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Introduction

AC
0[p] circuits and proofs

Fix an integer m ≥ 2.

Definition. AC
0[m] circuits are constant depth circuits for

computing boolean functions.

- Literals and constants: x , x , ⊤ (True), ⊥ (False).
- Unbounded fanin connectives: ∧, ∨, ⊕m.

- ⊕m(~x) = True iff the number of true arguments is ≡ 0 mod m.

Definition. An AC
0[m] proof is a propositional proof in which

each line is an AC0[m]-circuit (equivalently: is an
AC0[m]-formula).

We are mostly interested in the case where m is equal to a
prime p. We call AC0[p] proofs constant depth PK⊕p proofs.
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Introduction

Theorem [Beigel-Tarui’94, see also Allender-Hertrampf’94,
Toda’91, Yao, ...]. Let m ≥ 2. An AC0[m] circuit of size S can
be converted into a quasipolynomial-size depth three formula
consisting of a symmetric gate applied to ⊕m-gates applied to
polylogarithmic size conjunctions of literals.

This expressive power of quasipolynomial size, depth three
formulas, carries over to the power of propositional proofs:

Theorem [Maciel-Pitassi’98] Let m = pk , a prime power.
AC0[pk ] proofs can be quasipolynomially simulated by proofs in
which every line is a depth three formula formed from a threshold
gate applied to ⊕m gates of polylogarithmic size conjunctions.

Recall: The “quasipolynomial simulation” means there is a

2log
O(1)n-time procedure to thusly convert AC0[pk ] proofs.

Open: Does this hold for composite m as well?
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Introduction

Collapsing AC
0[p] without threshold gates

Theorem. [Allender-Hertrampf’94] Let p be prime. An AC0[p]
circuit of size S can be converted into a quasipolynomial-size
depth 4 circuit formed as disjunctions (∨’s) of conjunctions (∧’s)
of ⊕p-gates of polylogarithmic conjunctions of literals.

Theorem A. [BKZ - this talk]
Let p be prime. Constant depth PK⊕p proofs (AC0[p] proofs) can
be quasipolynomially simulated by Tait-style propositional proofs in
which each formula is a (subformula of a) depth three formula
formed as a conjunction applied to ⊕p gates of polylogarithmic
size conjunctions.
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Introduction

Remainder of the talk will outline the proof.

· Constant-depth proof systems with ⊕p connectives.

· Fragments of bounded arithmetic with approximate counting.

· Valiant-Vazirani and Toda theorems.

· A collapse of bounded arithmetic with modular counting.

· Paris-Wilkie translations.

· Reflection principles.

· Precise statement of simulation results.

· Concluding questions.
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Propositional proof systems

Tait-style systems PK⊕p

The lines of a Tait-calculus proof are cedents, sets of formulas
which are interpreted as their disjunction. The system, PK, with
connectives ∧ and ∨ has the rules of inference:

Γ Weakening
Γ,∆

Γ, ϕ Γ, ϕ
Cut

Γ

Γ, ϕi0 ∨

Γ,
∨

i∈Iϕi

Γ, ϕi for all i ∈ I ∧

Γ,
∧

i∈Iϕi

where i0 ∈ I .
- ϕ is the De-Morgan negation of φ.
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Propositional proof systems

For counting mod p, we use 2p many connectives ⊕k
p and ⊕̄k

p

which are true (resp.) false when the number of true inputs is
≡ k mod p.

The system has the same rules of inference as PK, plus the initial
cedents:

ϕ,⊕0
p{ϕ} ϕ,⊕1

p{ϕ}

⊕k
pΦ, ⊕̄k

pΦ ⊕̄k
pΦ, ⊕̄ℓ

pΦ, for k 6= ℓ

⊕̄k
pΦ, ⊕̄ℓ

pΨ,⊕k+ℓ
p (Φ ∪ Ψ)

By convention, “⊕k+ℓ
p ” means “⊕

(k+ℓ) mod p
p ”.
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Propositional proof systems

Constant depth proofs

Constant depth PK⊕p
and PCK

i
p

Constant depth PK⊕p proofs allow ∧’s, ∨’s, and ⊕p gates to

appear at any level. PCKi
p proofs are depth i + 11

2 proofs in which
the inputs to ⊕p gates are restricted to be conjunctions of literals:

Definition. For i ≥ 0, a PCKi
p proof contains literals,

conjunctions of literals, disjunctions of literals, and formulas that
have ≤ i alternating levels of conjunctions and disjunctions above
⊕j

p and ⊕̄j
p gates, which are applied only to “small” conjunctions

of literals.

Remark: It is also possible to work over finite fields of characteristic p, and replace

the ⊕p gates with low-degree polynomials. The resulting system corresponding to

PCK
i
p is denoted PCK

i
Fp
. Similar results hold for PCK

i
Fp

as for PCK
i
p ; this talk

discusses only the propositional systems PCK
i
p however.
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Propositional proof systems

Constant depth proofs

Recall that Theorem A gives a translation from constant depth
PK⊕p proofs into PCK1

p proofs.

For this, the size of PCKi
p proofs is measured in terms of “Σ-size”.

Definition. The Σ-size of a PCKi
p proof P is ≤ S provided there

are ≤ S formulas in P , each of size ≤ S symbols, and every
conjunction or disjunction of literals in P has size ≤ log S .
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Bounded arithmetic with modular counting quantifiers

Bounded arithmetic: subtheories of Peano arithmetic.

Bounded arithmetic theories have close connections with low-level
complexity classes, but more relevantly for this talk, proofs in
bounded arithmetic can be viewed as uniform versions of
constant depth proofs via the Paris-Wilkie translation.

Function symbols: all polynomial time functions and relations.
Bounded quantifiers: (∀x≤t) and (∃x≤t).
Sharply bounded quantifiers: (∀x≤|t|) and (∃x≤|t|)

Classes Σb
i and Πb

i are the formulas containing ≤ i alternating
blocks of bounded quantifiers, ignoring sharply bounded quantifiers.

The strict classes, Σ̂b
i and Π̂b

i , require prenex form, and disallow
sharply bounded quantifiers outside of bounded quantifiers.

Ti
2 is axiomatized with induction for all Σb

i - and Πb
i -formulas.
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Bounded arithmetic with modular counting quantifiers

Modular counting quantifiers

Modular counting quantifiers
Fix a prime p. The syntax of bounded arithmetic is now
augmented with modular counting quantifiers Ck

p, for
0 ≤ k < p. The meaning of

(Ck
px≤t)A(x)

is that the number of x ≤ t such that A(x) is ≡ k mod p.
The axioms for the Ck

p quantifiers are:

A(0) → (C1
px ≤ 0)A(x) ¬A(0) → (C0

px ≤ 0)A(x)

A(t + 1) ∧ (Ck
px ≤ t)A(x) → (Ck+1

p x ≤ t+1)A(x)

¬A(t + 1) ∧ (Ck
px ≤ t)A(x) → (Ck

px ≤ t+1)A(x)

¬[(Ck
px ≤ t)A(x) ∧ (Cℓ

px ≤ t)A(x)] for k 6= ℓ (mod p) .

The (Ck
p≤ · · · ) quantifiers above are considered bounded and may

appear in bounded formulas. Notation: Σ
b,⊕pP

∞ (⊕p).
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Bounded arithmetic with modular counting quantifiers

Modular counting quantifiers

Definition. The theory T2(⊕p), equivalent to S2(⊕p), has
induction for all bounded formulas; i.e., allowing quantifiers
(Ck

px≤t) to appear in front of arbitrary bounded formulas.

Definition. A ⊕pP-formula is atomic, or of the form
(Ck

px ≤ t)A(x) where A is a sharply bounded (so A polynomial
time computable).

The Σ̂
b,⊕pP

i and Π̂
b,⊕pP

i formulas are defined by counting
alternations of bounded ∃/∀ quantifiers acting on ⊕pP formulas,
ignoring sharply bounded quantifiers.

Definition. The theory T
i,⊕pP

2 is axiomatized with the Ck
p axioms

for ⊕pP formulas and with induction for Σ
b,⊕pP

i formulas.
The Ck

p quantifiers can be syntactically restricted to appear only in
⊕pP formulas.
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Bounded arithmetic with modular counting quantifiers

Modular counting quantifiers

In essence, Ck
p quantifiers appear only in ⊕pP formulas for T

i ,⊕pP

2 .

This condition can be relaxed somewhat:

Theorem. We have
⊕pP

⊕pP = ⊕pP.

In fact, any formula composed of sharply bounded quantifiers,
bounded Ck

p quantifiers, boolean operations, and polynomial time
predicates is equivalent to a ⊕pP predicate.

Thus, the theories T
i ,⊕pP

2 are robustly defined.
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Bounded arithmetic with modular counting quantifiers

Modular counting quantifiers

Theorem B.

A lot more than that is true, however: The hierarchy of modular
counting theories of bounded arithmetic collapses to the third level:

Theorem B. T2(⊕p) is conservative over T
3,⊕pP

2 . In fact, any
Σb
∞(⊕p) formula (i.e., any bounded formula) is provably equivalent

to a Σ
b,⊕pP

2 formula.

Theorem B is one of the main ingredients for the proof of
Theorem A. For its proof we introduce Jěrábek’s bounded
arithmetic theories for approximate counting.
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Bounded arithmetic with modular counting quantifiers

Approximate counting

Jěrábek’s theories for approximate counting were axiomatized with
the following, surjective, weak pigeonhole principle, sWPHP(f):

(∀x)(∀y)[x > 0 → (∃v ≤ x(|y |+1))(∀u ≤ x |y |)(f (u) 6= v)]

Then, define (in the notation of [BKT]),

APC1 := PV1 + sWPHP(PV1)

and
APC2 := T 1

2 + sWPHP(PV2).

PV1 is the set of polynomial time functions.
PV2 is the set of functions polynomial time relative to NP.

“APC” = ”APproximate Counting”
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Bounded arithmetic with modular counting quantifiers

Approximate counting

We work with versions of APC1 and APC2 extended to include
⊕pP predicates and functions:

APC
⊕pP

1 := PV
⊕pP

1 + sWPHP(PV
⊕pP

1 )

and
APC

⊕pP

2 := T
1,⊕pP

2 + sWPHP(PV
⊕pP

2 ).

PV
⊕pP

1 : functions polynomial time relative to ⊕pP.

PV
⊕pP

2 : functions that are polynomial time relative to NP⊕pP.
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Bounded arithmetic with modular counting quantifiers

Approximate counting

Jěrábek showed that APC1 can count the size of polynomial time
sets to within a constant fraction ǫ.

Namely, let X ,Y ⊆ 2n be defined by Boolean circuits. Roughly
speaking the “size of X” can be defined to within an error
tolerance of ǫ2n.
Specifically, the relation X �ǫ Y can be defined expressing

“there exists a nonzero v ∈ Log and a circuit G such
that G computes a surjection v × (Y ⊔ ǫ2n) → v × X.”

where ⊔ is disjoint union, where Log is the set of lengths, and
where ǫ = 0 or ǫ ∈ Log.
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Bounded arithmetic with modular counting quantifiers

Approximate counting

For APC2, Jěrábek showed that the size of X can be
approximated to within an error tolerance of ǫ|X |.

Furthermore, APC1 and APC2 can prove many properties about
approximate counting, including facts about union, intersection,
some versions of exclusion/inclusion, Chebyshev inequalities,
randomized computation, BPP, AM, MA, and so forth.

These constructions all relativize to APC
⊕pP

1 and APC
⊕pP

2 .
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Bounded arithmetic with modular counting quantifiers

Valiant-Vazirani theorem

Formalized Valiant-Vazirani theorem

Theorem C. (in APC2) There is a PV1 function which, given a
CNF formula ϕ over the propositional variables ~q = 〈q1, . . . , qn〉
and a (randomly chosen) value r of length (n + 3)n + |n|, outputs
a CNF formula ϕr with the same variables ~q such that

ϕ ∈ Sat =⇒ Pr
r

[¬∃1b, b |= ϕr ] �0 1 −
1

2|n| · 65
,

ϕ /∈ Sat =⇒ ϕr /∈ Sat.

“∃1b” means there exists a unique b.
“b |= ϕr” means that b codes a satisfying assignment for ϕr as a
string of n bits.

The constant 1/65 is not as good as in VV’86 due to the need to
formalize the result in APC2.
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Bounded arithmetic with modular counting quantifiers

Toda’s theorem

Definition. (in APC
⊕pP

1 or APC
⊕pP

2 ). ⊕k
pSat is the set of

propositional formulas ϕ such that the number of satisfying
assignments of ϕ is congruent to k mod p.

A language L is in BP · ⊕pP if there exist PV1 functions f and u
such that for all x ,

x ∈ L ⇐⇒ Pr
r<u(x)

[f (x , r) /∈ ⊕1
pSat] �0 1/4,

x /∈ L ⇐⇒ Pr
r<u(x)

[f (x , r) /∈ ⊕0
pSat] �0 1/4.

Amplification allows the constant 1/4 to be improved to 2−nc .
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Bounded arithmetic with modular counting quantifiers

Toda’s theorem

Formalized Toda theorem in APC
⊕pP
2

Theorem D. T2(⊕p) proves that any Σb
∞(⊕p) formula defines a

property in BP · ⊕pP. Furthermore, these equivalences can be

essentially expressed and proved in APC
⊕pP

2 .

Proof idea: The necessary probabilistic arguments can be carried
out (with difficulty) in APC

⊕pP

2 .

Corollary. T2(⊕p), and in essence APC
⊕pP

2 , can prove the
uniform analogue of the Allender-Hertrampf theorem about the
collapse of AC0[p].

Corollary E. T2(⊕p) is conservative over APC
⊕pP

2 .

Since T
3,⊕pP

2 � APC
⊕pP

2 , we also get

Corollary F. T2(⊕p) is conservative over T
3,⊕pP

2 .
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Paris-Wilkie translations

Paris-Wilkie translation

Let ϕ(~x) be a bounded formula involving an oracle α.

The Paris-Wilkie translation of ϕ(~x) gives an infinite family of
constant depth propositional formulas JϕK~n.

The propositional variables of JϕK~n are xi ’s indicating that α(i) is
true.

The integer values ~n assign values to free variables ~x of ϕ.

Sharply bounded subformulas of ϕ become small depth (depth
polylogarithmic in ~n) decision trees in JϕK~n; expressed as a
disjunction of small conjunctions.

⊕pP subformulas of ϕ become a ⊕p gate applied to small
conjunctions.

Bounded quantifiers (∃x≤t) and (∀x≤t) in ϕ become big
(quasipolynomial size in n) disjunctions or conjunctions JϕK~n.
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Paris-Wilkie translations

Paris-Wilkie Theorem: (one of several forms)

Let ϕ(x) ∈ Σ̂
b,⊕pP

i (α) be a formula of the form

ϕ(x) := (∃y≤t(x)) (∀z≤s(x)) ξ(x , y , z).

so ξ(x , y , z) ∈ Σ̂
b,⊕pP

i−2 (α).

Express ¬ϕ(x) as the set Ξn of t(n) + 1 many cedents

JξKn,m,0, JξKn,m,1, . . . , JξKn,m,s(n)

where 0 ≤ m ≤ t(n). Each cedent in Ξn has s(n) + 1 formulas.

Suppose T
i ,⊕pP

2 (α) ⊢ (∀x)ϕ(x), i ≥ 2. Then

The set of cedents Ξn has a dag-like PCKi−2
p

refutation P such that the Σ-size of P is quasipolynomial
in n.
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Reflection principle

A reflection theorem

The Reflection Principle, j-Ref(d-PK⊕p )(α, β, γ):

If β codes a Σj(⊕
−
p ) propositional formula ϕ, and α

codes a depth d PK⊕p proof of ϕ, then the truth
assignment coded by γ satisfies ϕ.

Note that α, β, γ are second-order, hence code exponentially large
objects.

j-Ref(d -PK⊕p ) is a ∀Σ
b,⊕pP

j (α, β, γ) formula.

Reflection Theorem: T2(⊕p)(α, β, γ) ⊢ j-Ref(d -PK⊕p ).

Corollary: T
3,⊕pP

2 (α, β, γ) ⊢ j-Ref(d -PK⊕p ).

Proof idea: T2(⊕p)(α, β, γ) can give a truth definition for the
depth d formulas in the proof coded by α.
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Final proof outline

Theorem A’. Let ϕ be
∨

k<K

∧
ℓ<Lk

ψk,ℓ, where the ψk,ℓ’s are

Σ1(⊕−
p ) (that is, PCK1

p-formulas). Suppose ϕ has a depth d
PK⊕p proof of size ≤ S . Then the set of cedents

{ψk,0, . . . , ψk,Lk−1}k<K

has a PCK1
p refutation of Σ-size S loge S , where e ∈ N is a constant

depending only on d .

Proof idea. Form the Paris-Wilkie translation of the reflection
principle as provable in T

3,⊕pP

2 (α, β, γ).
This gives a PCK1

p-proof Q.
In Q, substitute for the propositional variables describing values of
α and β, the actual description of the proof P and the formula ψ.
Using the fact that β really codes a valid proof P of ψ, the
resulting restriction simplifies the proof Q into the desired
refutation of the above cedents. QED
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Final proof outline

Remark. It is possible to work with APC
⊕pP

2 (α, β, γ) instead

T
3,⊕pP

2 (α, β, γ).

This allows replacing the PCK1
p proof of Theorem A’ with a PCK0

p

proof, but at the cost of adding additional initial cedents that
express the surjective weak pigeonhole principle.
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Questions

Some questions

1. What does the collapse of PK⊕p proofs imply about the
possibility of proving superpolynomial lower bounds on the
size of PK⊕p -proof (that is, AC0[p]-proofs)?

2. The theories APC
⊕pP

1 and APC
⊕pP

2 , as well as APC1 and
APC2, deserve more study. For instance, is APC2 ⊆ T 2

2 ?
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Thank you

Thank you!
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