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COLLAPSING MODULAR COUNTING

IN BOUNDED ARITHMETIC AND

CONSTANT DEPTH PROPOSITIONAL PROOFS

SAMUEL R. BUSS, LESZEK ALEKSANDER KO LODZIEJCZYK,
AND KONRAD ZDANOWSKI

Abstract. Jeřábek introduced fragments of bounded arithmetic which are

axiomatized with weak surjective pigeonhole principles and support a robust
notion of approximate counting. We extend these fragments to accommodate
modular counting quantifiers. These theories can formalize and prove the rela-
tivized versions of Toda’s theorem on the collapse of the polynomial hierarchy

with modular counting. We introduce a version of the Paris-Wilkie translation
for converting formulas and proofs of bounded arithmetic with modular count-
ing quantifiers into constant depth propositional logic with modular counting
gates. We also define Paris-Wilkie translations to Nullstellensatz and poly-

nomial calculus refutations. As an application, we prove that constant depth
propositional proofs that use connectives AND, OR, and mod p gates, for p
a prime, can be translated, with quasipolynomial increase in size, into propo-
sitional proofs containing only propositional formulas of depth three in which

the top level is Boolean, the middle level consists of mod p gates, and the bot-
tom level subformulas are small conjunctions. These results are improved to
depth two by using refutations from the weak surjective pigeonhole principles.

1. Introduction

A major open problem on the frontier of research in propositional proof com-
plexity is to prove lower bounds on the size of constant depth proofs in the language
with the usual connectives

∧
,
∨
,¬, and a modulo p counting connective, where p

is a prime. These are often called AC0[p]-Frege proofs; however, the present paper
calls them constant depth PK⊕p proofs. Constant depth proof systems can be seen
as nonuniform versions of (relativized) bounded arithmetic theories, so the problem
also has an arithmetic variant: to prove an interesting combinatorial independence
result for the theory T2(⊕p, α), relativized bounded arithmetic in the language with
a mod p counting quantifier.

It has been suggested that this problem, in both of its variants, could be within
reach of current methods. As the techniques used to obtain lower bounds for AC0

circuits [1, 22, 23] were eventually refined to obtain lower bounds for constant depth
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proofs [2, 5], it should be possible — so the reasoning goes — to discover lower
bounds for constant depth proofs with mod p gates by refining the known lower
bound arguments for AC0[p] circuits [37, 40]. However, the idea at the heart of
those arguments, “approximating” small AC0[p] circuits by low degree polynomials
over Fp, does not seem to mesh well with logic; in particular, the approximation
operation does not commute with inference rules. For this reason and others,
answers to basic questions about the strength of constant depth proof systems with
mod p gates remain unknown after years of study, and it increasingly seems that
these systems are just not very well understood.

Our aim in this paper is to contribute to this understanding by pointing out an
important structural feature of constant depth proofs with mod p connectives: they
do not form a strict hierarchy with respect to depth. A (sufficiently simple) formula
with a constant depth proof involving mod p connectives has a quasipolynomially
larger proof in which all formulas have depth at most 3, with

∧
as the topmost

connective and mod p connectives applied to “small” conjunctions of literals below
that. At the cost of introducing additional axioms, the proof can be simplified even
further, almost to the point of being formalizable in polylog degree Polynomial
Calculus.

Results on the possibility of depth reduction in this context are neither totally
unexpected nor altogether new. It is known that AC0[p] circuits can be simulated
by AC0[p] circuits of fixed constant depth and quasipolynomial size [3]; this follows
from the relativized version of Toda’s theorem [43]. Moreover, Maciel and Pitassi
[31] showed that every constant depth proof with mod p gates translates into a
quasipolynomially larger “flat” proof of depth 3. However, formulas in the flat
proofs of [31] involve an exact counting (threshold) connective, so in general they
cannot even be expressed, let alone proved, in constant depth with counting mod-
ulo p. Maciel and Pitassi’s results also apply to proof systems with mod pk gates.
Yao [45] and Beigel-Tarui [11] showed that, for any m > 2, circuits with mod m
gates can be collapsed to depth two circuits with exact counting gates at the top
level. However, Maciel and Pitassi’s results are not known to hold for constant
depth proofs with mod m gates for m not a prime power.

To avoid the use of exact counting connectives in propositional proof systems, we
employ the machinery of “approximate counting in bounded arithmetic”, developed
by Jeřábek. The papers [26, 27] introduced two fragments of bounded arithmetic
and showed that they support reasonably well-behaved notions of approximate
cardinality. The weaker of the two fragments is the theory PV1+sWPHP(PV1), also
called APC1 by [17]. Here, sWPHP is the “surjective weak pigeonhole principle”,
and PV1 denotes both a class of function symbols representing polytime functions
and a theory in which these functions are well-behaved. APC1 is able to determine
the size of any polynomial time subset X of 2n to within an error ϵ2n for any ϵ > 0
polynomially related to 1/n. The second theory is T 1

2 + sWPHP(PV2), also called
APC2. Since this is essentially APC1 relativized to Σb1 (that is, NP) properties,
whatever APC1 can do with polytime, APC2 can do with PNP. More significantly,
APC2 is also more-or-less able to define the approximate size of polytime X ⊆ 2n

to within an error of ϵ|X|, rather than ϵ2n.
Jeřábek’s theories can be smoothly relativized to ⊕pP properties, yielding the

theories APC
⊕pP
1 and APC

⊕pP
2 . We show that APC

⊕pP
2 is actually equal in strength

to all of T2(⊕p). Essentially, the reason for this is that APC
⊕pP
2 proves Toda’s
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theorem, in the form that the polynomial hierarchy with a mod p quantifier collapses
to BP · ⊕pP.

This collapse result in arithmetic is reflected at the level of propositional logic
because of the well-known Paris-Wilkie translation [33], which maps proofs in arith-
metic into uniform families of quasipolynomial size constant depth propositional
proofs. It is a folklore observation that the Paris-Wilkie translation can also be
used with modular counting quantifiers added to the language of arithmetic, and
modular counting gates allowed in the propositional fomulas. To make this observa-

tion precise, we define theories PV
⊕pP
1 , T

1,⊕pP
2 , T

2,⊕pP
2 , . . ., which are relativizations

of the more usual PV1, T
1
2 , T

2
2 , . . . to ⊕pP predicates, and then define propositional

systems corresponding to them in the Paris-Wilkie translation. A side effect of our
treatment is that for some variants of the translation, we obtain correspondences
which seem to be slightly stronger than the ones known from the literature, even
in the setting without modular counting.

APC
⊕pP
2 is a subtheory of T

3,⊕pP
2 . Therefore, the collapse of T2(⊕p) down to

APC
⊕pP
2 translates into the collapse of constant depth propositional proof systems

with mod p connectives down to the system corresponding to T
3,⊕pP
2 , namely to the

depth 3 system described above. Working directly with APC
⊕pP
2 rather than T

3,⊕pP
2

lets us push the collapse down even further, but this requires allowing additional
propositional axioms corresponding to sWPHP.

The implications of our results are unclear. On one hand, they can be viewed as
a potential step on the way to lower bounds for constant depth proofs with mod p
gates. On the other hand, perhaps the right interpretation is more pessimistic:
since we know that the search for those lower bounds involves serious difficulties,
the new results show that the difficulties appear already at a seemingly very low
level, “just above” systems for which lower bounds have been known for long time.

The outline of the paper is as follows. Section 2 has a preliminary character
and splits into two parts. The first part, Section 2.1, discusses propositional proof
systems, defining both the general constant depth systems PK⊕p with unbounded

fanin boolean and modular counting connectives, and the systems PCKip where
modular counting connectives may be applied only to sets of small conjunctions. It
also defines propositional proof systems that use polynomials over Fp. Sections 2.2
and 2.3 review the background concepts needed from bounded arithmetic, and
defines arithmetic theories that incorporate modular counting quantifiers Ckp. Sec-
tion 3 concerns the Paris-Wilkie translation between arithmetic and propositional
proofs, modified so as to take into account the availability of counting modulo p.
It includes some sharpened Paris-Wilkie translations that improve slightly on what
was known even for systems without modular counting quantifiers. Section 4.1
contains a discussion of Jeřábek’s framework for approximate counting, along with
some useful reformulations. Section 4.2 formalizes the Valiant-Vazirani theorem
in the approximate counting theory APC

⊕pP
2 ; then Section 4.3 formalizes Toda’s

theorem in the same theory, and thus proves the collapse of T2(⊕p) to APC
⊕pP
2 .

Section 5 establishes one of the main results, namely the above-discussed collapse of
the constant depth propositional systems with mod p connectives. Finally, Section 6
discusses what remains of the hierarchy of constant depth arithmetic systems (and
proof systems) with mod p gates: we discuss the best lower bounds known for these
systems. This includes an independence result for the pigeonhole principle PHPa+1

a
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which is proved using lower bounds for Nullstellensatz proofs combined with Paris-
Wilkie translations. We conclude with some speculations on the difficulty of finding
further independence results for stronger fragments of arithmetic.

Historical note: The first results for this paper were obtained by the second and
third authors, who proved the core results of sections 4.2 and 4.3 about formal-
izability of the Valiant-Vazirani and Toda theorems. The remaining research was
subsequently carried out by the first and second authors during 2011-2012 in San
Diego.

We are indebted to the referee for extensive insightful comments and suggestions
which helped us make significant improvements to the paper.

2. Preliminaries

2.1. Propositional proof systems. We work with a number of different con-
stant depth propositional proof systems that incorporate unbounded fanin modu-
lar counting gates ⊕p. This subsection first defines Boolean versions of these proof
systems, and establishes that valid cedents containing decision trees have simple
proofs in these systems. We then review the Nullstellensatz and Polynomial Cal-
culus systems that use polynomials over Fp, and finally define proof systems that
combine (low-degree) Fp polynomials with unbounded fanin AND’s and OR’s.

Let p be a fixed prime. We will define the propositional proof systems PK⊕p
and PCKip. Propositional formulas are formed from literals x and x, combined
with unbounded fanin

∧
’s and

∨
’s, and unbounded fanin ⊕p connectives. The

propositional variables x range over the values True and False. The negation of
a literal x is x, and negation is involutive so x is x. The input to an unbounded
fanin connective is a multiset of formulas. We allow

∧
and

∨
to have the empty

set of inputs, in which case they denote the constant ⊤ or ⊥ for True or False,
respectively.

Our proof systems are Tait-style systems; namely, the lines in a proof are cedents.
Our convention is that a cedent is a set of formulas (not a multiset or a sequence).
The intended meaning of a cedent is that at least one member of the cedent has
value True. The logical initial cedents for literals are the cedents x, x, where x is a
propositional variable. The rules of inference are:

Γ Weakening
Γ,∆

Γ, φ Γ, φ
Cut

Γ

Γ, φi0 ∨
Γ,

∨
i∈Iφi

Γ, φi for all i ∈ I ∧
Γ,

∧
i∈Iφi

where i0 ∈ I.
To simplify the handling of negation, we add 2p many ⊕p connectives: First,

for k ∈ [p] := {0, 1, . . . , p−1}, there is a connective ⊕kp with the intended meaning
that the number of inputs with value True is congruent to k mod p. The input to
⊕kp is a non-empty finite multiset of formulas, written as ⊕kp{φ1, . . . , φℓ}. Second,

for each k ∈ [p], there is a connective ⊕̄kp which represents the complement (the

negation) of ⊕kp. (We shall discuss below how the connectives ⊕̄kp can be removed

using Fermat’s little theorem. Of course, one could simply replace ⊕̄kp by
∨
ℓ ̸=k ⊕ℓp,

but that has the undesirable effect of increasing depth.) The complement of ⊕kpΦ
is denoted ⊕kpΦ, and is the formula ⊕̄kpΦ. Complementation is involutive, so the
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complement of ⊕̄kpΦ is ⊕kpΦ. We sometimes write ⊕kp or ⊕̄kp when k might be ≥ p.

In this case, we mean ⊕k mod p
p or ⊕̄k mod p

p .
There are five types of initial cedents that apply to the ⊕p connectives:

φ,⊕0
p{φ} φ,⊕1

p{φ}

⊕kpΦ, ⊕̄
k
pΦ ⊕̄kpΦ, ⊕̄

ℓ
pΦ, for k ̸= ℓ

⊕̄kpΦ, ⊕̄
ℓ
pΨ,⊕k+ℓ

p (Φ ∪Ψ)

Definition 1. The propositional proof system PK⊕p has formulas formed from

variables and negated variables and the connectives
∧
,
∨
, ⊕kp, and ⊕̄kp. Its initial

sequents are the logical initial sequents for literals and the five ⊕p axioms. Its rules
of inference are weakening, cut, and the

∧
and

∨
rules.

We are interested in two different kinds of constant depth subsystems of PK⊕p .
The depth of a PK⊕p formula is the number of alternations of

∧
’s,

∨
’s, and ⊕p con-

nectives along any branch in the formula (viewing the formula as a tree). Constant
depth PK⊕p proofs have an O(1) bound on the depth of formulas.

The second kind of constant depth PK⊕p proofs, denoted PCKip, allows ⊕p
connectives to be applied only to conjunctions of literals. This restriction will be

useful for the Paris-Wilkie translations of the systems T
i,⊕pP
2 defined in the next

subsection.
An ⊕−

p formula is defined to be a formula of the form ⊕kpΦ or ⊕̄kpΦ, where every

member of Φ is a conjunction of literals. The Σi(⊕−
p ) and Πi(⊕−

p ) formulas are

defined inductively. Σ0(⊕−
p ) and Π0(⊕−

p ) formulas are defined to be ⊕−
p formulas.

A Πi+1(⊕−
p ) formula is either a Σi(⊕−

p ) formula or a formula
∧
Φ where Φ is a

multiset of Σi(⊕−
p ) formulas. The Σi+1(⊕−

p ) formulas are defined dually.

Note that this means a Σ0(⊕−
p ) and Π0(⊕−

p ) formula contains exactly one oc-

currence of a ⊕kp or ⊕̄kp connective: for instance, to express a literal x as a Σ0(⊕−
p )

formula, we write it as ⊕1
p

∧
{x}, with the ⊕1

p having a single argument, which is a
conjunction of size 1.

Definition 2. Let p ≥ 2 and i ≥ 0. The propositional proof system PCKip is
the subsystem of PK⊕p restricted to use cedents in which all formulas are literals,
conjunctions or disjunctions of literals, or Πi(⊕−

p ) or Σi(⊕−
p ) formulas.

Definition 3. The size of a proof is the number of symbols in the proof. The
height of a proof is the maximum number of inferences along any path in the proof
from the final line to an initial line.

The size, but not the height, of a proof can depend on whether the proof is
dag-like or tree-like. Following Kraj́ıček [28], the Paris-Wilkie translations use a
notion of “Σ-size” for the systems PCKip which restricts both the size of a proof
and the sizes of inputs to ⊕p gates.

Definition 4. A formula φ has Σ-size S provided that φ has size ≤ S and that any
conjunction or disjunction of literals which appears as a subformula of φ contains

≤ logS many literals. In particular, this means that if ⊕kpΦ or ⊕̄kpΦ is a is a
subformula of φ, then the set Φ contains conjunctions of ≤ logS many literals. A
PCKip proof P has Σ-size S provided that P has size ≤ S and every formula in P
has Σ-size S.
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The next lemma establishes some simple properties about provability with ⊕p
connectives.

Definition 5. If φ is a conjunction of the form
∧
Θ then Θ is the (multi)set of

conjuncts of φ and is denoted cnjct(φ). Let Φ and Ψ be multisets of conjunctions.
Then Φ×Ψ is the multiset {

∧
(cnjct(φ) ∪ cnjct(ψ)) : φ ∈ Φ, ψ ∈ Ψ}. We write Φj

for Φ×Φ× · · ·×Φ with j occurrences of Φ.

Lemma 6. Let Φ and Ψ be multisets of conjunctions of literals and have Σ-size S.
The following cedents have tree-like PCK0

p proofs which have Σ-size SO(1), height

(logS)O(1), and O(1) many formulas in each cedent.

(a): ⊕0
pΦ,⊕1

pΦ, . . . ,⊕p−1
p Φ.

(b): ⊕̄kpΦ, ⊕̄
ℓ
pΨ,⊕k·ℓp Φ×Ψ.

(c): ⊕̄0
pΦ,⊕0

pΦ
p−1.

(d): ⊕̄kpΦ,⊕1
pΦ

p−1, for k ̸= 0.

(e): ⊕0
pΦ

p−1,⊕1
pΦ

p−1.

(f): ⊕̄0
pΦ

p−1,⊕0
pΦ.

Proof. (Sketch.) The proof of a cedent (a) is constructed inductively on the cardi-
nality M of Φ. If Φ is a singleton, it follows from the first two ⊕p axioms, along
with a cut and a weakening. Otherwise M > 1, and let Φ1 be some ⌊M/2⌋ element
subset of Φ, and Φ2 be Φ \Φ1. Using the cedents of the form (a) for Φ1 and Φ2 in
place of Φ, and cuts against instances of the fifth ⊕p axiom, we obtain cedent (a)
for Φ.

Now consider a cedent (b). If both Φ and Ψ are singletons, then (b) follows
from the first four ⊕p axioms. Otherwise, suppose w.l.o.g. that Φ has cardinality
> 1. Define Φ1 and Φ2 as before. By (a) and the fourth ⊕p axiom, there are
unique values k, k1, and k2 such that ⊕kpΦ, ⊕k1p Φ1, and ⊕k2p Φ2 hold. By the fourth
and fifth ⊕p axioms, we also have ki + k2 = k (mod p). Arguing inductively,

the two cedents (b) hold: ⊕̄kjp Φj , ⊕̄ℓpΨ,⊕
kj ·ℓ
p Φj×Ψ for j = 0, 1. Finally, since

Φ×Ψ = (Φ1×Ψ) ∪ (Φ2×Ψ), another use of the fifth ⊕p axiom gives the desired
cedent (b).

Cedent (c) is an immediate consequence of (b). Cedent (d) is a form of Fermat’s
little theorem. It follows by p−2 uses of (b) and the truth of Fermat’s little theorem.
Cedent (e) now follows easily from (a), (c), and (d). Cedent (f) likewise follows
easily. �

Note that parts (c), (e), and (f) of the lemma show that ⊕̄0
pΦ is equivalent to

⊕1
pΦ

p−1. Since ⊕̄kpΦ can be expressed as ⊕̄0
pΦ

′ where Φ′ is Φ plus p−k copies of ⊤,

this means that the connectives ⊕̄kp can be eliminated in favor of uses of ⊕0
p without

significantly affecting the complexity of formulas.

The next lemma lets us express a conjunction
∧k
j=1 ⊕1

pΦj with a single ⊕1
p con-

nective. It is an immediate consequence of Lemma 6.

Lemma 7. Let each Φj be a multiset of conjunctions of literals. The following

cedents are PCK0
p-provable.

(a): ⊕̄1
p(Φ

p−1
1 × · · ·×Φp−1

k ),⊕1
pΦ

p−1
j .

(b): ⊕̄1
pΦ

p−1
1 , . . . , ⊕̄1

pΦ
p−1
k ,⊕1

p(Φ
p−1
1 × · · ·×Φp−1

k ).
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If each Φi has Σ-size S and k = (logS)O(1), then the PCK0
p proofs have Σ-size

quasipolynomial in S, have polylogarithmic height, and have ≤ k + O(1) many
formulas in each cedent.

To understand Lemma 7, note that (a) states that ⊕1
p(Φ

p−1
1 × · · ·×Φp−1

k ) implies

each of ⊕1
pΦ

p−1
j ; and (b) states that conversely the k many latter formulas jointly

imply the former formula. A similar construction allows a single ⊕1
p formula to

express the disjunction of k many ⊕1
p formulas.

To help the Paris-Wilkie translation go smoothly, we need some results about
Boolean decision trees.

Definition 8. A Boolean decision tree T is a labeled binary tree. Each internal
node is labeled with a literal x, and has one outgoing edge labeled with x and the
other outgoing edge labeled with x. The leaves of the tree are labeled with True
or False. The decision tree T defines a Boolean function in the obvious way. The
negation of T is denoted T and is obtained by interchanging the labels True and
False.

A path in T is associated with the conjunction of the literals on the edges of the
path. The dt-cedent expressing T is denoted cd(T ) and is the set containing exactly
these conjunctions associated with paths in T that end with the label True.

Definition 9. A formula of the form ⊕kpcd(T ) or ⊕̄kpcd(T ), where T is a decision
tree, is called an ⊕-dt formula.

Lemma 10. Let Γ be a cedent containing as formulas (only) literals and ⊕-dt
formulas. Suppose Γ is valid for all truth assignments. Also suppose Γ has ℓ
formulas with ℓ ≤ S, and each formula has Σ-size S. Then Γ has a tree-like PCK0

p

proof P of Σ-size 2O(ℓ2 log S) = SO(ℓ2) in which all formulas are either literals or
⊕−
p formulas. The height of P is polynomial in ℓ and logS. In addition, the cedents

in the proof P contain only ℓ+O(1) many formulas.

Proof. This is obvious if there are no ⊕-dt formulas in Γ. Otherwise, we use in-
duction on the number of literals in Γ plus the sum of the heights of the Boolean
decision trees for the ⊕-dt formulas in Γ.

First, suppose there is a literal x appearing as a formula in Γ. If Γ also contains
the formula x, then we are done. And, if x does not appear anywhere else in Γ, then
we can just omit x from Γ without affecting its validity. (In other words, the literal
x is to be introduced by a weakening inference.) So suppose, x appears in some ⊕-dt

formula ⊕kpΨ in Γ; namely, Γ has the form Γ′, x,⊕kpΨ. (The case of ⊕̄kpΨ is simi-
lar.) Ψ is a set of paths from a Boolean decision tree T . We partition these paths
according to whether they query x and, if so, whether they include x positively or
negatively, in order to express the set Ψ as ({x}×Ψx)∪ ({x}×Ψx)∪Ψ′ where the
literal x does not appear in Ψx, Ψx or Ψ′. Strictly speaking, {x} actually means
the multiset containing the singleton conjunction ∧{x}, and similarly for {x}. The
multisets Ψx, Ψx and Ψ′ are still dt-cedents from decision trees: this allows possi-
bly being the empty multiset (denoting the Boolean value False), or the singleton
multiset containing the empty conjunction (i.e., the constant ⊤). Lemma 6 and the

first, second and fifth ⊕p axioms give a proof of x, ⊕̄kp(Ψx ∪Ψ′),⊕kpΨ. With this, a

cut inference allows Γ to be inferred from Γ′, x,⊕kp(Ψx∪Ψ′). Note that ⊕kp(Ψx∪Ψ′)

is still a ⊕-dt formula. Repeat this construction for each ⊕-dt formula ⊕kpΨ in Γ
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that contains x or x. The result is a cedent in which x occurs only once in the
cedent, namely as the formula x. As discussed above, the formula x can be now
removed without affecting the validity of the cedent.

Now, suppose that no literal appears as a formula in Γ, and let ⊕kpcd(T ) be

a formula in Γ. (The case ⊕̄kpcd(T ) is similar.) Let x be the variable labeling
the root of the decision tree associated with T . We have that cd(T ) is equal to
({x} ×Φx) ∪ ({x} ×Φx), where the multisets Φx and Φx are, as before, dt-cedents
from a decision tree. By Lemma 6(a,b) and using the first, second and fifth ⊕p
axioms, we can derive Γ immediately from the pair of cedents

Γ′, x,⊕kpΦx Γ′, x,⊕kpΦx

with Γ′ = Γ \ {⊕kpcd(T )}. These two cedents are valid since Γ is. This has reduced
the sums of the heights of the decision trees by at least one, and the literals x and x
can be handled by the construction of the previous paragraph.

The desired bounds on the size of the proof P follow from the constructions. �

As an immediate consequence of Lemma 10, we obtain proofs of the cedent
⊕0
pcd(T ),⊕1

pcd(T ). Another corollary is that we can infer Γ from the two cedents

Γ,⊕1
pcd(T ) and Γ,⊕1

pcd(T ). To prove this, note that ⊕̄1
pcd(T ), ⊕̄

1
pcd(T ) is valid,

and use Lemma 10 and two cuts.

We next define algebraic proof systems for propositional logic. Algebraic proof
sytems use polynomials over Fp for p a fixed prime, with variables x that have
value 0 or 1. A polynomial f over Fp is identified with the assertion that f has
value 0. Since x2 = x holds for 0/1-valued x, we shall replace every polynomial
with its multilinearization; namely, any occurrence of xi with i > 1 is replaced with
just x. For the sake of definiteness, we assume that a multilinear polynomial is
syntactically represented by the list of its non-zero monomials, where a monomial
is given by the set of variables appearing in it together with a coefficient.

The Nullstellensatz system and the Polynomial Calculus (PC) are refutation
systems that work with polynomials over Fp, see [6, 19, 16]. Let F = {fk : k ∈ [m]}
be a set of multilinear polynomials, called initial polynomials, in variables xj . A
Nullstellensatz refutation of F consists of polynomials gk such that

g0f0 + g1f1 + · · ·+ gm−1fm−1 = 1

where the left hand of the side denotes (as always) the multilinearization of the
indicated polynomial, and the equals sign denotes equality as polynomials. This
refutation shows that {fk}k is unsatisfiable; namely, that it is impossible to set the
variables xj to 0/1 values so that the polynomials fk all evaluate to 0 over Fp. The
degree of the refutation is the maximum of the degrees of gkfk; its size is the total
number of occurrences of variables in gk and fk.

The Polynomial Calculus system gives a more general kind of refutation. The
lines of a Polynomial Calculus refutation are multilinear polynomials over Fp. The
initial polynomials must be members of F . The two rules of inference for the
Polynomial Calculus are:

f
Product (·)

fg

f g
Sum (+)

f + g

As a reminder, fg denotes the multilinearization of fg.
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The final line in a Polynomial Calculus refutation contains the constant polyno-
mial 1; this serves as a refutation of F . The degree of a refutation is equal to the
maximum degree of any line in the refutation; the size of a refutation is the number
of symbols in it.

We next define the Tait-style system PCKFp , and its subsystems PCKiFp , in which
formulas can combine multilinear Fp polynomials with unbounded fanin Boolean
connectives

∧
and

∨
. The lines of a PCKFp proof are cedents whose members are

multilinear polynomials or Boolean combinations of multilinear polynomials. For
instance, the intended interpretation of the cedent

f1, f2 ∧ f3

is that either f1 = 0 or f2 = f3 = 0. The only Boolean connectives are unbounded
fanin

∧
and

∨
.

There is no connective for negation in PCKFp . The negation f of a polynomial f

is defined by letting f equal the multilinearization of the polynomial
∏p−1
k=1(f − k).

Since we are working over Fp, the polynomial f has value 0 or 1 depending on
whether f has non-zero value or value 0, respectively.1 The negation of a formula∨
k φk or

∧
k φk is denoted

∨
k φk or

∧
k φk, and is defined to equal

∧
k φk or

∨
k φk,

respectively.
The initial cedents for a PCKFp or PCKiFp proof are the axiom mod p polynomi-

als:

f, f+1, f+2, · · · , f+(p−1).

The rules of inference are the product and sum rules above, plus the four rules cut,
weakening,

∧
, and

∨
.

Definition 11. Let p be a prime. The propositional Polynomial Calculus proof
system, PCKFp , is a Tait-style proof system with formulas formed from multilinear
polynomials over Fp using conjunctions and disjunctions. The initial axioms are
the axioms mod p, and the rules of inference are all six rules product, sum, cut,
weakening,

∧
, and

∨
(with the product and sum rules modified in the obvious way

to allow side formulas).

Note that PCKFp is a proof system, not a refutation system. The “PC” in
the name can stand for either “Polynomial Calculus”, or even more relevantly, for
“propositional counting” (for counting mod p). The “K” comes from Gentzen’s
notation “LK”, with “K” standing for “Kalkül”.

The Paris-Wilkie translations for subtheories of bounded arithmetic with mod-
ular counting quantifiers Ckp will yield subsystems of PCKFp with bounded alterna-

tions of
∧

and
∨

connectives. For this, we inductively define the Πi(Fp) and Σi(Fp)
formulas as follows: A Π0(Fp) formula or Σ0(Fp) formula is an Fp polynomial. A
Πi+1(Fp) formula is either a Σi(Fp) formula or a formula

∧
Φ where Φ is a multiset

of Σi(Fp) formulas. The Σi+1(Fp) formulas are defined dually.

Definition 12. Let i ≥ 0. A PCKiFp proof is a PCKFp proof in which every formula

is a Σi(Fp) or Πi(Fp) formula.

1It is perhaps disconcerting that complementation is not involutive, that is, that f is not gen-

erally the same as f . Nonetheless, this does not substantially affect the power of the propositional
proof systems.
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Although the systems PCKiFp use Fp polynomials, they are effectively equivalent

for our purposes to the PCKip systems. Consider a ⊕−
p Boolean formula φ of the

form ⊕kpΦ where Φ is a multiset of conjunctions of literals. As is well-known, this
can be transformed into an Fp polynomial f which has value 0 exactly when φ is
true. That is, if variables are given 0/1 values, with 0 corresponding to the Boolean
value False and 1 to True, then then condition f = 0 is equivalent to φ having
value True. The polynomial f is formed by rewriting the conjunctions of literals
in Φ as products of literals, taking the sums of these products and subtracting k,
replacing negatively occurring literals x with (1 − x), and using the distributive

law to express the result as a sum of monomials. The negated formula ⊕̄kpΦ then

translates to (1−fp−1), which also can be written a sum of monomials by applying
the distributive law. Clearly, the degree of f is bounded by the maximum size of the
conjunctions in Φ. (The number of monomials in f can be exponentially larger.)
With this construction, any Πi(⊕−

p ) formula φ is equivalent to a Πi(Fp) formula,

denoted φFp . (A converse equivalence holds as well.)
The Paris-Wilkie translations in Theorem 25 will yield PCKiFp proofs with quasi-

polynomial size and polylogarithmic degree; these quantities are measured with
Σ-size:

Definition 13. A PCKiFp proof has Σ-size S provided it has size ≤ S and every
polynomial in the proof has degree less than logS.

We next prove an analogue of Lemma 10 for PCKiFp proofs. The situation is
simpler for polynomials than for Boolean decision trees.

Definition 14. Let f1, . . . , fk, g be multilinear Fp polynomials. Then f1, . . . , fk � g
means that, for any assignment of 0/1 values to variables, if every fj evaluates to
zero, then also g evaluates to zero.

Lemma 15. Suppose f1, . . . , fk � g. Then there are multilinear polynomials
h1, . . . , hk such that g is equal to the multilinearization of h1f1 +h2f2 + · · ·+hkfk.
Furthermore, if d bounds the degrees of g and the fj’s, then each hj has degree
≤ (p− 1)kd.

Proof. By f1, . . . , fk � g, the polynomial g(1−fp−1
1 )(1−fp−1

2 ) · · · (1−fp−1
k ) always

evaluates to zero for 0/1 inputs, and hence its multilinearization is the zero poly-

nomial. Thus, setting hℓ = gfp−2
ℓ (1 − fp−1

ℓ+1 ) · · · (1 − fp−1
k ) satisfies the conditions

of the lemma. Note that the degree of hℓ is bounded by (p−1)kd. �
2.2. Theories of modular counting. We describe below how to extend the the-
ories Si2 and T i2 of bounded arithmetic to incorporate new bounded quantifiers Ckp
for counting modulo p. We also augment the theories APC1 and APC2 to include
counting modulo p. In later sections, we will give Paris-Wilkie translations for these
theories, and prove that the hierarchy of theories collapses. We presume the reader
is familiar with bounded arithmetic, including the formula classes Σbi and Πbi and
the theories Si2 and T i2; for these, consult [12, 15, 29]. We will usually use strict

Σbi and Πbi formulas, denoted Σ̂bi and Π̂bi for short. Σ̂
b
i and Π̂bi formulas must be in

prenex form, and can have up to i alternating universal and existential blocks of
quantifiers in front of a sharply bounded subformula. (Unlike some definitions of
“strict”, we allow the sharply bounded subformula to not be in prenex form and to
contain multiple sharply bounded quantifiers.) It is known that Σbi and Πbi formulas
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are equivalent to Σ̂bi and Π̂bi formulas (resp.) and that induction may be restricted
to strict formulas without affecting the strength of the theories Si2 and T i2 [25, 36].

The usual bounded quantifiers for bounded arithmetic have the form (∃x ≤ t)
and (∀x ≤ t). For a fixed prime p ≥ 2, we augment the language of bounded

arithmetic to include mod p counting quantifiers Ckp with k ∈ [p]. The intended

meaning of (Ckpx ≤ t)A(x) is that the number of values x ≤ t for which A is true
is congruent to k mod p. Note there may be variables other than x which appear
free in A(x). These new quantifiers have the following axioms. To avoid cluttering

superscripts with extra “mod p”s, we adopt the convention that Ckp means Ck mod p
p .

A(0) → (C1
px ≤ 0)A(x) ¬A(0) → (C0

px ≤ 0)A(x)

A(t+ 1) ∧ (Ckpx ≤ t)A(x) → (Ck+1
p x ≤ t+1)A(x)

¬A(t+ 1) ∧ (Ckpx ≤ t)A(x) → (Ckpx ≤ t+1)A(x)

¬[(Ckpx ≤ t)A(x) ∧ (Cℓpx ≤ t)A(x)] for k ̸= ℓ (mod p) .

The final axiom states that the number of true A(x)’s, x ≤ t, cannot be equal to
both k and ℓ mod p. Our theories will admit induction (IND) for all permitted

bounded formulas with a Ckp quantifier as outermost symbol, and can prove that∨p−1
k=0(C

k
px ≤ t)A(x) holds. In addition, induction allows basic facts about the Ckp

quantifiers to be proved such as

(∀x ≤ s)(A(x+ t+ 1) ↔ B(x)) ∧ (Ckpx ≤ t)A(x) ∧ (Cℓpx ≤ s)B(x)(1)

→ (Ck+ℓ
p x ≤ t+ s+ 1)A(x).

By convention, the first-order language contains the usual set of PV1 function
and predicate symbols, used to denote polynomial time functions and relations.
(This set of symbols is more commonly called simply PV, but we use “PV1” to
distinguish it from “PV2”). When there is a second-order predicate (an oracle),
denoted α, the language includes all PV1(α) functions and predicates; namely all
polynomial time functions and predicates that have oracle access to α.

A bounded formula is a formula in which all quantifiers are bounded. Note that
Ckp quantifiers are considered to be bounded. For languages that contain the Ckp
quantifiers, the notation Σb∞(⊕p) denotes the set of bounded formulas.

Definition 16. The theory T2(⊕p), also denoted S2(⊕p), is the theory axiomatized

by the defining axioms for PV1 symbols and the axioms for Ckp quantifiers appearing

in front of Σb∞(⊕p) formulas, and with induction for all Σb∞(⊕p) formulas. The
theory T2(⊕p, α) is defined similarly with PV1(α) instead of PV1.

The next definition gives theories where the modular counting quantifiers are
restricted to counting polynomial time sets.

Definition 17. A ⊕pP formula is a formula which is either atomic, or of the

form (Ckpx ≤ t)A(x) where A is Σb0. Since the language includes all PV1 symbols,

A can represent any PV1 predicate. We define Σ
b,⊕pP
0 = Π

b,⊕pP
0 to be the class

of formulas obtained as the closure of ⊕pP formulas under Boolean connectives
∧, ∨ and ¬ and under sharply bounded existential and universal quantifiers. For

i ≥ 1, the strict formula classes Σ̂
b,⊕pP
i and Π̂

b,⊕pP
i are defined in the usual way by

counting alternations of bounded (universal and existential) quantifiers.
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The classes ⊕pP(α) and Σ̂
b,⊕pP
i (α) and Π̂

b,⊕pP
i (α) are defined similarly, but over

the language PV1(α) instead of PV1.

The theory T
i,⊕pP
2 is the theory of bounded arithmetic axiomatized by the axioms

for PV1 symbols, the Ckp axioms for Σb0 formulas A(x), and Σ
b,⊕pP
i -IND. The theory

S
i,⊕pP
2 is defined similarly, but with Σ̂

b,⊕pP
i -PIND in place of Σ̂

b,⊕pP
i -IND. The

theories T
i,⊕pP
2 (α) and S

i,⊕pP
2 (α) are defined analogously with the PV1(α) axioms,

the Ckp axioms for Σb0(α) formulas A(x) formulas, and induction for Σ̂
b,⊕pP
i (α)

formulas.

The following lemma, which is never invoked explicitly, lists some typical exam-
ples of simple modular counting arguments that can be carried out at the lowest

level of the T
i,⊕pP
2 hierarchy. Such arguments are often tacitly used in Section 4.

Lemma 18. Let A(x) and B(x) be Σb0 formulas. T
0,⊕pP
2 proves the formula (1),

as well as

(∀x≤z)[¬(A(x) ∧B(x))] →(2)

[(Ckpx ≤ z)(A(x) ∨B(x)) ↔
∨

ℓ+ℓ′=k

((Cℓpx≤z)A(x) ∧ (Cℓ
′

p x≤z)B(x))].

For f a PV1 function, T
0,⊕pP
2 proves that if f is a bijection between {x ≤ z : A(x)}

and {y ≤ w : B(y)}, then

(3) (Ckpx≤z)A(x) ↔ (Ckpy≤w)B(y).

The proof of (2) is by induction on z. Note that (1) is a special case of (2); they
both concern counting disjoint unions. To prove (3), argue by induction on v ≤ w
that the sets {y ≤ v : B(y)} and {x ≤ z : A(x) ∧ f(x) ≤ v} have the same number
of elements modulo p. The inductive step makes use of (2).

For p a prime, Theorem 39 will show that T
3,⊕pP
2 , and even APC

⊕pP
2 , has the

same logical strength as all of T2(⊕p). That is to say, we have a collapse of the

hierarchy of theories in this setting. Thus, we will work extensively with T
3,⊕pP
2 ,

and its subtheory APC
⊕pP
2 .

In many cases, it is important to know that standard witnessing, provability, and
conservativity results in bounded arithmetic also hold after relativization to ⊕pP.
To see why this is true, it is convenient to think in terms of a special “modular
counting oracle”, σp, instead of the mod p counting quantifiers.

As usual, let p ≥ 2 be fixed. The intended meaning of σp is that σp(k, pCq, z)
is true precisely when pCq is the Gödel number of a Boolean circuit C that has n
binary inputs and the number of inputs x ∈ {0, 1}n such that x ≤ z and C(x) is
true is congruent to k mod p. By the (proof of the) P-completeness of the circuit
value problem, the oracle σp can be used to compute the truth value of any ⊕pP
formula. The axioms for the modular counting oracle σp are obtained in the obvious

way from the five initial sequents for the Ckp quantifers.
The oracle σp can also be used in the presence of other oracle predicates α. In

this situation, the circuit C is an “oracle circuit” that has access to the oracle α in
the form of unbounded fanin “α-gates”. This allows σp to compute the truth value
of an arbitrary ⊕pP(α) formula. Note, however, that C does not have oracle access
to σp.
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Definition 19. The theory T
i,σp
2 is defined by extending T i2 to include a rela-

tion symbol for the oracle σp that counts the number of satisfying assignments of

Boolean circuits modulo p. In addition, the language of T
i,σp
2 includes the language

PV1(σp), namely it includes symbols for all function and predicate symbols which

are polynomial time relative to σp. T
i,σp
2 is axiomatized with axioms for σp, with

the defining equations for all PV1(σp) functions and relations, and with induction
for Σbi (σp) formulas.

The theory T
i,σp
2 (α) is defined similarly, except that σp counts the number of

satisfying assignments for Boolean circuits that include α-gates. T
i,σp
2 (α) uses the

language PV1(σp, α) and has induction for Σbi (σp, α) formulas.

We claim that T
i,σp
2 has the same logical and expressive strength as T

i,⊕pP
2 .

This claim is proved in two stages. First, since T
i,⊕pP
2 allows the Ckp quantifiers

only on polynomial time predicates and since any polynomial time property can be
equivalently expressed by a polynomial size circuit, Ckp quantifiers can be replaced
by uses of the σp predicate. Conversely, every σp predicate can be expressed in

terms of a Ckp quantifier. Thus, T
i,⊕pP
2 is essentially a notational variant of a theory

defined like T
i,σp
2 except that its language contains only PV1 symbols as opposed

to PV1(σp) symbols. We temporarily call this theory T
i,σpP
2 .

Second, we claim that T
i,σpP
2 is strong enough to Σb1-define all functions in

PV1(σp). For i ≥ 1, this holds by [13] which showed T 1
2 can Σb1-define all polynomial

time computable functions. For i = 0, Jeřábek [25] showed that, if the language
contains the MSP function, then T 0

2 can Σb1-define all polynomial time computable
functions, and use them freely in induction axioms. This construction also works

relative to oracles, and thus T
i,σpP
2 can Σb1-define all PV1(σp) functions, and use

them in induction axioms. Therefore, adding all PV1(σp) functions and relations

to the language yields a conservative extension, which happens to be T
i,σp
2 .

The definition of T
i,σp
2 also works relative to an oracle α, and therefore T

i,σp
2 (α)

is similarly conservative over T
i,⊕pP
2 (α).

Standard witnessing, provability, and conservativity results concerning the the-
ories T i2 are known to relativize to an uninterpreted oracle predicate. It is straight-
forward to deduce that they also relativize to the modular counting oracle σp.
(The precise argument involves Parikh’s Theorem and the fact that negations of

the defining axioms for σp are ∃Σb0(σp).) The correspondence between T
i,⊕pP
2 and

T
i,σp
2 means that all these results can also be relativized to ⊕pP and ⊕pP(α) formu-

las. Below, this observation will be sometimes invoked, and at other times tacitly
used.

The theories as defined above do not allow nesting of modular counting oper-

ations. Namely, S
i,⊕pP
2 and T

i,⊕pP
2 do not allow nesting of Ckp quantifiers. And,

in S
i,σp
2 and T

i,σp
2 , the modular counting oracle σp cannot be applied to circuits

that have σp gates. The next theorem shows that these restrictions cause no loss of
expressive power. We write P⊕pP to denote the predicates which are computable
in polynomial time with access to an oracle for ⊕pP predicates (or, equivalently, to
the oracle σp). Then ⊕pP⊕pP denotes the set of predicates defined by

(4) R(y) ⇐⇒ (Ckpu ≤ y)A(y, u),
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where A(y, u) is a P⊕pP predicate. (There may be extra parameter variables in
addition to u and y.)

Theorem 20. Suppose p is a prime. ⊕pP⊕pP is contained in ⊕pP.

Proof. We first prove the theorem for the simpler case of p = 2. Let R be defined
as in (4). Let n = |y|. The polynomial time algorithm for A(y, u) can be assumed
to make exactly p(n) queries to σp for some polynomial p, and w.l.o.g. each query
has the form σp(0, pCq, z(y)), where z = z(y) depends only on y, is polynomially
bounded, and is an even number. Since z is even, there are an odd number of x ≤ z
which make C true and an even number that make C false, or vice-versa.

We form a polynomial time predicate B(v) and a term t(y) so that

(5) R(y) ⇐⇒ (Ckpv ≤ t(y))B(y, v).

The predicate B is computed by the following algorithm. It first checks whether
v = ⟨u, z1, . . . , zp(n)⟩ with u ≤ y and each zj ≤ z. (The term t(y) is chosen large
enough to upper bound all such values v.) If v is not of this form, B(v, y) rejects.
Otherwise, B simulates the polynomial time algorithm for A(y, u). When the sim-
ulation reaches the j-th query made by A, namely a query to σp(0, pCjq, z(y)),
then B evaluates the circuit Cj(zj). If Cj(zj) evaluates to true, then B continues
simulating A as if the σp query returned False. Otherwise, Cj(zj) evaluates to false,
and B continues simulating A as if the σp query returned True.

It is not hard to check that the definition of B makes the equivalence (5) hold.
Specifically, for the j-th query there are an odd number of values zj that correspond
to B simulating the correct execution of A, and an even number that correspond
to B simulating an incorrect execution of A. This means that, for each value of u,
there are an odd number of values for v for which B simulates the correct execution
of A, but each possible incorrect execution of A is simulated for an even number of
values for v.

That completes the p = 2 case of the proof. A similar proof works for primes
p > 2, using the construction of Fermat’s little theorem. Namely, we can assume
without loss of generality that any query made by A has the form σp(0, pCq, z) with
z ≡ 0 mod p, and that the number of x ≤ z such that C(x) is true is equal to either
0 or 1 mod p. This can be done as follows: Inputs to σp are restricted to have the
form z = (z0+1)p−1−1 where z0 is a multiple of p. The circuit C encodes the value
of z0 and a circuit C0, and an input x to C is interpreted as x = ⟨x1, . . . , xp−1⟩.
Then C accepts x iff each xj ≤ z0 and is accepted by the circuit C0. We leave the
details to the reader. �
Corollary 21. Suppose p is a prime. Any formula formed from sharply bounded
universal and existential quantifiers, Ckp quantifiers, Boolean connectives, and PV1

functions and predicates can be expressed as a ⊕pP predicate. The same holds
relative to a second-order oracle α.

Since our language for bounded arithmetic includes all polynomial time functions
and predicates, the first-order theory T 0

2 is the same as the theory often denoted
PV1, a well-known conservative extension of Cook’s equational theory PV [20] to
first-order logic.

We let PV
⊕pP
1 and PV

⊕pP
1 (α) denote the theories T

0,σp
2 and T

0,σp
2 (α). That is,

the languages of these theories include symbols for all functions and relations in
P⊕pP or P⊕pP(α), respectively. It is straightforward to show that the proofs of
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Theorem 20 and Corollary 21 can be formalized in PV
⊕pP
1 . It follows that the

strengths of the theories T
i,⊕pP
2 , T

i,σp
2 , T

i,⊕pP
2 (α) and T

i,σp
2 (α) would be essentially

unchanged if they allowed Ckp quantifiers to be nested, or σp to apply to circuits
with σp gates.

2.3. Theories for approximate counting. Jeřábek [26, 27] defined two frag-
ments of T 3

2 based on the surjective weak pigeonhole principle, and showed they can
define coherent notions of approximate counting. These two theories were named
APC1 and APC2 in [17], and defined as

APC1 := PV1 + sWPHP(PV1)

and

APC2 := T 1
2 + sWPHP(PV2),

where in this definition, PV1 denotes both the set of PV1 functions and the theory
axiomatized by the defining axioms for PV1 functions and relations, and where PV2

denotes the set of functions which are computable in polynomial time relative to
an NP oracle. The axiom scheme sWPHP(F) means the set of axioms expressing
the surjective weak pigeonhole principle

(∀x)(∀y)[x > 0 → (∃v ≤ x(|y|+1))(∀u ≤ x|y|)(f(u) ̸= v)]

for any f ∈ F .
We will work with extended versions of these two theories,

APC
⊕pP
1 := PV

⊕pP
1 + sWPHP(PV

⊕pP
1 )

and

APC
⊕pP
2 := T

1,⊕pP
2 + sWPHP(PV

⊕pP
2 ),

where PV
⊕pP
2 means functions that can be computed in polynomial time relative

to NP⊕pP.
These theories can be relativized with the addition of an oracle α. The relativized

theory APC
⊕pP
1 (α) is defined as PV

⊕pP
1 (α) + sWPHP(PV

⊕pP
1 (α)). The theory

APC
⊕pP
1 (α) is T

1,⊕pP
2 (α) + sWPHP(PV

⊕pP
2 (α)).

3. Paris-Wilkie translations

The Paris-Wilkie translation is a method for converting proofs in bounded arith-
metic into constant depth propositional proofs. Theorem 22 states several versions

of this for the systems T
i,⊕pP
2 (α), translating into quasipolynomial Σ-size PCKi

′

p

proofs, where i′ will equal i−2, i−1, or i. Theorems 25 and 26 give translations to

the systems PCKi
′

Fp , as well as translations from T
0,⊕pP
2 (α) = PV

⊕pP
1 (α) and from

T
1,⊕pP
2 (α) into Nullstellensatz and Polynomial Calculus proofs, respectively.
The core constructions for the Paris-Wilkie translation are well known (see

[34, 29, 14]), but we restate them below for completeness. One novelty is that
we work with mod p quantifiers and ⊕kp gates. In addition, parts (d) and (e) of
Theorem 22 are new; and analogous theorems hold also for the usual theories of
bounded arithmetic with no modular counting quantifiers. Our inspiration for parts
(d), (e), and especially (f) came from ideas we first heard from Neil Thapen [per-
sonal communication] about converting PLS algorithms for Σb1(α) consequences of
T 1

2 (α) into dag-like narrow resolution proofs.
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For ψ(x1, . . . , xℓ) a (strict) bounded formula, and for integers n1, . . . , nℓ, the
Paris-Wilkie propositional translation JψKn1,...,nℓ is defined inductively on the com-
plexity of ψ. The propositional variables of JψKn⃗ are variables xj for j ∈ N and are
intended to denote the truth value of α(j).

For ψ ∈ Σ̂
b,⊕pP
0 (α), namely with all Boolean quantifiers sharply bounded, JψKn⃗

will be a ⊕-dt formula. This ⊕-dt formula JψKn⃗ is formed by using the algorithm
implicit in Corollary 21. That corollary states that φ is equivalent to a ⊕pP pred-

icate, namely, to a formula of the form (C0
pu ≤ r(x⃗))δ(x⃗, u) where δ is polynomial

time computable. Given fixed values n⃗,m for x⃗, y, the truth value of δ(n⃗,m) can
be expressed as a decision tree Jδ(x⃗, u)Kn⃗,m that queries values of α(j). The C0

p

quantifier is then replaced by the ⊕0
p connective which has as inputs the set Φ

of conjunctions of literals which correspond to the accepting paths of the decision
trees Jδ(x⃗, u)Kn⃗,m for 0 ≤ m ≤ r(n⃗). Let n = max{n1, . . . , nℓ}. The predicate δ has
runtime polynomially bounded in terms of |n| ≈ log n, so the size of each conjunc-
tion in Φ is (log n)O(1). Likewise, the total size of the set Φ is quasipolynomially
bounded in terms of n.

The Paris-Wilkie translation extends to Σ̂
b,⊕pP
i (α) formulas ψ for i > 0 by

translating (non-sharply) bounded quantifiers to unbounded fanin
∨
’s or

∧
’s. If

ψ has the form (∃u ≤ r(x⃗))δ(x⃗, u), then JψKn⃗ is defined to equal
∨r(n⃗)
m=0JδKn⃗,m.

Bounded universal quantifiers are handled similarly with a
∧
.

Theorem 22 fixes i ≥ 0 and j ≥ 1, and assumes that T
i,⊕pP
2 (α) proves a strict

Σ
b,⊕pP
j (α) formula

φ(x) := (∃y ≤ t(x))η(x, y).

We will further assume w.l.o.g. that every quantifier in φ, both sharply bounded
and non-sharply bounded, has the form (Qx ≤ r(x)) for r(x) a PV1 term which
has x as its only variable. Note especially that the terms r(x) do not depend on α.
When j > 1, η(x, y) has the form (∀z ≤ s(x))ξ(x, y, z), so

φ(x) := (∃y ≤ t(x))(∀z ≤ s(x))ξ(x, y, z).

Thus, η is a Π̂
b,⊕pP
j−1 (α) formula, and, when defined, ξ is a Σ̂

b,⊕pP
j−2 (α) formula.

Theorem 22 uses three different types of Paris-Wilkie translations of φ(x):

1: The most direct version of the Paris-Wilkie translation gives PCKip proofs
of JφKn.

2: For the second type of Paris-Wilkie translation, let Hn be the set of formulasJηKn,m, for 0 ≤ m ≤ t(n). In this case, the Paris-Wilkie translation gives a

PCKi
′

p refutation of Hn. Here, i′ will equal either i− 1 or i.
3: For the third type of translation, let Ξn be the set of the t(n) + 1 many

cedents of the form

(6) JξKn,m,0, JξKn,m,1, . . . , JξKn,m,s(n)

where 0 ≤ m ≤ t(n). Note each cedent (6) contains s(n) + 1 formulas.

In this case, the Paris-Wilkie translation gives a PCKi
′

p refutation of Ξn,
where i′ equals either i− 2 or i− 1.

Theorem 22. Let i ≥ 0 and j ≥ 1. Suppose φ(x) ∈ Σ̂
b,⊕pP
j (α) and T

i,⊕pP
2 (α) ⊢

(∀x)φ(x). Let η, ξ, Hn and Ξn be as above.
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(a): Suppose j = i ≥ 1. For n ≥ 0, the formula JφKn has a tree-like PCKip
proof P with Σ-size quasipolynomial in n and height polylogarithmic in n
such that each cedent in P contains O(1) formulas.

(b): Suppose j = i ≥ 1. For n ≥ 0, the set of cedents Hn has a tree-like
PCKi−1

p refutation P such that the Σ-size of P is quasipolynomial in n.
(c): Suppose j = i ≥ 2. For n ≥ 0, the set of cedents Ξn has a dag-like

PCKi−2
p refutation P such that the Σ-size of P is quasipolynomial in n.

(d): Suppose j = i + 1 ≥ 1. For n ≥ 0, the set of cedents Hn has a tree-like
PCKip refutation P such that the Σ-size of P is quasipolynomial in n, the
height of P is polylogarithmic in n, and each cedent in P has polylogarith-
mically many formulas.

(e): Suppose j = i + 1 ≥ 2. For n ≥ 0, the set of cedents Ξn has a tree-like
PCKi−1

p refutation P such that the Σ-size of P is quasipolynomial in n.
(f): Suppose j = i ≥ 1. For n ≥ 0, the set of cedents Hn has a dag-like

PCKi−1
p refutation P such that the Σ-size of P is quasipolynomial in n and

such that each cedent in P contains polylogarithmically many formulas.

Proof. The proof of (a) is the standard kind of argument used for a Paris-Wilkie
translation. We nonetheless present a proof sketch to illustrate what is unique to

our setting. Let Q be a T
i,⊕pP
2 (α) proof of φ(c) where c is the only free variable in

φ(c). By free-cut elimination, cf. [9], we may assume thatQ contains only Σ̂
b,⊕pP
j (α)

and Π̂
b,⊕pP
j (α) formulas. Without loss of generality, Q is in free-variable normal

form, every free variable a in Q is bounded explicitly by a term ta(c) with the
formula a > ta(c) present in every cedent in which a appears, and every quantifier
(Qx ≤ r(c)) in Q has bound r(c) which is a PV1 term that has c as its only variable
(see [12]).

We shall prove that, for any cedent Γ in Q with free variables c, a1, . . . , aℓ, and
every choice of values n ≥ 0 and mi ≤ tai(n), there is a tree-like PCKip proof of the
cedent JΓKn,m⃗ of Σ-size quasipolynomial in n and height polylogarithmic in n, with
O(1) many formulas per cedent. The proof is by induction on the number of cedents
in Q, and splits into cases based on the last inference of Q. The initial cedents of Q

contain O(1) many Σ
b,⊕pP
0 (α) formulas. The Paris-Wilkie translation of an initial

cedent is valid and contains O(1) many ⊕-dt formulas; thus, by Lemma 10, it has a
tree-like PCK0

p proof of quasipolynomial Σ-size, polylogarithmic height, and O(1)
many formulas in each cedent.

The cases of ∧, ∨, and sharply bounded quantifier inferences are essentially

trivial, because these inferences have a Σ
b,⊕pP
0 (α) formula as their principal formula.

For example, consider a ∧ inference in Q:

Γ, A Γ, B

Γ, A ∧B
Taking the translation of these formulas under the Paris-Wilkie translation gives
an “inference” of the formJΓKn,m⃗, JAKn,m⃗ JΓKn,m⃗, JBKn,m⃗JΓKn,m⃗, JA ∧BKn,m⃗
By Lemma 10, since JAKn,m⃗, JBKn,m⃗ and JA∧BKn,m⃗ are ⊕-dt formulas, the cedent

JAKn,m⃗, JBKn,m⃗, JA ∧BKn,m⃗
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has a quasipolynomial Σ-size, tree-like, polylogarithmic height proof with O(1)
many formulas in each cedent. Using two cuts allows the displayed inference to be
inferred.

The cases of an ∨ inference, Ckp axioms, axioms for PV1(α) functions and re-
lations, or sharply bounded ∃ inferences are handled similarly. The argument for
a sharply bounded ∀ inference is a little more complicated. Suppose that Q ends
with the inference

Γ, a0 > |r(c)|, A(a0)

Γ, (∀v ≤ |r(c)|)A(v)
where the eigenvariable a0 appears only as indicated. Note that the formulasJa0 > |r(c)|Kn,m0,m⃗ are just the constant ⊥ for all m0 ≤ |r(n)|. Thus, we wish
to derive the propositional inference

(7)
JΓKn,m⃗, JA(b)Kn,0,m⃗ · · · JΓKn,m⃗, JA(b)Kn,|r(n)|,m⃗JΓKn,m⃗, J(∀v ≤ |r(c)|)A(v)Kn,m⃗

Note there are |r(n)|+ 1 many hypotheses in this inference.
To derive (7), we use Lemma 10 to give proofs of the cedentsJA(b)Kn,0,m⃗, J(∀v ≤ b)A(v)Kn,0,m⃗

and J(∀v ≤ b)A(v)Kn,ℓ,m⃗, JA(b)Kn,ℓ+1,m⃗, J(∀v ≤ b)A(v)Kn,ℓ+1,m⃗

for ℓ < |r(n)|. (To apply Lemma 10 in this way, we are effectively treating the
quantifier (∀v ≤ b) as being sharply bounded; this is OK since ℓ < |r(n)|.) These
sequents combine with cuts to derive (7).

Suppose that Q ends with an induction inference

Γ, A(d), A(d+ 1)

Γ, A(0), A(s)

Arguing similarly as on pages 80-81 of [12], we may assume w.l.o.g. that the
term s = s(c, a⃗) is a pure PV1 term and does not involve the oracle α. Let m0 equal
s(n, m⃗). The induction hypothesis gives propositional proofs of the m0 many ce-

dents JΓKn,m⃗, JA(d)Kn,ℓ,m⃗, JA(d)Kn,ℓ+1,m⃗, for 0 ≤ ℓ < m0. Combining these with bal-

anced cuts gives the desired Paris-Wilkie translation of JΓKn,m⃗, JA(0)Kn,m⃗, JA(s)Kn,m⃗.
Now suppose that Q ends with a bounded ∀ inference

a0 > r(c),Γ, A(a0)

Γ, (∀x ≤ r(c))A(x)

The induction hypothesis gives proofs of the cedentsJΓKn, JA(a0)Kn,m0,m⃗

for all m0 ≤ r(n). From these, a single
∧

inference gives the desired cedentJΓKn, J(∀x ≤ r(c))A(x)Kn,m⃗.
Finally, suppose that Q ends with a bounded ∃ inference

Γ, A(s)

s > r(c),Γ, (∃x ≤ r(c))A(x)

Here s = s(c, a⃗) is an arbitrary term and may contain PV1(α) functions. The next
lemma will help handle this case. For ℓ ∈ N, we let ℓ be a closed term with value ℓ
such that ℓ has O(|ℓ|) symbols.
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Lemma 23. (i): Suppose 0 ≤ ℓ ≤ r(n), the values m⃗ are quasipolynomially

bounded by n, B(d) is a Σ̂
b,⊕pP
i (α) formula, and s is a PV1(α) term ap-

pearing in Q. Then the cedent

(8) Js = ℓKn,m⃗, JB(s)Kn,m⃗, JB(ℓ)Kn,m⃗
has a tree-like PCKip proof of Σ-size quasipolynomial in n and height poly-
logarithmic in n with O(1) many formulas in each cedent of the proof.

(ii): Let 0 ≤ ℓ1 < ℓ2 ≤ r(n) and s be a term in the proof Q. Then the cedent

(9) Js < ℓ1Kn,m⃗, ∨ℓ2

ℓ=ℓ1
Js = ℓKn,m⃗, Js > ℓ2Kn,m⃗

has a tree-like PCK1
p proof with Σ-size quasipolynomial in n, with height

O(log(ℓ2 − ℓ1 + 1)), and with O(1) many formulas in each cedent of the
proof.

Proof. (Sketch) Part (i) of the lemma is proved by induction on the complexity

of B. For B ∈ Σ
b,⊕pP
0 (α), it follows immediately from Lemma 10. For B having

outermost quantifier a (non-sharply) bounded ∃ or ∀, it follows straightforwardly
from the induction hypothesis using a

∨
and

∧
inference.

The proof of (ii) is by induction on ℓ2 − ℓ1 using binary divide-and-conquer.
Lemma 10 again provides the necessary inferences at each step. �

We can now prove the bounded ∃ case of Theorem 22(a). The induction hypoth-
esis gives a proof of JΓKn,m⃗, JA(s)Kn,m⃗. From (9) with ℓ1 = 0 and ℓ2 = r(n), we

obtain the cedent
∨r(n)
ℓ=0 Js = ℓKn,m⃗, Js > r(c)Kn,m⃗. Taking B to be A and using the

r(n) + 1 many cedents (8) and a
∧

and a
∨

inference, we obtain∧r(n)

ℓ=0
Js = ℓKn,m⃗, JA(s)Kn,m⃗, ∨r(n)

ℓ=0
JA(ℓ)Kn,m⃗.

The last formula in this cedent is the same as J(∃x ≤ r(c))A(x)Kn,m⃗; thus combining
the three cedents with cuts gives the cedentJs > r(c)Kn,m⃗, JΓKn,m⃗, J(∃x ≤ r(c))A(x)Kn,m⃗
as desired. This completes the proof of part (a) of Theorem 22.

Parts (b) and (c) follow from (a) via proof constructions in [8] due originally
to Razborov [38] and Kraj́ıček [30]. The proofs Pn of JφKn given by (a) can be
converted into tree-like refutations P ′

n of Hn of quasipolynomial Σ-size and poly-
logarithmic depth with O(1) formulas per cedent, by replacing the ∨ inferences

in Pn that introduce the formula JφKn with cuts against cedents JηKn,m. Given
these refutations P ′

n, (b) follows by the construction from the proof of Lemma 5
of [8] adapted to our setting of PCKip.

2 The refutations of Hn of (b) can be converted
to tree-like, quasipolynomial Σ-size refutations P ′′

n of Ξn by using ∨ inferences to

derive the cedents JηKn,m in Hn from the cedents in Ξn. The refutations P ′′
n and

Lemma 6 of [8] give the refutations needed for part (c).
We now prove (d). By the “quantifier-oracle” correspondence discussed in Sec-

tion 2.2, the witnessing theorem for Si+1
2 and the ∀Σbi+1-conservativity of Si+1

2

2As the referee noted, the proof of Lemma 5 of [8] erroneously states that the proof construction
yields a tree-like proof. This is not correct (a corrected proof is in preparation), but since the

proofs P ′
n are of polylogarithmic depth, that construction still converts the proofs P ′

n into tree-like
refutations of quasipolynomial Σ-size.
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over T i2 [12, 13] apply also to the theories S
i+1,⊕pP
2 (α) and T

i,⊕pP
2 (α). Thus there

is an algorithm A(x) which computes a witness y ≤ t(x) for the truth of the

Σ̂
b,⊕pP
i+1 (α) formula φ(x) which runs in polynomial time |x|O(1) and makes oracle

queries to Σ̂
b,⊕pP
i (α) properties. For any fixed value x = n, we convert this algo-

rithm into a refutation Pn of Hn.

The oracle queries of A(n) are made to a single (universal) Σ̂
b,⊕pP
i (α) predicate

B(· · · ), and we can assume that A(n) is constrained to always make exactly p(|n|)
many oracle queries before producing a witness y for φ(n). We shall use partial
computations of A(n) to build cedents Γq,w,n in Pn so that each Γq,w,n corresponds
to a possible set of answers for the first q oracle queries of A(n). There are many
potential computations based on whether the oracle answers “Yes” or “No”, and
different sequences of Yes/No answers will correspond to different paths in the
tree-like refutation. Each cedent Γq,w,n will contain the negations of the oracle
answers received so far. Formally, a value w ≥ 0 codes the oracle query answers
by letting Bit(q, w) = ⌊w/2q⌋ mod 2 equal zero or one depending on whether the
(q + 1)-st oracle answer is yes or no. There is a deterministic polynomial time
function f(q, w, n) such that, if the first q answers to oracle queries of A(n) are
given by the bits of w, then B(f(q, w, n)) is the (q+1)-st query made by A(n). We
write B for the prenex form of ¬B, and let B∗

q,w,n denote the formula B(f(q, w, n))

if the answer to this oracle query as coded by w is “No” and denote B(f(q, w, n))
if the answer as coded by w is “Yes”. For q ≤ p(|n|), and any w such that |w| ≤ q,
let the cedent Γq,w,n be the cedent

JB∗
0,w,nK, JB∗

1,w,nK, . . . , JB∗
q−1,w,nK.

That is to say, the cedent Γq,w,n contains the Paris-Wilkie translations of the nega-
tions of the assertions made by the first q oracle answers.

Γ0,w,n is the empty cedent, and the final line of the refutation Pn. For q < p(|n|),
Γq,w,n is derived from Γq+1,w,n and Γq+1,w+2q,n by a cut on JB(f(q, w, n))K. For
q = p(|n|), let g(w, n) be the deterministic polynomial time function that computes
the value output by the algorithm A(n) after receiving the p(|n|) oracle answers
coded by w. The cedent Γp(|n|),w,n is derived by a cut inference from the cedentJηKn,g(w,n) ∈ Hn and the cedent

(10) JB∗
0,w,nK, . . . , JB∗

p(|n|)−1,w,xK, JηKn,g(w,n).

To complete the description of the refutation Pn we must show that (10) has a tree-
like PCKip proof with quasipolynomial Σ-size, polylogarithmic height, and polylog-
arithmically many formulas in each cedent. We claim that this follows from the

fact that, since it proves the correctness of the algorithm A, T
i,⊕pP
2 (α) proves

(∀x,w)(∃q < p(|x|))[(Bit(q, w)=0 ∧B(f(q, w, x)))(11)

∨ (Bit(q, w)=1 ∧B(f(q, w, x))) ∨ η(x, g(x,w))].

In fact, for i ≥ 1, part (a) of Theorem 22 comes close to saying that the provability
of (11) implies the existence of the desired PCKip proofs of (10). This is not quite

true however, as the formula (11) is a Σb0(Σ̂
b,⊕pP
i (α)) formula instead of just a

Σ̂
b,⊕pP
i (α) formula. The next lemma extends (a) to handle this situation.
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Lemma 24. Let i ≥ 0. For n ≥ 0 and |w0| ≤ p(|n|), the sequents (10) with w := w0

have tree-like PCKip proofs of Σ-size quasipolynomial in n and height polylogarithmic
in n, and in which all cedents have polylogarithmically many formulas.

Lemma 24 is proved essentially by the same method as (a) of Theorem 22.

(The i = 0 case follows from Lemma 10.) Consider a free-cut free T
i,⊕pP
2 (α)

proof Q of the formula (11), with the (∀x,w) quantifiers removed and the for-

mulas (Bit(q, w)=0 ∧ B(f(q, w, x))) and (Bit(q, w)=1 ∧ B(f(q, w, x))) rewritten as

a Π̂
b,⊕pP
i (α) formula B0(q, w, x) and a Σ̂

b,⊕pP
i (α) formula B1(q, w, x), respectively.

The only formulas in Q which are not Σ̂
b,⊕pP
i (α) or Π̂

b,⊕pP
i (α) formulas are an-

cestors of subformulas of this modified version of (11), with some terms s possibly
substituted for the variable q. We extend the Paris-Wilkie translation J· · ·K to these
additional formulas, translating the outermost sharply bounded existential quanti-
fier and disjunctions of (11) by means of the cedent comma as opposed to

∨
. In

more detail, the translation of B0(s, w, x) ∨B1(s, w, x) is

JB0(s, w, x)Kw0,n,m⃗, JB1(s, w, x)Kw0,n,m⃗,

where m⃗ are values for the additional free variables of the term s. The formula
B0(s, w, x) ∨B1(s, w, x) ∨ η(x, g(x,w)) translates to

JB0(s, w, x)Kw0,n,m⃗, JB1(s, w, x)Kw0,n,m⃗, JηKn,g(w0,n).

Finally, the translation of the subformula in the endcedent of Q is

JB0(q, w, x)K0,w0,n, JB1(q, w, x)K0,w0,n, . . . ,(12) JB0(q, w, x)Kp(|n|)−1,w0,n, JB1(q, w, x)Kp(|n|)−1,w0,n, JηKn,g(w0,n).

The proof method for part (a) of Theorem 22, with slight modifications in the ∃
and ∨ cases to take care of the unusual translation, gives proofs of the Paris-Wilkie
translations of each cedent in Q: by inspection, these proofs are tree-like PCKip,
have Σ-size quasipolynomial in n and height polylogarithmic in n. Moreover, each
cedent contains only O(1) many formulas in addition to ancestors of those in the
endcedent (12), so in particular it contains only polylogarithmically many formulas.

It remains to derive (10) from (12) by means of a tree-like PCKip proof obeying
the requisite bounds. Consider a specific q0 ∈ {0, . . . , p(|n|)−1}. If Bit(q0, w0) = 0,

there are very simple tree-like PCKip derivations of JB0(q, w, x)Kq0,w0,n, JB∗
q0,w0,nK

and of JB1(q, w, x)Kq0,w0,n; otherwise, there are very simple tree-like PCKip deriva-

tions of JB1(q, w, x)Kq0,w0,n, JB∗
q0,w0,nK and of JB0(q, w, x)Kq0,w0,n. We can use cuts

against these cedents to derive (12) with JB0(q, w, x)Kq0,w0,n, JB1(q, w, x)Kq0,w0,n re-
placed by JB∗

q0,w0,nK. Doing this for all the (polylogarithmically many) values of q0

derives (10).
That proves Lemma 24, and thereby also part (d) of Theorem 22.
Part (e) of the theorem follows from (d) by the same arguments as used to prove

parts (b) and (c) from (a).
We now prove part (f). By the relativization of the polynomial local search (PLS)

construction [18] to ⊕pP and to values of i > 1, there is a PLS problem (N, c), and a
term r(x), such that the functionsN and c are computable in polytime while making

queries to a Σ̂
b,⊕pP
i−1 (α) oracle, and such that if s ≤ r(x) then N(x, s) ≤ r(x) and
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if also c(x, s) ≤ c(x,N(x, s)) then s ≤ t(x) and η(x, s). Furthermore, T
i−1,⊕pP
2 (α)

proves all these facts.3

The PLS problem (N, c) gives rise to the following strategy for witnessing φ(n).
Starting with s0 = 0, calculate successively c(n, sℓ), sℓ+1 = N(n, sℓ), and c(n, sℓ+1),

making poly(|n|) many queries to a Σ̂
b,⊕pP
i−1 (α) oracle for each ℓ. We will use this

strategy to form a PCKi−1
p refutation Pn of Hn. W.l.o.g., the polynomial time

algorithms computing c(n, s) and N(n, s) always make exactly p(|n|) queries to a

Σ
b,⊕pP
i−1 (α) oracle B. The Yes/No answers to these queries are encoded by values

w and v with the convention that Bit(q, w), resp. Bit(q, v), specifies whether the
(q + 1)-st oracle query in the computation of c(n, s), resp. N(n, s), is answered yes
or no.

The PCKi−1
p refutation Pn of Hn ends with the empty cedent and has initial

cedents from Hn. The internal portions of Pn are constructed in a manner similar
to the Pn constructed for the proof of (d). For q ≤ p(|n|) − 1, let f(q, w, s, n)
be the deterministic polynomial-time function such that if the bits of w encode
the first q queries made in the computation of c(n, s), then the (q + 1)-st query is

B(f(q, w, s, n)). Let B∗
q,w,s,n denote the formula B(f(q, w, s, n)) or B(f(q, w, s, n))

depending on whether the answer to the query, as coded by w, is “No” or “Yes”,
respectively. Similarly, let g(q, v, s, n) be the deterministic polynomial-time func-
tion such that if the bits of v encode the first q queries made in the computation of
N(n, s), then the (q+1)-st query is B(g(q, v, s, n)). Let B′

q,v,s,n denote the formula

B(g(q, v, s, n)) or B(g(q, v, s, n)) depending on whether the answer to the query,
as coded by v, is “No” or “Yes”, respectively. Let C(w, s, n) give the cost value
output by the computation of c(n, s) if the bits of w encode the answers to the
p(|n|) oracle queries of c(n, s). Likewise, let S(v, s, n) be the value of N(n, s) when
v encodes the oracle answers received during the computation. Note that C and S
are deterministic polynomial time.

The refutation Pn is built around “key” cedents Γw,sJB∗
0,w,s,nK, JB∗

1,w,s,nK, . . . , JB∗
p(|n|)−1,w,s,nK

for s = 0, . . . , r(x) and |w| ≤ p(|n|). (Unneeded cedents may be discarded once the
refutation has been constructed.) Note there are 2p(|n|) such cedents for any fixed s.
Also note that each Γw,s implicitly specifies a cost value for s, namely C(w, s, n).
The final empty cedent of P is derived from the cedents Γw,0 where s = 0, by using
a balanced tree of cuts.

An arbitrary fixed cedent Γw,s is derived in Pn by the following. Let v and w′

be values with |v|, |w′| ≤ p(|n|). Let s′ = S(v, s, n), namely the neighbor of s as
computed with oracle answers specified by v. Then Γw,s,v,w′ is defined to be the
cedent containing the formulas of Γw,s plus the formulas JB′

q,v,s,nK for q < p(|n|)
and the formulas of Γw′,s′ . For a fixed w, there are 22p(|n|) cedents Γw,s,v,w′ , and the
cedent Γw,s is derived from these by a balanced tree of cuts, where the order in which
cuts are performed respects the order of the oracle queries in the computations of
c(n, s) and N(n, s). (This is similar to the way that, in the proof of part (d), the
cedent Γ0,w,n was inferred from the cedents Γp(|n|),w,n.)

3In fact, it is possible to prove suitable “new-style” witnessing theorems in the style of [10, 42]

that show that T
0,⊕pP
2 (α) proves these facts about N , c and r.
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The cedents Γw,s,v,w′ are derived in Pn in one of two possible ways. First,
if C(w, s, n) > C(w′, s′, n), then Γw,s,v,w′ is derived by a weakening from Γw′,s′ .
Otherwise, C(w, s, n) ≤ C(w′, s′, n). In this case, let m = s and derive Γw,s,v,w′

from the cedent

(13) Γw,s,v,w′ , JηKn,m
using a cut against the cedent JηKn,m in Hn.

To give the derivations of the cedent (13), note that T
i−1,⊕pP
2 (α) proves

(∀x, s, s′, w, v, w′)(∃q ≤ p(|x|))
[(Bit(q, w) = 0 ∧ ¬B(f(q, w, s, x))) ∨ (Bit(q, w) = 1 ∧B(f(q, w, s, x)))

∨ (Bit(q, v) = 0 ∧ ¬B(g(q, v, s, x))) ∨ (Bit(q, w) = 1 ∧B(g(q, v, s, x)))

∨ (Bit(q, w′) = 0 ∧ ¬B(f(q, w′, s′, x))) ∨ (Bit(q, w′) = 1 ∧B(f(q, w′, s′, x)))

∨ s′ ̸= S(v, s, x) ∨ C(w, s, x) > C(w′, s′, x) ∨ η(n,m)].

For values of w, v, w′, s, s′ being considered, the Paris-Wilkie translations of the
formulas s′ ̸= S(v, s, x) and C(w, s, x) > C(w′, s′, x) are just the constants False.
Therefore, by the same argument used for Lemma 24 at the end of part (d) above,
there are PCKi−1

p derivations of the cedents (13) of quasipolynomial Σ-size and
polylogarithmically many formulas per cedent. This completes the proof of part (f).

It is perhaps interesting to note that an alternative proof of (c) can be given
using (f) and the comment after Lemma 5 in [8] about translating depth i dag-like
proofs with small numbers of formulas per cedent into depth i− 1 dag-like proofs.
Q.E.D. Theorem 22.

We next consider Paris-Wilkie translations into the propositional systems PCKiFp
based on polynomials. We redefine the Paris-Wilkie translation of a strict bounded

formula ψ, now denoting it JψKFpn⃗ . For ψ ∈ Σ
b,⊕pP
0 (α), JψKFpn⃗ will be a multilinear

Fp polynomial g which equals zero under a given truth assignment if and only if ψ
is true. The variables xk of g are intended to be 0/1 valued and represent the truth

value of α(k). This polynomial g can be formed from the ⊕-dt formula JψKFpn⃗ via
the construction mentioned near the end of Section 2.1. Note that the degree of g
is polynomially bounded in terms of |n⃗|.

For ψ a Σ̂
b,⊕pP
i (α) formula, the Paris-Wilkie translation JψKFpn⃗ is defined by

the same method as the definition of JψKn⃗, namely by expanding disjunctions of
conjunctions into sums of monomials using the distributive law, and translating
quantifiers and outermost Boolean connectives to

∧
’s and

∨
’s.

Theorem 25. All six parts of Theorem 22 still hold for PCKi
′

Fp , JφKFpn , H
Fp
n and Ξ

Fp
n

in place of PCKi
′

p , JφKn, Hn and Ξn.

Theorem 25 can be proved by translating the PCKi
′

p proofs of Theorem 22 into

PCKi
′

Fp by the method discussed near the end of Section 2.1. This translation

preserves the property of being quasipolynomial size, because in the PCKi
′

p proofs,

the inputs to the ⊕kp connectives are all polylogarithmic size conjunctions, so the

application of the distributive law to convert formulas of the form ⊕kpΦ to sums of
monomials causes only a quasipolynomial increase in size. Alternatively, a direct
proof of Theorem 25 could be given by the method of proof of Theorem 22, but
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handling the cases of axioms and inferences involving sharply bounded formulas
with Lemma 15 instead of Lemma 10.

The j = 1 cases (d) and (f) of Theorems 22 and 25, which gave PCK0
Fp proofs

with only polylogarithmically many formulas per cedent, can be further improved
to give pure Nullstellensatz and Polynomial Calculus proofs.

Theorem 26. Fix a prime p. Let φ(x) be a Σ̂
b,⊕pP
1 (α) formula.

(d′): Suppose PV
⊕pP
1 (α) ⊢ φ(x). Then there is a Nullstellensatz refutation

over Fp of H
Fp
n of polylogarithmic degree (and thus quasipolynomial size).

(f′): Suppose T
1,⊕pP
2 (α) ⊢ φ(x). Then there is a Polynomial Calculus refuta-

tion over Fp of H
Fp
n of polylogarithmic degree and quasipolynomial size.

Proof. If the hypothesis of (f′) holds, then by part (f) of Theorems 22 and 25 with
j = i = 1, there is a dag-like PCK0

Fp refutation Pn of Hn with quasipolynomial
Σ-size and with polylogarithmically many formulas in each cedent. By definition,
this means that each line in the refutation Pn is a cedent containing (logn)O(1)

many Fp polynomials, each of degree (log n)O(1).
Consider a cedent Γ in Pn; it is of the form f1, . . . , fk, which has the intuitive

meaning that at least one fℓ evaluates to zero under any 0/1-assignment of values
to the variables. Define Γ∗

n to be the cedent containing the single polynomial
f1f2 · · · fk. Form a new refutation P ∗

n , by replacing each cedent Γ in Pn with Γ∗.
By examining the rules of inference for the Polynomial Calculus (and noting that
the

∧
and

∨
rules do not apply since the cedents all contain only polynomials), it

is clear that if Γ is inferred from Γ1 and Γ2 in Pn, then Γ∗
1,Γ

∗
2 � Γ∗. By Lemma 15

there is an easy derivation of Γ∗ from Γ∗
1 and Γ∗

2, namely, Γ∗ = h1Γ
∗
1 + h2Γ

∗
2 for

some multilinear polynomials h1 and h2. Therefore, P
∗
n can be made to be a valid

Polynomial Calculus refutation of H
Fp
n . By construction, P ∗

n has quasipolynomially
many lines, and the degree of P ∗

n is polylogarithmic in n. Hence, the size of P ∗
n is

quasipolynomial in n.
The same argument works for case (d′) to prove the existence of a tree-like

Polynomial Calculus refutation P ∗
n of H

Fp
n of quasipolynomially many lines and

polylogarithmic degree. By Theorem 5.4 of [16], this implies the existence of a

Nullstellensatz refutation of H
Fp
n of polylogarithmic degree. �

4. A collapse of modular counting

4.1. Approximate counting in APC1 and APC2. Jeřábek [26] showed that
APC1 can define a notion of “approximate” cardinality for PV1 definable sets.
Working inside APC1, suppose X,Y ⊆ 2n are defined by Boolean circuits with
n inputs, and ϵ ≤ 1 is a rational. Then, APC1 can define a relation X ≼ϵ Y
expressing

“there exists a non-zero v ∈ Log and a circuit G such that G com-
putes a surjection v × (Y ⊔ ϵ2n) � v ×X.”

Here the notation � indicates a surjective map, and ⊔ means disjoint union.
Usually, although not always, 1/ϵ ∈ Log, where Log is the set of integers which are
lengths. For 1/ϵ ∈ Log, Jeřábek [26] showed that APC1 can prove that ≼ϵ satis-
fies many basic properties expected of an “approximately smaller than” relation,
including properties about subsets and certain types of unions and intersections.
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In addition, APC1 can prove that, for any X, n, and ϵ as above, there is an a ≥ 0
such that X ≈ϵ a, where we are now using Jeřábek’s convention of a = [0, a) and
where ≈ϵ is the intersection of ≼ϵ and ≽ϵ.

The definition of X ≼ϵ Y is an ∃Πb2 formula. To reduce the quantifier complexity,
[26] introduced a conservative extension of APC1 called HARDA. The language of
HARDA contains an additional oracle function γ plus an axiom stating that γ(x)
defines the truth-table of a Boolean function in ||x|| variables which is “hard on
average” in the sense that any Boolean circuit that computes γ(x) for substantially
more than one half the values of x must be large. (See [26] for the exact definition.)
HARDA proves there is a PV1(γ) function Size(C, 2n, e) such that, for ϵ ∈ 1/Log,

the set X ⊆ 2n defined by the circuit C satisfies X ≈ϵ Size(C, 2n, 2ϵ
−1

).
As a further simplification, we introduce another conservative extension of APC1.

APC+
1 is a theory in the language with an additional binary function symbol Sz.

The axioms of APC+
1 include those of APC1(Sz), namely the theory PV1(Sz) +

sWPHP(PV1(Sz)). In addition, there is an axiom stating that for any circuit C
with n variables that defines a set X ⊆ 2n and any ϵ ∈ 1/Log, there exists a
circuit witnessing that X ≈ϵ Sz(C, 2n). Note that the function Sz does not have an
argument corresponding to ϵ; instead, it produces an approximate cardinality that
is accurate to within ϵ fraction of 2n for every ϵ ∈ Log.

Proposition 27. APC+
1 is a ∀Σb∞-conservative extension of APC1.

Proof. Let A � HARDA + φ, where φ is an ∃Σb∞ sentence. Proposition 27 will be

proved by giving a model B of APC+
1 +φ. First take an elementary extension B̃ of

A which is not cofinal with A. Take some δ such that δ−1 is in Log(B̃) but above
Log(A). The model B for APC+

1 + φ is defined by letting B be the initial segment

of B̃ determined by A and interpreting Sz(C, 2n) as Size(C, 2n, 2δ
−1

).
The axioms of APC1(Sz) are ∀Σb∞(Sz) formulas, so they automatically hold in

the initial segment B of B̃. We also must show that, for ϵ ∈ 1/Log(B) and X a set
defined by an n-variable circuit C from B, circuits witnessing X ≈ϵ Sz(C, 2n) exist
in B. (The circuits witnessing X ≈δ Sz(C, 2n) may be outside of B.) We argue the
≼ϵ direction, as the other is similar. Since B � APC1(Sz), B contains a v ̸= 0 and

a circuit mapping v × (Size(C, 2n, 2(ϵ/3)−1

) ⊔ (ϵ/3)2n) surjectively onto v ×X. We

claim that Sz(C, 2n)+ϵ2n ≥ Size(C, 2n, 2(ϵ/3)−1

)+(ϵ/3)2n, which, if true, is enough
to complete the proof.

Assume that Sz(C, 2n) < Size(C, 2n, 2(ϵ/3)−1

) − (2/3)ϵ2n. For some non-zero

w ∈ B̃, the following surjections are witnessed by circuits in B̃:

w × (Sz(C, 2n) + (ϵ/3 + δ)2n) � w × (X ⊔ (ϵ/3)2n) � w × Size(C, 2n, 2(ϵ/3)−1

).

Thus, B̃ also contains a surjection from w×(Size(C, 2n, 2(ϵ/3)−1

)−(ϵ/3−δ)2n) onto
w × Size(C, 2n, 2(ϵ/3)−1

). Since ϵ/3 ≫ δ, this contradicts HARDA in B̃. �

Below, we use the Sz function freely when proving results about bounded for-
mulas in APC1. In the spirit of [26], we typically abuse notation and write Sz(X)
for Sz(C, 2n), where X is the subset of 2n defined by the n-variable circuit C.

To save space in some arguments involving Sz, we introduce the notation x�a y
to stand for “for every ϵ ∈ 1/Log, x ≤ y + ϵa” and ◃▹ to stand for the intersection
of � and �. Note that � and ◃▹ are not definable by bounded formulas, so we
cannot use induction for formulas involving them. Note also that for each model
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A |= BASIC and each a ∈ A, �a is a quasiorder, the associated equivalence relation
◃▹a is a congruence with respect to +, and (A ∪−A,+)/ ◃▹a is an ordered group.

The following proposition lists a few simple basic properties of the approximate
counting mechanism from [26], formulated in terms of Sz and �.

Proposition 28. (in APC+
1 ) Let X,Y ⊆ 2n be definable by n-variable circuits, and

let a < 2n be a number, treated as the subset [0, a) of 2n.

(a) Sz(a) ◃▹2n a,
(b) If X ≼0 Y , then Sz(X)�2n Sz(Y ),
(c) If X ∩ Y = ∅, then Sz(X ∪ Y ) ◃▹2n Sz(X) + Sz(Y ).

Item (c) is from Lemma 2.11(v) of [26]. Note that item (a) also implies Sz(a) ◃▹a a
for a sufficiently large, say a ≥ 2n/nO(1). We will use the properties listed in
Proposition 28 without explicit mention. More advanced properties of approximate
counting will be invoked as needed.

The major limitation of the approximate counting available in APC1 is that the
size of X ⊆ 2n is approximated only up to an ϵ-fraction of 2n rather than an ϵ-
fraction of the “actual size” of X. Thus, the size of sparse sets is not measured
well. To remedy this, Jeřábek [27] developed a more precise version of approximate
counting, which involves PV2 functions and thus requires APC2. The only result
of [27] that we use is the following:

Theorem 29. [27, Thm 3.21] (in APC2) If X is a bounded Σb1 definable set and
ϵ ∈ 1/Log, then there exist PV2 functions with parameters (i.e. circuits with access
to a Σb1 oracle) f, g such that for some number m,

m(1 + ϵ)
f
� X

g
� m.

An inspection of the proof shows that the above theorem also holds in a param-
eterized version: if X is a bounded Σb1 set and Xy denotes {x : ⟨x, y⟩ ∈ X}, then
there are two-variable PV2 functions with parameters f and g such that for each y,
the functions f(y, ·) and g(y, ·) witness

my(1 + ϵ) �PV2 Xy �PV2 my

for some my. The notation �PV2 indicates the existence of a PV2 surjection. The
value my is computable as a function of y by a PV2 function with parameters.

For X ⊆ 2n, ϵ, p ∈ [0, 1], and a an integer such that |a| = n, [26] uses the
notation Prx<a(x ∈ X) ≼ϵ p to mean X ∩ a ≼ϵ pa. We will additionally let
Prx<a(x ∈ X) denote the fractional number Sz(X)/a. Thus, we write things such
as Prx<a(x ∈ X) ≤ p to mean Sz(X ∩ a) ≤ pa. There is no confusion between
the two uses of Pr, as the first appears only in the context of ≼ϵ, while the second
appears in the context of ≤ or �.

When it is understood that X ⊆ a, we write just Pr(X) instead of Prx<a(x ∈ X).
Note that Pr(X)�1 p thus means the same as Sz(X)�a pa.

The methods of approximate counting from [26] and [27] relativize without dif-

ficulty. By the correspondence between the Ckp quantifiers and a modular counting
oracle, this includes relativization to ⊕pP.

Below, we work mostly in APC
⊕pP
2 , that is, with APC2 relativized to an NP⊕pP-

complete oracle (sometimes this is also relativized to a new uninterpreted predi-

cate α). This theory is able to count PV⊕P
2 sets in the style of [26]. To do this, all
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references to circuits or PV1 functions in the definitions of ≼, Sz, etc. need to be

replaced by references to circuits with NP⊕pP oracles, resp. PV
⊕pP
2 functions. For-

mally, this should be reflected in a change of notation to something like ≼1,⊕pP etc.
However, “moderation in all things” certainly applies to superscripts as well; we
thus keep the basic notation for notions related to counting also in the relativized
case.

We next give two simple technical lemmas which will be useful later on. The
first corresponds to a special case of the inclusion-exclusion principle, while the
second is a version of the union bound. Both hold also for the typically tricky case
of families whose size is not in Log.

Lemma 30. (in T 1
2 ) Let A, I,X be PV1 sets with A ⊆ I × X. For i ∈ I, let Ai

stand for {x ∈ X : ⟨i, x⟩ ∈ A}. There exists a PV2 surjection from∪
i∈I

Ai ⊔ {⟨i, j, x⟩ : i < j, x ∈ Ai ∩Aj}

onto {⟨i, x⟩ : x ∈ Ai}.

The intuition for Lemma 30 is the inclusion-exclusion principle that

|
∪
iAi| ≥

∑
i |Ai| −

∑
i<j |Ai ∩Aj | .

The lemma witnesses this with a surjective PV2 mapping

(
∪
iAi) ∪

⊔
i<j(Ai ∩Aj) �

⊔
iAi.

Note that the inclusion-exclusion principle of Proposition 2.19 of [26] applies only
to families for which the size of the index set I is in Log.

Proof. On input x ∈
∪
i∈I Ai, the function finds the smallest value i0 for which

x ∈ Ai0 , and maps x to ⟨i0, x⟩. This involves a binary search procedure which asks
Σb1 queries. On input ⟨i, j, x⟩, where i < j and x ∈ Ai ∩ Aj , the function simply
outputs ⟨j, x⟩.

To verify surjectivity, consider ⟨i, x⟩ such that x ∈ Ai. If there exists i0 < i such
that x ∈ Ai0 , then ⟨i0, i, x⟩ is mapped to ⟨i, x⟩. Otherwise, x itself is. �
Lemma 31. (in APC2) Let m, k, n be numbers. Let Y be a PV2 set such that
m�PV2 Y . Let X be a Σb1 set so that for each y ∈ Y , the set Xy := {x : ⟨x, y⟩ ∈ X}
is contained in 2n and Xy ≼0 k. Then for every ϵ ∈ 1/Log,

mk(1 + ϵ) �PV2 {⟨x, y⟩ ∈ X : y ∈ Y }
and

mk(1 + ϵ) �PV2 {x : ∃y ∈ Y (x ∈ Xy)}.

The lemma is quite close to [27, Theorem 3.19], but it does not seem to follow
immediately from that result. [26, Proposition 2.16] is less relevant, as the error it
introduces may be much too large if Y or the Xy’s are sparse.

Proof. Fix ϵ. By the remark after Theorem 29 there is a two-variable PV2 function
f such that for every y ∈ Y , f(y, ·) : ky(1 + ϵ/3) � Xy and Xy �PV2 ky for some
ky. By sWPHP(PV2), ky has to be smaller than k(1 + ϵ/3), so f(y, ·) is also a
surjection from k(1 + ϵ) onto Xy.

If g is the PV2 surjection from m onto Y , then h defined by

h(w, z) = ⟨f(g(w), z), g(w)⟩
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is a surjection frommk(1+ϵ) onto {⟨x, y⟩ ∈ X : y ∈ Y }. Composing h with a projec-
tion yields the required surjection frommk(1+ϵ) onto the set {x : ∃y ∈ Y (x ∈ Xy)}.

�

4.2. The Valiant-Vazirani Theorem. We next formalize and prove the Valiant-
Vazirani Theorem [44] in APC2. It turns out that the usual proof, see e.g. the
textbook [4], can be formalized directly in APC2. The only difference is that the
constants are slightly worse since APC2 can only do approximate counting. We
write “∃1x, A(x)” to mean there is exactly one value x such that A(x). We similarly
write “∃≥2x, A(x)” to mean there are at least two values x such that A(x).

Lemma 32 (Valiant-Vazirani Theorem). (in APC2) There exists a PV1 function
which takes as inputs a propositional CNF formula φ with n propositional variables
q⃗ = ⟨q1, . . . , qn⟩ and a (randomly chosen) value r of length (n + 3)n + |n|, and
outputs a CNF formula φr with the same variables q⃗ such that

φ ∈ Sat =⇒ Pr
r
[¬∃1b, b |= φr] ≼0 1− 1

2|n| · 65
,(14)

φ /∈ Sat =⇒ φr /∈ Sat.(15)

The notation b |= φr means that b encodes a string of n bits that specifies a
satisfying assignment for φr. Note that b is implicitly bounded by 2n.

Proof. We argue informally in APC2. W.l.o.g. the all zero assignment b = 0 does
not satisfy φ (otherwise it is easy to construct φr even ignoring r). The function
interprets its random input r as a pair ⟨j, v⟩, where j is a number from [1, 2|n|] and
v = ⟨v1, . . . , vn+3⟩ is an (n+ 3)-tuple of n-bit vectors. If j > n, the formula φ⟨j,v⟩
is 0. Otherwise, φ⟨j,v⟩ is the conjunction φ ∧ φ⊥

j,v for φ⊥
j,v equal to∧j+3

i=1
q⃗ ⊥ vi,

where q⃗ ⊥ vi is a propositional formula stating that the inner product of q⃗ and vi as
bit vectors is equal to 1. Property (15) is clearly true, so we only need to show φ⟨j,v⟩
satisfies (14). Assume that φ is satisfiable. Let S be the set {b ∈ {0, 1}n : b |= φ}.

By Theorem 29, there are numbers m, k such that k ∈ [1, n] and m approximates
the size of S in the following sense:

(16) 2k−2 ≤ m�PV2 S �PV2

3

2
m ≤ 2k.

Informally, this says 2k−2 ≤ |S| ≤ 2k.
We now fix this value of k (or the smaller value if there are two such values) and

consider only pairs r = ⟨k, v⟩ for this specific k. We henceforth write φv and φ⊥
v

for φ⟨k,v⟩ and φ
⊥
k,v, respectively.

To prove (14), it is enough to show that Prv[∃1b, b |= φv]�1 1/64. We have

(17) Pr
v
[∃1b, b |= φv] ◃▹1 Pr

v
[∃b, b |= φv]− Pr

v
[∃≥2b, b |= φv].

Accordingly, we need a lower bound for Prv[∃b, b |= φv] and an upper bound for
Prv[∃≥2b, b |= φv].

For a fixed value b, it is easy to compute a bijection between 2−k−32(n+3)n and
the set {v : b |= φ⊥

v }. (Namely, for each of the first k + 3 entries in the tuple v,
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toggle the bit corresponding to the first non-zero bit of b.) By the “left half” of (16),
this gives a surjection

(18) {⟨b, v⟩ : b |= φv} �PV2 2k−22−k−32(n+3)n = 2−52(n+3)n.

Similarly, for fixed b < b′, there is a simple bijection between 2−2k−62(n+3)n and
the set {v : b, b′ |= φ⊥

v }. By the “right half” of (16), this gives a surjection

(19) {⟨b, b′, v⟩ : b < b′ and b, b′ |= φv} �PV2

(
2k

2

)
2−2k−62(n+3)n ≤ 2−72(n+3)n.

It follows that

(20) Pr
v
[∃≥2b, b |= φv]�1 2

−7,

and this gives our desired upper bound on Prv[∃≥2b, b |= φv]. To get a lower bound
on Prv[∃b, b |= φv], we make use of Lemma 30, according to which:

{v : ∃b, b |= φv} ⊔ {⟨b, b′, v⟩ : b < b′, b, b′ |= φv} �PV2 {⟨b, v⟩ : b |= φv}.
Combining this with (18) and (19) gives

Pr
v
[∃b, b |= φv]�1 2

−5 − 2−7.

This, plus (17) and (20), gives

Pr
v
[∃1b, b |= φv]�1 2

−5 − 2 · 2−7 = 2−6,

and completes the proof of the Valiant-Vazirani Theorem. �

Lemma 32 gives a reduction of Sat to Unique-Sat that works with a one-sided
error, and probability of success 1/(65 · 2|n|). This success probability is too small
for us work with usefully, and it is an open problem whether it can be improved
substantially. Reductions with a higher probability of success can be obtained
by working with “Parity-Sat”, or more generally, “mod p Sat”. The next two

definitions are intended to be formulated in APC
⊕pP
1 .

Definition 33. Let p be prime and 0 ≤ k < p. Then ⊕kpSat is the set of proposi-
tional formulas φ such that the number of satisfying assignments of φ is congruent
to k mod p.

Definition 34. A language L is in BP · ⊕pP if there exist PV1 functions f and u
such that for all x,

x ∈ L ⇐⇒ Pr
r<u(x)

[f(x, r) /∈ ⊕1
pSat] ≼0 1/4,(21)

x /∈ L ⇐⇒ Pr
r<u(x)

[f(x, r) /∈ ⊕0
pSat] ≼0 1/4.(22)

See Lemma 36 for an even stronger condition equivalent to the definition of being
BP · ⊕pP.

Since the definition of BP ·⊕pP is formulated in APC
⊕pP
1 , the functions witness-

ing the ≼0 relation in the definition must be PV
⊕pP
1 functions. When the definitions

are formulated in APC
⊕pP
2 instead, the decision whether to keep the functions as

PV
⊕pP
1 or allow them to be PV

⊕pP
2 no longer matters. This is because the “≼0 1/4”

relation defined in terms of PV
⊕pP
2 functions can be amplified to, say, “≼0 1/5”

(see also Lemma 36 below), and then the probabilities of the corresponding PV
⊕pP
1
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events can be approximated in terms of PV
⊕pP
1 functions. By sWPHP(PV

⊕pP
2 ),

for a good enough approximation this will give PV
⊕pP
1 functions witnessing the

“≼0 1/4” conditions. Therefore, in practice, when working in APC
⊕pP
2 , we adhere

to our usual convention regarding ≼ and allow the probability witnessing functions

to be PV
⊕pP
2 .

Lemma 35. (in APC
⊕pP
2 ) Every Σb1 property is in BP · ⊕pP.

Proof. Of course, it is enough to show that Sat is in BP · ⊕pP. Since already

PV
⊕pP
1 knows that a formula with exactly one satisfying assignment is in ⊕1

pSat

and an unsatisfiable formula is in ⊕0
pSat, Lemma 32 gives us a PV1 function which

takes input φ and a random input r, and outputs φr such that

φ ∈ Sat =⇒ Pr
r
[φr /∈ ⊕1

pSat] ≼0 1− 1

2|n| · 65
,

φ /∈ Sat =⇒ φr ∈ ⊕0
pSat.

As in the usual proof of NP ⊆ BP · ⊕pP, upgrading this to the result that
Sat ∈ BP ·⊕pP requires two observations. The first is that for a large enough term
t, given φ and a randomly chosen sequence ⟨r0, . . . , r|t(φ)|−1⟩ we have:

φ ∈ Sat =⇒ Pr
r⃗
[∀i<|t|φri /∈ ⊕1

p Sat] ≼0
1

4
,

φ /∈ Sat =⇒ ∀i<|t|φri∈ ⊕0
p Sat.

This follows easily from Chernoff’s bound, which is provable in APC
⊕pP
1 by Propo-

sition 2.18 of [26].
The second observation is that there exists a PV1 function g which, given a

sequence of formulas ⟨φ0, . . . , φl−1⟩, finds a single formula which is in ⊕1
pSat iff

at least one of the φi is not in ⊕0
pSat. The definition of g involves two basic

constructions, whose correctness is straightforward to verify in PV
⊕pP
1 . Firstly,

let ψ(q1, . . . , qn) be a formula, and for 0 < k < p, let χk(q1, . . . , qn) have exactly
k satisfying assignments. (W.l.o.g., n ≥ p). Let q0 be a new variable; then the
formula

(ψ ∧ q0) ∨ (χk ∧ ¬q0)

has exactly k many more satisfying assignments than ψ. Secondly, for any sequence
of formulas ⟨ψ0, . . . , ψl−1⟩ with disjoint sets of variables, if each ψm ∈ ⊕kmp Sat,

then the conjunction of the ψk’s is in ⊕k′p Sat, for k′ equal to the product mod p of
the km’s. A particular application of this is based on Fermat’s Little Theorem: a
conjunction of p− 1 copies of a formula in disjoint sets of variables is in ⊕0

pSat if

the original formula was, and in ⊕1
pSat otherwise.

A formula φ which has k mod p satisfying assignments with k equal to ei-
ther 0 or 1 can be converted by a “negation transformation” into a formula with
(1− k) mod pmany satisfying assignments. This negation transformation first adds
p− 1 satisfying assignments, then squares the number of satisfying assignments.

The function g now can be defined first applying the “Fermat’s Little Theorem”
construction followed by the negation transformation to each of the φℓ’s separately,
then taking their conjunction in distinct variables, and finally applying the negation
transformation again. �

A slightly different amplification argument gives:
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Lemma 36. (in APC
⊕pP
1 ) For a language L in BP · ⊕pP and a term t(x) > 0,

there exist PV1 functions f, u such that for all x,

x ∈ L =⇒ Pr
r<u(x)

[f(x, r) /∈ ⊕1
pSat] ≼0 1/t(x),

x /∈ L =⇒ Pr
r<u(x)

[f(x, r) /∈ ⊕0
pSat] ≼0 1/t(x).

Proof. Let L be a language in BP · ⊕pP, as witnessed by some PV1 functions f, u
satisfying (21) and (22). By Chernoff’s bound, if we take a large enough term s
and on input x apply f not to one randomly chosen r but to independently chosen
r0, . . . , r|s(x)|−1, then for x ∈ L with high probability a majority of the f(x, ri)’s are

in ⊕1
pSat (the opposite event happens with probability ≼0 1/t(x)) and for x /∈ L

with high probability a majority of the f(x, ri)’s are in ⊕0
pSat.

It remains to verify that there is a PV1 function g which on input ⟨φ0, . . . , φℓ⟩
produces a formula φ which is in ⊕1

pSat if a majority of the φi’s are in ⊕1
pSat,

and is in ⊕0
pSat otherwise. The property “a majority of of the φi’s are in ⊕1

pSat”

is polynomial-time computable with ⊕1
pSat as an oracle. We claim that, provably

in APC
⊕pP
1 , all such properties are polynomial-time many-one reducible to ⊕1

pSat.

This is proved via a rather routine formalization in APC
⊕pP
1 of the construction

from the proof of Theorem 20. In fact, for proving Lemma 36 we need only the
special case of Theorem 20 which states that P⊕pP is contained in ⊕pP. We leave
the details of the argument to the reader. �

We conclude this subsection with a strengthening of Lemma 35 which will be
needed in the proof of Theorem 39 below.

Definition 37. ∃ · ⊕pP is the class of formulas of the form

∃y<t (f(x, y) ∈ ⊕kpSat)
for f ∈ PV1.

Lemma 38. (in APC
⊕pP
2 ) Every ∃ · ⊕pP property is in BP · ⊕pP.

Proof. We first note that it is enough to prove that BP · ⊕pP contains the set

(23) {φ(q⃗, r⃗) : ∃b ∈ {0, 1}nφ(b, r⃗) ∈ ⊕1
pSat},

where n is the number of variables in q. This set is many-one complete for ∃ · ⊕pP
provably in PV

⊕pP
1 . Moreover, by the usual Fermat’s Little Theorem “p−1 copies”

trick, we may consider only the case of φ for which φ(b, r⃗) is always either in ⊕1
pSat

or in ⊕0
pSat.

The argument showing that (23) is in BP·⊕pP mirrors the one for Sat. One first
proves an analogue of Lemma 32: Sat is replaced by the set (23) in the statement,
while “b |= φ” is replaced by “φ(b, r⃗) /∈ ⊕0

pSat” and the PV2 functions used for

approximate counting are replaced by PV
⊕pP
2 functions.

We then make the appropriate modifications to the proof of Lemma 35 from
Lemma 32. The amplification part of the argument remains essentially unchanged,
so the only thing that requires replacing is the observation that a formula with
exactly one satisfying assignment is in ⊕1

pSat and an unsatisfiable formula is in

⊕0
pSat. Its place is taken by the observation, also provable in PV

⊕pP
1 , that for any

formula ψ(q⃗, r⃗), if ψ(b, r⃗) ∈ ⊕1
pSat for exactly one assignment b to the q⃗ variables
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and ψ(b, r⃗) ∈ ⊕0
pSat for all other b’s, then ψ ∈ ⊕1

pSat; on the other hand, if

ψ(b, r⃗) ∈ ⊕0
pSat for all b’s, then ψ ∈ ⊕0

pSat. �

4.3. Toda’s Theorem, formalized. The next theorem states that APC
⊕pP
2 can

formalize the proof of Toda’s Theorem [43] about the collapse of the modular count-
ing polynomial time hierarchy. Recall that the notation Σb∞(⊕p) describes formulas

formed from bounded existential, universal, and Ckp quantifiers. The language of

T2(⊕p) includes all Σb∞(⊕p) formulas; whereas the languages of APC
⊕pP
2 and the

theories T
i,⊕pP
2 restrict the counting quantifiers Ckp to apply to sharply bounded

formulas, and thus have only Σ
b,⊕pP
∞ formulas as bounded formulas.

Theorem 39. T2(⊕p) is conservative over APC
⊕pP
2 . Furthermore, T2(⊕p) proves

that any Σb∞(⊕p) formula defines a property in BP · ⊕pP.

Since APC
⊕pP
2 ⊆ T

3,⊕pP
2 ⊆ T2(⊕p), this gives as an immediate corollary:

Corollary 40. T2(⊕p) is conservative over T
3,⊕pP
2 .

And, since the theories APC
⊕pP
2 and T

k,⊕pP
2 have the same languages:

Corollary 41. The theories T
k,⊕pP
2 for k ≥ 3 are all equal to APC

⊕pP
2 .

Theorem 39 and the corollaries relativize, so T2(⊕p, α) is conservative over

APC
⊕pP
2 (α). Likewise, APC

⊕pP
2 (α) equals T

k,⊕pP
2 (α) for k ≥ 3.

Proof. (of Theorem 39.) We will inductively assign to each Σb∞(⊕p) formula φ a
“BP ·⊕pP translation” given by a pair ⟨fφ, uφ⟩, where fφ is a PV1 function and uφ
is a term. It will be verifiable in T2(⊕p) that fφ, uφ represent a BP · ⊕pP property
according to conditions (21) and (22), and that this BP ·⊕pP property is equivalent
to φ.

It will also be possible to verify in the subtheory APC
⊕pP
2 that fφ, uφ represent

a BP · ⊕pP property, and that the translation is correct in the sense of commuting

with connectives and quantifiers up to provable equivalence. In the case of the Ckp
quantifier, this means that the axioms governing its use are satisfied.

Conservativity of T2(⊕p) over APC
⊕pP
2 can then be shown as follows. Take a

proof in T2(⊕p), with Σb∞(⊕p) induction formalized as a rule. Apply the BP · ⊕pP
translation to each formula in each cedent of the proof; strictly speaking, this means
that the BP · ⊕pP translation is applied to any maximal Σb∞(⊕p) subformula ap-
pearing in the proof, while unbounded quantifiers and operators which have an
unbounded quantifier in their scope are left unchanged. The translation makes all

axioms and inferences provably sound in APC
⊕pP
2 (this is argued in some detail

below, after the translation is defined). Thus, in particular, the translation of the

endcedent of the T2(⊕p) proof is provable in APC
⊕pP
2 . However, by the correctness

of the translation, a formula in the language of APC
⊕pP
2 is equivalent to its transla-

tion provably in APC
⊕pP
2 . Therefore, if the endcedent of the T2(⊕p) proof consists

of a single formula in the language of APC
⊕pP
2 , then that formula is provable in

APC
⊕pP
2 .

We now proceed to the definition of the translation.
Atomic formulas. An atomic formula φ(x⃗) in the language of T2(⊕p) represents a

PV1 relation, and thus can be reduced to ⊕1
pSat by a function fφ(x⃗) which outputs
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a single propositional variable if φ(x⃗) holds, and ⊥ otherwise. Since f does not use
a random input, the choice of uφ is irrelevant.

Negation. If φ is ¬ψ then, given a translation fψ, uψ for ψ, the translation for
φ differs only in that fφ outputs the formula obtained by applying the “negation
transformation” described in the proof of Lemma 35 to fψ. Thus fφ(x⃗) is in ⊕1

pSat

if fψ(x⃗) is in ⊕0
pSat, and in ⊕0

pSat if fψ(x⃗) is in ⊕1
pSat.

Disjunction and the existential quantifier. We describe only the harder case of
the existential quantifier. If φ(x⃗) is ∃y<t(x⃗)ψ(x⃗, y), let fψ, uψ represent the BP·⊕pP
translation of ψ. By Lemma 36, the BP · ⊕pP property represented by fψ, uψ can

also be represented by some f̃ψ, ũψ, where ũψ can easily be made independent of y
as long as y < t(x⃗), such that:

ψ(x⃗, y) =⇒ Pr
r<ũψ(x⃗)

[f̃ψ(x⃗, y, r) /∈ ⊕1
pSat] ≼0 1/(11t(x⃗)),

¬ψ(x⃗, y) =⇒ Pr
r<ũψ(x⃗)

[f̃ψ(x⃗, y, r) /∈ ⊕0
pSat] ≼0 1/(11t(x⃗)).

We will abuse notation slightly and write fψ, uψ for f̃ψ, ũψ. We have

φ(x⃗) =⇒ Pr
r<uψ(x⃗)

[∀y<t(x⃗)(fψ(x⃗, y, r) /∈ ⊕1
pSat)] < 1/10,

and by Lemma 31,

¬φ(x⃗) =⇒ Pr
r<uψ(x⃗)

[∃y<t(x⃗)(fψ(x⃗, y, r) /∈ ⊕0
pSat)] < 1/10.

By Lemmas 38 and 36, there is a PV2 function g and a term v such that

∃y<t(x⃗)(fψ(x⃗, y, r) ∈ ⊕1
pSat) =⇒ Pr

s<v(x⃗,r)
[g(x⃗, r, s) /∈ ⊕1

pSat] < 1/10,

∀y<t(x⃗)(fψ(x⃗, y, r) /∈ ⊕1
pSat) =⇒ Pr

s<v(x⃗,r)
[g(x⃗, r, s) /∈ ⊕0

pSat] < 1/10.

Thus, writing A(x⃗, r) instead of ∃y<t(x⃗)(fψ(x⃗, y, r) ∈ ⊕1
pSat), and B(x⃗, r, s) in-

stead of g(x⃗, r, s) ∈ ⊕1
pSat, and suppressing the bounds on r and s, we have:

φ(x⃗) =⇒ Pr
r
[¬A(x⃗, r)] < 1/10,

A(x⃗, r) =⇒ Pr
s
[¬B(x⃗, r, s)] < 1/10.

We also have:

1�1 Pr
r,s

[¬A(x⃗, r)] + Pr
r,s

[A(x⃗, r) ∧ ¬B(x⃗, r, s)] + Pr
r,s

[B(x⃗, r, s)].

If φ(x⃗), then Prr,s[¬A(x⃗, r)]�1 1/9. Moreover, a simple argument using Lemma 31
shows that Prr,s[A(x⃗, r) ∧ ¬B(x⃗, r, s)] �1 1/9 always holds. Hence φ(x⃗) implies
Prr,s[B(x⃗, r, s)]�1 7/9. Therefore, by the definition of B,

φ(x⃗) =⇒ Pr
r,s

[g(x⃗, r, s) /∈ ⊕1
pSat] ≼0 1/4.

An analogous argument gives

¬φ(x⃗) =⇒ Pr
r,s

[g(x⃗, r, s) /∈ ⊕0
pSat] ≼0 1/4.

This shows that g and w are a BP · ⊕pP representation for φ, where w(x⃗) is a
suitable bound on pairs ⟨r, s⟩ such that r < uψ(x⃗) and s < v(x⃗, r).

The counting quantifiers. Let φ(x⃗) be Ckpy<t(x⃗)ψ(x⃗, y), where ψ has BP · ⊕pP
representation fψ, uψ. As before, using Lemma 36, we may reduce the error in the
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representation of ψ and assume that for y < t(x⃗), the set of random inputs depends
only on x⃗ and not on y. So, again abusing notation by writing fψ, uψ instead of

f̃ψ, ũψ, we have:

ψ(x⃗, y) =⇒ Pr
r<uψ(x⃗)

[fψ(x⃗, y, r) /∈ ⊕1
pSat] ≼0 1/(5t(x⃗)),(24)

¬ψ(x⃗, y) =⇒ Pr
r<uψ(x⃗)

[fψ(x⃗, y, r) /∈ ⊕0
pSat] ≼0 1/(5t(x⃗)).(25)

For the BP · ⊕pP translation of φ, let uφ(x⃗) be uψ(x⃗), and define fφ(x⃗, r) as
follows. For particular values of x⃗ and the random input r < uψ(x⃗), let f

−
φ (x⃗, r) be

the Cook-Levin style propositional translation of the formula

y < t(x⃗) ∧ z = fψ(x⃗, y, r) ∧ (v |= z).

The formula f−φ (x⃗, r) has propositional variables p⃗y, p⃗z, p⃗v corresponding to the bits
of y, z, v respectively. In addition it contains auxiliary variables q⃗ for a Cook-Levin
encoding of intermediate values in the polynomial time computations of fψ(x⃗, y, r)
and v |= z. The values of p⃗z and q⃗ are uniquely determined by the values of p⃗y, p⃗v,

so, provably in PV
⊕pP
1 , we may take only p⃗y and p⃗v into account when counting

the number of satisfying assignments.
The intent is that, with high probability over r, the Boolean formula f−φ (x⃗, r) has

k mod p many satisfying assignments precisely when φ(x⃗) is true. Accordingly, we
let fφ(x⃗, r) be a Boolean formula which has 1 mod p many satisfying assignments
when f−φ (x⃗, r) has k mod p many, and has 0 mod p many satisfying assignments
otherwise. This is done using the techniques of Lemma 36: namely, form fφ(x⃗, r)
by modifying the formula f−φ (x⃗, r) in four steps: first adding p− k many satisfying
assignments, then conjoining p−1 copies with disjoint variables to raise the number
of satisfying assignments to the power p − 1, then adding p − 1 more satisfying
assignments, and finally using conjunction again to square the number of satisfying

assignments. This works provably, even in PV
⊕pP
1 , so that we have the equivalences

f−φ (x⃗, r) ∈ ⊕kpSat ⇐⇒ fφ(x⃗, r) ∈ ⊕1
pSat,

f−φ (x⃗, r) /∈ ⊕kpSat ⇐⇒ fφ(x⃗, r) ∈ ⊕0
pSat.

Below, we will write ⟨by, bv⟩ |= fφ(x⃗, r) for the statement that the valuation which
substitutes the bits of y for p⃗y and the bits of v for p⃗v satisfies fφ(x⃗, r), and similarly
for f−φ (x⃗, r).

The BP · ⊕pP translation of φ(x⃗) is by definition

(26) Pr
r<uφ(x⃗)

[fφ(x⃗, r) /∈ ⊕1
pSat] ≼0 1/4.

We must show this definition for the BP·⊕pP translation is faithful in the sense that

the axioms for the Ckp quantifiers are satisfied for the translations. The BP · ⊕pP
translation (26) is equivalent to the formula Cφ,tk defined as

Pr
r<uφ(x⃗)

[f−φ (x⃗, r) /∈ ⊕kpSat] ≼0 1/4.

Arguing in APC
⊕pP
2 , we first prove that

(27) Cφ,t0 (x⃗) ∨ Cφ,t1 (x⃗) ∨ · · · ∨ Cφ,tp−1(x⃗)
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holds. From this it will follow that

Pr
r<uφ(x⃗)

[fφ(x⃗, r) /∈ ⊕1
pSat] ≼0 1/4 ∨ Pr

r<uφ(x⃗)
[fφ(x⃗, r) /∈ ⊕0

pSat] ≼0 1/4.

To prove (27), fix x⃗ and, for y < t(x⃗) and r < uφ(x⃗), define A(y, r) as

(fψ(x⃗, y, r) /∈ ⊕1
pSat ∧ ψ(x⃗, y)) ∨ (fψ(x⃗, y, r) /∈ ⊕0

pSat ∧ ¬ψ(x⃗, y)).

The occurrences of ψ(x⃗, y) are expressed using a PV
⊕pP
1 formula equivalent to the

BP · ⊕pP representation of ψ on an appropriately large bounded interval; thus

A(y, r) is itself a PV
⊕pP
1 formula. The intended meaning of A(y, r) is that the

random value r gives the wrong result for evaluating the truth of ψ(x⃗, y) using the
BP · ⊕pP translation of ψ. In other words, that r disagrees with the majority of
the r’s in determining the truth value of ψ(x⃗, y).

We have Prr[A(y, r)] ≼0 1/5t(x⃗) for each y, and hence Prr[∃y A(y, r)] ≼0 1/4 by
Lemma 31. Now consider r, r′ such that ∀y (¬A(y, r) ∧ ¬A(y, r′)). Using the fact
that for each y and each ℓ ∈ {0, 1}, fψ(x⃗, y, r) ∈ ⊕ℓpSat ⇐⇒ fψ(x⃗, y, r

′) ∈ ⊕ℓpSat,
it can be proved, by PV

⊕pP
1 -induction on w ≤ t(x⃗), that

p−1∧
ℓ=0

[
Cℓp⟨y, v⟩(y < w ∧ ⟨by, bv⟩ |= f−φ (x⃗, r))

↔ Cℓp⟨y, v⟩(y < w ∧ ⟨by, bv⟩ |= f−φ (x⃗, r′))
]
.

It follows that f−φ (x⃗, r) ∈ ⊕ℓpSat iff f−φ (x⃗, r′) ∈ ⊕ℓpSat for each ℓ = 0, . . . , p−1. So
(27) holds.

To verify that the translations Cφ,tk satisfy the axioms for the Ckp quantifiers,

we first make the following observation. Assume that f̃ψ, ũψ also represent the
BP · ⊕pP property given by fψ, uψ and satisfy the bounds (24) and (25) and the

independence of y condition on ũψ. Let f̃
−
φ and ũφ be constructed from f̃ψ and ũψ

exactly as f−φ , uφ were constructed from fψ, uψ. Then

Pr
r<uφ(x⃗)

[f−φ (x⃗, r) /∈ ⊕kpSat] ≼0 1/4 ⇐⇒ Pr
r̃<ũφ(x⃗)

[f̃−φ (x⃗, r̃) /∈ ⊕kpSat] ≼0 1/4.

This argument for this is similar to the one justifying (27): “most” values r and r̃
will agree with the majority choice over r’s, resp. r̃’s, for every y < t(x⃗), and for
each given y the majority choice over r’s has to agree with the majority choice
over r̃’s, since they both agree with ψ(x⃗, y). So, given “typical” r and r̃, it can be

proved by induction that f−φ (x⃗, r) ∈ ⊕kpSat iff f̃−φ (x⃗, r̃) ∈ ⊕kpSat.
We now argue that the axiom

Ckpy<t(x⃗)ψ(x⃗, y) ∧ ψ(x⃗, t(x⃗)) → Ck+1
p y<(t(x⃗)+1)ψ(x⃗, y)

is satisfied after the BP · ⊕pP translation. (The other Cp axioms are handled

similarly.) Write φ for Ckpy<t(x⃗)ψ(x⃗, y) and φ̃ for Ck+1
p y<(t(x⃗)+1)ψ(x⃗, y). Let

fψ, uψ be the translation of ψ used for constructing a translation of φ, and let f̃ψ, ũψ
be the translation of ψ used for translating φ̃. (We cannot assume that f̃ψ, ũψ are
the same as fψ, uψ, since the former have to satisfy (24) and (25) with t(x⃗) + 1

instead of t(x⃗).) Assume that the translation Cφ,tk (x⃗) of φ(x⃗) holds. Then for all

but at most a 1/4 fraction of the r’s below uψ(x⃗), f
−
φ (x⃗, r) ∈ ⊕kpSat. Since f̃ψ, ũψ
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satisfy all the bounds and uniformity conditions required of fψ, uψ, the observation
above implies that for all but at most a 1/4 fraction of all r̃’s below ũψ(x⃗),

Ckp⟨y, v⟩ (y < t(x⃗) ∧ ⟨by, bv⟩ |= f̃−φ̃ (x⃗, r̃)).

Assume that (the translation of) ψ(x⃗, t(x⃗)) also holds. Then for all but at most a
1/(5t(x⃗) + 5) fraction of the r̃’s,

C1
pv (⟨bt(x⃗), bv⟩ |= f̃−φ̃ (x⃗, r̃)).

PV
⊕pP
1 induction then shows that for most r̃’s,

Ck+1
p ⟨y, v⟩ (y < t(x⃗) + 1 ∧ ⟨by, bv⟩ |= f̃−φ̃ (x⃗, r̃)).

But f−φ̃ (x⃗, r̃) does not have satisfying assignments ⟨by, bv⟩ for y ≥ t(x⃗) + 1. Hence,
for most r̃’s,

f−φ̃ (x⃗, r̃) ∈ ⊕k+1
p Sat.

In other words, the translation Cφ̃,t+1
k+1 (x⃗) of φ̃(x⃗) does hold, so the translation of

Ckpv is correct. This completes the definition of the BP · ⊕pP translation.

To complete the proof of conservativity of T2(⊕p) over APC
⊕pP
2 , it remains

to verify that the translations of all axioms and inferences in a T2(⊕p) proof are

provably sound in APC
⊕pP
2 .

For the modular counting axioms, this has been done above. The other axioms
are valid already in first-order logic with equality, and they contain only quantifier-

free formulas, which are equivalent to their translations even in PV
⊕pP
1 (as the

translations do not actually involve the random input).
The BP·⊕pP translation of a weakening inference is a weakening inference, which

is obviously sound. The translations of cuts and propositional inferences are sound
by the correctness of the translation for ¬ and ∨. The translations of ∀-introduction
inferences (both bounded and unbounded) are also unproblematic.

The case of ∃-introduction is more subtle. Consider for instance

Γ, φ(t)

Γ, ∃y φ(y)
(the bounded ∃ case is quite similar once the correctness of the translation for
bounded ∃ is known). The problem is that on the syntactic level, the BP · ⊕pP
translation does not respect term substitution, so the translation of φ(t) is not
identical to the formula obtained from the translation of φ(y) by substituting t
for y.

To deal with this issue, it is enough to show that APC
⊕pP
2 proves that (for y

a fresh variable) if y = t(x⃗), then the translation of φ(x⃗, y) is equivalent to the
translation of φ(x⃗, t(x⃗)). This is shown by induction on the complexity of φ. The
base case is immediate, and the steps for propositional connectives and (bounded
or unbounded) ∃ and ∀ follow easily from the correctness of the translation for
¬,∨, ∃. The most delicate case is the one for the counting quantifiers, in which
we have to show that if if y = t(x⃗), then the translations of Ckpz<yψ(x⃗, y, z) and

Ckpz<t(x⃗)ψ(x⃗, t(x⃗), z) are equivalent (with the equivalence between the translations
of ψ(x⃗, y, z) and ψ(x⃗, t(x⃗), z) as the inductive assumption). This is proved in much

the same way as the correctness of the translation for Ckp. We leave the details to
the reader.
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The last type of inference to consider is a Σb∞(⊕p) induction inference:

Γ,¬φ(x), φ(x+ 1)

Γ,¬φ(0), φ(t)
The soundness of this inference follows essentially from the fact that induction for

BP · ⊕pP properties holds already in APC
⊕pP
1 , as on bounded intervals they are

definable by PV
⊕pP
1 formulas (by the relativization to ⊕pP of the well-known fact

that BPP ⊆ P/poly, as formalized in APC
⊕pP
1 by [26, Lemma 3.10]). We also need

to make sure that the translations of φ(x+ 1),¬φ(0), φ(t) are provably equivalent
to the translation of φ(x) with x + 1, 0, t substituted for x. This is similar to the
proof of soundness for ∃ inferences described above. �

5. The propositional collapse

We now use Theorems 22 and 39 to prove a collapse result for constant depth
proof systems with mod p gates. Recall that PK⊕p is the propositional proof system

that allows arbitrary use of unbounded fanin
∧
,
∨
, and ⊕kp and ⊕̄kp connectives;

whereas PCKip is the system that allows sequents to contain only formulas with

i alternating levels of ∧’s and ∨’s in which mod p gates (⊕kp and ⊕̄kp) apply only
to (multi)sets of of logarithmic size conjunctions. The next theorem states that
constant depth PK⊕p proofs of Σj(⊕−

p ) formulas are quasipolynomially simulated

by PCKjp proofs.

Theorem 42. Let p be prime. Let j > 0 and let φ be a Σj(⊕−
p ) formula of Σ-size

≤ S. Suppose there is a depth d PK⊕p proof of φ of size ≤ S. Then φ has a PCKjp
proof of Σ-size Sloge S, where e ∈ N is a constant depending only on d.

For j ≥ 3, the proof of Theorem 42 uses a reflection principle and the Paris-
Wilkie translation of part (a) of Theorem 22, so there is a uniform construction of
the PCKjp proof from the PK⊕p proof. Thus, this gives a uniform quasipolynomial

simulation of PK⊕p by PCKjp.
The simulation can be sharpened, in a way which also gives the missing cases

j = 1, 2, by using part (c) of Theorem 22 instead of part (a). For j = 3 and thus
for PCK1

p this gives:

Theorem 43. Let p be a prime. Let φ be a Σ3(⊕−
p ) formula

∨
k<K

∧
ℓ<Lk

ψk,ℓ,

where the ψk,ℓ are Σ1(⊕−
p ). Assume that φ has Σ-size ≤ S and there is a depth d

PK⊕p proof of φ of size ≤ S. Then the set of cedents {ψk,0, . . . , ψk,Lk−1}k<K has

a PCK1
p refutation of Σ-size Sloge S, where e ∈ N is a constant depending only on

d.
Similarly, the set {ψk,0

Fp
, . . . , ψk,Lk−1

Fp}k<K has a PCK1
Fp refutation of Σ-size

Sloge S.

The proof of Theorems 42 and 43 is a standard argument invoking reflection
principles for constant depth PK⊕p . Let α, β, and γ be second-order predicates.

We define j-Ref(d-PK⊕p ) to be a ∀Σb,⊕pP
j (α, β, γ) sentence expressing the fact that

for every a and b, if β�[0,b) encodes a Σj(⊕−
p ) propositional formula φ, and α�[0,a)

encodes a depth d PK⊕p proof of φ, then φ is satisfied by the truth assignment
encoded by γ.
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The predicate β encodes the formula φ as follows. Propositional variables
p0, p1, . . ., and their negations p0, p1, . . . can be represented by letting 2 · i and
2 · i + 1 respectively represent pi and pi. Polylogarithmic size sets of literals are
represented by first-order objects w. Without loss of generality, the outermost con-
nective of each ⊕−

p subformula of φ is ⊕0
p. (Since, in any event, φ can be proved

equivalent to such a formula by a polynomial size PCKjp proof.) The top j levels

of the syntactic tree of the Σj(⊕−
p ) formula are alternating

∨
’s and

∧
’s, and are

encoded by letting β(k, y, z), for k < j, hold if the z-th connective at level k + 1
of the formula is an input to the y-th connective at level k. (By convention, the
output gate is connective number 0 at level 0.) At the bottom level, β(j, y, ⟨w, u⟩)
means that the conjunction of the set of literals w is the u-th input to the y-th
modular counting connective. The additional index u is needed because the inputs
to a counting connective form a multiset, so there may be multiple occurrences
of the conjunction w as an input to the y-th counting connective. The notation
β�[0,b) means that arguments of β(k, ·, ·) above b are ignored, so that the formula
encoded by β�[0,b) has size at most polynomial in b, but the size of the bottom level
conjunctions is at most logarithmic.

A truth assignment is coded in the obvious way, by letting γ(y) stand for the

value of py. It is possible to write down a Σ
b,⊕pP
j (β, γ) formula stating “the Σj(⊕−

p )

formula encoded by β�[0,b) is true under the assignment given by γ”, with an ∃/∀
quantifier corresponding to each of the top j levels of

∨
/
∧
’s, and a Σ

b,⊕pP
0 (β, γ)

formula describing what happens at the level of the counting quantifiers and below.
The oracle α encodes the structure of a depth d proof, including information

about what formula appears in a given line and which rules and premises are used
for each inference, in some straightforward fashion. This permits T2(⊕p, α, γ) to use
bounded formulas to express properties of the proof encoded by α and to express
the truth of formulas in the depth d proof under a truth assignment γ. Thus,
T2(⊕p, α, γ) can use induction on x to establish that “the first x lines of the proof
coded by α are true under γ”. The details of the encoding used by α are less
important than in the case of β, as we do not care about the exact quantifier
complexity of the statement “the depth d formula appearing in line x of the proof
coded by α�[0,a) is true under γ”, as long as it is bounded.

Formulas in the d-PK⊕p proof encoded by α which happen to be Σj(⊕−
p ) for-

mulas have two truth definitions: one based on α and one based on β. It is clearly
possible to arrange that these two truth definitions are T2(⊕p)-provably equivalent.
This shows:

Proposition 44. For each j, d ∈ N, T2(⊕p, α, β, γ) ⊢ j-Ref(d-PK⊕p ).

We now turn to the proof of Theorem 43. A separate proof of Theorem 42 is not
needed, since the case j = 1 follows from Theorem 43, whereas the case for general
j follows from a generalized version of Theorem 43 in which Σ3(⊕−

p ) is replaced

by Σj+2(⊕−
p ) and PCK1

p is replaced by PCKjp. The proof of the generalization to
j > 1 involves no additional ideas, so we omit it.

Proof. (Of Theorem 43.) Let Π be the size S depth d PK⊕p proof of φ. Let n,m
be such that Π and φ can be encoded by oracles α�[0,n) and β�[0,m), respectively.
Since S bounds both the size of Π and the Σ-size of φ, the numbers n and m are
at most quasipolynomial in S.
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By the relativization of Theorem 39 and Proposition 44, APC
⊕pP
2 (α, β, γ), and

hence also T
3,⊕pP
2 (α, β, γ), proves 3-Ref(d-PK⊕p ). By part (c) of Theorem 22, this

implies that the set of cedents Ξn,m obtained from the formula J¬3-Ref(d-PK⊕p )Kn,m
in the way described before Theorem 22 has a PCK1

p refutation P of Σ-size quasi-
polynomial in n and m, and thus in S. We substitute into the refutation P the
bits of Π for the variables corresponding to α and the bits of φ for variables cor-
responding to β, leaving the bits corresponding to γ untouched. This yields a new
proof P ′; we claim that after simplifying by removing constants ⊤ and ⊥, P ′ is
readily converted into the desired refutation of {ψk,0, . . . , ψk,Lk−1}k<K .

For this, we must examine the clauses in J¬3-Ref(d-PK⊕p )Kn,m. The formula
3-Ref(d-PK⊕p ) is (the prenex form of) a disjunction ¬Pf(α, β, a, b) ∨ Tr(β, γ, b),
where Pf(α, β, a, b) states that β�[0,b) codes a well-formed Σ3(⊕−

p ) formula and that
α�[0,a) encodes a valid proof of that formula, and where Tr(β, γ, b) states that γ gives
a satisfying assignment for the formula coded by β�[0,b). The formula Pf(α, β, a, b)
does not involve γ, and after substitution of constants for the bits of α and β,
the Paris-Wilkie translation becomes just the constant ⊤ (or, strictly speaking, a
variable-free ⊕-dt formula that evaluates to ⊤). The second disjunct Tr(β, γ, b) has
the form

(∃y1)(∀y2)(∃y3)[β(0, 0, y1) ∧ [β(1, y1, y2) → [β(2, y2, y3)∧

(C0
p⟨u,w⟩)(β(3, y3, ⟨u,w⟩) ∧ (∀ℓ ∈ w)(γ(⌊ℓ/2⌋) ↔ ℓ mod 2 = 0))]]].

For notational simplicity, we have omitted all bounds on the quantified variables
y1, y2, y3, u, w, but these bounds are readily computed by polynomial time functions.
The test “ℓ mod 2 = 0” checks whether ℓ is negated or unnegated. The quantifier
“(∀ℓ ∈ w)” is a shorthand notation for a sharply bounded quantifier.

Applying the Paris-Wilkie translation to the formula Tr(β, γ, b), with constants
⊤ and ⊥ substituted for variables that represent values of β, allows us to form
cedents Ξn,m of the type defined for Theorem 22. These cedents Ξn,m are essentially

the cedents {ψk,0, . . . , ψk,Lk−1}k<K except with extra occurrences of ⊥’s and ⊤’s.

Thus the cedents Ξn,m can be easily derived, by tree-like PCK1
p proofs, from the

cedents {ψk,0, . . . , ψk,Lk−1}k<K . Part (c) of Theorem 22 now gives the desired

PCK1
p refutation.

The proof for the case of PCK1
Fp is carried out in much the same way, with all

the obvious changes involved in moving from the boolean to the polynomial setting.
We leave the details to the reader. �

By exploiting the fact that T2(⊕p) is actually conservative over APC
⊕pP
2 rather

than just T
⊕pP
3 , we can bring the collapse down to an even weaker proof system at

the cost of introducing additional axioms related to weak pigeonhole principles.

Theorem 45. Let φ be a Σ2(⊕−
p ) formula of the form

∨
k<K

∧
ℓ<Lk

ψk,ℓ, where

the ψk,ℓ are ⊕−
p formulas. Assume φ has Σ-size S and is provable by a depth d

PK⊕p proof of size S.

Then, for some e ∈ N dependent only on d, there is a term t = O(Sloge S) and a
Σ-size Sloge S tree-like PCK0

p refutation of the set of cedents

{{ψ0,0, . . . , ψ0,L0−1}, . . . , {ψK−1,0, . . . , ψK−1,LK−1−1}} ∪ {f(u) ̸= c}u<t,
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where f is a PV
⊕pP
2 function (depending on d, φ and the depth d PK⊕p proof of

φ) with oracle access to the variables of φ, c is an element below t2 represented by
2 log t new variables standing for its bits, and f(u) ̸= c is a set of cedents expressing
in a natural way that f(u) does not evaluate to c.

An analogous result holds with ψk,ℓ replaced by ψk,ℓ
Fp

and tree-like PCK0
p replaced

by tree-like PCK0
Fp .

Proof. APC
⊕pP
2 (α, β, γ) proves 2-Ref(d-PK⊕p ). Since S

2,⊕P
2 proves the equivalence

of the a� a(1+1/|a|) version of sWPHP(PV
⊕pP
2 ) with parameters and the a� a2

version without parameters [41, 24], we have

S2,⊕P
2 (α, β, γ) ⊢ [∀v<t2 ∃u<t f(u) = v] ∨ 2-Ref(d-PK⊕p ),

where f is a fixed PV
⊕pP
2 (α, β, γ) function depending on d, and t is a term involving

the free variables a, b of 2-Ref(d-PK⊕p ). By the ∀Σb,⊕pP
2 -conservativity of S2,⊕P

2

over T 1,⊕P
2 , the same formula is provable in T 1,⊕P

2 (α, β, γ).
Arguing as in the proof of Theorem 43 with part (c) of Theorem 22 replaced by

part (e), we obtain a quasipolynomial Σ-size tree-like PCK0
p refutation of

{{ψ0,0, . . . , ψ0,L0−1}, . . . , {ψK−1,0, . . . , ψK−1,LK−1−1}} ∪ {f(u) ̸= m}u<t,

for each concrete value of m < t2. Such a refutation can be transformed into a
proof of the cedent c ̸= m from

{{ψ0,0, . . . , ψ0,L0−1}, . . . , {ψK−1,0, . . . , ψK−1,LK−1−1}} ∪ {f(u) ̸= c}u<t.

However, the cedent

c = 0, . . . , c = t2 − 1

has a quasipolynomial Σ-size tree-like PCK0
p proof. Combining this proof with

those of the c ̸= m cedents gives the desired refutation.
As before, the polynomial case is similar to the boolean case. �

The reason why Theorem 45 is stated in terms of tree-like PCK0
p and PCK0

Fp
rather than polylog degree Polynomial Calculus is that the negated sWPHP(PV2)
principle, even without parameters, is a ∀Σb2- rather than ∀Σb1 statement. How-
ever, over T 1

2 , full sWPHP(PV2) is actually conservative over the so-called retrac-
tion weak pigeonhole principle rWPHP(PV2), which states that for PV2 functions
f : t2 → t and g : t → t2, g ◦ f cannot be the identity. Negating the parameter-
free version of rWPHP(PV2) does give a ∀Σb1 statement. Therefore, negations
of Σ1(⊕−

p ) formulas provable in constant depth PK⊕p do have quasipolynomially
longer refutations in the Polynomial Calculus with additional axioms corresponding

to rWPHP(PV
⊕pP
2 ).

Unfortunately, these axioms seem less natural than those of sWPHP(PV
⊕pP
2 ),

mainly because in the ∀Σb,⊕pP
1 statement of negated rWPHP(PV

⊕pP
2 ), the initial

universal block has to contain a quantifier over claimed witnesses to Yes answers
of the Σb1 oracle in the computation of f and g. For this reason, we chose to
formulate Theorem 45 only in the sWPHP version, leaving the rWPHP variant to
the interested reader.
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6. Lower bounds and speculation

The picture below presents part of the hierarchy of subtheories of T2(⊕p, α)
which remains intact in the wake of Theorem 39 and its corollaries. The proof
systems corresponding to these theories are what remains of the hierarchy of sub-
sytems of bounded depth Frege with mod p gates, at least if one is content with
quasipolynomial simulations and considers only low complexity tautologies.

PV
⊕pP
1 (α)

polylog degree NS

T
1,⊕pP
2 (α)

polylog degree PC; tree-like PCK0
p

APC
⊕pP
1 (α)

polylog degree NS + sWPHP(PV
⊕pP
1 (α))

T
2,⊕pP
2 (α)

tree-like PCK1
p; dag-like PCK0

p

APC
⊕pP
2 (α)

tree-like PCK0
p + sWPHP(PV

⊕pP
2 (α))

The sWPHP(PV
⊕pP
2 (α)) axioms in the proof system corresponding to the theory

APC
⊕pP
2 (α) are formulated as in Theorem 45. The system NS + sWPHP(PV

⊕pP
1 (α))

is defined in a similar way; note that the statement that an element c is not in the

range of a relativized PV
⊕pP
1 function on a given bounded domain can be expressed

as a system of polynomials. The correspondence between APC
⊕pP
1 (α) and polylog

degree proofs in NS + sWPHP(PV
⊕pP
1 (α)) follows from Theorem 26 part (d′) by

an argument similar to the proof of Theorem 45.
The obvious question is how much of the picture consists of systems/theories for

which we have lower bounds/relevant independence results. In terms of bounded

arithmetic theories with Ckp quantifiers, the best results we are aware of are as
follows.

Theorem 46. The pigeonhole principle PHPa+1
a (α) is independent from:

(a) T
1,⊕pP
2 (α),

(b) PV
⊕pP
1 (α) + sWPHP(PV1(α)).

Note that the theory in part (b), unlike APC
⊕pP
1 (α), contains the sWPHP only

for polynomial time functions that do not make parity queries. Here PHPa+1
a (α) is

the principle:

(∃x<a+1)¬(C1
py<a)α(x, y)

∨ [∃x1<x2<a+1∃y<a(α(x1, y) ∧ α(x2, y))]

∨ [∃x<a+1∃y1<y2<a(α(x, y1) ∧ α(x, y2))].

The idea for the proof of Theorem 46 is to use the correspondence of Theorem 26
together with already known lower bounds for the polynomial calculus and the
Nullstellensatz. For part (a) this is immediate. Part (b) requires some additional
proof.

Proof. Part (a) follows immediately from Theorem 26 and the linear degree lower
bounds on refutations of ¬PHP in the Polynomial Calculus [39].
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We sketch the argument for (b) assuming some some familiarity with switching
lemma-based methods of proving lower bounds for PHP, as presented in [7], which

also contains the Nullstellensatz degree lower bound that we use. If PV
⊕pP
1 (α) +

sWPHP(PV1(α)) proves PHP
a+1
a (α), then arguing as in the proof of Theorem 45,

we obtain

PV
⊕pP
1 (α) ⊢ ∀a [(∀v<t2 ∃u<t f(u) = v) ∨ PHPa+1

a (α)],

where t(a) is a term and f is a PV1(α) function. By Theorem 26, this means that
for every n ∈ N there is a polylogarithmic degree Nullstellensatz refutation of

{Jc ̸= f(u)K}u<t(n) ∪ ¬PHPn+1
n ,

where PHPn+1
n is the Paris-Wilkie translation of PHPa+1

a (α), and c is represented
by 2 log t(n) variables standing for its bits. The refutation remains valid if we
substitute bits of a concrete m < t2(n) for the variables of c. However, we prove
that given a term t, a PV1(α) function f , and a suitably chosen ℓ = ϵ log n, for
sufficiently large n there exists m < t2(n) such that Nullstellensatz refutations of

(28) {Jm ̸= f(u)K}u<t(n) ∪ ¬onto-PHPn+pℓ

n

require degree nΩ(1). Here onto-PHPn+pℓ

n is the propositional translation of the
first-order statement which rules out that α maps n+ pℓ pigeons bijectively onto n
holes:

(∃x < n+pℓ)¬(C1
py < n)α(x, y) ∨ (∃y < n)¬(C1

px < n+pℓ)α(x, y)

∨ [∃x1<x2<n+p
ℓ ∃y<n(α(x1, y) ∧ α(x2, y))]

∨ [∃x<n+pℓ ∃y1<y2<n(α(x, y1) ∧ α(x, y2))].

Note this is weaker than PHPn+pℓ

n+pℓ−1
.

Assume that for each m there is a refutation of (28) of degree d. We wish to
prove that d = nΩ(1). For a string w representing oracle answers in a possible
computation of f , let Cw be the polylogarithmic width clause which is true exactly
if w is not the string of oracle answers actually obtained. Abusing notation, we also
write Cw for the multilinear polynomial which is 0 exactly if the clause is true. For
each m and u, Jm ̸= f(u)K is the sum of Cw over all w which lead a computation
of f(u) to output m. Modify the Nullstellensatz refutation by replacing this sum
by the individual terms Cw; this can be done without increasing the degree.

Consider the set C̃w which contains a monomial/clause corresponding to each
minimal partial matching from n + pℓ to n that matches the pigeons and holes
appearing in w and would cause w to be given as the set of oracle answers during
a computation of f . (For instance, if w is the string of length two containing
α(1, 1) and ¬α(2, 3), and the variable xi,j is used to represent α(i, j), then Cw
in its polynomial form is x1,1(1 − x2,3), while C̃w contains each monomial of the
form x1,1x2,k for k ∈ {0, . . . , n − 1} \ {1, 3}.) Each Cw can be obtained from

C̃w ∪ ¬onto-PHPn+pℓ

n by a polylog(n) degree Nullstellensatz refutation. It follows

that ¬onto-PHPn+pℓ

n together with C̃w for every w yielding f(u) = m for some u
has a d+ polylog(n) degree refutation Rm.
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The formula

(29)
∨

v<t2(n)

∧
u<t(n)

f(u) ̸= v

has a quasipolynomial size constant depth Frege proof P [35, 32]. Let ρ be a
partial restriction (partial matching) which leaves nδ holes free and assigns to each
subformula of a formula in P a matching decision tree of height nγ , γ < δ, in a way
consistent with Definition 4.1 of [7]. Since (29) is provable, all branches of its tree
must be labeled “True”. This means that we can choose some partial matching π
of size ≤ nγ such that for some concrete m, ρπ selects a specific “True” branch in
the tree assigned to ∧

u<t(n)

f(u) ̸= m.

Consider the effect of ρπ on the refutation Rm. For every u < t(n) and ev-

ery w leading f(u) to output m, each monomial in C̃w becomes 0 under ρπ.

On the other hand, ¬onto-PHPn+pℓ

n �ρπ is essentially ¬onto-PHPn
δ−nγ+pℓ

nδ−nγ . Thus,

¬onto-PHPn
δ−nγ+pℓ

nδ−nγ has a refutation of degree d + polylog(n). However, by The-

orem 8.1 of [7], for a well chosen ℓ = ϵ log n any refutation of ¬onto-PHPn
δ−nγ+pℓ

nδ−nγ

must have degree nΩ(1). Thus, d = nΩ(1). �

It seems conceivable that part (b) could be extended by similar methods to

the unprovability of PHPa+1
a (α) in T

1,⊕pP
2 (α) + sWPHP(PV2(α)). The part that

appears to be missing is a degree lower bound on Polynomial Calculus proofs of the

onto version of PHPn+pℓ

n , as opposed to the general PHP.
On the other hand, it is less clear how to obtain nontrivial independence re-

sults for fragments of APC
⊕pP
2 (α), or even APC

⊕pP
1 (α), which contain the sWPHP

for functions involving the parity quantifier. We expand on this for the case of

APC
⊕pP
1 (α). On the propositional level, this corresponds to polylog degree Null-

stellensatz with axioms for sWPHP(PV
⊕pP
1 ).

Given some tautology τ of size poly(n) whose negation is expressible by a set of
polylog(n) degree polynomials, consider potential approaches to showing that there
is no polylog degree Nullstellensatz refutation of

{Jc ̸= f(u)K}u<t(n) ∪ ¬τ,

where t is a term, c is represented by 2 log t(n) variables standing for its bits, and

f is now a function from PV
⊕pP
1 (α), as opposed to PV1(α). Since the translations

of the formula c ̸= f(u) now involve the ⊕p connective, we cannot apply switch-
ing lemma arguments to them. The usefulness of standard, “design”-based lower
bound methods for Nullstellensatz in dealing with the Jc ̸= f(u)K polynomials is
not evident.

One remarkable feature of the Jc ̸= f(u)K axioms is their probabilistic proper-
ties. These axioms involve polylogarithmically many new variables (the bits of c)
in addition to the variables of τ , and for each assignment to the old variables,
almost all assignments to the new variables (a 1 − 1/t(n) fraction) make all theJc ̸= f(u)K true. Thus, it might be tempting to search for some τ hard for “ran-
domized Nullstellensatz”, a “proof system” allowed to use additional axioms which
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involve polylogarithmically many new variables and are “almost always true” under
any assignment to the old variables.

In fact, [17] proposes to study a similarly randomized version of low width res-
olution, in the hope of obtaining separations for some interesting fragments of
(non-modular counting) APC2(α). Dershowitz and Tzameret [21] study promise
proof systems which are another approach to randomized proof systems.

Unfortunately, the next proposition shows that “randomized Nullstellensatz”
has low degree proofs of all tautologies, thus depriving us of the one potentially
promising line of attack on Nullstellensatz with the Jc ̸= f(u)K axioms.

Proposition 47. Let {pi : i < n} be an unsatisfiable sequence of polynomials over
Fp, each of degree at most d. Let t = t(n, 2d) be quasipolynomial in n and 2d. There
exists an Fp polynomial q such that:

(a) q has poly(log n, d) new variables in addition to those of the pi’s,
(b) deg(q) ≤ poly(log n, d),
(c) for any assignment to the variables of the pi’s, q equals 0 for all but a 1/t

fraction of the assignments to the new variables,
(d) The set {pi : i < n}∪ {q} has a Nullstellensatz refutation over Fp of degree

poly(log n, d).

Proof. The construction of the additional axiom q essentially mimics the Valiant-
Vazirani construction and the proof that ∃·⊕P ⊂ BP ·⊕pP described in Section 4.2.
For simplicity, we only sketch the construction for p = 2. The case of general
p involves additional uses of the “p − 1 copies” and negation transformations as
described in the proof of Lemma 35.

First, for log2 n+O(log n) new variables r⃗, to be interpreted as a number j ≤ log n
and 3 + log n many log n-bit vectors v1, . . . , v3+logn, and for i < n, let qr⃗,i be the
(multilinearized) polynomial which is equal to 1 exactly if pi equals 1 and each of
v1, . . . , vj+3 is orthogonal to i, interpreted as a log n-bit vector. The degree of qr⃗,i
is at most d+O(log n).

Let qr⃗ be 1 +
∑
i<n qr⃗,i. By the proof of Lemma 32 and the unsatisfiability

of {pi : i < n}, for any given assignment to the variables of the pi, at least a
1/O(log n) fraction of assignments to the new variables makes qr equal 0. To
amplify this probability to 1−1/t, take a sufficiently large (but polynomial in log n
and d) number of disjoint tuples of variables r⃗ and let q be

∏
r⃗ qr⃗.

We leave the simple verification that q also satisfies property (d) to the reader.
The key point is that each qr⃗,i is a multiple of pi; hence, the qr⃗,i’s are readily
derivable from the pi’s. �
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28. Jan Kraj́ıček, Lower bounds to the size of constant-depth propositional proofs, Journal of

Symbolic Logic 59 (1994), 73–86.
29. , Bounded arithmetic, propositional calculus and complexity theory, Cambridge Uni-

versity Press, Heidelberg, 1995.
30. , Interpolation theorems, lower bounds for proof systems, and independence results for

bounded arithmetic, Journal of Symbolic Logic 62 (1997), 457–486.

31. Alexis Maciel and Toniann Pitassi, Towards lower bounds for bounded-depth Frege proofs
with modular connectives, Proof Complexity and Feasible Arithmetics (Paul W. Beame and
Samuel R. Buss, eds.), American Mathematical Society, 1998, pp. 195–227.



46 S. R. BUSS, L. A. KO LODZIEJCZYK, AND K. ZDANOWSKI

32. Alexis Maciel, Toniann Pitassi, and Alan R. Woods, A new proof of the weak pigeonhole

principle, Journal of Computer and System Sciences 64 (2002), no. 4, 843–872.
33. J. B. Paris and A. J. Wilkie, ∆0 sets and induction, Open Days in Model Theory and Set

Theory (W. Guzicki, W. Marek, A. Pelc, and C. Rauszer, eds.), 1981, pp. 237–248.
34. , Counting problems in bounded arithmetic, Methods in Mathematical Logic, Lecture

Notes in Mathematics #1130, Springer-Verlag, 1985, pp. 317–340.
35. J. B. Paris, A. J. Wilkie, and A. R. Woods, Provability of the pigeonhole principle and the

existence of infinitely many primes, Journal of Symbolic Logic 53 (1988), 1235–1244.
36. Chris Pollett, Structure and definability in general bounded arithmetic theories, Annals of

Pure and Applied Logic 100 (1999), 189–245.
37. Alexander A. Razborov, Lower bounds on the size of bounded depth networks over a complete

basis with logical addition, Matematicheskie Zametki 41 (1987), 598–607, English translation
in Mathematical Notes of the Academy of Sciences of the USSR 41 (1987) 333-338.

38. , On provably disjoint NP-pairs, Tech. Report RS-94-36, Basic Research in Computer
Science Center, Aarhus, Denmark, November 1994, http://www.brics.dk/index.html.

39. , Lower bounds for the polynomial calculus, Computational Complexity 7 (1998), 291–
324.

40. Roman Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity, Proceedings of the Nineteenth Annual ACM Symposium on the Theory of Computing,
ACM Press, 1987, pp. 77–82.

41. Neil Thapen, A model-theoretic characterization of the weak pigeonhole principle, Annals of
Pure and Applied Logic 118 (2002), no. 1-2, 175–195.

42. , Higher complexity search problems for bounded arithmetic and a formalized no-gap
theorem, Archive for Mathematical Logic 50 (2011), no. 7-8, 665–680.

43. Seinosuke Toda, PP is as hard as the polynomial-time hierarchy, SIAM Journal on Computing
20 (1991), no. 5, 865–877.

44. Leslie G. Valiant and Vijay V. Vazirani, NP is a easy as detecting unique solutions, Theoretical
Computer Science 47 (1986), 85–93.

45. Andrew Chi-Chih Yao, On ACC and threshold circuits, Proc. 31st IEEE Symp. on Founda-
tions of Computer Science (FOCS), 1990, pp. 619–627.

Department of Mathematics, University of California, San Diego, La Jolla, CA
92093-0112, USA

E-mail address: sbuss@math.ucsd.edu

Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
E-mail address: lak@mimuw.edu.pl

Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński Univer-
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