x)A(x)σπ,Λ

and this forms a valid ∀ inference in P ′.
For the second subcase, suppose that (∀x)A(x) is category (β). Hence,

A(b) is category (γ). This case is similar to the third subcase for ∨ inferences
above. We have ∗π((∀x)A(x)) equal to C1σπ, . . . , Ckσπ where the Ci’s are
the pending implicants of (∀x)A(x). And, ∗π(A(b)) equals A(b)σπ; note
σπ(b) = b. Thus, the ∗π′-/∗π-translation of the cedents in the ∀ inference
has the form

A(b)σπ,Λ, C1σπ, . . . , Ckσπ

Λ, C1σπ, . . . , Ckσπ
(9)

which is not a valid inference. Let ∆′′ be the upper left cedent of the jump
target of (∀x)A(x). By Lemma 8, there is an ∧∃-path π′′ leading to ∆′′ so
that the ∗π′′-translation of ∆′′ is

(∀x)A(x)σπ, C1σπ, . . . , Ckσπ,Λ
′

where Λ′ ⊆ Λ. In P ′, this cedent and the upper cedent of (9) are combined
with an ∀ inference and a cut to yield the lower cedent of (9), similarly to
what was done in (7).

For the third subcase, suppose that (∀x)A(x) is category (α), so A(b)
is also category (α). By definition, σπ′(b) = σπ(x). Thus, ∗π′(A(b)) =
A(b)σπ′ = A(x)σπ. Also, ∗π((∀x)A(x)) = A(x)σπ. Therefore, in P ′, the
∀ inference becomes trivial with ∆π and (∆′)π

′

equal to each other; so this
inference is omitted from P ′.

Finally, consider the case where ∆ is the lower cedent of an ∃ inference

A(s),Γ

(∃x)A(x),Γ

Note that σπ′ is the same as σπ. For the first subcase, suppose (∃x)A(x) is
either category (α) or (γ), so A(s) is category (γ). This gives ∗π′(A(s)) =
A(s)σπ′ = A(s)σπ. And, since its outermost connective is ∃, ∗π((∃x)A(x)) =
(∃x)A(x)σπ. The ∃ inference in P becomes, in P ′,

A(s)σπ,Λ, (∃x)A(x)σπ

(∃x)A(x)σπ,Λ

33

which is a valid ∃ inference.
For the second subcase, suppose (∃x)A(x) and hence A(s) are cate-

gory (β). The two formulas have the same pending implicants, C1, . . . , Ck,
for k ≥ 0. Thus, ∗π′(A(s)) and ∗π((∃x)A(x)) are both equal to the cedent
C1σπ, . . . , Ckσπ. That is to say, ∆π and (∆′)π

′

are identical, and thus the
∃ inference can be omitted from P ′.

The above completes the construction of P ′ from P . The discussion
at the end of the proof of Theorem 5 applies equally well to the P ′ just
constructed, and P ′ is again polynomial time uniform. 2

6 Bounds on eliminating all cuts

This section gives bounds on eliminating all cuts from a proof. The bound

obtained has the form 2
|P |
d+O(1), where d is the maximum quantifier alter-

nation of cut formulas in P . The first-order formula classes Σi and Πi are
defined as usual by counting alternations of quantifiers, allowing proposi-
tional connectives to appear arbitrarily. Namely, Σ0 = Π0 is the set of
quantifier free formulas; and, using Bachus-Naur notation,

Σi ::= Σi−1|Πi−1|Σi ∧ Σi|Σi ∨ Σi|¬Πi|(∃x)Σi

Πi ::= Πi−1|Σi−1|Πi ∧Πi|Πi ∨Πi|¬Σi|(∀x)Πi

The alternating quantifier depth (aqd) of a cut is the minimum i > 0 such
that one cut formula is in Σi and the other is in Πi. The alternation quan-
tifier depth of a proof P , denoted aqd(P), is the maximum aqd of any cut
in P .

Theorem 9 Let P be a tree-like proof, and let d = aqd(P). There is a cut
free proof P ′ with the same end cedent as P with the size of P ′ bounded by

|P ′| ≤ 2
|P |
d+O(1)

.

The proof of the theorem depends only on Theorem 5, not on Theorems
3 and 7. We also use upper bounds on eliminating cuts on quantifier free
formulas as can be found in [17, 7, 5].

Proof It is helpful to briefly review the well-known fact that the size of
formulas appearing in the tree-like proof P can be bounded by the number
of inferences in P plus the size of the formulas in the end cedent of P . For
this, recall that any formula B appearing in P has a unique descendent A
such that A either is a cut formula or is in the end cedent of P . In addition,

34

B corresponds to a unique subformula C of A. Let C be a non-atomic sub-
formula of a formula D in P which has a cut formula as descendant. If there
is some ancestor B of D such that B corresponds to C and such that B is a
principal formula of a logical inference, then leave C unchanged. If there is
no such ancestor D, then mark C for deletion. Now replace every maximal
subformula C in P marked for deletion with with an arbitrary atomic for-
mula, say with d=d for d some new free variable. The proof remains a valid
proof (since only atomic formulas are allowed in initial cedents), and its end
cedent is unchanged. Clearly, in the resulting proof, every cut formula has
number of logical connectives bounded by the total number of ∧, ∨, ∃ and ∀
inferences in P . Without loss of generality, we assume this is true of the
proof P itself.

The main step in proving Theorem 9 is to convert P into a proof in
which all cuts are in prenex form. As a preliminary step, we show that we
may assume w.l.o.g. that no cut formula in P has multiple quantifiers on
the same bound variable, or in other words, that the bound variables in a
cut formula are distinct. Towards this end, for each cut inference in P , with
formulas A and A as its cut formulas, rename the bound variables in A so
that the quantifiers in A use distinct bound variables. This also renames
the bound variables of A of course. Furthermore, if B is a formula with
descendent A or A, this induces a renaming of the bound variables in B
according to the renaming of bound variables in the subformula of A or A
that corresponds to B. By applying these renamings to all such formulas B,
and repeating for all cuts in P , we obtain a proof with the same end cedent
as P such that bound variables are never reused in cut formulas.4 So, we
may assume w.l.o.g. that P satisfies this property.

Now, for each cut in P , with cut formulas A and A, choose an arbitrary
prenex form A′ for A so that the aqd of A′ is ≤ aqd(P). The formula A′

is obtained by choosing an ordering of the quantifiers in A which respects
the scope of the quantifiers, and then using standard prenex operations to
move the quantifiers out to the front of the formula in the chosen order. The
prenex form (A)′ of A is chosen with the same ordering and thus equals A′.

Let B be any formula in P with a cut formula A as descendent. The
quantifiers of A are ordered as just discussed to form its prenex form A′.
Since B corresponds to a subformula of A, this induces an ordering on the
quantifiers of B; the prenex form B′ of B is defined using this induced
ordering. On the other hand, if B has a descendent in the end cedent of P ,

4The same construction could also rename bound variables in the end cedent of P , but
this would then change the end cedent.

35

the formula B′ is defined to be equal to B. For any cedent ∆ in P , define
∆′ to contain exactly the formulas B′ for B ∈ ∆.

The proof P ′ will contain the cedents ∆′ for all ∆ ∈ P . However, the
∧ and ∨ inferences in P may no longer be valid in P ′. Cuts, weakenings,
and quantifier inferences of P do remain valid in P ′. In addition, since
only atomic formulas are allowed initial cedents, the initial cedents of P are
unchanged in P ′.

In order to make P ′ a valid proof, we must replace the ∧ and ∨ inferences
of P with some new subproofs and cuts. The next lemma gives the key
construction needed for this.

Lemma 10 Let B ∧C be the principal formula of an ∧ inference in P with
a cut formula as descendent. The auxiliary formulas of the inference are B
and C. Let B′, C ′, and (B ∧ C)′ be their prenex forms in P ′. Then the
cedent

B′, C ′, (B ∧ C)′ (10)

has a cut free proof of length linear in the lengths of B and C. Similarly, if
B ∨ C is the principal formula of an ∨ inference of P , then the cedents

B′, (B ∨ C)′ and C ′, (B ∨ C)′ (11)

have cut free proofs of length linear in the lengths of B and C.

Proof Let B′ and C ′ have the forms Q1B0 and Q2C0 where Q1 and Q2

denote blocks of zero or more quantifiers and where B0 and C0 are quantifier
free. The formula (B ∧ C)′ or (B ∨ C)′ will have the form Q(B0 ∧ C0) or
Q(B0∨C0). Here the quantifier block Q is obtained by arbitrarily interleav-
ing (or, “shuffling”) the two blocks Q1 and Q2.

We claim that, for any quantifier blocks Q1 and Q2, and any block Q
obtained as a shuffle of Q1 and Q2, the cedents (10) and (11) have tree-
like, cut free proofs with size equal to the number of logical connectives in
the cedents being proved. This is proved by induction on the number of
quantifiers in Q.

The base case of the induction is when Q is empty, and B and C are
quantifier free. As is well known (and easy to verify) there are proofs of the
cedents B0, B0 and C0, C0 with sizes equal to twice the number of logical
connectives in B0 and C0, respectively. These two cedents plus a single ∧
or ∨ inference suffices to derive any of the cedents in (10) or (11).

For the induction step, suppose that Q contains at least one quantifier.
The first quantifier can have the form (∃x) or (∀x) and is also the first

36

quantifier of either Q1 or Q2. For instance, suppose (∃x) is the outermost
quantifier of Q and Q1. Writing B0 = B0(x) to show the occurrences of the
bound variable x, and replacing occurrences of x with a new free variable a,
the induction hypothesis gives derivations of the cedents

Q−
1 B0(a),Q

−(B0(a) ∨ C0) and Q2C0,Q
−(B0(a) ∨C0)

or
Q−

1 B0(a),Q2C0,Q
−(B0(a) ∧ C0)

where Q−
1 and Q− are the blocks Q1 and Q minus the first quantifier ∃x.

For the ∨ case, the derivation

Q2C0,Q
−(B0(a) ∨ C0)

Q2C0, (∃x)Q
−(B0(x) ∨C0)

gives the desired derivation of Q2C0,Q(B0 ∨C0); and the derivation

Q−
1 B0(a),Q

−(B0(a) ∨ C0)

Q−
1 B0(a), (∃x)Q

−(B0(x) ∨C0)

(∀x)Q−
1 B0(x), (∃x)Q

−(B0(x) ∨ C0)

gives the desired derivation of Q1B0,Q(B0∨C0). Note that the second infer-
ence is a ∀ inference; by the assumption of distinctness of bound variables,
the eigenvariable a does not appear in C0.

A similar argument works for the ∧ case. The cases where outermost
quantifier of Q is (∀x) are also similar. 2

We can now complete the proof of Theorem 9. The proof P ′ is formed
from the cedents ∆′ defined above. Using the cedents ∆′ maintains the
validity of all inferences except for some of the ∨ and ∧ inferences. In P ′

these inferences become

B′,Γ′
1 C ′,Γ′

2

(B ∧ C)′,Γ1,Γ2

and
B′, C ′,Γ

(B ∨ C)′,Γ

and these are no longer valid if their principal formula contains quantifiers
and has a cut formula as descendent. However, the ∧ inference can be
simulated by using two cuts against the cedent B′, C ′, (B ∧ C)′ given by
Lemma 10. Likewise, the ∨ inference can be simulated by using two cuts with
the cedents B′, (B∨C)′ and C ′, (B∨C)′. This process replaces one inference
in P with two cuts in P ′; in addition, P ′ must contain the derivations of the

37

cedents as given by Lemma 10. Since the formulas (B ∧ C)′ and (B ∨ C)′

have cut formulas as descendents, their sizes are bounded by |P | as discussed
at the beginning of the proof. Therefore, the size of |P ′| can be bounded
by |P ′| ≤ 3|P |2, since the size of the proofs from Lemma 10 are strictly less
than 3|P |.

The proof P ′ has all cut formulas in Σd or Πd, where d = aqd(P). It
suffices to assume d > 0. Applying Theorem 5 d times gives a tree-like
proof P ′′ with the same end cedent, in which all cut formulas are quantifier

free, with h(P ′′) ≤ 2
3|P |2

d−1 . Now, applying Theorem 8 of [5] and the discussion
from the end of Section 4 of [5], we get a proof P ′′′ of the same end cedent

with height bounded by h(P ′′′) ≤ 2|P |2
3|P |2

d−1 , such that all cut formulas in P ′′′

are atomic. Then, applying Lemma 7 of [5], we get another proof P ′′′′ again
with the same end cedent, which is cut free, and has height bounded by

2h(P
′′′)+1. In particular, the size of P ′′′′ is less than 2

h(P ′′′)+1
2 .

Therefore, |P ′′′′| < 2
|P |
d+2, at least for |P | > 7. For d > 0, this gives

|P ′′′′| < 2
|P |
d+2 for |P | > 7. This completes the proof of Theorem 9. 2

The size bound on P ′′′ is not optimal; we expect that even 2
|P |
d+1 might work.

Acknowledgements. We thank G. Mints for encouraging comments, and
the referee for helpful comments and corrections.

References

[1] K. Aehlig and A. Beckmann, On the computational complexity of
cut reduction, Annals of Pure and Applied Logic, 161 (2010), pp. 711–
736.

[2] M. Baaz and A. Leitsch, Cut normal forms and proof complexity,
Annals of Pure and Applied Logic, 97 (1999), pp. 127–177.

[3] A. Beckmann and S. R. Buss, Separation results for the size of
constant-depth propositional proofs, Annals of Pure and Applied Logic,
136 (2005), pp. 30–55.

[4] , Characterization of definable search problems in bounded arith-
metic via proof notations, in Ways of Proof Theory, Ontos Verlag, 2010,
pp. 65–134.

38

[5] , Corrected upper bounds for free-cut elimination, Theoretical
Computer Science, 412 (2011), pp. 5433–5445.

[6] S. R. Buss, An introduction to proof theory, in Handbook of Proof
Theory, S. R. Buss, ed., North-Holland, 1998, pp. 1–78.

[7] P. Gerhardy, Refined complexity analysis of cut elimination, in Proc.
17th Workshop on Computer Science Logic (CSL), Lecture Notes in
Computer Science #2803, Springer Verlag, 2003, pp. 212–225.

[8] J.-Y. Girard, Proof Theory and Logical Complexity, Humantities
Press, 1987.

[9] J. Kraj́ıček, Lower bounds to the size of constant-depth propositional
proofs, Journal of Symbolic Logic, 59 (1994), pp. 73–86.

[10] , Interpolation theorems, lower bounds for proof systems, and in-
dependence results for bounded arithmetic, Journal of Symbolic Logic,
62 (1997), pp. 457–486.

[11] G. Kreisel, G. E. Mints, and S. G. Simpson, The use of abstract
language in elementary metamathematics: Some pedagogical examples,
in Logic Colloquium, Lecture Notes in Mathematics #453, Springer-
Verlag, 1975, pp. 38–131.

[12] G. E. Mints, Finite investigations of transfinite derivations, Journal of
Soviet Mathematics, 10 (1978), pp. 548–596. Russian original in Zapiski
Nauchnykh Seminarov LOMI Steklova AN SSSR 49 (1975) 67-121.

[13] V. P. Orevkov, Upper bound on the lengthening of proofs by cut elimi-
nation, Journal of Soviet Mathematics, 34 (1986), pp. 1810–1819. Orig-
inal Russian version in Zap. Nauchn. Sem. L.O.M.I. Steklov 137 (1984)
87-98.

[14] , Applications of cut elimination to obtain estimates of proof
lengths, Soviet Mathematics Doklady, 36 (1988), pp. 292–295. Orig-
inal Russian version in Dokl. Akad. Nauk. 296, 3 (1987) 539-542.

[15] A. A. Razborov, On provably disjoint NP-pairs, Tech. Report RS-
94-36, Basic Research in Computer Science Center, Aarhus, Denmark,
November 1994. http://www.brics.dk/index.html.

[16] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory,
Tracts in Theoretical Computer Science #43, Cambridge University
Press, Cambridge, 2nd ed., 2000.

39

[17] W. Zhang, Cut elimination and automatic proof procedures, Theoret-
ical Computer Science, 91 (1991), pp. 265–284.

[18] , Depth of proofs, depth of cut-formulas, and complexity of cut
formulas, Theoretical Computer Science, 129 (1994), pp. 193–206.

40

