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Abstract. 

We present two proofs, one proof-theoretic and one model-theoretic, showing that 

0 adding the BE1-collection axioms to any bounded first-order theory R of arithmetic 

0 yields an extension which is VC1-conservative over R. 

Preliminaries. 

A theory of arithmetic R contains the non-logic symbols 0, S, +, = ,  and 6 .  R 

may contain further non-logical symbols; in particular, S2 is a theory of arithmetic Ill. We 

shall say that R is sufficient if and only if R proves 
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resplendency. 



(a) d is a linear ordering. 

(b) For every term t(%, there is a term at such that 

i Of course, the usual bounded theories of arithmetic, for example IAO or S 2 ,  are 

sufficient, Indeed letting ot be t suffices for these theories. Although Theorem 1 below 

holds for second order bounded theories of arithmetic such a s  U: and v:, we shall only 

discuss first order theories in this paper. Prom now on, R is pressumed to  be a first order 

theory. 

The syntax of first order logic is enlarged t o  include bounded quantifiers of the  

forms (Vx4t) and (3x4t) where t is any term not containing x. In (11 it  is shown how 

Gentzen's sequent calculus LK may be enlarged to incorporate bounded quantifiers. A 

formula is bounded if and only if it contains no unbounded (i.e., usual) quantifiers. A 

theory R of arithmetic ia bounded if and only if R is axiomatized by a s e t  of bounded 

formulae. 

0 The class of XI-formulae is defined t o  contain those formulae in which each 

unbounded quantifier is  either existential and in the scope of an even number of negations 

or universal and in the  scope of an odd number of negations. Note that our definition of 

2: is slightly broader than the set of El formulae defined by Paris and Kirby [4]. The 

0 BE -collection axioms are 

where A is any 2;-formula 141. Note that  A may contain additional f ree  variables as 

parameters. The BEY-collection axioms are equivalent to the BE1-collection axioms of 

Paris and Kirby 141 since BE1-collection can prove that every 2; formula is equivalent to  

a El-formula. The class V L ~  of formulae is the set of sentences which are universal 



0 closures of C -formulae. 

The object of this paper i s  t o  prove: 

Thetorem t Let R be a bounded. sufficient theory of arithmetic. Then R+BZ; is 

0 0 V ~ l - c o n s e r ~ a t i v e  over R (in other words, every VLl-consequence of R + B Z ~  is a 

theorem of R). 

0 I t  has been known for some time that  I A ~ + B Z ?  is U2-conservative over IAo. 

However, the  proof of this by Paris [3] does not extend readily to prove Theorem 1. This 

author f irst  discovered the  proof-theoretic proof of Theorem 1 af ter  Alex Wilkie brought 

Paris' theorem t o  his attention. Later, a result of J.P. Ressayre [5]  prompted t h e  author's 

discovery of a model-theoretic proof based on reeplendency. 

Both proofs a r e  presented below and they a re  independent and self-contained; so  t h e  

reader should feel  f ree  t o  read only the one which he or she prefers. 

BE! mf - Tll-re tic Proof 

We shall work with the  sequent calculus LKB, which is Gentzen's system LK 

enlarged t o  include bounded quantifiers (see chapter 4 of [I]). In addition t o  the 

0 inferences of LKB we allow inferences given by the BC1-collection &: 

r --+ (3z)(Vx<t)(3y<z)A(x,y).A 

0 where r and A denote arbitrary cedents of formulae and A must be a El-formula. 

0 0 Lemma The BC1-collection axiom and the BE1-collection rule a re  equivalent. 

Proof. This i s  obvious. - 

0 A proof P of the  sequent calculus LKB plus B ~ ~ - ~ ~ l l e c t i ~ n  is a t ree  of sequents 



r--+A where r and A are lists of formulae. Each node in the proof tree must be a 

valid inference. The lowest sequent, or root, of P is called the endseauent or the 

conclusion of P. The leaves, or highest sequents, of P are the initial seauents of P. 

When A is an occurrence of a formula in an upper sequent of an inference of P, the 

successor of A is defined to be the formula in the lower sequent of the same inference 

which corresponds to  A. Except when A is the principal formula of a cut (modus ponens) 

inference A always has a unique successor. If Ai+l is a successor of Ai for all i < k then 

Ak is defined to be a descendant of A,,. If in addition A. and Ak are occurrences of the 

same formula then Ak is a direct descendant of Ao. 

We modify the definition [I] of a free cut somewhat to account for the new 

collection rules. 

pefinition. A cut is free if and only if neither of the following hold: 

1 one of the principal formulae of the cut is a direct descendant of a formula 

in an initial sequent (i-e.. in an axiom), 

(2) one of the principal formulae of the cut is a direct descendant of the 

0 principal formula of a BC -collection inference. 

Lemma 3, Let R be any first order theory. The free cut elimination theorem 

holds for R + B L ~ .  Namely. if P ie an ( R + B Z ~ ) - P ~ O O ~ _  then there is a free-cut free 

(R+BL~)-proof P* with the same conclusion as P so that the principal formulae of 

collection inference in P* are instances of the principal formulae of collection inferences of 

P. 

The proof of Lemma 3 follows the usual proof of the cut-elimination theorem (see 

Takeuti [6j). 

Lemma 4, Let R be a bounded, sufficient theory of arithmetic and suppose - 
A E Z ~  and Rl-A. Further suppose A contains a subformula of the form (3x)B. That is 

to say, A = C((3x)B) where C(a) contains only a single instance of the second order 

variable a. Then there is a term t such that 



Proof (outline). This is  a corollary t o  a theorem of Parikh 121. For our purposes, 

it is useful to  see that Lemma 4 can be proved by the method of proof of Theorem 4.11 of 

(11. This proof consists of three parts: first, by cut elimination, there is a cut f ree  

R-proof of A. Second, it can be shown that  in this cut free proof all of the  f ree  

variables can be explicitly bounded; that  is t o  say, for each free variable bi there is  a 

term ui such that  bi is restricted t o  be less than ui and further the only variables of ui 

are the  f ree  variables of A. Finally, i t  is easy t o  see  that  whenever an unbounded 

existential quantifier is introduced, i t  can be explicitly bounded by a term involving only 

the f ree  variables of A. The reader should refer t o  [I] for complete details. (Actually, 

the proof is easier here than for theorem 4.11 of 11) since there are  no induction 

inferences in R.) Note that  the  proof depends strongly on R being both bounded and 

sufficient. m 

Lemma 4 can be strengthened t o  apply t o  theories with 8~:-collection: this is the  

content of Lemma 5. 

Lemma 5. Let R be a bounded, sufficient theory of arithmetic and suppose 

AEL; and R+BEYCA. Further suppose A C((3x)B) where C(a)  contains only a single 

instance of a. In addition assume that  there is a free-cut f ree  ( ~ + ~ ~ : ) - p r n o f  P of A 

so  that  the occurrence of A in the endsequent of P is not a descendant of the  principal 

formula of any collection Inference in P. Then there is a term t and a free-cut f ree  

(R+BZ?)-proof P of C ( (3d t )B)  such that  P* and P have the  same number of collection 

inferences. 

Proof. Since A is not a descendant of the principal formula of a collection - 
inference, the construction used in the proof of Lemma 4 still applies. I 

If R is any theory and P is a ( ~ + ~ Z ~ ) - p m o f ,  we say that P is & if and only if 

for every cut inference in P either its principal formula is bounded or one of i ts  principal 

formulae is a direct descendant of the  principal formula of a BEY-collection inference. 



Since R is a bounded theory, every direct descendant of a formula in an initial sequent is 

bounded; hence every free cut free proof is good. 

We define some further syntactic properties of a sequent calculus proof P. An 

inference branch of P is a sequence of inferences I1,...,Ik such that every upper sequent of 

I1 is an initial sequent of P, the lower sequent of Ik is the endsequent of P, and for 

l,<j<k, the lower sequent of Ij  is an upper sequent of If B is an inference branch 

of P and I is an inference of P then I is the left of B if and only if I is not in B and 

I is on the left side of B in the proof tree P. I t  is important for this definition that 

upper sequents of inferences are always ordered in the usual fashion (as in [I]  or Takeuti 

(61). If I and J are inferences, then I is t o  the left of J if and only if I is to the left of 

every inference branch containing J. 

We are now ready to prove the main lemma for Theorem 1. 

Lemma 6. Let R be any bounded and sufficient theory of arithmetic. Suppose P is 

0 a good (~+~Z:)-proof of a L,-formula A. Then Rl-A. 

Roof. The proof is by induction on the number c of uses of the B L ~  collection - 
rule in P. For c=O, this is trivial. So suppose c31. Let I be the unique collection 

inference of P such that no other collection inference is above or t o  the left of I. So I 

is of the form 

Let Q be the subproof of P which has I as its root. 

We claim that every formula in P is a ny-formula and every formula in A is a 

0 XI-formula. If not: let B E 2; and B E A, or B f I I ~  and B E r. Since no 

descendant of B can appear in the endsequent of P and no descendant of B can be the 

principal formula of a BLY-collection inference and since P is good, i t  must be the case 

0 that some descendant E of B is a C1-formula in the antecedent of a sequent and is 

removed by a cut inference and the formula against which E is cut must be a direct 

descendant of the principal formula of a collection inference. But this is impossible since 



there is no collection inference to  the left of I and the claim is established. 

Since Q is an R-proof except for its last inference, i t  now follows by Lemma 4 that 

there is term s so that R proves 

By the sufficiency of R and by Lemma 3, there is a good R-proof Q* which has final 

inference: 

Replace the subproof Q of P by Q* to form the proof P*. If P* is good, we are 

done since P* has one less collection inference than P. So suppose P* is not good. Then 

there is subproof of P* of the form 

where Q* is a subproof of Q1. D E EY and D is a direct descendant of the principal 

0 formula of the last inference of Q*. Since Q1 has fewer than c BE1-collection 

inferences and by the induction hypothesis, there is an R-proof Q t  of 11-4D.A. 

Let the unbounded uuantifiers of D be (Q1xl), ..., (Qkxk) where, of course, existential 

(respectively, universal) quantifiers occur positively (negatively) in A. An argument similar 

0 to the one above establishes that nCnl and ME:. Thus k applications of Lemma 4 show 

that there are terms tl, ..., tk and a good R-proof Q3 with endsequent 

where D* is obtained from D by replacing each unbounded quantifier (Qixi) by the bounded 

quantifier (Qixi6 ti). 



I t  is easy t o  modify Q2 to  obtain a proof Q4 with endsequent II,D* -4 A so 

that  Q2 and Q4 have the  same number of collection inferences and so that  Q4 is also good. 

Finally, we replace the  subproofs Q1 and Q2 of P* by Q3 and Q4 and obtain a good 

proof with the same endsequent as P and with fewer collection inferences than P. 

Applying the induction hypothesis yields an R-proof of A. I 

Theorem 1 is now proved, since if R + B Z ~  proves the  universal closure of a 

2;-formula A then, by Lemma 3 (cut elimination), there is a good proof of A. and hence, 

by Lemma 6, there is an R-proof of A. 

The Model-Theoretic Proof - 

We next present a second, model-theoretic proof of Theorem 1. 

Let R be any bounded, sufficient model of arithmetic. If M is a model of R, then 

the  d relation gives a linear ordering on R. A subset I of M is an initial segment of M 

if and only if for all b E I, c E M, c,<b implies c E I. We say that  I is closed under all 

operations if and only if for every sequence ? of elements of I and every term t ,  

t(2)€1. 

Definition. Let MFR. The language %(MI is the  language of R enlarged to  include 

a constant symbol for each element of M. If A is  any formula and b E M, then A ' ~  is 

formed from A by changing each unbounded quantifier (Vx) or (3y) t o  the  bounded 

quantifier (VxSb) or ( 3 6 b ) .  So is an aP(M)-formula. When z is a variable not 

occurring in A, A'<' is defined similarly. 

Lemma 7, If MbR, I is an  initial segment of M closed under all operations, K I  

and A is a 2:-formula in the  language I(M),  then 

(a) IbR 

(b) If bcc and M ~ A ' ~  then M ~ A "  

(c) If M ~ A ' ~  and every constant symbol in A denotes an element in I, then IbA 



(d) If IBA and c E M\I then M~=A" 

Proof. (a) follows from the fact that R is a bounded theory. (b)-(d) are easily - 
proved by induction on the complexity of the 2';)-formula A. 

We are now ready to prove Theorem 1. 

Proof Theoram 1, Let A(. l,....xr) be a 2:-formula with free variables as  indicated - 
such that ( v ~ ) A ( ? )  is not a theorem of R. There exists a countable. recursively saturated 

model M of R+"A(cl, ..., cr) where cl, ..., cr are new constant symbols. Since M is countable 

and recursively saturated, i t  is also resplendent. 

Let mO.ml,m 2,... enumerate the universe of M and let 80,81,82,... enumerate the 

* 
LY-formulae in the language P(M) with a single free variable x. So Bi = Bi(x,ni) 

where ti is a vector of elements of M. We shall define a sequence of models 

M0,M1.M2 ,... and a sequence of elements ao.al,a2 ,... so that 

(1) Mi+1 is an initial segment of Mi closed under all operations; 

(2) ai E Mi; 

(3) ai+l 3 ai; 

(4) and each Mi is recursively saturated and hence resplendent. 

Begin by defining a. = max(cl, ..., cr) and Mo = M. 

Now suppose ak and Mk have been defined. Let i = B(1.k) and j = B(2.k) where B 

is the Godel sequence coding function. Consider the element mi E M and the formula 

* 
8.(x,nj). There are three cases: 

1 

case a 4 f M~ or a j  f M~ or Mk~w(Vxsmi)~j (x) .  Set M ~ + ~  = M~ and ak+l=ak. - 

Case @ MkB(Vxami)ej(x) and there is a b E Mk such that 



In this case, le t  Mk+l = Mk and l e t  ak+l be t h e  maximum of ak and b. 

Case a Neither of t h e  above cases holds. Let I be t h e  initial segment of Mk defined 
7 

by 

I = (b E Mk: b,<t(ak) for  some term t). 

By the  recursive saturation of Mk, I+Mk (except in t h e  degenerate case where Mk 

has a maximum element). Also, I i s  closed under all operations and ak E I. 

Hence 

Mk k (3 predicate Q)(Q is a proper initial segment, containing ak and is  

closed under all operations). 

Namely, choose Q t o  be I. By t h e  resplendency of Mk, there is  a (different) 

predicate Qk so  tha t  all of the  above properties hold and so  t h a t  t h e  expanded 

structure (Mk,Q k,...) i s  resplendent. 

By Lemma 7(d) and since Case 2 did not  hold, 

Now define ak+l = ak and Mk+l = Qk. 

This completes the  definition of MO.Ml.M 2,... 

Let MU be defined by 



We claim t h a t  M ~ C R + B E ~  and y e t  M ~ I = " A ( ~ ) .  This suff ices  t o  prove Theorem 1 since it 

implies t h a t  R + B Z ~  does not  prove (v^x)~Cx). Since My is a n  initial segment of M and 

Mu is closed under all operations, Lemma 7(a) implies Mwt=R. In addition since 

A E Z ~ ,  MJ=--A(~) .  

An arbi t rary instance of a BZY-collection axiom over  My is of t h e  form 

where mi.; E M, and P E E:. Let  j be such t h a t  B~(X,;~) is ( 3 y ) ~ ( x , y , a ) .  It will 

suff ice t o  show t h a t  

Le t  k = <i,j> , s o  B(1,k) = i and b(2,k) = j. Examine t h e  way in which Mk+l was defined. 

-t 
If Mk+l was defined by c a s e  (1) or  ca se  (3), then  (VxSmi)Bj(x,nj) is fa l se  in Mk+l. 

0 Since Mw is  an  initial segment of Mk+l closed under all  operations and since e lEC, ,  

If Mk+l was  defined via case  ( Z ) ,  then 

<a 
Since ak+l E M, and B k+l is bounded, 

<z + M, I= (3z)(Vx,<mi)ej (x,nj). 



Q.E.D. 
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