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PredicativeTheories—Interpretations I∆0.

Defn. Atheory ispredicative (in thesenseofE.Nelson) if it is interpretable in Q.

Since I∆0 in interpretable in Q, a theory is predicative iff it is interpretable
in I∆0.

Historicalmotivations for I∆0 and otherweak theories:
- Philosophical [Bennett, Nelson, and others]
- (Near-)Feasible computation [Parikh, Paris,Wilkie, Buss,many others]
- Mathematical (models of fragments of PA). [also Kirby, Dimitracopolous,

others].

Nelson’s definition was motivated by his intuition that predicative theories
are a framework for demonstrably correct reasoning that does not require
mathematically dubious platonic assumptions.
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Cut-interpretations

Let T be the theory Q or I∆0.

Defn. A formula φ(x) defines a cut-interpretation if it defines an initial
segment, i.e.,

T ⊢ φ(0)

T ⊢ ∀x∀y(φ(x) ∧ y ≤ x → φ(y)).

For cut interpretations, symbols such as 0, S , +, ·, etc. are interpreted by
themselves (possibly may not be total). [Rk: If ≤ is not in the language of T ,
then “y ≤ x” defined as “∃z(y + z = x)”.]

Interpretations in Q are generally cut-interpretations.

In particular, I∆0, S
i
2, T

i
2 , etc. are all cut-interpretable in Q.
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BoundedTheories

Defn. A bounded quantifier is of the form (∀x < t) or (∃x ≤ t). A formula is
∆0 or bounded if all its quantifiers are bounded.

Defn. A bounded theory is axiomatized by ∀∆0 formulas. (Universal closures
of bounded formulas.)

Theories such as Q, I∆0, S
i
2, T

i
2 are all bounded theories.

Theories interpreted in Q are generally bounded theories.
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Thistalk: characterizethefunctionsthatcandefined inboundedtheories
which are cut-interpretable in Q. (or, equivalently, in I∆0.)

The characterizationwill be in terms of their computational complexity.

Defn. f is defined in a bounded, cut-interpreted theory T provided

I∆0 + T + T ∗ ⊢ ∀x(f(x) = f∗(x)),

where T ∗ is formed from T by replacing every new function symbol g with
g∗, and every new predicate symbol P with P ∗, etc., and where I∆0 includes
induction for all bounded formulas in the combined languages.

This is the “uniqueness property” for f .
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Maintoolsofcut interpretations.

[Solovay,Nelson, ...]

Tool #0. Transitivity of cut-interpretability, allows us to work over a base
theory stronger than Q, such as I∆0 or S2. So may assume presence of
polynomial time functions, and validity of bounded induction, etc.

Tool #1. Define a cut based on existence of an exponential. Let φ(x) be
(∃y)[y = 2x]. Or alternately, let φ(x) be (∃y)(|y| = x).

Then φ(x) defines an initial segment of elements for which exponentials
exist (not nec. in the initial segment).

Tool #2. Given a cut closed under S (resp., +, ·, #i), one can define a cut
closed under + (resp., ·, #, #i+1).
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0 M

closed
under +

Given: amodel M closed under +.
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0 M

closed
under +

L

closed
under S

Given: amodel M closed under +.

Tool#1: Form cut L = {x : 2x exists in M }.
Note L is closed under successor.
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0 M

closed
under +

L

closed
under S

L′

closed
under +

Given: amodel M closed under +.

Tool#1: Form cut L = {x : 2x exists in M }.
Note L is closed under successor.

Tool#2: Form sub-cut L′ closed under +.
Exponentials of L′ elements exist in M .
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These tools allow one to define bounded theories inwhich (a) all polynomial
time functions are defined, in fact all Ωi-time functions are definable, and (b)
induction holds for all bounded formulas.

So, I∆0 + Ω1 and S2 are cut interpretable in Q by thesemethods.

Defn. Define Ω0(x) = 22|x|. And Ωi+1(x) = 2Ωi(|x|)..

Then, Ω0(x) ≈ x2 and Ω1(x) ≈ x#x and Ωi(x) ≈ x#i+1x.

Tool #2 allows us to predicatively define all Ωi-time functions. This is in fact
the best that can be done, at least in terms of growth rate of functions.

Defn. A function f(x) is dominated by Ωi if f(x) < Ω(x) for all sufficiently
large x.
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Growthclosurepropertiesofcuts.

The definable initial segments can be closed under Ωi (but not under
exponentiation):

Thm. [Wilkie, LC’84, formalized version]. Suppose T is a bounded theory,
cut interpretable in Q, and f is a function symbol of T . Then f is dominated
by some Ωi. In fact, there is a finite extension T ′ of T which is bounded and
cut-interpretable andwhich proves f is dominated by Ωi.

Although this bounds the growth rate of functions in bounded predicative
theories, it does not bound their computational complexity.
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Alowerbound

Defn. A function is defined to be Ωi-TIME if it can by computed in time
Ωi−1(n

O(1))-time. (n is the length of the input.)

It is in EXPi-TIME if it can be computed in time 2Ωi−1(n
O(1)).

So, Ω2-TIME is the sameaspolynomial time. EXP2-TIME is exponential time.

For i > 2, Ωi-TIME is “only slightly larger than” polynomial time. and EXPi-
TIME is “only slightly larger than” exponential time.

One should think of “only slightly larger than” as meaning “morally
equivalent to”.
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Thm. Every EXPi-TIME predicate is definable in a bounded, predicative
theory.

Thm. Every EXPi-TIME function dominated by some Ωi is definable in a
bounded predicate theory.

Pf. Let P bean EXPi-Turingmachine. Over I∆0 +Ωi +“asingle exponential
exists”: introduce function symbols Q(t, x), T (t, p, x), H(t, x) that define,
at time t, P (x)’s state, head position, and tape content at position p. Then,
working in a cut where Ωi+1 is total, restrict to a cut where single exponentials
exist in theoriginalmodel. Let T bethe theory in this languagewith theenlarged
language, and with appropriate (bounded) axioms describing the values of Q,
T , H . By construction, Q, T , H and the “predicate P accepts” are uniquely
defined in T .

An identical constructionworks for the second theorem.
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Theupperbound.

Thm. Any predicate or function definable in a bounded theory T cut-
interpreted in Q is in NEXPi-TIME ∩ coNEXPi-TIME. Furthermore, this
holds provably in a suitable bounded predicative theory.

Pf (idea). By compactness, T is w.l.o.g. finitely axiomatized. And
every function in T is bounded by some Ωi. Given x, calculate f(x) by
nondetermininistically guessing every value P (y) and g(y) for all predicates P

and all functions g and all y < Ωi(x) + O(1). (The bound on y comes from
compactness.) By the uniqueness property, f(x) is uniquely determined by this
process.

To show this holds provably, formalize the above argument in a suitable
predicative theory. 2
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Closingthegap.

So far:
- Lower bound: EXPi-time functions/predicates.
- Upper bound: NEXPi ∩ coNEXPi-time functions/predicates.

Suppose a bounded predicate theory T proves P ∈ NEXPi ∩ coNEXPi.
Then

P (x) ⇔ (∃f1)N1(x, f1) ⇔ (∀f2)N2(x, f2).

for some EXPi-TIME N1 and N2.
Extend T with new function symbol f andwith axioms

(∀x)[N1(x, f) ∨ ¬N2(x, f)].

This is a predicative bounded extension. (Existence condition for f follows by
assuming sufficient exponentials exist in the originalmodel.)

14



This proves:

Thm. The functions definable in bounded, cut-interpreted extensions of Q

are precisely the functions which are dominated by some Ωi and are provably
in NEXPi ∩ coNEXPi-time.

Coro. The PSPACE predicates and functions (of polynomial growth rate) are
predicative in the sense ofNelson.

Coro. The exponential time predicates and functions (of polynomial growth
rate) are predicative in the sense ofNelson.
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Implications/Applications/Openproblems.

Implication: The predicative constructions are essentially the exponential time
and NEXP ∩ coNEXP constructions of polynomial size objects (this includes
extensions to the “morally equivalent” Ωi growth rate).

Applications: This puts computational limits on what can be formalized
predicatively, e.g., the formalizations of Fernandez and Ferreira of real
analysis are possible in part since polynomial space and exponential time
constructions suffice (c.f. Friedman-Ko). It potentially has applications for
reversemathematics over predicative base theories.

Open question:FromWilkie [LC’84], it is still openwhether a Σ0
k+1 formula can

define a cut closed under Ωk . More generally, it would be nice to have better
streamlined proofs ofWilkie’s theorem.
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