
The Power of Diagonalization for Separating

Complexity Classes

Sam Buss

Yandex (Moscow)
July 21, 2015

Sam Buss Diagonalization for Separation

A fundamental open problem for computer science is to prove (or,
disprove)

P 6= NP,

Namely, does non-determinism help computation?

No less fundamental are questions about separating time classes
from space classes; e.g.:

L = P? and P = PSpace?

(L is log space; P is polynomial time; PSpace is polynomial space.)

These latter problems are potentially easier to answer — in the
negative —, since

L ⊆ P ⊆ NP ⊆ PSpace.

Sam Buss Diagonalization for Separation

Q: Why conjecture P 6= NP?

A1: Because attempts at proving P = NP using direct simulation
have failed. (!)

A2: Because oracle results give barriers on using diagonalization to
separate P and NP. [Baker-Gill-Solovay’1975]

Diagonalization has been useful mostly for proving the time and
space hierarchies. For example:

Theorem: L 6= PSpace and P 6= DTime(2n).
[Hartmanis-Lewis-Stearns’1965; Stearns-Hartmanis’1965].

DTime(2n) denotes ExpTime (exponential time).

Sam Buss Diagonalization for Separation

A barrier to stronger diagonalization is:

Oracle separation: [Baker-Gill-Solovay, 1975] There are oracles
collapsing L and NP and oracles collapsing P and PSpace, so
any proof of separation must not relativize.

This means that any proof of “P 6= NP” (or “P = NP”) must use
techniques that do not relativize.

This talk will concentrate, however, on the positive aspects of
diagonalization, and how diagonalization can be surprisingly strong.

Remark: Other barriers to separating complexity classes include Natural Proofs

[Razborov-Rudich, 1997], and Algebrization [Aaronson-Wigderson, 2008].

Sam Buss Diagonalization for Separation

This talk: Using diagonalization for:

Space hierarchy.

Time hierarchy.

Nondeterministic time hierarchy.

Alternation trading proofs, and lower bounds for satisfiability.

Hierarchy of complexity classes:

L ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime.

Space hierarchy gives: L 6= PSpace.
Time hierarchy gives: P 6= ExpTime.
No other separations for these classes are known.

Sam Buss Diagonalization for Separation

Classical uses of self-reference:

I. Gödel incompleteness:

“I am not provable”.

II. Halting Problem is undecidable [Turing]:
If recursive enumerable is same as recursive, form a Turing
machine M so that

“M halts iff M does not halt”.

Sam Buss Diagonalization for Separation

Classical use of diagonalization:

Diagonalization
- Underlies the use of self-reference.
- Is easier to work with.

For example: To prove not all recursive enumerable sets are
recursive: Suppose this fails, and form a recursive predicate P(i) by

P(i) ⇔ Mi(i) rejects

Mi is the i -th Turing machine.

This argument uses a universal Turing machine.

Sam Buss Diagonalization for Separation

Space Hierarchy

Theorem (Hartmanis-Lewis-Stearns’65)

Suppose s(n) = o(t(n)). Then Space(s) 6= Space(t).

Computational Model:

Turing machines with k tapes, k ≥ 1, and finite alphabet Γ.
Inputs: Binary strings x ∈ {0, 1}∗.
Outputs: “Yes”/“No” (“Accept”/“Reject”).
Runtimes are stated as a function of the length n = |x | of the
input string x .

Space is the total number of tape squares (memory) used by the
computation. – Does not count size of the input.

Constant factors of speed-up can be achieved with large alphabets,
so time/space bounds always use “Big-O” or “little-o” notation.

We assume all space/time bounds are well-behaved (space- and time-constructible).

Sam Buss Diagonalization for Separation

Proof sketch for space hierarchy theorem:

Fact: There is a 1-tape universal Turing machine Ut so that,
- for any Turing machine Me using space s, there is ce > 0, s.t.
- Ut(〈e, x〉) uses space ce · s and outputs Me(x)

— unless ce · s > t.

- Ut aborts if simulating Me requires space > t.

Define the Turing machine N so that N(〈e, x〉) runs Ut(e, 〈e, x〉)
and outputs the opposite answer.

Thus N ∈ Space(t). But for all Me ∈ Space(s) and all
sufficiently large x ,

N(〈e, x〉) 6= Ut(e, 〈e, x〉) = Me(〈e, x〉)

So N /∈ Space(s). qed

Sam Buss Diagonalization for Separation

Time Hierarchy

Theorem (Hartmanis-Stearns’65)

Let s(n) log s(n) = o(t(n)). Then Time(s) 6= Time(t).

Proof idea:

Fact: [H-S’65] There is a 2-tape universal Turing machine V t

so that,
- for any Turing machine Me using time s, there is ce > 0, s.t.
- V t(〈e, x〉) uses time ce · s · log s and outputs Me(x)

— unless ce · s · log s > t.

- V t aborts if simulating Me requires time > t.

Remainder of the proof is similar to before.

Sam Buss Diagonalization for Separation

Nondeterministic Turing machines

Nondeterministic Turing machines have the ability to “guess”.
If any guess leads to acceptance, then the Turing machine is said
to accept.

Formally: A nondeterministic Turing machine has multiple
possible moves allowed by its transition function. A configuration
is accepting iff it is in an accepting state or at least one legal move
leads to an accepting configuration.

Satisfiability (Sat) is the canonical NP-complete problem. It is
accepted by a nondeterministic, polynomial time Turing machine:
the machine guesses and verifies a truth assignment.

Sam Buss Diagonalization for Separation

Nondeterministic time hierarchy

[Cook’72; Seiferas-Fisher-Meyer’78; Žák’83; Santhanam-Fortnow’11]

Theorem (S-F-M’78; Nondeterministic time hierarchy)

Suppose s(n+1) = o(t(n)). Then NTime(s) 6= NTime(t).

To start the proof sketch:

Fact: There is a 2-tape universal non-deterministic Turing
machine Ut so that,
- for any nondeterministic Me using time s, there is ce > 0, s.t.
- Ut(〈e, x〉) uses time ce · s, and accepts iff Me(x) accepts

— unless ce · s > t.

- Ut rejects on paths that use time > t

Sam Buss Diagonalization for Separation

The problem with the previous proof is that with non-determinism,
there is no way to output an “opposite” answer, negating the
answer takes us from nondeterminism (existential choices) to
co-nondeterministic (universal choices).

To avoid this [Žák’83]:

Let Te(n) := deterministic time to compute Me(x), |x | = n.
That is, Te(n) ≤ d s(n) for some d > 0.

Define N(〈e, x0i 〉) to equal (for |x | sufficiently large)

Ut(e, 〈e, x0i+1〉) = Me(〈e, x0i+1), if t(n) < Te(|〈e, x , 〉|).
¬Me(〈e, x〉) otherwise.

The first case is non-deterministic, the second is deterministic.

N(〈e, x0i 〉) = Me(〈e, x0i 〉) cannot hold for all i .

Thus N ∈ NTime(t) \NTime(s). qed

Sam Buss Diagonalization for Separation

Nondeterministic space hierarchy

Theorem

Suppose s(n) = o(t(n)). Then NSpace(s) 6= NSpace(t).

The proof is very similar to the proof of the
Hartmanis-Lewis-Stearns space hierarchy. However, to negate the
output of Ut(e, 〈e, x〉), the proof uses the fact that NSpace is
closed under complement [Immerman’87; Szelepcsényi’87].

Sam Buss Diagonalization for Separation

Alternation-trading proofs

The rest of the talk discusses upper and lower bounds on what
separations can be obtained with alternation-trading proofs.

Alternation-trading proofs involve iterating the restricted space
methods of Nepomnjasci [1970] together with simulations. This is
essentially

a sophisticated version of diagonalization.

The best alternation-trading results obtained so-far state that Sat
is not computable in simultaneous time nc and space nǫ for certain
values of c > 1 and of ǫ > 0.

E.g., alternation-trading proofs give partial results towards
separating logspace (L) and NP.

Sam Buss Diagonalization for Separation

Satisfiability

Definition (Satisfiability – Sat)

An instance of satisfiability is a set of clauses.
Each clause is a set of literals.
A literal is a negated or nonnegated propositional variable.
Satisfiability (Sat) is the problem of deciding if there is a truth
assignment that sets at least one literal true in each clause.

Thm: Satisfiability is NP-complete.

Conjecture: Satisfiability is not polynomial time. (P 6= NP.)

Sam Buss Diagonalization for Separation

Why is Satisfiability important?

1. Satisfiability is NP-complete.

2. Many other NP-complete problems are many-reducible to Sat

in quasilinear time, that is, time n · (log n)O(1).

3. For a given non-deterministic machine M, the question of
whether M(x) accepts in n steps is reducible to Sat in quasilinear
time. [Sharpened Cook-Levin theorem about the NP-completeness
of Sat].

Thus Sat is a “canonical” and natural non-deterministic time
problem. Lower bounds on algorithms for Sat imply the same
lower bounds for many other NP-complete problems.

Sam Buss Diagonalization for Separation

We now use the Random Access Memory (RAM) model for
computation. This gives a very robust notion of linear time
computation (the classes DTime(n) and NTime(n)).
“DTime”/“NTime” = Deterministic/Nondeterministic time.

Sharpened Cook-Levin Theorem:

Theorem (Schnorr’78; Pippenger-Fischer’79; Robson’79,’91;
Cook’88)

There is a c > 0 so that, for any language L ∈ NTime(T (n)),
there is a quasi-linear time, many-one reduction from L to

instances of Sat of size T (n)(logT (n))c .

In fact, the symbols of the instances of Sat are computable in
polylogarithmic time (logT (n))c .

Sam Buss Diagonalization for Separation

We now use the Random Access Memory (RAM) model for
computation. This gives a very robust notion of linear time
computation (the classes DTime(n) and NTime(n)).
“DTime”/“NTime” = Deterministic/Nondeterministic time.

Sharpened Cook-Levin Theorem:

Theorem (Schnorr’78; Pippenger-Fischer’79; Robson’79,’91;
Cook’88)

There is a c > 0 so that, for any language L ∈ NTime(T (n)),
there is a quasi-linear time, many-one reduction from L to

instances of Sat of size T (n)1+o(1).

In fact, the symbols of the instances of Sat are computable in
polylogarithmic time (logT (n))c .

Sam Buss Diagonalization for Separation

The “Slowdown” Theorem.

Corollary (Slowdown Theorem)

If Sat ∈ DTime(nc), then NTime(nd) ⊂ DTime(nc·d+o(1)).

The factor no(1) hides polylogarithmic factors.

Sam Buss Diagonalization for Separation

Definition

Let c ≥ 1. DTS(nc) is the class of problems solvable in
simultaneous deterministic time nc+o(1) and space no(1).

For instance, Logspace restricted to time nc .

A series of results by Kannan [1984], Fortnow [1997],
Lipton-Viglas, van Melkebeek, Williams, and others gives:

Theorem (Williams, 2007)

Let c < 2 cos(π/7) ≈ 1.8019. Then Sat /∈ DTS(nc).

We also have:

Theorem (B -Williams’12)

The exponent c = 2cos(π/7) is the best that can be obtained with
present-day techniques.

Sam Buss Diagonalization for Separation

Nepomnjasci’s method

Definition

b(∃nc)dDTS(ne)

denotes the class of problems taking inputs of length nb+o(1),
existentially choosing nc+o(1) bits, keeping in memory a total of
nd+o(1) bits (using time nmax{c,d}+o(1)) which are passed to a
deterministic procedure that uses time ne+o(1) and space no(1).

Speedup Theorem (by method of [Nepomnjasci’1970]

bDTS(nc) ⊆ b(∃nx)max{b,x}(∀n0)bDTS(nc−x).

Proof next page....

Sam Buss Diagonalization for Separation

b
DTS(nc) ⊆ b(∃nx)x(∀n0)bDTS(nc−x), for x ≥ b

Proof idea: Split the nc time computation into nx many blocks.
Existentially guess the memory contents (apart from the input) at
each block boundary (using nx · no(1) = nx+o(1) many bits),
then universally choose one block to verify its correctness (using
O(log n) = no(1) universal binary choices),
and simulate that block’s computation (in nc−x time).

nx blocks, each nc−x steps

Space no(1)

. + input size nb.

nc total run time

Sam Buss Diagonalization for Separation

Alternation trading proofs [Williams]

An alternation trading proof is a proof that Sat /∈ DTS(nc), for
some fixed c ≥ 1. It is a proof by contradiction, based on deducing

1
DTS(na) ⊆ 1

DTS(nb)

for some a > b, from the assumption that Sat ∈ DTS(nc).

The lines of an alternation trading proof are of the form

1(∃na1)b2(∀na2)b3 · · · bk (Qnak)bk+1DTS(nak+1).

There are two kinds of inferences: “speedup” inferences that add
quntifiers and reduce run time (based on Nepomnjascii) and
“slowdown” inferences that remove a quantifier and increase run
time (based on the S-P-F-R-C theorem)....

Sam Buss Diagonalization for Separation

The rules of inferences for alternation trading proofs are:

Initial speedup: (x ≤ a)

1
DTS(na) ⊆ 1(∃nx)max{x ,1}(∀n0)1DTS(na−x),

Speedup: (0 < x ≤ ak+1)

· · · bk (∃nak)bk+1DTS(nak+1)

⊆ · · · bk (∃nmax{x ,ak})max{x ,bk+1}(∀n0)bk+1DTS(nak+1−x),

Slowdown: (Under assumption that Sat∈DTS(nc))

· · · bk (∃nak)bk+1DTS(nak+1) ⊆ · · · bkDTS(nmax{cbk ,cak ,cbk+1,cak+1}).

and the dual rules.

Sam Buss Diagonalization for Separation

Example: alternation trading proof.

Let 1 < c <
√
2. Then, if Sat ∈ DTS(nc),

DTS(n2) ⊆ (∃n1)1(∀n0)1DTS(n1)

⊆ (∃n1)1DTS(nc)

⊆ DTS(nc
2
).

which is a contradiction. Proof uses a speedup-slowdown-slowdown
pattern, also denoted 100.

This proves:

Theorem (Lipton-Viglas, 1999)

Sat /∈ DTS(n
√
2).

Sam Buss Diagonalization for Separation

Better results can be found with more alternations.

Theorem (Fortnow, van Melkebeek, et. al)

Sat /∈ DTS(nc), where c < φ ≈ 1.618, the golden ratio.

The optimal refutation with seven inferences derives:

Theorem (Williams)

Sat /∈ DTS(n1.6).

This proof uses the pattern of inferences: 1100100, where “1”
denotes a speedup and “0” denotes a slowdown.

Sam Buss Diagonalization for Separation

Theorem (Williams)

Let c < 2 cos(π/7) ≈ 1.801. Then Sat /∈ DTS(nc).

This used proofs of the following 1/0 patterns:

1n(10)∗(0(10)∗)n.

Based on using Maple to (unsuccessfully) search for better
refutations, these were conjectured by Williams to be the best
possible refutations.

Sam Buss Diagonalization for Separation

Theorem (Buss-Williams’12)

There are alternation trading proofs of Sat /∈ DTS(nc) for exactly
the values c < 2 cos(π/7).

Remark: If Sat /∈ DTS(nc) for all c > 1, then L 6= NP,
something thought to be hard to prove.

So this theorem implies some kind of limit on diagonalization for
proving separations towards:

“L versus NP?”

... but only under current proof methods.

Sam Buss Diagonalization for Separation

Time-Space Tradeoff Lower Bounds

Definition

DTISP(nc , nǫ) is the class of problems decidable in deterministic
time nc+o(1) and space nǫ+o(1).

The notion of alternation trading proofs can be expanded to give
proofs that Sat /∈ DTISP(nc , nǫ) for various values
1 ≤ c < 2 cos(π/7) and 0 < ǫ < 1.

This is done by giving alteration trading proofs of

DTISP(nαc , nαǫ) ⊆ DTISP(nβc , nβǫ)

for some α > β > 0.

Sam Buss Diagonalization for Separation

Using computer-based search (C++), aided by theorems about
pruning the search for alternation trading proofs:

Theorem (B -Williams’12)

The following pairs are the optimal values c and ǫ for which there
are alternating trading proofs that Sat /∈ DTISP(nc , nǫ).

ǫ c

0.001 1.80083
0.01 1.79092
0.1 1.69618
0.25 1.55242
0.5 1.34070
0.75 1.15765
0.9 1.06011
0.99 1.00583
0.999 1.00058

ǫ

c

1
0

1.8019

1

These values for c and ǫ are better than prior known lower bounds.

Sam Buss Diagonalization for Separation

Open problems

Find a closed form solution for the optimal DTISP(nc , nǫ)
proofs. Even, find a simple characterization of how to
construct the optimal proofs without resorting to a brute-force
(pruned) search.

There are many other flavors of alternation trading proofs, for
instance for nondeterministic algorithms for tautologies. One
could try giving proofs that the known alternation trading
proofs are optimal.

Most interesting: Try to find new principles that go beyond
the presently known speedup and slowdown inferences, to give
improved lower bound proofs.

Sam Buss Diagonalization for Separation

Thank you!

Sam Buss Diagonalization for Separation

