
Accurate Simulation of Rigid Body Rotation

and Extensions to Lie Groups

Sam Buss
Dept. of Mathematics

U.C. San Diego

Visible Luncheon
Gwyddor Cyfrifiador
University of Swansea

March 3, 2011

Topics: ◮ Algorithms for simulating rotating rigid bodies.
◮ All algorithms preserve angular momentum.
◮ Algorithms can be made energy preserving.
◮ Generalization to Lie group setting.

Talk outline:
1. Rigid body rotations. 1st thru 4th order algorithms.

Unexpected terms.
2. Generalization to Taylor series methods

over Lie groups/Lie algebras.
3. Energy preservation based on Poinsot ellipsoid.
4. Numerical simulations and efficiency.

1

Part I: The simple rotating, rigid body

I = Inertia matrix (tensor).

L = Angular momentum.

ω = Rotation axis & rate,

L = Iω (Euler’s equation)

ω = I−1L

ω

L

ω̇ = I−1(L̇− ω×Iω)

ω̈ = ω×ω̇ + I−1(L̈− ω̇×L− 2ω×L̇+ ω×(ω×L))
...
ω = 2ω×ω̈ − ω×(ω×ω̇) + I−1[

...
L− 3ω×L̈− 3ω̇×L̇− ω̈×L

+ ω̇×(ω×L) + 2ω×(ω̇×L) + 3ω×(ω×L̇)− ω×(ω×(ω×L))]

Wobble: ω̇ 6= 0 even when no applied torque (L̇ = 0).

v̇L = Rate of change of momentum = Applied Torque.

2

Framework for simulating rigid body motion

We assume the rigid body has a known angular momentum, and the
external torques are completely known. The orientation (and hence the
angular velocity) is updated in discrete time steps, at times t0, t1, t2,

Update Step: At a given time ti, let h = ∆t = ti+1 − ti, and assume
orientation Ωi at time ti is known, and that momentum is known (at all
times).

Update step calculates a net rotation rate vector, ω̄, and sets

Ωi+1 = Rhω̄Ωi,

where Rν performs a rotation around axis ν of angle ||ν||.

Nearly every rigid body simulation method fits this framework.

3

First-order update method

Use ω = I−1L as the estimate for ω̄.

First-order algorithm:

Set ω̄ := ωi = I−1
i Li.

Set Ωi+1 := Rhω̄ Ωi.

This first-order method performs poorly. A wobbling, spinning object quickly
gains energy and soon ends up spinning on a principal axis.

“Good enough for computer games” (?)

4

Second-order update method

Use ω and ω̇ to estimate ω̄ as ω̄ = ω + h
2ω̇.

Second-order algorithm:

Set ωi := I−1
i Li.

Set ω̇i := I−1
i (L̇i − ωi×Li).

Set ω̄ := ωi +
h
2ω̇i.

Set Ωi+1 := Rhω̄ Ωi.

The second-order method performs substantially better. However, a
wobbling, spinning object still steadily gains energy and ends up spinning
on a principal axis.

5

False third-order update method

Try using ω, ω̇ and ω̈ to estimate ω̄ as ω̄ = ω + h
2ω̇ + h2

3! ω̈.

False third-order algorithm:

Set ωi := I−1
i Li.

Set ω̇i := I−1
i (L̇i − ωi×Li).

Set ω̈i := ωi×ω̇i + I−1
i (L̈i − ω̇i×Li − 2ωi×L̇i + ωi×(ωi×Li)).

Set ω̄ := ωi +
1
2ω̇ih+ 1

6ω̈h2
.

Set Ωi+1 := Rhω̄Ωi.

Surprisingly, this however turns out to be slightly worse than the second-
order method! In fact, the Taylor series estimate for ω̄ is not second-order
accurate.

6

The new third-order term - Motivation

A rolling disk - Total rotation ϕ in time t0
(or tall skinny cone):

a

a′

c c′

b

b′

ϕ ϕ

p p+ vt0p+ 1
2vt0

ω - at point p, pointing into figure, i.e., away from viewer.
ω̇ - pointing to the right.

7

The new third-order term - Motivation

A rolling disk - Total rotation ϕ in time t0
(or tall skinny cone):

a

a′

c c′

b

b′

q

ϕ

ϕ/2 ϕ/2

p p+ vt0p+ 1
2vt0

ω - at point p, pointing into figure, i.e., away from viewer.
ω̇ - pointing to the right.
ω̄ - correct value is the point q, since a rotation around q yields

the correct net motion.

8

ω̄∞ - ideal rotation center

ω̄1 - 1st order update
ω̄2 - 2nd order update
ω̄2+ - augmented 2nd order.

ω̄2+ = ω̄2 +
h2

12ω̇×ω.

ω̄∞

ϕ

ω̄1 ω̄2

ω̄2+

9

Augmented second-order update method

Second-order approximation: ω̄2+ = ω̄2 +
h2

12ω̇×ω.

Augmented second-order algorithm:

Set ωi := I−1
i Li.

Set ω̇i := I−1
i (L̇i − ωi×Li).

Set ω̄ := ωi +
h
2ω̇i +

h2

12(ω̇i×ωi).
Set Ωi+1 := Rhω̄ Ωi.

The augmented second-order method performs substantially better than the
second-order method, and has more energy stability, although the energy
does drift steadily.

Extra computation cost: only one more cross-product than the second-
order method.

10

True third-order update method

Now include the new h2

12ω̇×ω term in ω̄.

True third-order algorithm:

Set ωi := I−1
i Li.

Set ω̇i := I−1
i (L̇i − ωi×Li).

Set ω̈i := ωi×ω̇i + I−1
i (L̈i − ω̇i×Li − 2ωi×L̇i + ωi×(ωi×Li)).

Set ω̄ := ωi +
h
2ω̇i +

h2

6 ω̈i +
h2

12ω̇i×ωi.
Set Ωi+1 := Rhω̄ Ωi.

As expected, this is third-order correct, and performs better than the
augmented second-order method.

11

True fourth-order update method

Additional new term: h3

24ω̈i×ωi. (Pattern does not continue)

True fourth-order algorithm:

Set ωi := I−1
i Li.

Set ω̇i := I−1
i (L̇i − ωi×Li).

Set ω̈i := ωi×ω̇i + I−1
i (L̈i − ω̇i×Li − 2ωi×L̇i + ωi×(ωi×Li)).

Set
...
ωi := (· · · equation on earlier slide #2 · · ·).

Set ω̄ := ωi +
h
2ω̇i +

h2

6 ω̈i +
h2

12ω̇i×ωi +
h3

24

...
ωi +

h3

24ω̈i×ωi.
Set Ωi+1 := Rhω̄ Ωi.

Performs better than the true third-order method. Experiments confirm
fourth-order accuracy.

12

Part II: Generalize to Lie groups/Lie algebras

The extra third- and fourth-order terms can be generalized to the Lie group /
Lie algebra setting. This gives Taylor series methods over Lie groups.

Related to: Runge-Kutta methods on Lie groups by
Crouch & Grossman ’93;
Marthinsen & Owren ’98;
Munthe-Kaas ’98,’99;

who give higher order corrector terms for Runge-Kutta algorithms.

We write [u, v] for u×v. Also, [u, v,w] for [u, [v,w]]. u, v, . . . are Lie
group elements, and [·, ·] is a Lie group product.

We now use “W” instead of “ω”, etc. These are elements of the
associated Lie algebra. For Z is in the Lie algebra, exp(Z) is in the Lie
group.

z = exp(Z) is analogous to the rotation operation represented by
rotation vector Z. So, Z ∼ ω̄ and exp(Z) ∼ Rω̄.

13

Suppose W (t) is a time-varying Lie algebra element. Let h > 0. We
want to find a Z = Z(h) which is equivalent to applying W (t) over the
time interval 0 to h:

exp(h · Z) = lim
N→∞

0
∏

i=N−1

exp

(

h

N
·W

(

ih

N

))

.

Analogy: W (t) is time varying instantaneous rotation vector. Z is ω̄.

Goal: Find power series for Z in terms of W (0), Ẇ (0), Ẅ (0),

Let Y = Y (h) = h · Z. Let y(h) = exp(Y). Now, by defn of Z, Y , y,

y′(t) = W (t).

Also, taking first derivative of y(h) = exp(Y),

y′(t) = (d exp)Y (t)(Y
′(t)).

14

Power Series expansions: (W0 = W (0), Ẇ0 = Ẇ (0), etc.)

(d exp)Y = 1 +
1

2
ad(Y) +

1

3!
(ad(Y))2 +

1

4!
(ad(Y))3 + · · ·

(recall (ad(A))(B) = [A,B].)

W (t) = W0 + tẆ0 +
1
2t

2Ẅ0 +
1
3!t

3
...
W 0 + · · · ,

Y (t) = tY0 +
1
2t

2Y1 +
1
3!t

3Y2 +
1
4!t

4Y3 + · · · ,
Y ′(t) = Y0 + Y1t+

1
2Y2t

2 + 1
3!Y3t

3 + · · · .

Equating coefficients of powers of t and solving for Yi’s gives:

Y0 = W0.

Y1 = Ẇ0.

Y2 = Ẅ0 +
1

2
[Ẇ0,W0]. analogous to the “2+” term.

Y3 =
...
W 0 + [Ẅ0,W0]. analogous to the “3+” term.

15

Y4 =
....
W 0 +

3
2[
...
W 0,W0] + [Ẅ0, Ẇ0] +

1
2[Ẇ0, Ẇ0,W0]− 1

6[W0, Ẅ0,W0]

−1
6[W0,W0, Ẇ0,W0].

Y5 =
.....
W 0 +

5
2[
...
W 0, Ẇ0] + 2[

....
W 0,W0] + 2[Ẅ0, Ẇ0,W0] +

1
2[Ẇ0, Ẅ0,W0]

−1
2[W0,

...
W 0,W0]− 1

2[W0,W0, Ẅ0,W0]− [W0, Ẇ0, Ẇ0,W0].

Fifth-order accurate formula for Z(h) = h−1Y (h):

Z(h) = W0 +
h
2Ẇ0 +

h2

6 Ẅ0 +
1
12h

2[Ẇ0,W0] +
h3

24

...
W 0 +

h3

24[Ẅ0,W0]

+ h4

120

....
W 0 +

h4

80[
...
W 0,W0] +

h4

120[Ẅ0, Ẇ0] +
h4

240[Ẇ0, Ẇ0,W0]

− h4

720[W0, Ẅ0,W0]− h4

720[W0,W0, Ẇ0,W0]

+ h5

720

.....
W 0 +

h5

288[
...
W 0, Ẇ0] +

h5

360[
....
W 0,W0] +

h5

360[Ẅ0, Ẇ0,W0]

+ h5

1440[Ẇ0, Ẅ0,W0]− h5

1440[W0,
...
W 0,W0]− h5

1440[W0,W0, Ẅ0,W0]

− h5

1440[W0,W0, Ẅ0,W0]− h5

720[W0, Ẇ0, Ẇ0,W0] +O(h6).

16

Part III: Back to rigid body: Poinsot inertial ellipsoid

Invariable
plane

Inertial
ellipsoid

Polhode

Herpolhode

Inertial ellipsoid is attached to the rigid body, and rolls on the plane.
Ellipsoid size determined by angular momentum. The plane’s height is
determined by energy & angular momentum. The polhode is a curve on
the ellipsoid: the herpolhode is the curve on the plane. “The polhode rolls
without slipping on the herpolhode lying in the invariable plane.”
Rotation axis goes through the intersection of the polhode & herpolhode.

17

The Poinsot ellipsoid and the polhode

ρ is scaled rotation vector; ρ = ω/
√
I.

ρ depends on orientation, since it is the “lowest” point on the ellipsoid
(lowest along the axis of angular momentum).

If no external torques (L̇ = 0), then the invariable plane does not vary, and
ρ stays on the same polhode curve.

The polhode is the intersection of two ellipsoids:

1. J11ρ
2
1 + J22ρ

2
2 + J33ρ

2
3 = 1 - the Poinsot ellipsoid.

2. J2
11ρ

2
1 + J2

22ρ
2
2 + J2

33ρ
2
3 =

||L||2

2E .

where J is the diagonal inertia matrix.

There is a natural family H of hyperboloids which intersects all potential
polhodes at right angles.

18

Energy Preservation (assuming no external torques)

Assume no external torques: If an algorithm exactly conserves angular
momentum and energy, then it always produces orientations for ρ which lies
on the polhode. However, any of the earlier algorithms for updating rigid
body orientation can give points ρi+1 which do not lie on the polhode.

Idea of energy preservation: perturb orientation so as to put ρi+1 back on
the polhode. Let ρ′ be close point on polhode and reorient to make it the
lowest point.

Algorithm (concept):
Obtain orientation Ωi+1, and thence ρi+1, by any of the algorithms.
Find hyperboloid from H on which ρi+1 lies.

(Just calculate constant term.)
Find intersection ρ′ of hyperboloid with the two ellipsoids.

(Simple 3×3 system of linear equations.)
Reorient ellipsoid by small rotation to make ρ′ the lowest point.

Result is final orientation Ωi+1.

19

Part IV: Experimental Results

Simulations of rectangular prism of size 1×4×18, for ≈ 45 full rotations, no
applied torque, updated in fixed time steps. Required number of steps N ,
and mean rotation angle θ to achieve accuracy of ǫ = 10−6.

Algorithm N (steps) mean θ (deg.)
1st order > 20480 failed

1st order EP 16216 1.0
2nd order 14546 1.12

2nd order EP 11505 1.41
False 3rd 15056 1.08

Augmented 2nd (2+) 5573 2.92
Augmented 2nd EP 6616 2.46

3rd order 3661 4.45
3rd order EP 652 25.0
4th order 1304 12.49

4th order EP 688 23.69

“EP” - with energy preservation.

20

Required for the Simulation Algorithm

Relative Computational Cost
of one update step

Need to Without energy With energy
Algorithm Know preservation preservation
1st order L 0.30 0.77

2nd order L̇ 0.37 0.83

Augmented 2nd order L̇ 0.41 0.87

3rd order L̈ 0.54 1.00

4th order
...
L 0.73 1.19

21

Comparisons with other methods

Simo-Wong method: similar to 1st order update.
Adams-Bashforth-Moulton Predictor-Corrector: similar to 1st order update.
Traditional 4th order Runge-Kutta: like 2nd order update (slightly better).

McLachlan-Reich-Yoshida Symplectic Algorithms
Algorithm N (steps) mean θ

2nd order 1-2-3 16131 1.01
2nd order 1-2-3 EP 5210 3.12
2nd order 2-3-1 1191 13.68

2nd order 2-3-1 EP 945 17.23
4th order 2-3-1 431 37.85

4th order 2-3-1 EP 196 83.45

Symplectic algorithms very sensitive to axis order.
They are helped considerably by energy conservation, this is odd since
energy preservation presumably destroys symplectic property.

22

Relative Computational Costs of Single Update Step

Base Without energy With energy
algorithm preservation preservation
1st order 0.30 0.77
2nd order 0.37 0.83

Augmented 2nd order 0.41 0.87
3rd order 0.54 1.00
4th order 0.73 1.19

Symplectic 2nd order 0.84 1.20
Symplectic 4th order 2.19 2.65

23

Part V: Conclusions

Recommend algorithms for rigid body update:
◮ If L̇ is known: augmented 2nd order algorithm.

(Probably better choice for computer games.).
◮ If L̈ is known, 3rd order with energy preservation.
◮ One symplectic algorithm (4th order 2-3-1 EP) had better

performance, but depended on correct axis order, and
is presumably no longer symplectic with EP.

◮ Our 1st-4th order algorithms all allow arbitrary external
torques. (Unlike symplectic algorithms.)

Questions:
◮ Do our algorithms work well for rigid multibody systems?
◮ Why does energy preservation help symplectic algorithms’

long-term accuracy?
◮ Why is 3rd order EP unexpectedly accurate?

24

S. R. Buss, “Accurate and efficient simulations of rigid body rotations”,
Journal of Computational Physics 164 (2000) 377-406.

Web page: http://math.ucsd.edu/∼sbuss/ResearchWeb/accuraterotation.

25

