
The computational power of bounded arithmetic

from the predicative viewpoint

Samuel R. Buss∗

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112

sbuss@math.ucsd.edu

December 4, 2006

Abstract

This paper considers theories of bounded arithmetic which are pred-
icative in the sense of Nelson, that is, theories which are interpretable
in Robinson’s Q . We give a nearly exact characterization of functions
which can be total in predicative bounded theories. As an upper
bound, any such function has polynomial growth rate and its bit-graph
is in nondeterministic exponential time and in co-nondeterministic
exponential time. In fact, any function uniquely defined in a bounded
theory of arithmetic lies in this class. Conversely, any function which
is in this class (provably in I∆0 + exp) can be uniquely defined and
total in a (predicative) bounded theory of arithmetic.

1 Introduction

Theories of bounded arithmetic and their associated provable total functions
have been extensively studied for over two decades. Bounded arithmetic
arose originally from the definition of I∆0 by Parikh. A subsequent
development by Nelson of his “predicative” theories gave an alternate route
to bounded arithmetic. The present author’s thesis [2] introduced the
fragments Si

2 and T i
2 of bounded arithmetic (with Nelson’s smash function

present), and these have been extended over the years to a proliferation
of theories of bounded arithmetic that have good characterizations of their

∗Supported in part by NSF grant DMS-0400848.

1

provably total functions in terms of computational complexity. To mention
only a few such characterizations, the ∆0 -definable predicates of I∆0 are
precisely the functions in the linear time hierarchy [8, 7], the provably total
functions of S1

2 are precisely the polynomial time computable functions [2],
the provably total functions of T 1

2 are precisely the projections of polynomial
local search (PLS) functions [4], Clote and Takeuti [5] gave formal theories
that capture log space functions and alternating log time, and Arai [1] defined
a system AID that better captures alternating log time. A large number
of further bounded theories of arithmetic have been formulated by others,
including Zambella, Cook and several students of Cook, see Cook-Nguyen [6]
for a partial survey.

This paper returns to (one of) the historical motivations for bounded
arithmetic by considering the computational complexity of functions which
are definable in predicative theories of arithmetic. By “predicative” is
meant in the sense of Nelson, namely, interpretable in Robinson’s theory Q .
Nelson introduced this notion of predicative because of his finitistic formalist
philosophy of mathematics. Remarkably, another group of researchers
were independently investigating mathematically equivalent notions of in-
terpretability in Q , not for philosophical reasons, but for investigations
into independence results for arithmetic and into computational complexity.
This latter line of research included the foundational results of Solovay [11],
Paris-Dimitracopoulos [9], Wilkie-Paris [13], Wilkie [12], and Pudlák [10].

The goal of the present paper is to study functions f which are defined in
a predicative theory of arithmetic, and to characterize such functions in terms
of computational complexity. We shall consider only bounded predicative
theories and only theories that are interpretable with cut-interpretations.
These restrictions are quite natural, since only cut-interpretations have been
used for predicative theories to date and, at the present state of the art, we
have essentially no ideas for what kinds of non-cut-interpretations could be
defined, much less be useful.

The general outline of the paper is as follows. Although we presume
the reader is familiar with both bounded arithmetic and predicative arith-
metic, the next section give some technical preliminaries necessary for our
exposition. Then section 3 proves an upper bound on the complexity of
predicative functions. This upper bound is actually a upper bound on
the complexity of any function that is uniquely determined by a definition
over a bounded theory of arithmetic (not necessarily a predicative theory).
Section 4 gives lower bounds. These lower bounds state that any function
within a certain complexity class can be defined by a function symbol in some
bounded predicative theory. For non-predicative theories, the upper and

2

lower bounds match; namely, it is the class of functions whose bit-graph is in
both nondeterministic exponential time and co-nondeterministic exponential
time (see below for the exact definitions). For predicative theories, the lower
bound further requires provability in the theory I∆0 + exp of membership
in this class.

2 Definitions

2.1 Cut-interpretability

When considering interpretability of a theory T in Q , we shall restrict
our attention to theories T that (a) are ∆0 -axiomatizable, and (b) are
interpreted in an inductive cut. The first condition, (a), means that T is
axiomatized with a set of (universal closures of) bounded formulas over some
language that extends the language of Q . The second condition, (b), means
that the interpretation is relative to some inductive formula θ(x), for which
Q proves the closure properties:

θ(0) ∧ (∀x)(∀y)(θ(x) ∧ y < x → θ(y))

and
(∀x)(θ(x) → θ(Sx)).

By compactness considerations, we may always assume without loss of
generality that T has a finite language and is finitely axiomatized. Thus
we do not need to worry about the distinction between local interpretability
versus global interpretability.

We also may assume without loss of generality that any theory T contains
S1

2 (for instance) as a subtheory, and that any subset of the polynomial time
functions and bounded axioms defining these functions and their properties
are included in the theory T .

We frequently need the theory T to include induction for all bounded
formulas in the language of T . In particular, if the theory T has non-logical
language L , we write I∆0(L) to denote the set of induction axioms for all
∆0 -formulas over the language L . It is known (see Pudlák [10]) that if T is
interpretable in Q , then so is T + I∆0(L). Thus, we may assume w.l.o.g.
that any bounded theory T interpretable in Q includes the I∆0(L) axioms.
For similar reasons, the theory T may be assumed to include the smash
function, #, and its defining axioms; in this case, the I∆0(L) axioms imply
all of S2(L).

3

An important fact about interpretability in Q is that the growth rate of
functions can be exactly characterized. We define |x| as usual to equal the
length of the binary representation of x . Then define

Ω0(x) = 22|x|

so that Ω0(x) ≈ x2 , and further define

Ωi+1(x) = 2Ωi(|x|).

We have Ω1(x) = 222||x||
≈ 2|x|

2
= x#2x , and Ω2(x) = 2222|||x|||

≈ x#3x ,
etc.

Solovay [11] proved that the functions Ωi(x) are interpretable with
inductive cuts in Q . Conversely, Wilkie [12] proved that any function f

that is interpretable in an inductive cut in Q is bounded by some Ωi , i.e.,
that for some i , f(x) < Ωi(x) for all x . More generally, for a multivariable
function symbol f(x1, . . . , xn), we say that f is eventually dominated by Ωi

provided that

(∃ℓ)(∀x1)(∀x2) · · · (∀xn)(ℓ ≤ x1 + x2 + · · · + xn

→ f(x1, x2, . . . , xn) < Ωi(x1 + x2 + · · · + xn)).

Then, if f is interpretable in an inductive cut in Q , f is eventually
dominated by Ωi for some i . Furthermore, the fact that f is dominated
by Ωi is provable in a suitable theory (which is interpreted in Q). This is
expressed by the following theorem.

Theorem 1 Suppose T is a finite ∆0 -axiomatized theory, interpretable in Q

with an inductive cut. Then there is a finite extension T ′ of T which is also
∆0 -axiomatized and interpretable in Q with an inductive cut such that T ′

proves that every function symbol is eventually dominated by some Ωi .

Theorem 1 is a strengthening of the theorem of Wilkie [12]: its proof is
beyond the scope of the present paper, but the crucial point of the proof is
that Lemmas 8 and 9 and Corollary 10 of [12] can be formalized in I∆0+exp.

In view of the restriction on the growth rate of functions in inductive
cuts in Q , we define the computational complexity class Ωi -TIME to be the
class

Ωi -TIME = Ωi−1(n
O(1))-TIME.

4

Here n indicates the length of an input, and it is easy to check that this
means that the runtime of an Ωi -TIME function on an input x of length

n = |x| is bounded by |t(x)| for some term t = Ω
(k)
i (x) where k ∈ N and

Ω
(k)
i indicates the k -fold composition of Ωi .

Likewise we define analogues of exponential time by

EXPi -TIME = 2Ωi−1(nO(1)) -TIME.

The nondeterministic and co-nondeterministic time classes NEXPi -TIME
and coNEXPi -TIME are defined similarly.

The bit-graph of a function f is the binary relation BGf (x, b, j) which
is true exactly when the b-th bit of the binary representation of f is equal
to j . Letting C be any of the time classes defined above, we define f to
be in the complexity class C provided its bit-graph is in C . Note that,
assuming f is a single-valued function (rather than a multifunction), f is
in NEXPi -TIME iff f is in coNEXPi -TIME. In this case, we can say that
f is in NEXPi -TIME ∩ coNEXPi -TIME.

2.2 Definition of ∆0 -interpretable function

This section presents the crucial definition of what is meant by a function
being interpretable in Q by a bounded theory. The intuition is that there
should be a theory T with language L ∪ {f} which is ∆0 -axiomatized and
which is interpretable in Q and which uniquely specifies the function f .
The only tricky part of the definition is what it means to uniquely specify f :
for instance, it would be cheating to have a function symbol g ∈ L and
an axiom (∀x)(f(x) = g(x)), since this would merely beg the question of
whether g is uniquely specified.

In order to formalize this properly, we let L∗ be the language that
obtained by making a “copy” of L : for each symbol g ∈ L , there is a
symbol g∗ ∈ L∗ (g may be a function symbol, a constant, or a predicate
symbol). The function symbol f∗ is defined similarly. The theory T ∗ is
obtained from T be replacing all the symbols in the language L ∪ {f} with
the corresponding symbol from L∗ ∪ {f∗}.

Definition A ∆0 -interpretation in Q of a function f consists of a theory T

as above which is ∆0 -axiomatizable, is interpretable in Q with a cut
interpretation, and for which

I∆0(f, f∗, L, L∗) + T + T ∗ ⊢ (∀x)(f(x) = f∗(x)). (1)

5

It is obvious that any ∆0 -interpretable function defines a function
f : N → N ; that is to say, it defines an “actual” function on the integers.
At the risk of confusing syntax and semantics, we define that any actual
function defined by a symbol f of a theory T satisfying the conditions of
the definition is ∆0 -interpretable in Q .

3 Upper bound

This section gives an upper bound on the computational complexity of
functions which are ∆0 -interpretable in Q . The upper bound will not use
the interpretability at all, but rather, will depend only on the fact that the
function is uniquely defined in a bounded theory with the right growth rate
functions.

Theorem 2 Let T be ∆0 axiomatized, with language L ∪ {f}, f a unary
function symbol. Suppose T ⊃ I∆0(f, L) and that equation (1) holds so that
T uniquely defines f . Further suppose that there is a i > 0 such that Ωi ∈ L

and the defining axioms of Ωi are in T and such that for each function
symbol g in the language of T , T proves that g is dominated by Ωi . Then,
f is in NEXPi -TIME ∩ coNEXPi -TIME.

Proof We may assume w.l.o.g. that T is finitely axiomatized and that T

contains as many I∆0 axioms as is helpful. In fact, we may suppose T

is axiomatized by a single ∀∆0 -sentence (∀x)Θ(x). Also without loss of
generality, we may assume that the axiom contains only terms of depth 1;
that is, that no function symbols are nested. (This is easily accomplished
at the expense of making the formula Θ more complicated with additional
bounded quantifiers.) In addition, we may assume that every bounded
quantifier in Θ is of the form (∀y ≤ x) or (∃y ≤ x); i.e., the universal
quantified variable x effectively bounds all variables in the axiom. We let
Θ∗ denote the formula obtained from Θ by replacing each nonlogicial symbol
g with g∗ .

Let c be a new constant symbol. By (1), we have

I∆0(f, L, f∗, L∗) + f(c) 6= f∗(c) ⊢ (∃x) [¬Θ(x) ∨ ¬Θ∗(x)] .

By Parikh’s thoerem, there is a term t(c) such that the quantifier (∃x) may
be replaced by (∃x ≤ t(c)). It follows that there is a k ∈ N such that t(x) is

eventually dominated by Ω
(k)
i (x), provably in I∆0(f, L, f∗, L∗), where the

6

superscript “(k)” indicates k -fold iterated function composition. It follows
that

I∆0(f, L, f∗, L∗) ⊢ “c is sufficiently large” ∧ f(c) 6= f∗(c)

→ (∃x ≤ Ω
(k)
i (c)) [¬Θ(x) ∨ ¬Θ∗(x)] .

The algorithm to compute the bit-graph of f can now be described: On
input an integer c and integers b and j , the algorithm non-deterministically
guesses and saves the following values:

1. For each n-ary function symbol g(x1, . . . , xn) of L and all values of

x1, . . . , xn ≤ Ω
(k)
i (c), a value of g(x1, . . . , xn) which is ≤ Ωi(Ω

(k)
i (c)) =

Ω
(k+1)
i (c),1 and

2. For each n-ary predicate P and all values of x1, . . . , xn ≤ Ω
(k+1)
i (c),

a truth value of P (x1, . . . , xn).

After non-deterministically guessing these values, the algorithm verifies that
the axiom Θ(x) holds for all x < Ωi(c). If they all hold, the algorithm
accepts if the b-th bit of the guessed value of f(c) is equal to j . Otherwise,
the algorithm rejects.

It is now straightforward to check that the non-deterministic algorithm
correctly recognizes the bit-graph of f . Furthermore, the run time of f is

clearly bounded by Ω
(s)
i (c) for some s ∈ N . Thus, the the algorithm is in

NEXPi -TIME. Since the function f is single-valued, the bit-graph is also in
coNEXPi -TIME. 2

Corollary 3 Suppose the f : N → N is ∆0 -interpretable in Q. Then f is
in NEXPi -TIME ∩ coNEXPi -TIME for some i ≥ 0.

The corollary is an immediate consequence of Theorem 2 because of the
results discussed in Section 2.

4 Lower bound

This section gives lower bounds for the definability of functions in bounded
theories that match the upper bounds of the earlier section. Theorem 4
applies to arbitrary bounded theories and Theorem 5 applies to predicative
bounded theories.

1This case covers constant symbols, since they may be viewed as 0-ary function
symbols. In addition, the symbol f is of course one of the functions g , so the value of
f(c) is guessed as part of this process.

7

Theorem 4 Suppose f(x) is dominated by Ωi(x) for some i ≥ 0 and that
the bit-graph of f(x) is in NEXPi -TIME ∩ coNEXPi -TIME. Then there is
a bounded theory T in a language L∪ {f} such that T ⊢ I∆0(f, L) and such
that T proves f is total and uniquely defines f(x).

Theorem 5 Let f : N → N be in NEXPi -TIME ∩ coNEXPi -TIME and
be dominated by Ωi for some i ≥ 0. Suppose that I∆0 + exp can prove
those facts; namely, there are predicates A(x, b, j) and B(x, b, j) such that
I∆0 + exp can prove that,

(a) A(x, b, j) and B(x, b, j) are equivalent for all x, b, j ,

(b) A is computable by a NEXPi -TIME Turing machine, and

(c) B is computable by a coNEXPi -TIME machine,

and such that further the predicates A and B each define the bit-graph of f .
Then f is ∆0 -interpretable in Q.

We already gave a sketch of a proof of a weakened form of these two
theorems in the appendix to [3]. That proof was based on the equivalence
of alternating polynomial space and exponential time. Our proofs below,
however, are based on directly representing non-deterministic exponential
time computation with function values.

Proof (of Theorem 4). Consider two NEXPi -TIME Turing machines, M

and N , such that the language accepted by M is the complement of the
language of N . Without loss of generality, the machines accept a single
integer as input (in binary notation, say), use a single half-infinite work
tape, and halt after exactly Ωi(n) steps on an input z of length n = |z| .

We describe an execution of the machine M with trio of functions
TM (z, i, j), HM(z, i), and SM (z, i). The intended meaning of TM (z, i, j) = c

is that in the execution of M on input z , after i steps, the j th-tape square
of M contains the symbol c . The intended meaning of SM (z, i) = q is
that, M on input z after i steps, is in state q . The intended meaning
of HM (z, i) = j is that M ’s tape head is positioned over tape square j

after i steps. Now, since M is nondeterministic, there is more than one
possible execution of M on input z , and this means the above “intended
meanings” are under-specified. To clarify, the real intention is that if there
is an execution of M on input z which leads to an accepting state, then we
choose an arbitrary accepting computation and let TM (z, i, j), HM (z, i) and
SM (z, i) be defined according to that accepting computation. On the other

8

hand, if there is no accepting computation, we just choose any computation,
and set the values of TM (z, i, j), HM (z, i) and SM (z, i) accordingly.

These conditions can be represented by ∆0 -axioms that express the
following conditions stating that TM , HM , and SM correctly define an
execution of M :

(1) For all j , TM (z, 0, j) has the correct value for initial state of M with z

written on its input tape.

(2) SM (z, 0) is equal to the initial state of M .

(3) HM (z, 0) = 0, where w.l.o.g., M starts at tape square zero.

(4) For all i ≥ 0, if HM (z, i) 6= j then TM (z, i, j) = TM (z, i + 1, j).

(5) For all i ≥ 0, the transition rules for the machine M include a rule that
allows M when reading symbol TM (z, i,HM (z, i)) in state SM(z, i)
to write symbol TM (z, i + 1,HM (z, i)), enter state SM (z, i + 1), and
either (i) move right one tape square, or (ii) move left one tape square.
In case (i), it is required that HM(z, i + 1) = HM (z, i) + 1, and in
case (ii), it is required that HM (z, i + 1) = HM (z, i) − 1.

Clearly, the conditions (1)-(5) are satisfied only if TM , HM , and SM describe
a correct execution of M (which may be either accepting or rejecting).
Furthermore, there are natural exponential bounds on i and j given that
M is an exponential time machine. It is clear that the conditions (1)-(5) can
be expressed by ∀∆0 statements, ΓM .

Similar conditions ΓN can be defined for the machine N using symbols
TN , HN , and SN .

The theory T defining f can now be defined. Let M be the NEXPi -
TIME machine that accepts an input z = 〈x, b〉 precisely when b-th bit
of f(x) is equal to 1. Likewise, let N be the NEXPi machine that accepts
the complement of the set accepted by M . The language of T includes the
function symbol f , (a sufficiently large subset of) the language of PV , and
the symbols TM , HM , SM , TN , HN , and SN . The axioms of T include
induction for all ∆0 -formulas of T , plus the axioms ΓM and ΓN and axioms
expressing the following two conditions:

(a) For each z , either SM (z,Ωi(z)) is an accepting state, or SN (z,Ωi(z))
is an accepting state, but not both, and

(b) The b-th bit of f(x) is equal to 1 if and only SM(〈x, b〉,Ωi(〈x, b〉)) is
an accepting state.

9

By the fact that M accepts the complements of the set accepted by N , we
see that (a) is a true condition, and the condition (b) is a correct definition
of a function f . It is clear from the construction that the theory T correctly
defines f . 2

Proof (of Theorem 5, sketch). The idea of the proof is to formalize
the proof of Theorem 4 in I∆0 + exp. For this, recall from [13] that if
I∆0 + exp can prove a ∆0 -formula θ(x), then there is some k > 0 such
that I∆0 can prove “if the k -fold exponential of x exists, then θ(x) holds.”
Thus if the hypotheses of Theorem 5 hold, there is some k > i such
that I∆0 + ‘k -fold exponential of x exists” can prove that the predicates
A(x, b, j) and B(x, b, j) accept the same set and are in NEXPi -TIME and
coNEXPi -TIME (respectively).

It is well-known [11, 13] that Q can define inductive cuts I(a) and
J(a) such that J ⊆ I and I � I∆0 , and such that for all x ∈ J , the
k -fold iterated exponential of x exists in I . Working in the cut J , Q can
formalize the construction of the proof of Theorem 5 (with the aid of the
k -fold exponentials of elements of J that exist in I). Then, introducing the
function symbol f and the function symbols TM , HM , SM , TN , HN and
SN for the NEXPi -TIME Turing machines M and N which accept the set
{z = 〈x, b〉 : A(x, b, 1)} and its complement (respectively), and restricting to
the cut J , we have interpreted the definition of f into Q . 2

The above theorems give an essentially exact characterization of the
computational complexity of the functions which are ∆0 -interpretable
in Q . It is clear that Theorems 2 and 4 give matching upper and lower
bounds on the computational complexity of functions which are uniquely
definable in ∆0 -theories. For ∆0 -interpretability in Q , Corollary 3 and
Theorem 5 differ in the bounds on the function since the latter mentions
provability in I∆0 + exp whereas Corollary 3 does not mention provability
explicitly. However, already the definition of ∆0 -interpretability, especially
the provability in Q of the uniqueness condition (1), essentially implies the
provability in I∆0 + exp of the fact that the bit-graph of f is in NEXPi -time
(via the construction of the proof of Theorem 2).

We conclude with a few open problems. The first problem is the question
of what multifunctions are interpretable in Q . A multifunction is a multiple-
valued function (i.e., a relation); that is to say, there may be several values y

such that f(x) = y for a fixed x . The question is, if a multifunction is
interpretable in Q , what is the minimum computational complexity of a
total multifunction which satisfies the axioms of the theory?

10

A second line of research is to answer some questions left open from the
work of Wilkie [12]. One such question is whether (now working over the
base theory I∆0 rather than Q) it is possible for a Σn+1 -formula to define
an inductive cut closed under Ωn . [12] shows that it is not possible for a
Σn or Πn formula to define such a cut in I∆0 and is possible for a Πn+1

to define one, but leaves the Σn+1 case open. Likewise, it appears no one
has studied the corresponding questions over the base theory Q . Another
question is whether Theorem 1 can be proved by a direct proof-theoretic
argument. The game theoretic argument in [12] is combined with a model
theoretic proof. The model-theoretic part can be avoided, but it would nice
to give a more direct proof-theoretic proof.

References

[1] T. Arai, Frege system, ALOGTIME, and bounded arithmetic. Manu-
script, 1992.

[2] S. R. Buss, Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985
Princeton University Ph.D. thesis.

[3] , Nelson’s Work on Logic and Foundations and Other Reflections on
Foundations of Mathematics, Princeton University Press, 2006, pp. 183–
208. edited by W. Faris.

[4] S. R. Buss and J. Kraj́ıček, An application of Boolean complexity to
separation problems in bounded arithmetic, Proc. London Math. Society,
69 (1994), pp. 1–21.

[5] P. Clote and G. Takeuti, Bounded arithmetics for NC, ALOGTIME,
L and NL, Annals of Pure and Applied Logic, 56 (1992), pp. 73–117.

[6] S. Cook and P. Nguyen, Foundations of Proof Complexity: Bounded
Arithmetic and Propositional Translations. Book in preparation. Draft
manuscipt available on web.

[7] R. J. Lipton, Model theoretic aspects of computational complexity,
in Proceedings of the 19th Annual Symposium on Foundations of
Computer Science, IEEE Computer Society, 1978, pp. 193–200.

[8] R. J. Parikh, Existence and feasibility in arithmetic, Journal of
Symbolic Logic, 36 (1971), pp. 494–508.

11

[9] J. B. Paris and C. Dimitracopoulos, A note on the undefinability
of cuts, Journal of Symbolic Logic, 48 (1983), pp. 564–569.

[10] P. Pudlák, Cuts, consistency statements and interpretation, Journal
of Symbolic Logic, 50 (1985), pp. 423–441.

[11] R. M. Solovay. Letter to P. Hájek, August 1976.

[12] A. J. Wilkie, On sentences interpretable in systems of arithmetic, in
Logic Colloquium ’84, J. B. Paris, A. J. Wilkie, and G. M. Wilmers,
eds., North-Holland, 1986, pp. 329–342.

[13] A. J. Wilkie and J. B. Paris, On the scheme of induction for bounded
arithmetic formulas, Annals of Pure and Applied Logic, 35 (1987),
pp. 261–302.

12

