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Predicative Theories— Interpretations / A.

Defn. Atheoryis predicative(inthesenseof E. Nelson) ifitisinterpretablein Q.

Since 1A in interpretable in (), a theory is predicative iff it is interpretable
In IAO

Historical motivations for I Ay and other weak theories:

- Philosophical [Bennett, Nelson, and others|

- (Near-)Feasible computation [Parikh, Paris, Wilkie, Buss, many others]

- Mathematical (models of fragments of PA). [also Kirby, Dimitracopolous,
others|.

Nelson’s definition was motivated by his intuition that predicative theories
are a framework for demonstrably correct reasoning that does not require
mathematically dubious platonic assumptions.



Cut-interpretations

Let T" bethetheory Q or IA.

Defn. A formula ¢(x) defines a cut-interpretation if it defines an initial
segment, I.e.,
T+ ¢(0)
Tk avy(6(z) Ay <z — o(y)).
For cut interpretations, symbols such as 0, S, +, -, etc. are interpreted by

themselves (possibly may not be total). [Rk: If <isnot in the language of T,
then "y < 2" definedas "Jz(y + 2z = z)" ]

Interpretationsin () are generally cut-interpretations.

In particular, IAg, S, T%, etc. are all cut-interpretablein Q).



Bounded Theories

Defn. A bounded quantifieris of the form (Vx < t) or (3z < t). Aformulais
A or boundedif all its quantifiers are bounded.

Defn. A bounded theoryis axiomatized by VA formulas. (Universal closures
of bounded formulas.)

Theoriessuchas Q, IAg, S, T% are all bounded theories.

Theoriesinterpreted in () are generally bounded theories.




Thistalk: characterizethefunctionsthat can definedin boundedtheories
which are cut-interpretablein Q). (or, equivalently, in IAy.)

The characterization will be in terms of their computational complexity.

Defn. f isdefined in a bounded, cut-interpreted theory 1" provided
T80+ T +T" - ¥a(f(x) = f(x)),

where T is formed from 1" by replacing every new function symbol g with
g*, and every new predicate symbol P with P*, etc., and where 1A includes
induction for all bounded formulasin the combined languages.

Thisisthe “uniqueness property” for f.



Main tools of cut interpretations.

[Solovay, Nelson, ...]

Tool #0. Transitivity of cut-interpretability, allows us to work over a base
theory stronger than (), such as IAg or S3. So may assume presence of
polynomial time functions, and validity of bounded induction, etc.

Tool #1. Define a cut based on existence of an exponential. Let ¢(x) be
(Jy)|y = 27]. Oralternately, let ¢(z) be (Fy)(|y| = ).

Then ¢(z) defines an initial segment of elements for which exponentials
exist (not nec. in theinitial segment).

Tool #2. Given a cut closed under S (resp., +, -, #;), one can define a cut
closed under + (resp., -, #, #i11).



O

Given: a model M closed under +.

closed
under +



0 L M

™ ) >
closed closed
under S under +

Given: a model M closed under +.

Tool #1: Formcut L = {x : 2" existsin M }.
Note L is closed under successor.
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Given: a model M closed under +.

Tool #1: Formcut L = {x : 2" existsin M }.
Note L is closed under successor.

Tool #2: Form sub-cut L’ closed under +.

Exponentials of L’ elements existin M .
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These tools allow one to define bounded theories in which (a) all polynomial
time functions are defined, in fact all €2;-time functions are definable, and (b)
induction holds for all bounded formulas.

So, IAg + €27 and S5 are cut interpretable in () by these methods.

Defn. Define Qo(z) = 22/*I. And ;1 (2) = 2%(=D

Then, Qq(z) ~ 2% and Q4 () ~ x#x and Q;(z) ~ x#;117.

Tool #2 allows us to predicatively define all £2;-time functions. This s in fact
the best that can be done, at least in terms of growth rate of functions.

Defn. A function f(x) is dominated by Q2; if f(z) < Q(x) for all sufficiently
large x.



Growth closure properties of cuts.

The definable initial segments can be closed under §2; (but not under
exponentiation):

Thm. [Wilkie, LC'84, formalized version]. Suppose T is a bounded theory,
cut interpretable in ), and f is a function symbol of T'. Then f is dominated
by some ;. In fact, there is a finite extension T of T" which is bounded and
cut-interpretable and which proves f isdominated by (2;.

Although this bounds the growth rate of functions in bounded predicative
theories, it does not bound their computational complexity.
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A lower bound

Defn. A function is defined to be 2;-TIME if it can by computed in time
Qi_1(n®1))-time. (n isthelength of the input.)

Itisin EXP*-TIME if it can be computed in time 992i-1(n%W).

So, Q5-TIME isthe same as polynomial time. EXP?-TIME is exponential time.

Fori > 2, Q*-TIME is “only slightly larger than" polynomial time. and EXP*-
TIME is “onlyslightly larger than” exponential time.

One should think of “only slightly larger than” as meaning “morally
equivalentto”.
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Thm. Every EXP'-TIME predicate is definable in a bounded, predicative
theory.

Thm. Every EXP’-TIME function dominated by some €, is definable in a
bounded predicate theory.

Pf. Let P bean EXP*-Turing machine. Over IAq + £, + “asingle exponential
exists”: introduce function symbols Q(t,x), T(t,p,x), H(t,x) that define,
at time t, P(x)’s state, head position, and tape content at position p. Then,
working in a cut where €); 1 is total, restrict to a cut where single exponentials
existintheoriginal model. Let T"bethetheoryinthislanguagewiththeenlarged
language, and with appropriate (bounded) axioms describing the values of @,

T, H. By construction, (), T', H and the “predicate P accepts” are uniquely
definedin T'.

An identical construction works for the second theorem.
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Theupperbound.

Thm. Any predicate or function definable in a bounded theory T' cut-
interpreted in () is in NEXP*-TIME N coNEXP*-TIME. Furthermore, this
holds provably in a suitable bounded predicative theory.

Pf (idea). By compactness, T is w.l.o.g. finitely axiomatized. = And
every function in T is bounded by some €2;. Given x, calculate f(z) by
nondetermininistically guessing every value P(y) and g(y) for all predicates P
and all functions g and all y < Q;(x) + O(1). (The bound on y comes from
compactness.) By the uniqueness property, f(x) is uniquely determined by this
process.

To show this holds provably, formalize the above argument in a suitable
predicative theory. O
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Closing thegap.

Sofar: |
- Lower bound: EXP*-time functions/predicates.

- Upper bound: NEXP" N coNEXP*-time functions/predicates.

Suppose a bounded predicate theory T proves P € NEXP! N coNEXP".
Then

P(z) & (3f1)Ni(z, f1) & (Vf2)Na(z, f2).
for some EXP*-TIME N; and Ns.
Extend T with new function symbol f and with axioms

(V) [Ni(z, f) V ~Na(z, f)].

This is a predicative bounded extension. (Existence condition for f follows by
assuming sufficient exponentials exist in the original model.)
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This proves:

Thm. The functions definable in bounded, cut-interpreted extensions of ()

are precisely the functions which are dominated by some §2; and are provably
in NEXP" N coNEXP"-time.

Coro. The PSPACE predicates and functions (of polynomial growth rate) are
predicative in the sense of Nelson.

Coro. The exponential time predicates and functions (of polynomial growth
rate) are predicative in the sense of Nelson.
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Implications / Applications / Open problems.

Implication: The predicative constructions are essentially the exponential time
and NEXP N coNEXP constructions of polynomial size objects (this includes
extensions to the “morally equivalent” €2; growth rate).

Applications: This puts computational limits on what can be formalized
predicatively, e.g., the formalizations of Fernandez and Ferreira of real
analysis are possible in part since polynomial space and exponential time
constructions suffice (c.f. Friedman-Ko). It potentially has applications for
reverse mathematics over predicative base theories.

Open question: From Wilkie [LC'84], it is still open whethera X7 ; formula can
define a cut closed under (2. More generally, it would be nice to have better
streamlined proofs of Wilkie's theorem.
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