The Power of Diagonalization for Separating Complexity Classes

Sam Buss

Yandex (Moscow) July 21, 2015

Sam Buss Diagonalization for Separation

A fundamental open problem for computer science is to prove (or, disprove)

$$P \neq NP$$
,

Namely, does non-determinism help computation?

No less fundamental are questions about separating time classes from space classes; e.g.:

$$L = P$$
? and $P = PSPACE$?

(L is log space; P is polynomial time; PSPACE is polynomial space.)

These latter problems are potentially easier to answer — in the negative —, since

$$\mathbf{L} \subseteq \mathbf{P} \subseteq \mathbf{N}\mathbf{P} \subseteq \mathbf{P}\mathbf{S}\mathbf{P}\mathbf{A}\mathbf{C}\mathbf{E}.$$

Q: Why conjecture $P \neq NP$?

A1: Because attempts at proving $\mathrm{P}=\mathrm{NP}$ using direct simulation have failed. (!)

A2: Because oracle results give barriers on using diagonalization to separate P and NP. [Baker-Gill-Solovay'1975]

Diagonalization has been useful mostly for proving the time and space hierarchies. For example:

Theorem: $L \neq PSPACE$ and $P \neq DTIME(2^n)$. [Hartmanis-Lewis-Stearns'1965; Stearns-Hartmanis'1965].

DTIME(2^n) denotes EXPTIME (exponential time).

A barrier to stronger diagonalization is:

Oracle separation: [Baker-Gill-Solovay, 1975] There are oracles collapsing L and NP and oracles collapsing P and PSPACE, so any proof of separation must not relativize.

This means that any proof of " $P \neq NP$ " (or "P = NP") must use techniques that do not relativize.

This talk will concentrate, however, on the positive aspects of diagonalization, and how diagonalization can be surprisingly strong.

Remark: Other barriers to separating complexity classes include *Natural Proofs* [Razborov-Rudich, 1997], and *Algebrization* [Aaronson-Wigderson, 2008].

This talk: Using diagonalization for:

- Space hierarchy.
- Time hierarchy.
- Nondeterministic time hierarchy.
- Alternation trading proofs, and lower bounds for satisfiability.

Hierarchy of complexity classes:

```
L \subseteq P \subseteq NP \subseteq PSPACE \subseteq ExpTime.
```

 $\begin{array}{l} \mbox{Space hierarchy gives: } L \neq PSPACE. \\ \mbox{Time hierarchy gives: } P \neq ExPTIME. \\ \mbox{No other separations for these classes are known.} \end{array}$

Classical uses of self-reference:

I. Gödel incompleteness:

"I am not provable".

II. Halting Problem is undecidable [Turing]: If recursive enumerable is same as recursive, form a Turing machine M so that

"M halts iff M does not halt".

Classical use of diagonalization:

Diagonalization

- Underlies the use of self-reference.
- Is easier to work with.

For example: To prove not all recursive enumerable sets are recursive: Suppose this fails, and form a recursive predicate P(i) by

 $P(i) \Leftrightarrow M_i(i)$ rejects

 M_i is the *i*-th Turing machine.

This argument uses a universal Turing machine.

Theorem (Hartmanis-Lewis-Stearns'65)

Suppose s(n) = o(t(n)). Then $SPACE(s) \neq SPACE(t)$.

Computational Model:

Turing machines with k tapes, $k \ge 1$, and finite alphabet Γ . *Inputs:* Binary strings $x \in \{0, 1\}^*$. *Outputs:* "Yes" / "No" ("Accept" / "Reject"). *Runtimes* are stated as a function of the *length* n = |x| of the input string x.

Space is the total number of tape squares (memory) used by the computation. – Does not count size of the input.

Constant factors of speed-up can be achieved with large alphabets, so time/space bounds always use "Big-O" or "little-o" notation.

We assume all space/time bounds are well-behaved (space- and time-constructible).

(김희) 김 국가 김 국가 영화

Proof sketch for space hierarchy theorem:

Fact: There is a 1-tape universal Turing machine U^t so that, - for any Turing machine M_e using space s, there is $c_e > 0$, s.t. - $U^t(\langle e, x \rangle)$ uses space $c_e \cdot s$ and outputs $M_e(x)$ — unless $c_e \cdot s > t$.

- U^t aborts if simulating M_e requires space > t.

Define the Turing machine N so that $N(\langle e, x \rangle)$ runs $U^t(e, \langle e, x \rangle)$ and outputs the *opposite* answer.

Thus $N \in \text{SPACE}(t)$. But for all $M_e \in \text{SPACE}(s)$ and all sufficiently large x,

$$N(\langle e, x \rangle) \neq U^t(e, \langle e, x \rangle) = M_e(\langle e, x \rangle)$$

So $N \notin \text{Space}(s)$.

ged

Theorem (Hartmanis-Stearns'65)

Let $s(n) \log s(n) = o(t(n))$. Then $TIME(s) \neq TIME(t)$.

Proof idea:

Fact: [H-S'65] There is a 2-tape universal Turing machine V^t so that,

- for any Turing machine M_e using time s, there is $c_e > 0$, s.t.
- $V^t(\langle e, x \rangle)$ uses time $c_e \cdot s \cdot \log s$ and outputs $M_e(x)$ — unless $c_e \cdot s \cdot \log s > t$.
- V^t aborts if simulating M_e requires time > t.

Remainder of the proof is similar to before.

□ ▶ < □ ▶ < □ ▶</p>

Nondeterministic Turing machines have the ability to "guess". If any guess leads to acceptance, then the Turing machine is said to <u>accept</u>.

Formally: A nondeterministic Turing machine has multiple possible moves allowed by its transition function. A configuration is *accepting* iff it is in an accepting state or at least one legal move leads to an accepting configuration.

Satisfiability (SAT) is the canonical NP-complete problem. It is accepted by a nondeterministic, polynomial time Turing machine: the machine guesses and verifies a truth assignment.

[Cook'72; Seiferas-Fisher-Meyer'78; Žák'83; Santhanam-Fortnow'11]

Theorem (S-F-M'78; Nondeterministic time hierarchy)

Suppose s(n+1) = o(t(n)). Then $NTIME(s) \neq NTIME(t)$.

To start the proof sketch:

Fact: There is a 2-tape universal non-deterministic Turing machine U^t so that,

- for any nondeterministic M_e using time s, there is $c_e > 0$, s.t.
- $U^t(\langle e, x \rangle)$ uses time $c_e \cdot s$, and accepts iff $M_e(x)$ accepts — unless $c_e \cdot s > t$.
- U^t rejects on paths that use time > t

The problem with the previous proof is that with non-determinism, there is no way to output an "opposite" answer, negating the answer takes us from nondeterminism (existential choices) to co-nondeterministic (universal choices).

To avoid this [Žák'83]:

Let $T_e(n) :=$ deterministic time to compute $M_e(x)$, |x| = n. That is, $T_e(n) \le d^{s(n)}$ for some d > 0.

Define $N(\langle e, x0^i \rangle)$ to equal (for |x| sufficiently large)

- $U^t(e, \langle e, x0^{i+1} \rangle) = M_e(\langle e, x0^{i+1} \rangle)$, if $t(n) < T_e(|\langle e, x, \rangle|)$.
- $\neg M_e(\langle e, x \rangle)$ otherwise.

The first case is non-deterministic, the second is deterministic.

$$N(\langle e, x0^i \rangle) = M_e(\langle e, x0^i \rangle)$$
 cannot hold for all *i*.

Thus $N \in NTIME(t) \setminus NTIME(s)$.

ged

Theorem

Suppose s(n) = o(t(n)). Then $NSPACE(s) \neq NSPACE(t)$.

The proof is very similar to the proof of the Hartmanis-Lewis-Stearns space hierarchy. However, to negate the output of $U^t(e, \langle e, x \rangle)$, the proof uses the fact that NSPACE is closed under complement [Immerman'87; Szelepcsényi'87].

The rest of the talk discusses upper and lower bounds on what separations can be obtained with alternation-trading proofs.

Alternation-trading proofs involve iterating the restricted space methods of Nepomnjasci [1970] together with simulations. This is essentially

a sophisticated version of diagonalization.

The best alternation-trading results obtained so-far state that SAT is not computable in simultaneous time n^c and space n^{ϵ} for certain values of c > 1 and of $\epsilon > 0$.

E.g., alternation-trading proofs give partial results towards separating logspace (L) and $\rm NP.$

Definition (Satisfiability – SAT)

An instance of satisfiability is a set of clauses.

Each clause is a set of literals.

A *literal* is a negated or nonnegated propositional variable. Satisfiability (SAT) is the problem of deciding if there is a truth assignment that sets at least one literal true in each clause.

Thm: Satisfiability is NP-complete.

Conjecture: Satisfiability is not polynomial time. $(P \neq NP.)$

1. Satisfiability is NP-complete.

2. Many other NP-complete problems are many-reducible to SAT in quasilinear time, that is, time $n \cdot (\log n)^{O(1)}$.

3. For a given non-deterministic machine M, the question of whether M(x) accepts in n steps is reducible to SAT in quasilinear time. [Sharpened Cook-Levin theorem about the NP-completeness of SAT].

Thus SAT is a "canonical" and natural non-deterministic time problem. Lower bounds on algorithms for SAT imply the same lower bounds for many other NP-complete problems.

We now use the Random Access Memory (RAM) model for computation. This gives a very robust notion of linear time computation (the classes DTIME(n) and NTIME(n)). "DTIME" / "NTIME" = Deterministic/Nondeterministic time.

Sharpened Cook-Levin Theorem:

Theorem (Schnorr'78; Pippenger-Fischer'79; Robson'79,'91; Cook'88)

There is a c > 0 so that, for any language $L \in NTIME(T(n))$, there is a quasi-linear time, many-one reduction from L to

instances of SAT of size $T(n)(\log T(n))^c$.

In fact, the symbols of the instances of SAT are computable in polylogarithmic time $(\log T(n))^c$.

We now use the Random Access Memory (RAM) model for computation. This gives a very robust notion of linear time computation (the classes DTIME(n) and NTIME(n)). "DTIME" / "NTIME" = Deterministic/Nondeterministic time.

Sharpened Cook-Levin Theorem:

Theorem (Schnorr'78; Pippenger-Fischer'79; Robson'79,'91; Cook'88)

There is a c > 0 so that, for any language $L \in NTIME(T(n))$, there is a quasi-linear time, many-one reduction from L to

instances of SAT of size $T(n)^{1+o(1)}$.

In fact, the symbols of the instances of SAT are computable in polylogarithmic time $(\log T(n))^c$.

Corollary (Slowdown Theorem)

If SAT \in DTIME (n^{c}) , then NTIME $(n^{d}) \subset$ DTIME $(n^{c \cdot d + o(1)})$.

The factor $n^{o(1)}$ hides polylogarithmic factors.

Definition

Let $c \ge 1$. DTS (n^c) is the class of problems solvable in simultaneous deterministic time $n^{c+o(1)}$ and space $n^{o(1)}$.

For instance, Logspace restricted to time n^c .

A series of results by Kannan [1984], Fortnow [1997], Lipton-Viglas, van Melkebeek, Williams, and others gives:

Theorem (Williams, 2007)

Let $c < 2\cos(\pi/7) \approx 1.8019$. Then SAT $\notin DTS(n^c)$.

We also have:

Theorem (B - Williams'12)

The exponent $c = 2\cos(\pi/7)$ is the best that can be obtained with present-day techniques.

Definition

 ${}^{b}(\exists n^{c})^{d}\mathrm{DTS}(n^{e})$

denotes the class of problems taking inputs of length $n^{b+o(1)}$, existentially choosing $n^{c+o(1)}$ bits, keeping in memory a total of $n^{d+o(1)}$ bits (using time $n^{\max\{c,d\}+o(1)}$) which are passed to a deterministic procedure that uses time $n^{e+o(1)}$ and space $n^{o(1)}$.

Speedup Theorem (by method of [Nepomnjasci'1970]

 ${}^{b}\mathrm{DTS}(n^{c}) \subseteq {}^{b}(\exists n^{x})^{\max\{b,x\}}(\forall n^{0})^{b}\mathrm{DTS}(n^{c-x}).$

Proof next page....

- < ≣ > - <

${}^{b}\mathrm{DTS}(n^{c}) \subseteq {}^{b}(\exists n^{x})^{x}(\forall n^{0})^{b}\mathrm{DTS}(n^{c-x}), \text{ for } x \geq b$

Proof idea: Split the n^c time computation into n^x many blocks. Existentially guess the memory contents (apart from the input) at each block boundary (**using** $\mathbf{n}^x \cdot \mathbf{n}^{\mathbf{o}(1)} = \mathbf{n}^{x+\mathbf{o}(1)}$ **many bits**), then universally choose one block to verify its correctness (**using** $\mathbf{O}(\log n) = \mathbf{n}^{\mathbf{o}(1)}$ **universal binary choices**), and simulate that block's computation (**in** \mathbf{n}^{c-x} **time**).

 n^{x} blocks, each n^{c-x} steps

Alternation trading proofs [Williams]

An alternation trading proof is a proof that $SAT \notin DTS(n^c)$, for some fixed $c \ge 1$. It is a proof by contradiction, based on deducing

 $^{1}\mathrm{DTS}(n^{a})\subseteq ^{1}\mathrm{DTS}(n^{b})$

for some a > b, from the assumption that $SAT \in DTS(n^{c})$.

The lines of an alternation trading proof are of the form

$${}^{1}(\exists n^{a_1})^{b_2}(\forall n^{a_2})^{b_3}\cdots^{b_k}(Qn^{a_k})^{b_{k+1}}\mathrm{DTS}(n^{a_{k+1}}).$$

There are two kinds of inferences: "speedup" inferences that add quntifiers and reduce run time (based on Nepomnjascii) and "slowdown" inferences that remove a quantifier and increase run time (based on the S-P-F-R-C theorem)....

The rules of inferences for alternation trading proofs are:

Initial speedup: $(x \le a)$ $^{1}\text{DTS}(n^{a}) \subseteq ^{1}(\exists n^{x})^{\max\{x,1\}}(\forall n^{0})^{1}\text{DTS}(n^{a-x}),$

Speedup: $(0 < x \le a_{k+1})$

$$\cdots^{b_k} (\exists n^{a_k})^{b_{k+1}} \mathrm{DTS}(n^{a_{k+1}})$$

$$\subseteq \cdots^{b_k} (\exists n^{\max\{x,a_k\}})^{\max\{x,b_{k+1}\}} (\forall n^0)^{b_{k+1}} \mathrm{DTS}(n^{a_{k+1}-x}),$$

Slowdown: (Under assumption that $SAT \in DTS(n^{c})$)

$$\cdots {}^{b_k} (\exists n^{a_k})^{b_{k+1}} \mathrm{DTS}(n^{a_{k+1}}) \subseteq \cdots {}^{b_k} \mathrm{DTS}(n^{\max\{cb_k, ca_k, cb_{k+1}, ca_{k+1}\}}).$$

and the dual rules.

Example: alternation trading proof.

Let $1 < c < \sqrt{2}$. Then, if $SAT \in DTS(n^c)$,

$$DTS(n^2) \subseteq (\exists n^1)^1 (\forall n^0)^1 DTS(n^1)$$
$$\subseteq (\exists n^1)^1 DTS(n^c)$$
$$\subseteq DTS(n^{c^2}).$$

which is a contradiction. Proof uses a speedup-slowdown-slowdown pattern, also denoted ${\bf 100}$.

This proves:

Theorem (Lipton-Viglas, 1999) SAT $\notin DTS(n^{\sqrt{2}})$. Better results can be found with more alternations.

Theorem (Fortnow, van Melkebeek, et. al)

SAT $\notin DTS(n^c)$, where $c < \phi \approx 1.618$, the golden ratio.

The optimal refutation with seven inferences derives:

Theorem (Williams)

SAT $\notin \text{DTS}(n^{1.6})$.

This proof uses the pattern of inferences: 1100100, where "1" denotes a speedup and "0" denotes a slowdown.

Theorem (Williams)

Let $c < 2\cos(\pi/7) \approx 1.801$. Then $SAT \notin DTS(n^c)$.

This used proofs of the following $1/0\ {\rm patterns:}$

$1^{n}(10)^{*}(0(10)^{*})^{n}$.

Based on using Maple to (unsuccessfully) search for better refutations, these were conjectured by Williams to be the best possible refutations.

Theorem (Buss-Williams'12)

There are alternation trading proofs of $SAT \notin DTS(n^c)$ for exactly the values $c < 2\cos(\pi/7)$.

Remark: If SAT \notin DTS(n^c) for all c > 1, then L \neq NP, something thought to be hard to prove.

So this theorem implies some kind of limit on diagonalization for proving separations towards:

"L versus NP?"

... but only under current proof methods.

Definition

 $DTISP(n^{c}, n^{\epsilon})$ is the class of problems decidable in deterministic time $n^{c+o(1)}$ and space $n^{\epsilon+o(1)}$.

The notion of alternation trading proofs can be expanded to give proofs that $\operatorname{SAT} \notin \operatorname{DTISP}(n^c, n^\epsilon)$ for various values $1 \leq c < 2\cos(\pi/7)$ and $0 < \epsilon < 1$.

This is done by giving alteration trading proofs of

$$\mathrm{DTISP}(n^{\alpha c}, n^{\alpha \epsilon}) \subseteq \mathrm{DTISP}(n^{\beta c}, n^{\beta \epsilon})$$

for some $\alpha > \beta > 0$.

Using computer-based search (C++), aided by theorems about pruning the search for alternation trading proofs:

Theorem (B - Williams'12)

The following pairs are the optimal values c and ϵ for which there are alternating trading proofs that SAT \notin DTISP (n^{c}, n^{ϵ}) .

These values for c and ϵ are better than prior known lower bounds.

Open problems

- Find a closed form solution for the optimal DTISP(n^c, n^ε) proofs. Even, find a simple characterization of how to construct the optimal proofs without resorting to a brute-force (pruned) search.
- There are many other flavors of alternation trading proofs, for instance for nondeterministic algorithms for tautologies. One could try giving proofs that the known alternation trading proofs are optimal.
- Most interesting: Try to find *new* principles that go beyond the presently known speedup and slowdown inferences, to give improved lower bound proofs.

Thank you!

< 🗗 🕨

(★ 문 ► ★ 문 ►

æ