
Substitution and Propositional Proof Complexity

Sam Buss

Abstract We discuss substitution rules that allow the substitution of formulas for

formula variables. A substitution rule was first introduced by Frege. More recently,

substitution is studied in the setting of propositional logic. We state theorems of

Urquhart’s giving lower bounds on the number of steps in the substitution Frege

system for propositional logic. We give the first superlinear lower bounds on the

number of symbols in substitution Frege and multi-substitution Frege proofs.

“The length of a proof ought not to be measured by the yard. It is easy to make a proof

look short on paper by skipping over many links in the chain of inference and merely

indicating large parts of it. Generally people are satisfied if every step in the proof is

evidently correct, and this is permissable if one merely wishes to be persuaded that

the proposition to be proved is true. But if it is a matter of gaining an insight into

the nature of this ‘being evident’, this procedure does not suffice; we must put down

all the intermediate steps, that the full light of consciousness may fall upon them.”

[G. Frege, Grundgesetze, 1893; translation by M. Furth]

1 Introduction

The present article concentrates on the substitution rule allowing the substitution

of formulas for formula variables.1 The substitution rule has long pedigree as it

was a rule of inference in Frege’s Begriffsschrift [9] and Grundgesetze [10], which

contained the first in-depth formalization of logical foundations for mathematics.

Since then, substitution has become much less important for the foundations of

Sam Buss

Department of Mathematics, University of California, San Diego, e-mail: sbuss@ucsd.edu,

Supported in part by Simons Foundation grant 578919.

1 We do not concern ourselves with the much more common use of substitution allowing replacing

(first-order) variables with terms.

1

2 Sam Buss

mathematics, being subsumed by comprehension axioms. Indeed, substitution of

formulas for formula variables, when it is even permitted, is generally viewed as

being merely a derived rule of inference.

Interest in substitution rules was revived in the 1970’s, however, by [5, 6, 21]

working with propositional proof systems. Motivated by logical questions arising

out of the P versus NP question, they were interested in the logical and computa-

tional strength of propositional proof systems (called “Frege systems”) including

propositional proof systems in which both modus ponens and substitution rule are

allowed as inferences. In the propositional setting, if i(?) is a derived formula with

? a propositional varible, then the substitution rule allows inferring i(k/?), namely

by replacing every use of the variable ? with the formula k.

The present article was instigated by the opportunity to write a contribution for

a volume honoring Alasdair Urquhart. A large part of Urquhart’s work concerns the

proof complexity of propositional proof systems, especially relatively weak proof

systems. Two of his papers give lower bounds for substitution Frege proof length.

In addition, Urquhart’s work also addresses Russell’s use of substitution for the

foundations of mathematics based on Russell’s efforts to fix the paradoxes present

in Frege’s work. Quite apart from the inherent interest of the substitution rule, this

makes it an appropriate topic for the present collection of papers.

Section 2 will briefly discuss the substitution rule in second-order logic. Substitu-

tion was used already in Frege’s work introducing formal methods for mathematical

reasons, encompassing both first- and second-order arithmetic. Section 2 discusses

the well-known equivalence of substitution and comprehension in second-order

logic, and touches very lightly on later attempts of Russell to use substitution as

foundation for logicism.

Our principal interest in the substitution rule is in the setting of propositional

logic, using the so-called Frege proof systems augmented with the substitution rule;

this topic is discussed in Sections 3 and 4, which form the main parts of this paper.

We are particularly interested in general bounds on the size of substitution Frege

proofs. Section 3 gives the main definitions and discusses connections with substi-

tution Frege systems and quantified propositional logic. It also discusses different

forms of substitution including renaming substitution and ⊤/⊥-substitution. Sec-

tion 4 states lower bounds on the number of inferences in substitution Frege proofs

due to Urquhart; we extend these to obtain new lower bounds on symbol-length as

well.

We thank Jeremy Avigad, Bruno Bentzen, Wojciech Dzik, and Alasdair Urquhart

for very useful comments and feedback on an earlier draft of this paper.

2 Substitution in metamathematics

In preparing this article, I (the present author) took the opportunity to read the

core work of Frege (in English translation) presented in his Begriffsschrift [9] and

volume 1 of his Grundgesetze [10, 11]. This was a eye-opening experience. Although

Substitution and Propositional Proof Complexity 3

it is at times hard to read Frege as his less formal, philosophical discussions do not

always correspond exactly to his formal system, in the end, Frege gives more-or-

less complete formal definitions, and overall, Frege’s formulations of quantification

theory are remarkably well-developed and advanced, and very clearly elucidated.2

Frege’s formal system encompasses both first-order and second-order logic. Frege’s

second-order objects are functions, defined in terms of their “course-of-values” or

“value ranges” (“Werthverlauf”); this together with his Basic Law V provides a

general comprehension axiom. Frege’s pictograph representation of assertions may

look awkward by modern standards when first encountered, but his proof system

includes propositional logic and first- and second-order universal and existential

quantifiers in a full and modern form. It even contains the sequent calculus as a special

case.3 Frege uses sophisticated methods for reasoning about inductive properties

in a general way. He defines the non-negative integers in terms of equinumerous

classes (“Gleichzahligkeit”) starting in Section 38 of the Grundgesetze [10, 11]. The

Grundgesetze also contains some rudimentary type theory in the sense of first- and

second-level (“erster und zweiter Stufe”) functions; however, for Frege, everything

collapsed to the first-level functions. The notation,
,
n , used for defining a function

in terms of its course-of-values is a precursor to lambda notation. Frege also used a

definite article (“bestimmtenArtikel”) similar to Russell’s upside-down iota symbol]

and a precursor to the Hilbert epsilon symbol. Furthermore, Frege used a formal

method of introducing definitions, allowing the introduction of new pictographs to

represent more complex formulas.

The substitution rule is given in Section 48 of the Grundgesetze, where it is

presented as inference rule 9, allowing “Replacement of Roman letters” (“Ersatz

der lateinische Buchstaben”). In short, it allowed any first-order function (“Funktion

erster Stufe”) to be substituted for a free variable as long as the number of argument

places matched up. In the earlier Begriffsschrift, substitution is introduced without

much fanfare or explanation starting in the derivation of (2) in Section 13. Later parts

of the Begriffsschrift use increasingly strong substitution principles, culminating in

derivations of (97), (98) and (110). (See Boolos [2], for more on the use of substitution

in the Begriffsschrift.)

We can state a version of the substitution rule in modern terms as follows. We work

in second-order logic. Unlike Frege, we use sets as second-order objects instead of

functions. Let� (G) be a second-order object; that is, � (0) takes on Boolean values for

arbitrary first-order objects 0. LetΦ(G) andΨ be an arbitrary second-order formulas.

2 Indeed, Urquhart [27] mentions “Frege’s limpid clarity”, comparing it favorably with the work of

Russell.

3 The sequent calculus is included in the sense that a figure of the form (for instance)

Γ

Δ

Λ

Π

corresponds to the sequent Π,Λ, Δ → Γ. The Begriffsschrift and Grundgesetze spend an unexpect-

edly long time discussing things that correspond to the structural rules, the cut rule and the negation

rules of the sequent calculus.

4 Sam Buss

We write Ψ(Φ/�) for the formula that results from replacing every instance � (B)

in Ψ with Φ(B/G), where Φ(B/G) means the formula obtained from Φ by replacing

free occurrences of G with the term B.4 The substitution rule allows us to infer

Ψ

Ψ(Φ/�)

This form of the substitution rule is equivalent to comprehension; a fact first no-

ticed by von Neumann [30] and again by Henkin [15]. The fact that substitution

implies comprehension can be proved as follows (see [2]). Let Φ(G) be an arbi-

trary formula, and let � and - be unary predicate symbols. From the valid sequent

∃- ∀G(- (G) ↔ �(G)), we obtain ∃- ∀G(- (G) ↔ Φ(G)) by substituting Φ for �.

This is just the comprehensionprinciple forΦ. The converse, that substitution follows

from comprehension, is similarly easy to prove.

We hasten to add however that the substitution rule in the Grundgesetze was

not as powerful as substitution in second-order logic; instead it served more as a

convenience method to shorten proofs by being able to replace variables by arbitrary

formulas. In particular, the substitution rule was not the mechanism used by Frege to

establish comprehenson. That was done instead using course-of-values syntax and

the Basic Law V of the Grundgesetze.

As is well known, the Grundgesetze proof system is inconsistent due to Russell’s

paradox. As Frege himself maintains in the appendix to volume 2 of [10], the Basic

Law V is the problematic axiom. In fact, the problematic part is often referred to as

“Basic Law Vb”5, which we can restate in the language of second-order logic as

- = . → ∀G(- (G) ↔ . (G)).

Stated in this form, Basic Law Vb presents as an instance of an equality axiom,

and thus as completely unproblematic. However, it was a crucial axiom for the

Grundgesetze. For Russell’s paradox, one posits the existence of a the set of all sets

which do not contain themselves as a member. In the Grundgesetze, and taking some

liberties in notation, the property of a set 0 not being a member of itself is expressed

as

(∃1) (1 = 0 ∧ 0 ∉ 1).

It requires the use of an equality axiom to conclude from this that 0 ∉ 0. My own take

on this is that the real problem does not lie in Basic Law Vb. That law, stated as an

equality axiom, seems completely true. Instead, the root cause of the inconsistency is

the fact that the Grundgesetze system allows unresticted use of the course-of-values

notation
,
n to introduce functions.

Frege of course was devastated by Russell’s paradox, and understood very clearly

the problems it raised. He wrote in part,6 “And even now I do not see how arithmetic

4 The usual conditions on ‘substitutability’ must hold of course. These can always be enforced by

renaming bound variables as necessary.

5 See [10, §52].

6 Translation by Furth of the appendix to volume 2 of the Grundgesetze.

Substitution and Propositional Proof Complexity 5

can be scientifically founded, how numbers can be conceived as logical objects and

brought under study, unless we are allowed—at least conditionally—the transition

from a concept to its extension. Is it always permissable to speak of the extension of

a concept, of a class? And if not, how do we recognize the exceptional cases?” [11,

p. 127]

After discovering the paradoxes, Russell took up the effort of recasting Frege’s

theories into a consistent theory for the foundations of mathematics, including the

foundations of arithmetic. He made a strong effort, in both published and unpublished

works, to develop a “substitutional theory” in which substitution played a leading

role. In those theories, the notation ? 0
G
!@ indicated that the result of substituting G

for every appearance of 0 in ? yields @. This substitution notation was not just a

syntactic construction; instead, “? 0
G
!@” served as a formula and indeed ?, G, 0, @

could be quantified over as variables. Unfortunately, the substitutional theory also

suffered from paradoxes, and Russell abandoned it favor of the type system of

Whitehead and Russell’s Principia Mathematica.

Russell’s substitutional theory is not particularly relevant to the main topics of

the present paper; nor is it not really about the syntactic operation of substitution.

Furthermore, the present author is not particularly knowledgeable about it. We

therefore do not consider it further. The interested reader is referred instead to

Landini [19] and to the articles [12, 16, 20, 23, 27].

There is a great deal of work on Frege’s formal systems for the foundations of

mathematics. As a start, some that I have consulted include [1, 2, 13, 14, 31].

3 Substitution and propositional proofs

We now turn to the substitution rule in the setting of propositional proof systems.

Propositional proof systems are much weaker than the second-order systems dis-

cussed above, but are still of more-than-considerable interest. A first reason for our

interest is the connection to fundamental open questions in computational complex-

ity such as the P versus NP question, or especially the NP versus coNP question, a

connection first discovered by Cook [5]. A second reason is that propositional proof

systems form the basis for many computerized verification and theorem-proving

systems. Of course, a third reason is the intrinsic interest of the proof systems. The

present section will discuss Frege proof systems, extended Frege proof systems, and

several forms of substitution Frege proof systems. It will also explain the connection

between the substitution rule and quantified propositional logic. The next section

will discuss upper and lower bounds on the lengths of substitution Frege proofs.

A propositional language is a finite set ! of propositional connectives, e.g.,

! = {¬,∧,∨,→,↔}. We usually require that ! is a complete set of Boolean

connectives in that any Boolean function can be represented by an !-formula. A

propositional proof system for ! is a (total) polynomial time computable function 5

mapping {0, 1}∗ onto the set of !-tautologies [6]. A traditional proof system % can

be viewed as a propositional proof system by defining the function 5% so that whenF

6 Sam Buss

encodes a valid �-proof, 5% (F) is equal to the formula proved by F, and for other F,

5% (F) is equal to some arbitrary !-tautology.

We write |F | and |i| to denote the length of a string F and a propositional

formula i. By “length” we mean the number of symbols in the string or formula.

When % is a traditional proof in one of the inference systems defined below, and

c is a %-proof, we write |c | for the number of symbols in c, namely the sum of

the lengths of the distinct formulas appearing in %. We call |c | the length of c. The

number of distinct formulas in c is called the step length of c. Since we only count

distinct formulas, proofs are implicitly dag-like, not tree-like.

Suppose 5 and 6 are proof systems for !. We say that 5 polynomially simulates 6

provided there is a polynomial ?(=) so that for any 6-proof F of a formula i, there

is an 5 -proof E of i with |E | ≤ ?(|F |). If ?(=) is linear, then we say 5 linearly

simulates 6. We call 5 and 6 polynomially equivalent if they polynomially simulate

each other.

In propositional logic, the substitution rule is generally used as an augmentation

of a Frege proof system. A Frege proof system is a propositional proof system with

a finite number of axiom schemes and inference schemes which is implicationally

sound and implicationally complete.7 Without loss of generality, propositional for-

mulas are formed using the connectives ¬, ∧, ∨, → and ↔ and the only inference

rule is modus ponens. The finitely many axiom schemes typically include schemes

such as � → (� → �) where any formulas may be substituted for � and �. It

is known that all Frege systems polynomially simulate each other [6], so the exact

choice of connectives, axioms and inference rules is not particularly important. In

addition, if two Frege systems use the same language, then they linearly simulate

each other.

An extended Frege proof is allowed to use the extension rule [25] which permits

inferring a formula

G ↔ �

where G is a new variable that does not appear in the formula �, or in the proof

so far, or in the final line of the proof. The idea is that the new variable G serves

as an abbreviation for the formula �. In principle, this may allow extended Frege

proofs to be shorter than Frege proofs. However, it is open how much speedup of

proof length extended Frege proofs provide over Frege proofs. This seems to be an

extremely hard question, as it is related to the question of whether Boolean circuits

can be represented by polynomial size formulas.

Definition 1 The substitution rule for Frege systems allows inferences of the form

�

�(�/?)

where the notation “�(�/?)” means the result of replacing every occurrence of the

variable ? in � with the formula �.

7 We only briefly describe Frege proof systems here. For more background see Buss [4] or Kra-

jicek [17].

Substitution and Propositional Proof Complexity 7

The substitution rule is not implicationally sound since the hypothesis � may not

logically imply the conclusion �(�/?). However, it is sound, since the conclusion

is valid whenever the hypothesis is valid.

The extension rule and substitution rule provide two ways to (apparently) add sub-

stantial strength to a Frege proof system. An extended Frege proof system is defined

to be a Frege system augmented with the extension rule. Likewise, a substitution

Frege proof system is a Frege proof system augmented with the substitution rule. It

is common to use F to denote a particular Frege proof system. Then eF and sF

denote the associated extended Frege and substitution Frege proof systems obtained

by added the extension rule and the substitition rule (respectively) to F .

It is also possible, although not nearly as common, to define a substitution rule

that allows multiple substitutions in parallel.

Definition 2 The multi-substitution rule for Frege systems allows inferences of the

form
�

�(�1/?1, . . . , �:/?:)
(1)

where ?1, . . . , ?: are distinct variables, and where the notation “�(�1/?1, . . . , �:/?:)”

means the result of replacing every occurrence of each variable ?8 in � with the

formula �8 . The multi-substitution Frege proof system, msF , is obtained by adding

the multi-substitution rule to a Frege system F .

It is clear that a sF -proof is also an msF -proof, so msF trivially polynomially

simulates sF . Conversely, the action of a multi-substitution inference as shown above

can be simulated by (at most) 2:−1 substitution inferences. Namely, :−1 substitution

inferences are used to replace ?2, . . . , ?: with new variables ?′
2
, . . . , ?′

:
and then

: substitution inferences are used to replace ?1, ?
′
2
, . . . , ?′

:
with �1, . . . , �: . (The

first : − 1 inferences are used in case any ? 9 occurs in any �8 .) This shows that the

(single) substitution Frege system sF polynomially simulates the multi-substitution

system msF .

When working with a sF or msF proof c, we can view the formulas in c as

being implicitly universally quantified. That is, if a formula � has been proved

in c, it means the same as (∀?)�. Indeed, the substitution rule can be simulated in

quantified propositional logic with the inferences

�
∀-intro

(∀?)� (∀?)� → �(�/?)
modus ponens

�(�/?)

The next theorem gives a central result about Frege systems.

Theorem 1 [6, 7, 18] The extended Frege proof systems and substitution Frege proof

systems are polynomially equivalent.

It is open whether Frege systems can polynomially simulate the extended Frege and

substitution Frege systems.

The fact that sF polynomially simulates eF systems as was proved by Cook and

Reckhow [6], and we sketch the proof to give an example of the power of substitution.

8 Sam Buss

Suppose c is an extended Frege proof of a formula �. Enumerate the uses of the

extension rule in c as G8 ↔ �8 for 8 = 1, 2, . . . , ℓ. We assume these extension axioms

are given in the order in which they appear in c, and thus the condition that each G8
is a new variable implies that G8 does not appear in � 9 for any 9 < 8. Applying the

deduction theorem ℓ times, there is a Frege proof of the formula

(Gℓ ↔ �ℓ) → ((Gℓ−1 ↔ �ℓ−1) → (· · · ((G2 ↔ �2) → ((G1 ↔ �1) → �)) · · ·)).

(2)

We use the substitution rule to replace Gℓ with �ℓ ; note that Gℓ does not appear

anywhere in the formula (2) other than where it is indicated. We then prove the

tautology �ℓ ↔ �ℓ (with a proof of length polynomial in |�ℓ |), and use modus

ponens to infer

(Gℓ−1 ↔ �ℓ−1) → (· · · ((G2 ↔ �2) → ((G1 ↔ �1) → �)) · · ·).

This process is repeated ℓ − 1 many more times until a derivation of � is obtained.

This gives an sF proof of � with length polynomially bounded by the length of |c |.

The fact that eF polynomially simulates sF was proved by Dowd [7] in unpub-

lished work, and then by Krajíček and Pudlák [18]. Dowd gave a proof based on

proving the soundness of sF in the bounded arithmetic theory PV; Krajíček and

Pudlák describe that proof in the setting of (1
2
, and also give an explicit simulation

of sF by eF . The reader should refer to [18] for details.

We conclude this section with two restrictions on the (multi-)substitution rule

from [3] which have turned out to be as strong as unrestricted substitution. We

henceforth assume that the language ! contains the two constant symbols ⊤ and ⊥

denoting the constants True and False, respectively.

Definition 3 A ⊤/⊥ substitution inference is a multi-substitution inference of the

form (1) in which each formula �8 is either ⊤ or ⊥.

Definition 4 A variable renaming inference is a multi-substitution inference of the

form (1) in which each formula �8 is a variable.

Definition 5 A permutation substitution inference is a multi-substitution inference

of the form (1) in which each �8 is a variable, and the mapping ?8 ↦→ �8 is a

permutation of {?1, . . . , ?: }. It is permitted that some ?8’s do not appear in �.

The difference between a variable renaming inference and a permutation substitution

is that the former can replace two variables with the same variable. Namely, a variable

renaming inference may have some �8 and � 9 equal to each other, and thus the

renaming inference causes the two variables ?8 and ? 9 to be mapped to the same

variable. This is not permitted in a permutation substitution inference. Since it may

be that not all the ?8’s actually appear in �, a permutation substitution inference

should be viewed a permutation acting on all variables, not just on the variables

appearing in �.

A ⊤/⊥-substitution Frege proof system is a Frege system augmented with the

⊤/⊥ substitution inference rule. A renaming Frege proof system is a Frege system

Substitution and Propositional Proof Complexity 9

augmented with the variable renaming rule. These are known to be equivalent to

(multi-)substitution Frege:

Theorem 2 [3] ⊤/⊥-substitution Frege and renaming Frege are both polynomially

equivalent to sF (and hence to msF and eF).

However, it is open whether permutation Frege proof systems are polynomially

equivalent to extended Frege systems. It is also open whether a Frege system can

polynomially simulate a permutation Frege proof system.

4 Bounds on Substitution Frege proof length

This section discusses the best known lower bounds on the lengths and step lengths of

substitution Frege proofs. This work was initiated by Urquhart [26, 28] who proved

linear lower bounds on the step length of substitution Frege proofs. Urquhart was in

turn motivated by results of Buss [3] giving a quadratic lower bound on the num-

bers of symbols in Frege proofs and extended Frege proofs for certain tautologies.

Theorem 5 below gives new lower bounds on the lengths of (multi-)substitution

Frege proofs. These kinds of lower bounds are of interest because of the connections

between propositional proof length and the question of whether NP = coNP. In

particular, if there exists a proof system % (in the sense of Cook and Reckhow) such

that all tautologies have polynomial length %-proofs, then NP = coNP [6]. Thus,

it is interesting to prove non-trivial lower bounds on proof length even for specific

systems such as Frege, extended Frege, substitution Frege, etc.

For Frege and extended Frege systems we have (a weaker bound for Frege was

proved earlier by [24]):

Theorem 3 [3] There is an infinite family of tautologies i= for which the shortest

extended Frege proofs have lengthΩ(|i= |
2). In addition, the shortest extended Frege

proofs have step length Ω(|i= |).

Of course this implies the same lower bounds for Frege proofs.

We henceforth make the (inessential) assumption that the propositional language

contains the symbols ⊤, ⊥, ¬, ∧, ∨ and →. The proof of Theorem 3 in [3] used

formulas i= of the form

⊥ ∨ (⊥ ∨ (⊥ ∨ (· · · (⊥ ∨⊤) · · ·))), (3)

where there are = many ⊥’s. Suppose c is an (extended) Frege proof of i=. A

formula � appearing in c is defined to be active in c provided that there is an axiom

or an inference in c which involves an occurrence of �, and the validity of the

inference depends on the presence of the principal connective of �. For example,

in an axiom � → (� → �), the two formulas � → (� → �) and � → � are

active; however,� and � and their subformulas are not. Similarly, in a modus ponen

inference inferring � from � and � → �, only the formula � → � is active.

10 Sam Buss

It is a simple observation, that if a formula � is not active in an (extended) Frege

proof c, then the result of replacing every appearance of � in c uniformly with

another formula �′ results in a valid (extended) Frege proof c′. It follows that every

subformula of i= must be active in c. This is because otherwise, we could replace

that subformula by the constant⊥, thereby obtaining a valid proof of a false formula.

The proof of Theorem 3 is now almost immediate. An axiom or inference in c

has only $ (1) many active formulas. Since every subformula of i= must be active

in c, there must be Ω(=) many lines in c, so the step length of c is Ω(|i= |). Any

active occurrence of a formula in c can be a subformula of only $ (1) many other

occurrences of active formulas. Therefore, the number of symbols in c is bounded

by Ω(B) where B is the sum of the sizes of the subformulas in i=. Clearly, B ≥ =2, so

|c | = Ω(=2) = Ω(|i= |
2). This completes the proof sketch for Theorem 3.

Theorem 3 does not say anything about the lengths of substitution Frege proofs. In

fact, the formulas i= have sF -proofs of length $ (=) and step length. Urquhart [26,

28] addressed this by proving the following:

Theorem 4 There are tautologies k= such that any msF -proof of k= requires step

length Ω(=/log =). There are tautologies j= such that any sF -proof of j= requires

step length Ω(=).

The second part of Theorem 4 is proved in [28]. The formulas j= are formed by

letting = = 2# , and letting j= be a balanced conjunction of the formulas ?8 → ?8
for 8 = 1, . . . , =. The Ω(=) lower bound is proved by extending the notion of “active”

formulas to include also any formula �8 used in a (multi-)substitution inference (1),

and then arguing that for every 8, either ?8 or ?8 → ?8 is active. As there can be only

$ (1) many active formulas per inference in an sF -proof, this gives the Ω(=) step

length lower bound for sF . This argument fails for msF -proofs however. Indeed, as

Urquhart shows, there are msF -proofs of j= of step length $ (log =).

The proof of the first part of Theorem 4, giving lower bounds on the step length of

msF -proofs, uses formulas similar to, but more complicated than the i=’s used for

Theorem 3. The idea is to encode a binary string F into a propositional formulaΨF .

Inductively define ΨF for F ∈ {0, 1}∗ as follows. For F the empty string, let ΨF
equal just ⊤. Further let Ψ0F be the formula (⊥ ∨ΨF), and let Ψ1F be the formula

(⊤ → ΨF). For instance, Ψ0101 is the formula

(⊥ ∨ (⊤ → (⊥ ∨ (⊤ → ⊤)))).

Urquhart [26] gives an information-theoretic/counting proof that there is a F of

length = such that any msF -proof of ΨF requires step length Ω(=/log =). The basic

idea is to encodemsF -proofs of step length<by a binary string of length$(< log<)

using a “condensed detachment” inference — in essence this construction shows that

an msF -proof can be specified by stating, for each line � in proof, what axiom or

inference was used to derive � and which earlier lines (if any) were used as hypotheses

for the inference deriving �. This description sets up a unification problem that can

be solved to find the a “most general” desired proof. The end result gives a non-

constructive proof that there are strings F such that ΨF requires msF -proofs of step

Substitution and Propositional Proof Complexity 11

length Ω(=/log =). For each =, k= is set (non-constructively) be one of the ΨF ’s

with |F | = = that require msF -Frege proofs of step length Ω(=/log =).

We now extend Theorem 4 to give a lower bound on the (symbol) length of

msF -proofs.

Theorem 5 There are tautologiesk= of length |k= | = \ (=) such that anymsF -proof

of k= has length Ω(= log =).

Theorem 5 will be proved using a version of Urquhart’s formulas ΨF , together

with an extension of the concept of “active” formula. First, we extend the notationΨF
somewhat, and let ΨF ◦ � denote the result of replacing the final ⊤ symbol in ΨF

with the formula �. For F the empty string, ΨF ◦ � is just the formula �. Then, for

any F, Ψ0F ◦ � is (⊥ ∨ΨF ◦ �) and Ψ1F ◦ � is (⊤ → ΨF ◦ �). Note that ΨF ◦ ⊤

is the same as ΨF .

We also use the symbol “◦” to denote string concatenation: for E, F ∈ {0, 1}∗,

E ◦ F denotes the concatenation of E and F. Clearly, ΨE ◦ (ΨF ◦ �) is equal to

ΨE◦F ◦ �. We write E ⊑ F to indicate that E is a substring of F. We write F [8, 9]

for the substring of F starting with the (8 + 1)st symbol of F and ending with the

9 th symbol of F. Thus F [0, 8] denotes the prefix of F containing the first 8 symbols

of F; and F [8, |F |] denotes the suffix of length |F | − 8.

Before proving Theorem 5, we show the results are optimal for our ΨF formulas,

by explicitly constructing sF -proofs that have length $ (= log =) and step length

$ (=) for = = |F |. The sF -proof proceeds by proving the tautologies

? → (ΨE ◦ ?) (4)

for longer and longer E ⊑ F. First consider strings E of length one. Here Ψ0 ◦ ?

is (⊥ ∨ ?) and (Ψ1 ◦ ?) is (⊤ → ?), and the formulas

? → (⊥ ∨ ?) and ? → (⊤ → ?)

have constant size Frege proofs. For |E | > 1, express E as E = D1 ◦ D2, where

|D1 | = ⌈ 1
2
|E |⌉ and |D2 | = ⌊ 1

2
|E |⌋. Suppose that ? → (ΨD1

◦ ?) and ? → (ΨD2
◦ ?)

have already been derived. From these, we derive

? → (ΨD2
◦ ?)

? → (ΨD1
◦ ?)

substitution
(ΨD2

◦ ?) → (ΨD1
◦ (ΨD2

◦ ?))

? → (ΨD1
◦ (ΨD2

◦ ?))

The upper inference is a substitution replacing ? with (ΨD2
◦ ?). The double line

above the last step indicates that some steps (may) have been omitted. The last line

follows tautologically as an instance of the rule “from � → � and � → � deduce

� → �”. Since the Frege system is implicationally complete, this has a schematic

derivation with$ (1) steps, and with $ (|E |) many symbols. Since (ΨD1
◦ (ΨD2

◦ ?))

is the same as (ΨE ◦ ?), this completes the desired derivation for ? → (ΨE ◦ ?).

12 Sam Buss

The final step of the sF -proof applies substitution to ? → (ΨF ◦ ?) to obtain

⊤ → (ΨF ◦ ⊤). From this, ΨF ◦ ⊤ is derived with $ (1) more steps without further

use of substitution. The sF -proof does not need to prove the tautologies (4) for all E,

only the ones that are needed to prove ? → (ΨF ◦ ?). This gives a divide-and-

conquer recursion. By inspection, the resulting sF -proof has $ (=) many steps, and

$ (= log =) many symbols.

Theorem 5 will be proved using formulas ΨF . We just sketched how to form an

sF -proof of ΨF with length $ (|F | log |F |) and step length $ (=). Thus, for these

formulas at least, the length lower bound in Theorem 5 cannot be improved.However,

the proof of Theorem 5 needs an additional assumption aboutF, since ΨF does have

much shorter proofs for some F’s. In particular, the formulas i= used for Theorem 3

have the form Ψ0= . For these formulas, the sF -proofs just constructed have length

$ (=) and step length $ (log =). The reason for this shorter length and step length

is that all the substrings E of F have the form 08 , so there are only $ (log =) many

distinct tautologies ? → (ΨE ◦ ?) needed for the sF -proof of Ψ=
0
.

The needed additional assumption is that all the substrings E of F of length

 = ⌈2 log =⌉ are distinct. In other words, for 8 ≤ |F | − , the substrings F [8, 8 +]

are distinct. It is easy to give a non-constructive proof of the existence of such

a F; namely, a randomly chosen binary string F of length = has all its length

substrings distinct with probability approximately 1
2
. For 8 < 9 , the probability that

two substrings of F, F [8, 8 +] and F [9 , 9 +] are identical is equal to 2− . There

are
(=− +1

2

)

< =2/2 many ways to choose 8 < 9 < =. Thus, a union bound probability

argument implies that most F’s have all of their length substrings distinct.8

Proof (of Theorem 5) Let = > 0 and = ⌈2 log =⌉. Let F ∈ {0, 1}= such that all of

F’s length substrings are distinct. Suppose c is a msF -proof of ΨF . The goal is

to give a lower bound on the length of c. Recall the definition from [3] of “active

occurrence” of a formula that was given above in the proof of Theorem 3. We shall

modify that definition to define what it means for a ΨE to be “s-active” in c. The

main point of “s-active” is to take into account substitution inferences in deciding

what parts of what formulas are essential for the correctness of c as an sF -proof.

(This is different from Urquhart’s notion of active formulas in sF proofs in [28].)

Let E be a substring of F. If one of the following situations hold, then we say

ΨE is s-active in c. In each situation, we express E as a (non-trivial) concatenation

E = E1 ◦ E2.

(a) Suppose a substitution inference in c derives �(�1/?1, . . . , �ℓ/?ℓ) from �.

Also suppose that for some 9 ≤ ℓ, � contains ΨE1 ◦ ? 9 as a subformula and that

� 9 has the form ΨE2 ◦� for some E2 and �. Further suppose that E = E1 ◦ E2 and

that neither E1 nor E2 is empty. Then ΨE is s-active in that inference and thus in c.

(b) Suppose that an inference � in c has an active occurrence of ΨE ◦� for some �.

Then ΨE is s-active in this inference and thus in c. Let E2 be the maximal length

8 A constructive way to find F with all length substrings disjoint is as follows. Let � = ⌊ 1
2
 ⌋.

For 0 ≤ 8 < =, let 18 ∈ {0, 1}� be the binary representation of the integer 8 padded with leading

zeros as needed to make it have length � . Form the concatenation 10 ◦ 11 ◦ 12 ◦ · · · ◦ 1=−1. It can

be shown that all length 2! substrings of F ′ are distinct. Let F be F ′ truncated to length =.

Substitution and Propositional Proof Complexity 13

suffix of E such that ΦE2 ◦ � is not active in � (if such a E2 exists). Then E1 is the

prefix of E such that E = E1 ◦ E2.

In situation (b), we wish to have E2 exist and be non-empty. This can be arranged

by noting that for any particular Frege system F , there is an upper bound 0 on the

length of E1. This is because the Frege system is schematic, and the finitely many

axiom schemes and inference schemes only nest connectives to a fixed depth. (In fact,

we can take 0 equal to 2 in the most common axiomatization for Frege systems.)

We shall only consider whether ΨE is s-active when |E | > 0. Then, when ΨE is

s-active due to condition (b) holding for an active occurrence of Ψ1 ◦ �, it must be

that |E1 | ≤ 0 and hence that E2 is non-empty.

The condition |E | > 0 will automatically be satisfied in our construction below

if + 0 ≤ 2; this holds for = sufficiently large. In fact, = ≥ 2 will suffice if 0 = 2.

Lemma 1 Let c be an msF -proof of ΨF and suppose E ⊑ F is non-empty. Then ΨE

must be s-active in c. �

Proof Suppose for sake of contradiction, that ΨE is not s-active in c. We shall

modify c so that it remains a syntactically correct msF proof, but ends with a

formula which is not a tautology. This will be a contradiction.

Modify c as follows. Let E′ be the substring of E containing all but the first

symbol of E. Find every occurrence in c of a subformula of the form ΨE ◦ �. Such

a subformula has one of the forms (⊥ ∨ (ΨE′ ◦ �)) or (⊤ → (ΨE′ ◦ �)) depending

on whether E’s first symbol is a 0 or a 1. In either event, replace this formula with

(⊥ ∧ (ΨE′ ◦ �)).

By inspection, the transformed c remains a correct msF proof after this transforma-

tion, since otherwise ΨE would have been s-active in c. And, the final line, ΨF ◦ ⊤,

has been transformed into a false formula because of the presence of “(⊥ ∧ · · ·)” in

the transformed ΨF ◦ ⊤. This gives the desired contradiction. �

The proof of Theorem 5 will be based on a dynamic process searching for a E

with |E | ≥ 2 such that ΨE is not s-active in the given proof c. Of course, by the

lemma, there is no such E. However, the process of searching for an non-s-active E

will identify appearances of formulas ΨE ◦ � in c which jointly contain Ω(= log =)

symbols. The search process will maintain two sets, & and %, of strings E ⊑ F:

strings in & are called “queued” and strings in % are called “processed”. Initially,

& contains only F, and % is empty. Strings in & will be processed one at a time,

and then moved to %, possibly adding additional strings to &. The following two

invariants i. and ii. will be maintained throughout the process.

i. The strings in & all have length at least 2 and are substrings of F. Since

 2 ≥ , this means each E ∈ & corresponds to a unique substring location

in F, namely E can be uniquely expressed as E = F [8, 9] (with 9 = 8 + |E |). We

call this the “F-location” of E. The F-locations of the queued E’s are disjoint

(non-overlapping) substrings of F.

14 Sam Buss

ii. Each substring E in % will have earlier been in &; hence |E | ≥ 2 and E ⊑ F.

For any E1 ≠ E2 ∈ %, one the following holds: (a) E1 ⊑ E2, (b) E2 ⊑ E1, or (c) the

F-locations of E1 and E2 are disjoint substrings of F. Furthermore, each E ∈ %

will be associated with an occurrence of a subformulaf(E) somewhere in c. The

subformula f(E) will have the form ΨE ◦ �.

The process runs as follows. Pick an arbitrary E ∈ &. By Lemma 1, Emust be s-active

in c. This means that at least one of the following situations hold. It may be that

there are multiple ways that (a) and (b) hold; but in this case, the process just picks

arbitrarily one way they hold, so that E gets processed and put into % only once.

(a) Case (a) of the definition of s-active holds for ΨE . There are E1 and E2

such that E = E1 ◦ E2 and a substitution inference deriving the formula

�(�1/?1, . . . , �:/?:) from �. The formula � contains a subformula ΨE1 ◦ ? 9
and � 9 has the form ΨE2 ◦ �. This introduces a new subformula of the form

ΨE ◦ �. We move E from & to %, and let f(E) equal one of the subformulas

ΨE ◦ � introduced in � by the substitution of � 9 for ? 9 . We add E1 and E2 to &

unless they have length < 2.

(b) Case (b) of the definition of s-active holds for ΨE . There is an inference � in c

in which ΨE ◦ � is active. For such an � and active occurrence of ΨE ◦ �, we

can express E as E = E1 ◦ E2 where |E1 | ≤ 0 and E2 is the maximal suffix of E

such that ΨE2 ◦ � is not active in the inference � . If there is more than one way to

choose � and an active occurrence of a formula ΨE ◦ �, then choose them so as

to maximize the length of E1. We move E from & into %, and let the associated

formula f(E) be the chosen active occurrence of ΨE ◦ �. We add E2 to& if it has

length ≥ 2. Since |E1 | ≤ 0 <
2 (for = sufficiently large), E1 is not added to&.

The process stops when & becomes empty.

It is not hard to see that the invariants i. and ii. hold throughout the process. Every

E in % or& has length 2 > and thus has a uniqueF-location as E = F [8, 9]. Since

the process acts by splitting strings E into two substrings as E = E1 ◦ E2, moving E

to % and possibly adding E1 and E2 to &, it is clear that invariants i. and ii. hold.

To finish the proof of Theorem 5, we shall show that the subformulas f(E) for

E ∈ % contribute Ω(= log =) symbols to the length of c.

It is helpful to view strings in % as being vertices of a tree in which each node has

degree at most 2. The node F is the root, since F is the first string put in &, and thus

the first string put in %. And, if E ∈ %, the children (if any) of E are the ⊑-maximal

E′ ∈ % such that E′ ⊏ E. Namely, E′ is a child of E iff E′ ⊏ E and there is no E′′ ∈ %

such that E′ ⊏ E′′ ⊏ E. The uniqueness of the F-locations, the invariant ii., and the

fact that the process always splits strings E into at most two substrings means this

gives a tree in which each node has at most two children. Any E in % which is a leaf

vertex has length |E | < 2 2 − 1; otherwise, either case (a) or (b) would act to give

at least one child of E.

A E ∈ % will called “type (a)” or “type (b)” depending whether the process used

case (a) or case (b) to add E to %.

It would be nice if we could argue that the subformulas f(E) for E ∈ % were

all disjoint and non-overlapping; however, we have not been able to do this. Instead

Substitution and Propositional Proof Complexity 15

we will show three things: First, Lemma 2 will limit how much the F-locations

of any two E’s in % of type (a) can overlap, and thereby identify a way to avoid

double-counting symbols in the formulasf(E) for E’s of type (a). Second, Lemma 3

will show that the subformulas f(E) for E ∈ % of type (b) are disjoint and do not

overlap. Third, Lemma 4 shows that for E ∈ % of type (a), f(E) overlaps with f(E′)

for at most one E′ ∈ % of type (b).

For E ∈ %, the formula f(E) has the form ΨE ◦ � for some �. The first |E | binary

connectives are ∨’s and →’s according to the symbols 0 and 1 in E. We call these

the top binary connectives of f(E). The terminology “top” is since we think of the

formula f(E) as a tree with root at the top: the “top” part is the part above �. There

are |E | many top binary connectives in f(E).

Lemma 2 Suppose E ≠ E′ ∈ % and both E and E′ are type (a). Then the subformulas

f(E) and f(E′) have less than top binary connectives ∨ and → in common. �

Because of the linear (non-branching) structure of the formula ΨE and ΨE′,

Lemma 2 means that the overlapping top binary connectives of f(E) and f(E′) are

connectives corresponding to the right end of E and the left end of E′, or vice-versa.

Our lower bound on the length of the msF -proof c will be obtained by arguing that

each E ∈ % contributes ≥ |E | − many symbols to c (subject to the multiplicative

reduction required by the next two lemmas).

Proof (of Lemma 2) Supposef(E) and f(E′) contain or more top binary connec-

tives (∨’s and →’s) in common. These are formulas ΨE ◦ � and ΨE′ ◦ �
′. Without

loss of generality, f(E′) is a subformula of f(E). Therefore, one of the following

situations hold: (1) E′ ⊏ E and E = D1 ◦ E
′ ◦ D3 for some D1, D3, or (2) E = D1 ◦ D2

and E′ = D2 ◦ D3 for some D1, D2, D3 with D2 non-empty.

We claim that case (1), E′ ⊏ E, is impossible. Since E is type (a), the process

found a multi-substitution inference �, and E1 and E2, such that E = E1 ◦ E2 and the

multi-substitution inference created ΨE1◦E2 ◦ � = ΨE ◦ � by substituting ΨE2 ◦ � for

a variable ? 9 . Exactly the same holds for E′ for some substrings E′
1

and E′
2

of E′, with

the same substitution inference �. (This is because f(E) and f(E′) overlap and are

both type (a).) Since E′ ⊏ E, the tree properties for the strings in % means that either

E′ ⊑ E1 or E′ ⊑ E2. As f(E′) is a subformula of f(E), this means that it is impossible

for the same multi-substitution inference to have been used to process both E and E′,

as the decomposition E = E1 ◦ E2 would have to split E somewhere outside of E′, and

the decomposition E′ = E′
1
◦ E′

2
has to do the split inside E′.

Now consider case (2), E = D1 ◦ D2 and E′ = D2 ◦ D3. The invariant ii. implies

that the F-locations for E and E′ are disjoint. The fact that there are no repeated

substrings of length in F thus means that |D2 | < , so E and E′ overlap in <

symbols. Thus f(E) and f(E′) have < top binary connectives in common. �

Lemma 3 Let E and E′ be of type (b) in %. Then f(E) and f(E′) are disjoint

subformulas in c. �

Proof Suppose f(E) and f(E′) not disjoint, Because of the “linear” structure of the

formulasΨE and Ψ′
E , one of f(E) and f(E′) is a subformula of the other. The strings

16 Sam Buss

E and E′ were processed using case (b), using inferences � and � ′, respectively, and

expressing E = E1 ◦ E2 and E′ = E′
1
◦ E′

2
and finding active formulas ΨE1 ◦ ΨE2 ◦ �

and ΨE′
1
◦ ΨE′

2
◦ �′. By the fact that we choose � and � ′ and the active formulas

ΨE1 ◦ ΨE2 ◦ � and ΨE′
1
◦ ΨE′

2
◦ �′ so as to maximize |E1 | and |E′

1
|, it must be that

ΨE2 ◦ � and ΨE′
2
◦ �′ are maximal non-active subformulas and thus are are exactly

the same subformula. (In fact, we may assume that � and � ′ are the same inference.)

Thus, either E2 is a prefix of E′
2

or vice-versa.

From |E1 |, |E
′
1
| ≤ 0 and |E |, |E′| ≥ 2, we have that both |E2 | and |E′

2
| are

≥ 2 − 0 ≥ . So E and E′ share a common substring of length ≥ . Hence their

F-locations overlap, and by the tree properties for members of %, either E ⊏ E′ or

E′ ⊏ E. W.l.o.g., E′ ⊏ E. Since E is type (b), E1 did not get added to &, so E′ ⊑ E2.

We have |E′| ≤ |E2 | and |E′
1
| ≥ 1; thus |E′

2
| < |E2 | and E′

2
is a proper prefix of E2.

Recall however that |E′
2
| ≥ . This means that E′

2
appears at two places in E2 as a

substring: once since E′
2

is a prefix of E2, and once since E′ = E′
1
◦ E′

2
⊑ E2. (Possibly

the places overlap.) This violates the uniqueness property for F-locations for strings

of length . �

Lemma 4 Suppose E ∈ % is type (a). Then f(E) overlaps with f(E′) for at most one

E′ of type (b). �

Proof Suppose E, E′, E′′ ∈ % have types (a), (b) and (b), respectively; also suppose

f(E) overlaps with both f(E′) and f(E′′). Now f(E) has the form ΨE ◦ �, and

|E | ≥ 2 > 0. Each of f(E′) and f(E′′), must either contain f(E) or be nested no

more than 0 levels deep inside f(E). Because of the “linear” structure of ΨE , this

implies that f(E′) must overlap with f(E′′), contradicting Lemma 3. �

Based on three lemmas, we can lower bound the number of connectives∨ and →

appearing in c by
1

2

∑

E∈%

(|E | −).

This counts all but the topmost (leftmost) top binary connectives inf(E) for E ∈ %.

By Lemma 2, this avoids double counting symbols in f(E)’s with E of type (a). The

multiplicative factor of 1
2

takes into account Lemma 4 so that we do not double count

connectives that appear both in a f(E) and a f(E′) with E of type (a) and E′ of

type (b).

To finish the proof of Theorem 5 it suffices to prove that
∑

E∈% (|E | −) is

Ω(= log =). This is a straightforward, albeit a bit detailed, computation, which we

now carry out. Let

5 (<) = < log(</ 3) + ,

where the logarithm is base 2. Recall that = ⌈2 log =⌉.

Lemma 5 For E ∈ %, let %E be the set {E′ ∈ % : E′ ⊑ E}. Then

5 (|E |) ≤
∑

E′∈%E

(|E′| −). (5)

Substitution and Propositional Proof Complexity 17

Note that %E is the set of strings E′ in the subtree rooted at E.

Proof We may assume = is sufficiently large. In particular, it is convenient to require

at least = ≥ 4 and ≥ 4, and 2 ≥ + 0. The proof is by induction on < = |E |.

First suppose E is a leaf in the tree of members of %. Since E is a leaf member of %,

we have 2 ≤ < < 2 2. In fact, we need only that 2 ≤ < ≤ 3. Since %E = {E},

the inequality (5) becomes

< log(</ 3) + ≤ < − . (6)

From < ≤ 3, we have log(</ 3) ≤ 0, so it will suffice to show ≤ < − . This

holds as < ≥ 2 ≥ 2 .

There are two induction cases to consider. The first is when E has two children E1

and E2 in % (with |E1 |, |E2 | ≥ 2). Let <1 = |E1 | and <2 = |E2 |, so < = <1 + <2.

Since %E is the union of {E}, %E1 and %E2 , and by the induction hypothesis applied

to E1 and E2, it suffices to show that

5 (<) ≤ (< −) + 5 (<1) + 5 (<2). (7)

We claim that 5 (<) is concave up. This is easy to check by noting that the first

derivative

5 ′(<) = log(</ 3) + 1, (8)

is an increasing function. Therefore, by convexity and since <1 +<2 = <, it suffices

to prove that 5 (<) ≤ (< −) + 2 5 (</2). In other words,

< log(</ 3) + ≤ (< −) + 2
(<

2
log(</2 3) +

)

.

In fact, the two sides are equal.

The other induction step is when E has a single child. This arises in case (b), and

also in case (a) when E1 or E2 has length < 2. Let’s assume |E1 | < 2; the other

case is dual. We have <1 = |E1 | < 2 and <2 = < − <1 > < − 2, and %E is

{E} ∪ %E2 . If < ≤ 3, the desired inequality (5) follows from (6); recall that (6) was

proved using only the hypothesis 2 ≤ < ≤ 3. So we may assume < > 3. By the

induction hypothesis for E2 it suffices to show

5 (<) ≤ (< −) + 5 (<2). (9)

We claim that the derivative (8) is positive for< ≥ 3 − 2. To see this, note that

(3 − 2)/ 3 ≥ 3/4 since ≥ 4, so for < ≥ 3 − 2, we have log</ 3 > −1.

Therefore, to establish (9), it suffices to show

5 (<) ≤ (< −) + 5 (< − 2).

since <2 ≥ < − 2. In other words,

<(log< − log 3) + ≤ < − + (< − 2) (log(< − 2) − log 3) + .

18 Sam Buss

We have log< − log(< − 2) ≤ (2/(< − 2))/ln 2 ≤ 3
2
(2/(< − 2)) from

a first-order approximation to log G at G = < − 2. So, regrouping and cancelling

terms, it will suffice to show

 2 log(< − 2) + ≤ <
(

1 −
3 2

2(< − 2)

)

+ 2 log 3,

With < ≥ 3 and ≥ 4, we have 3
2
(2/(< − 2)) ≤ 1/2, so it will further suffice

to show

 2 log< + ≤
<

2
+ 2 log 3, (10)

When we set < = 3 in (10), it becomes, after cancellation, ≤ 3/2. So (10)

holds for < = 3. To handle < > 3, let LHS and RHS be the left- and righthand

sides of (10). Their derivatives are

m

m<
(LHS) =

 2

<
and

m

m<
(RHS) =

1

2
.

Thus, m
m<

(LHS) ≤ m
m<

(RHS) for < ≥ 3, since ≥ 2. It follows that (10) holds

for all < ≥ 3. That proves Lemma 5. �

We can now finish the proof of Theorem 5. We have ΨF is a tautology of length

= = |F |. AnymsF -proof of ΨF must have at least 1
2
5 (=) many occurrences of binary

connectives. Furthermore, since = ⌈2 log =⌉,

5 (=) = = log = − = log 3 +

has growth rate Ω(= log =). �

Theorem 5 bounds the length of msF proofs with length measured as the number

of symbols in the proof. Urquhart’s theorem gives a Ω(=/log =) lower bound on the

number of steps in an B�-proof of (a randomly chosen version of) the same formulas.

We conjecture that for suitable F of length =, the correct lower bound for the step

length of an sF -proof of ΨF is Ω(=). In fact, we even conjecture an Ω(=) lower

bound for the step length of msF -proofs of these formulas.

Of course, if the commonly accepted conjectures about NP are true, then there

are formulas that require exponential size msF -proofs. But obtaining such lower

bounds is at present well out of reach.

References

1. B. Bentzen, Frege’s theory of types. https://arxiv.org/abs/2006.16453, 2020.

2. G. Boolos, Reading the Begriffschrift, Mind, (New series) 94 (1985), pp. 331–344.

3. S. R. Buss, Some remarks on lengths of propositional proofs, Archive for Mathematical Logic,

34 (1995), pp. 377–394.

Substitution and Propositional Proof Complexity 19

4. , Propositional proof complexity: An introduction, in Computational Logic, U. Berger

and H. Schwichtenberg, eds., Springer-Verlag, Berlin, 1999, pp. 127–178.

5. S. A. Cook, Feasibly constructive proofs and the propositional calculus, in Proceedings of

the Seventh Annual ACM Symposium on Theory of Computing, Association for Computing

Machinery, 1975, pp. 83–97.
6. S. A. Cook and R. A. Reckhow, The relative efficiency of propositional proof systems, Journal

of Symbolic Logic, 44 (1979), pp. 36–50.
7. M. Dowd, Model-theoretic aspects of % ≠ #%. Typewritten manuscript, 1985.
8. P. A. Ebert and M. Rossberg, Basic Laws of Arithmetic, Oxford University Press, 2013.

9. G. Frege, Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen

Denkens, Halle, 1879. English translation by Stefan Bauer-MengelBerg, with an introduction

by van Heijenoort, in [29], pages 1-82.
10. , Grundgesetze der Arithmetik, Verlag Hermann Pohle, 1893/1903. Two volumes.

English translation in [8]; partial translation of volume 1 in [11].
11. M. Furth, The Basic Laws of Arithmetic, University of California Press, 1964.
12. I. Grattan-Guiness, The Russell archives: Some new light on Russell’s logicism, Annals of

Science, 31 (1974), pp. 387–406.

13. R. G. Heck, Frege’s Theorem, Oxford University Press, 2011.
14. , Reading Frege’s Grundgesetze, Oxford University Press, 2012.
15. L. Henkin, Banishing the rule of substitution for functional variables, Journal of Symbolic

Logic, 18 (1953), pp. 201–208.
16. P. Hylton, Russell’s substitutional theory, Synthese, 45 (1980), pp. 1–31.

17. J. Krajíček, Proof Complexity, Cambridge University Press, 2019.
18. J. Krajíček and P. Pudlák, Propositional proof systems, the consistency of first-order theories

and the complexity of computations, Journal of Symbolic Logic, 54 (1989), pp. 1063–1079.
19. G. Landini, Russell’s Hidden Substitutional Theory, Oxford University Press, 1998.
20. J. Pelham and A. Urquhart, Russellian propositions, in Proc. Logic, Methodology and

Philosophy of Science IX, Studies in Logic and Foundations of Mathematics 134, Elsevier,

1995, pp. 307–326.

21. R. A. Reckhow, On the Lengths of Proofs in the Propositional Calculus, PhD thesis, Depart-

ment of Computer Science, University of Toronto, 1976. Technical Report #87.
22. J. Siekmann and G. Wrightson, Automation of Reasoning, vol. 1&2, Springer-Verlag, Berlin,

1983.
23. G. Stevens, Substitution and the theory of types: Review of Landini, “Russell’s Hidden

Substitutional Theory”, Russell, The Journal of Bertrand Russell Studies, 23 (2003), pp. 161–

176.

24. G. Tseitin and A. Choubarian, On some bounds to the lengths of logical proofs in classical

propositional calculus (Russian), Trudy Vyčisl. Centra AN ArmSSR i Erevanskovo Univ., 8

(1975), pp. 57–64.
25. G. S. Tsejtin, On the complexity of derivation in propositional logic, Studies in Constructive

Mathematics and Mathematical Logic, 2 (1968), pp. 115–125. Reprinted in: [22, vol 2],

pp. 466-483.
26. A. Urquhart, The number of lines in Frege proofs with substitution, Archive for Mathematical

Logic, 37 (1997), pp. 15–19.
27. , Review of G. Landini, “Russell’s Hidden Substitutional Theory”, Journal of Symbolic

Logic, 64 (1999), pp. 1370–1371.

28. , The complexity of propositional proofs with the substitution rule, Logic Journal of the

IGPL, 13 (2005), pp. 287–291.
29. J. van Heijenoort, ed., From Frege to Gödel: A Source Book in Mathematical Logic, 1879-

1931, Harvard University Press, 1967.
30. J. von Neumann, Zur Hibertschen Beweistheorie, Mathematische Zeitschrift, 26 (1927), pp. 1–

46.
31. E. N. Zalta, Frege’s theorem and foundations for arithmetic. Stanford Encylopedia of Philos-

ophy, https://plato.stanford.edu/entries/frege-theorem, 1998, revised 2018. Retrieved July 26,

2020.

