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Second-order Bounded Arithmetic Theories U1
2 and V 1

2 .

U1
2 and V 1

2 are second-order bounded arithmetic theories for
polynomial space (PSPACE) and exponential time (EXPTIME).

[B, 1985]

First-order language for (non-negative) integers:
Symbols: 0, S , +, ·, #, ⌊ 1

2
x⌋, |x |, ≤.

|x | is the length of the binary representation of x .
x#y := 2|x |·|y | — gives polynomial growth rate functions.

First-order quantifiers range over integers:
Unbounded quantifiers: ∀x , ∃x .
Bounded quantifiers: ∀x≤t, ∃x≤t.
Sharply bounded quantifiers: ∀x≤|t|, ∃x≤|t|.

Second-order quantifiers range over sets of integers.
∀X , ∀Y . Not explicitly bounded.



Classifications of bounded formulas:

◮ Σb
i , Π

b
i - Formulas with ≤ i alternating blocks of bounded

first-order quantifiers ignoring sharply bounded quantifiers. No
unbounded quantifiers. May contain second-order variables,
but no second-order quantifiers.

◮ Σ1,b
0 - Formulas with no unbounded quantifiers, and no

second-order quantifiers. Equals
⋃

i Σ
b
i .

◮ Σ1,b
i , Π1,b

i - Formulas with i alternating blocks of second order
quantifiers, ignoring first-order quantifiers. No unbounded
first-order quantifiers.

Normal forms:
By assumption, negations are pushed in to atomic formulas.
Our theories have sufficient comprehension so that, w.l.o.g.,
sharply bounded quantifiers are pushed inside bounded first-order
quantifiers, and bounded first-order quantifiers are pushed inside
second-order quantifiers.



Complexity characterizations

◮ Σb
1 and Πb

1 formulas express exactly NP and coNP properties.

◮ Σb
i and Πb

i formulas express exactly properties at the i -th level
of the polynomial time hierarchy.

◮ Σ1,b
1 formulas express exactly NEXPTIME properties.

Γ-IND induction axioms
ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x + 1)) → ∀xϕ(x); for ϕ ∈ Γ.

Γ-PIND induction axioms
ϕ(0) ∧ ∀x(ϕ(⌊ 1

2
x⌋) → ϕ(x)) → ∀xϕ(x); for ϕ ∈ Γ.

The “PIND” axioms are “feasible” forms of induction.



Bounded Arithmetic Theories

“BASIC” - universal axioms giving properties of the function and
relation symbols.

Σ1,b
0 -comprehension axioms

(∀~x)(∀~X )(∃Z )(∀y ≤ t)[y ∈ Z ↔ ϕ(y , ~x , ~X )], for ϕ ∈ Σ1,b
0

Definition (S1
2 )

S1
2 is BASIC + Σb

1-PIND.

Definition (U1
2 )

U1
2 is BASIC + Σ1,b

1 -PIND + Σ1,b
0 -comprehension.

Definition (V 1
2 )

V 1
2 is BASIC + Σ1,b

1 -IND + Σ1,b
0 -comprehension.



Definability of functions

Definition
Let Γ be a class of formulas, and T be a theory. Also suppose f is
a total (multi)function, f = f (~a) or f = f (~a, ~A). Then f is
Γ-definable by T if, there is some φ ∈ Γ which defines the graph
of f such that

T ⊢ ∀~x ∃y φ(~x , y)

or (respectively),

T ⊢ ∀~x , ~X ∃y φ(~x , ~X , y).



Theorem ([B’85])

◮ The Σb
1-definable functions of S1

2 are precisely the polynomial
time functions.

◮ The Σ1,b
1 -definable functions of U1

2 are the PSPACE

functions.

◮ The Σ1,b
1 -definable functions of V 1

2 are the EXPTIME

functions.

Remarks

◮ The inputs ~x are usual inputs. Any second-order inputs ~X are
given as oracles.

◮ For any of these three theories, we can have uniqueness:
∀~x∃!yφ′(~x , y).

◮ Characterizing Σb
1-definable functions of U1

2 and V 1
2 is an

open problem, and is a main topic of this talk.



Total NP Search Problems (TFNP)

Definition
A Total NP Search Problem is given by a polynomial time property
φ(x , y) = φ(x , y) with inputs x and y such that

∀x ∃y [|y | ≤ p(|x |) ∧ φ(x , y)].

Canonical examples include PLS [JPY’88]; PPAD, PPADS
[MP’91,P’94], and many others.

Let T be a true theory, say U1
2 or V 1

2 .
Any Σb

1 definable function of T is a total NP search problem.

Goal: characterize the provably total NP search problems of U1
2

and V 1
2 .



Definition
Suppose that (∀x)(∃y ≤ t)φ(y , x) and (∀x)(∃y ≤ s)ψ(y , x)
specify NP search problems, denoted y = Qφ(x) and y = Qψ(x).
A many-one reduction from Qφ to Qψ consists of a pair of
polynomial time functions g and h such that whenever
y = Qψ(g(x)), we have h(y , x) = Qφ(x).
We write Qφ ≤m Qψ to denote that there is a many-one reduction
from Qφ to Qψ.

Definition
A theory proves that Qφ ≤m Qψ provided that it proves

(∀x)(∀y)[y = Qψ(g(x)) → h(y , x) = Qφ(x)]

for some explicitly polynomial time functions g and h.



Definition (Local Improvement Principles [KNT’11])

An instance of Local Improvement consists of:

◮ A constant in- and out-degree dag G with domain
[a] := {0, 1, 2, . . . , a−1} with polynomial time function f
computing the edges incident on a vertex. The acyclicity is
enforced by requiring edges to respect <.

◮ Nodes of G will be assigned a series of“labels”.
Labels include “score” values.

◮ A polynomial time initial labeling function E which assigns to
each vertex a label with score 0.

◮ A polynomial time local improvement function I (described on
the next slide), which may assign to a vertex with a label of
score s a new label of score s + 1.

◮ A polynomial time, predicate wf, which determines if a
labeling of a neighborhood of a vertex x is “wellformed”.

◮ There is an upper bound b > 0 on labels and an upper
bound c > 0 on scores for well-formed neighborhoods.



The improvement function I updates labels with incremented
scores by “sweeping back-and-forth” across the dag:

The improvement function I takes as input a wellformed labeling
of the neighborhood of a vertex x , and provides a new label for x .

◮ (Rightward sweep). If s is even, if all predecessors of x have
labels with score s + 1, and if x and all of x ’s successors have
labels with score s; then I provides a new label for x with
score s + 1.

◮ (Leftward sweep). If s is odd, if all successors of x have labels
with score s + 1, and if x and all of x ’s predecessors have
labels with score s; then I provides a new label for x with
score s + 1.

◮ In other cases, the I function is undefined.

◮ A labeling is extended-wellformed around x if it is wellformed
at x and at each of x ’s neighbors. The improvement
function I preserves this property.



Rightward sweep improvement by I : (even to odd)

︸︷︷︸

Score
2s + 1

︸︷︷︸

Score
2s
⇓ I

Score
2s + 1

︸︷︷︸

Score
2s

x



Leftward sweep improvement by I : (odd to even)

︸︷︷︸

Score
2s + 1

︸︷︷︸

Score
2s + 1
⇓ I

Score
2s + 2

︸︷︷︸

Score
2s + 2

x



Definition
The local improvement principles state that the above conditions
cannot all hold.

Definition
A solution to an local improvement principle instance is one of:

◮ A vertex where G is not a dag respecting <.

◮ A vertex where E fails to give well-formed labels of score 0.

◮ A local assignment of labels that violate the properties of I or
cause I to output a label > b or a score > c .



An instance of local improvement uses a parameter a of length
|a| = n.

The bound b on labels is always a (wlog).

The bound c on scores may be a (unrestricted), or |a| (“log”), or k
(constant k ≥ 1).

Definition

◮ LI, LIlog , and LIk are the local improvement principles for
arbitrary graphs, with the indicated value for the bound c on
the number of rounds (scores).

◮ LLI, LLIlog , LLIk are the same where the graph G is a dag
which is just a line.

◮ RLI, RLIlog , RLIk are the same where the graph G is a dag
in which vertices are rectangularly arranged...



Edges for rectangular dag for RLI, RLIlog , and RLIk :

j − 1

j

j + 1

i − 1 i i + 1



Theorem ([KNT’11])

RLI and LI are many-one complete for the provably total NP
search functions of V 1

2 .

Theorem ([KNT’11])

LLIlog is many-one complete for the provably total NP search
functions of U1

2 .

Remark: as part of being many-one complete problems, LI and
LLIlog are Σb

1-definable total NP search problems of V 1
2 and U1

2

(respectively).



Theorem ([Beckmann-B’14])

LI1 and RLIlog are many-one complete for the provably total NP
search functions of V 1

2 .

Theorem ([Beckmann-B’14])

RLI1 and LLI are many-one complete for the provably total NP
search functions of U1

2 .

Corollary

1. LLI, LLIlog and RLI1 are equivalent and many-one complete
for U1

2 .

2. LI, LIlog , LI1, RLI, and RLIlog are equivalent, and are
many-one complete for V 1

2 .

So for LI... and LLI..., the geometry of the dag is more important
than the number of rounds.

Open: What is status for RLIk for constant k > 1?



Proof sketch for U1
2 ⊢ LLI:

First a couple of useful theorems:

“∆1,b
1 ” means provably equivalent to a Σ1,b

1 -formula and a

Π1,b
1 -formula.

Theorem ([B’85])

◮ The ∆1,b
1 -predicates of U1

2 are precisely the PSPACE

predicates.

◮ U1
2 proves ∆1,b

1 -IND and ∆1,b
1 -MIN.

Theorem ([Beckmann-B’14])

U1
2 can formalize Savitch’s theorem that NPSPACE = PSPACE.

Thus U1
2 has induction (IND) and minimization (MIN) for

NPSPACE properties.



Suppose (G ,E , I , b, c , a, . . .) is an instance of LLI.

We want to argue in U1
2 that some solution exists.

The obvious procedure of applying the initialization E and the
improvement function I by sweeping leftward and rightward a
times is guaranteed to find a solution.
Unfortunately, this uses exponential space to remember the current
labels, and thus is not definable in U1

2 .
(The graph G is implicitly defined on a nodes, and is exponentially
large.)

Modify this procedure to be in NPSPACE by letting it forget
scanned labels, and then nondeterministically guessing them as
needed on the next scan.

The NSPACE procedure knows labels for vertices i−2, i−1, i ,
i+1, i+2 which are extended well-formed. It uses the I function to
update the label (and score) on i , and then advances one vertex
left- or rightward.



Any run of the NPSPACE procedure will end with one of:

1. A place where the improvement function I (or, E ) fails to give
extended well-formed values,

2. A score value > c , or

3. A guessed value for a previously generated label fails the
needed wellformedness property.

If 1. or 2. occur, they give a solution to the LLI problem.

Consider a longest run of the NPSPACE procedure. It reaches a
scan where labels with score s+1 are being. Say, s is odd and the
scan is leftward. For i a vertex in G , consider the scans that reach
vertex i when setting scores of s+1: if there is such a scan which
guesses the correct (=previously set) labels of i−1, i , i+1, then we
call i “good”. Take the minimum good value i . It can be shown
that any scan which reaches vertex i while setting scores s+1 halts
by finding a place where I fails the needed well-formedness
condition; that is, it gives a failure of type 2.

This can be formalized in U1
2 , and U1

2 ⊢ LLI is proved. �



Propositional proof complexity

Recall: The Cook [C’75] & Paris-Wilkie [PW’87] translations of
second-order bounded arithmetic proofs into propositional logic,
give a method of translating a valid Σ1,b

0 -formula φ(a,X ) into a
family JφK of tautologies involving propositional variables xi
denoting the value of X (i).

The JφK translation turns atomic formulas into constants or literals
xi or x i . Boolean connectives translate to themselves. Bounded
quantifiers translate to large conjunctions or disjunctions.



Theorem
If φ is Σ1,b

0 and V 1
2 ⊢ φ, then the tautologies JφK have

quasi-polynomial size extended Frege proofs.

Proof: By the RSUV isomorphism, the conservativity of S1
2 over

PV, and the fact that PV theorems translate to poly size eF
proofs. �

Theorem
If φ is Σ1,b

0 and U1
2 ⊢ φ, then the tautologies JφK have

quasi-polynomial size Frege proofs.

Proof: By a similar argument. �

Corollary

The tautologies JLLI1K have quasi-polynomial size Frege proofs.

Remark: This is surprising, since it appears to need to reason about
(concepts equivalent to) the P-complete circuit value problem. �



Corollary

If V 1
2 is conservative over U1

2 w.r.t. Σ1,b
1 -formulas, then extended

Frege proofs can be quasi-polynomially simulated by Frege proofs.

Proof: Since V 1
2 proves the consistency of eF proofs coded by

second-objects. �

It is unlikely that V 1
2 is conservative over U1

2 ; however, recent
developments include:

◮ Cook-Reckhow’s eF proof of the PHP can be
quasipolynomially simulated by Frege proofs. [B’??]

◮ The AB = I ⇒ BA = I tautology has quasipolynomial size
Frege proofs [Hrubes-Tzameret’12].

◮ Frankl’s Theorem has quasipolynomial size Frege proofs.
[Aisenberg-Bonet-B]



We thus have almost no examples of possible tautologies which are
known to have short extended Frege proofs, and which plausibly
require exponential Frege proofs apart from partial consistency
statements.

The various LI and LLI principles, plus RLI1 and RLIlog and RLI

are examples of statements which are essentially partial consistency
statements.

Question
Can the RLIk principles, for k > 2, give tautologies which
(super-quasi-polynomially) separate extended Frege and Frege
proofs?

One way to refute this: show U1
2 ⊢ RLIk for k ≥ 2.



Thank you!


