
TFNP Characterizations of Proof Systems and1

Monotone Circuits2

Sam Buss !Ï3

University of California, San Diego, USA4

Noah Fleming !Ï5

Memorial University, Canada6

Russell Impagliazzo !Ï7

University of California, San Diego, USA8

Abstract9

Connections between proof complexity and circuit complexity have become major tools for obtaining lower10

bounds in both areas. These connections — which take the form of interpolation theorems and query-to-11

communication lifting theorems — translate efficient proofs into small circuits, and vice versa, allowing tools12

from one area to be applied to the other. Recently, the theory of TFNP has emerged as a unifying framework13

underlying these connections. For many of the proof systems which admit such a connection there is a TFNP14

problem which characterizes it: the class of problems which are reducible to this TFNP problem via query-15

efficient reductions is equivalent to the tautologies that can be efficiently proven in the system. Through this,16

proof complexity has become a major tool for proving separations in black-box TFNP. Similarly, for certain17

monotone circuit models, the class of functions that it can compute efficiently is equivalent to what can be18

reduced to a certain TFNP problem in a communication-efficient manner. When a TFNP problem has both a19

proof and circuit characterization, one can prove an interpolation theorem. Conversely, many lifting theorems20

can be viewed as relating the communication and query reductions to TFNP problems. This is exciting, as21

it suggests that TFNP provides a roadmap for the development of further interpolation theorems and lifting22

theorems.23

In this paper we begin to develop a more systematic understanding of when these connections to TFNP24

occur. We give exact conditions under which a proof system or circuit model admits a characterization by a25

TFNP problem. We show:26

– Every well-behaved proof system which can prove its own soundness (a reflection principle) is characterized27

by a TFNP problem. Conversely, every TFNP problem gives rise to a well-behaved proof system which28

proves its own soundness.29

– Every well-behaved monotone circuit model which admits a universal family of functions is characterized by30

a TFNP problem. Conversely, every TFNP problem gives rise to a well-behaved monotone circuit model31

with a universal problem.32

As an example, we provide a TFNP characterization of the Polynomial Calculus, answering a question from [25],33

and show that it can prove its own soundness.34

2012 ACM Subject Classification Theory of computation→ Proof complexity35

Keywords and phrases Proof Complexity, Circuit Complexity, TFNP36

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.6537

Funding Noah Fleming: NSERC38

Russell Impagliazzo: NSF CCF 2212135 and the Simons Foundation39

1 Introduction40

In recent years, connections between proof systems and monotone circuit models have revolutionized41

the areas of proof and circuit complexity, allowing for the tools from one area to be applied to42

problems from the other. These connections take the form of43

© Sam Buss and Noah Fleming and Russell Impagliazzo;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 65; pp. 65:1–65:39

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sbuss@ucsd.edu
https://mathweb.ucsd.edu/~sbuss/
mailto:nfleming@mun.ca
https://www.cs.mun.ca/~nfleming/
https://orcid.org/0000-0002-8636-1290
mailto:russell@cs.ucsd.edu
https://cseweb.ucsd.edu/~russell/
https://doi.org/10.4230/LIPIcs.ITCS.2023.65
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 TFNP Characterizations of Proof Systems and Monotone Circuits

– Interpolation Theorems, which translate small proofs into efficient computations in an associated44

model of monotone circuit [6, 16, 17, 19, 30, 34–36, 41, 43, 45].45

– Query-to-Communication Lifting Theorems, which translate efficient monotone computations into46

small proofs in an associated proof system [10, 14, 15, 21, 27–29, 33, 37, 39, 40, 44, 47].47

Recently, the landscape of total functional NP (TFNP) has emerged as an organizing principle for48

connections between proof systems and models of monotone circuits [12, 26]. For many of the proof49

systems which admit an interpolation theorem or lifting theorem there is a TFNP problem which50

characterizes it in the following sense: the set of TFNP problems which are reducible to this problem,51

via query-efficient reductions, is equivalent to the set of tautologies that can be efficiently proven in52

the system. This has resulted in proof complexity becoming a major tool for proving separations in53

black-box TFNP. Conversely, the novel perspective offered by TFNP has provided a number unique54

results for proof complexity, such as complete tautologies for certain proof systems, as well as striking55

intersection theorems [25].56

An analogous phenomenon has emerged for monotone circuit complexity. For many monotone57

circuit models, the set of functions which can be computed efficiently is equivalent to the set of58

problems that can be reduced to a certain TFNP problem using communication-efficient reductions.59

When these TFNP problems collide — that is, when there is both a proof and circuit characterization60

of a particular TFNP problem — then we immediately obtain an interpolation theorem between61

this proof system and circuit model [46]! Moreover, many of the query-to-communication lifting62

theorems can be viewed as constructing a query-efficient reduction to a particular TFNP problem out63

of a communication-efficient reduction to that problem. This is exciting as it suggests understanding64

when TFNP problems admit such characterizations as a pathway for developing further connections65

between proof complexity and circuit complexity.66

In this paper we give exact conditions under which a proof system or monotone circuit model67

admits a characterization by a TFNP problem. For proof complexity, we show that every well-68

behaved1 proof system which can prove its own soundness (a reflection principle) is characterized by69

a TFNP problem — simply the search problem associated with its reflection principle. This gives70

a recipe for constructing a TFNP problem which characterizes a given proof system, simply write71

down the search problem for a reflection principle corresponding to that proof system! Conversely,72

every TFNP problem gives rise to a well-behaved proof system which proves its own soundness73

and which is closed under decision tree reductions. Furthermore, this result is constructive: for74

every TFNP problem we give a proof system which it characterizes. As an example, we provide a75

TFNP characterization of the Polynomial Calculus, answering a question from [25], and show that76

it can prove its own soundness. For circuit complexity, we show that every well-behaved model of77

monotone circuit which admits a universal family of functions is characterized by a natural TFNP78

problem. Conversely, every TFNP problem gives rise to a well-behaved monotone circuit model with79

a universal problem.80

1.1 Overview: Connections Proof Complexity, and Circuit Complexity,81

and TFNP82

The connections between proof systems and monotone circuit models can be understood as relating83

the complexity of two families of total search problems whose complexity characterizes proof and84

circuit complexity respectively.85

1 We will say that a proof system of monotone circuit model is well-behaved if it satisfies some minor technical
conditions discussed in Subsection 1.2.

S. Buss, N. Fleming, and R. Impagliazzo 65:3

– False Clause. SF for an unsatisfiable CNF formula F = C1 ∧ · · · ∧ Cm: given an assignment86

x ∈ {0, 1}n output the index i ∈ [m] of a clause such that Ci(x) = 0.87

– Monotone Karchmer-Wigderson. mKWf for a monotone boolean function f : given x, y ∈ {0, 1}n88

such that f(x) = 1 and f(y) = 0 output i ∈ [n] such that xi > yi.89

The theory of total function NP considers the total search problems for which solutions can be90

efficiently verified, grouping them into the class TFNP. There is believed to be no complete problem91

for TFNP [42], and therefore much of the work on this subject has focused on identifying sub-classes92

which do admit complete problems. This has resulted in a rich landscape of classes which capture a93

wide variety of important problems in a range of areas including cryptography, economics, and game94

theory. These classes are typically defined as everything that can be efficiently reduced to a certain95

existence principle (of exponential size). For example, PPA is the class of search problems that96

can be reduced to an (exponential size) instance of the handshaking lemma. These exponential-size97

instances are given in a white-box fashion: they are represented as a polynomial-size circuit which98

can be queried to obtain each bit of the input.99

The principal goal in the study of TFNP is to understand how these sub-classes relate. However,100

a separation between any pair of sub-classes would imply P 6= NP. Instead, a line of work has101

sought to provide evidence of their relationships by proving black-box separations. As opposed to the102

white-box setting, one is only given oracle access to the circuit, which may be queried for each bit of103

the input; one may no longer observe how the circuit is defined.104

Black-Box TFNP and Proof Complexity.105

Beginning with [3], proof complexity has become a major tool for proving black-box TFNP separa-106

tions. In fact, black-box TFNP — denoted TFNPdt — can be viewed as the study of the false clause107

search problem. Every TFNPdt problem is equivalent to SF for some unsatisfiable CNF formula108

F . Using this connection, Göös et al. [26] observed that many prominent TFNPdt problems are109

characterized by associated proof systems in the sense that the CNF formulas F that are efficiently110

provable in that proof system are exactly the problems SF that are reducible to the TFNPdt problem.111

This has led to the characterization of many well-studied TFNPdt subclasses:112

– FPdt = TreeRes [38].113

– PLSdt = Res [9].114

– PPAdt = F2-NS [26].115

– PPAdtq = Fq-NS for any prime q [31]116

– PPADSdt = unary-NS [25].117

– PPADdt = unary-SA [25].118

– SOPLdt = RevRes [25].119

– EOPLdt = RevResT [25].120

That is, these proof systems are characterized by complete problems for these classes, and therefore121

an unsatisfiable formula F can be efficiently proven in one of these proof systems iff SF lies in122

the corresponding class. Thus, separations between these proof systems translate into separations123

between their corresponding TFNPdt subclasses. This has resulted in a complete picture of how the124

most prominent TFNPdt subclasses relate [2, 7, 25, 26].125

This relationship has led to a number of striking results for proof complexity as well. These126

include:127

– Complete Problems: Any proof system which is characterized by a TFNPdt problem SF has F128

as its complete problem, in the sense that it has short proofs of exactly the formulas F ′ for which129

SF ′ can be efficiently reduced to SF . [26]130

ITCS 2023

65:4 TFNP Characterizations of Proof Systems and Monotone Circuits

– Intersection Theorems: Proof systems which can efficiently prove a formula iff that formula has131

short proofs in several other proof systems [25].132

– Coefficient Separations: Separations between the complexity of certain algebraic proof system133

when their coefficients are represented in unary versus binary [25].134

Despite all of this there are still many important TFNPdt problems — such as PPPdt-complete135

problems — which have thus far evaded characterization by a proof system, as well as many important136

proof systems for which no corresponding TFNPdt problem is known.137

Communication TFNP and Monotone Circuit Complexity.138

Karchmer and Wigderson [32] showed that the monotone formula complexity of any monotone139

function f is equal to the communication complexity of mKWf . Building on this, Razborov [45]140

considered reductions between black-box TFNP classes where one measures the amount of commu-141

nication needed to perform the reduction (for some suitable partition of the input), denoted TFNPcc,142

and showed that PLScc-complete problems characterize monotone circuit complexity. There is good143

reason for this; analogous to how TFNPdt is the study of the false clause search problem, TFNPcc144

can be viewed as the study of the monotone Karchmer-Wigderson game. Indeed, every R ∈ TFNPcc145

is equivalent to mKWf (over the same partition of the variables) for some associated monotone146

function f [20, 26].147

Following these results, a number of TFNPcc problems have been characterized by models of148

monotone circuits [17, 26]. However, there remain many important circuit models for which no149

TFNPcc-characterization is known.150

A Theory of Interpolation and Lifting Theorems.151

As we have just discussed, certain proof systems are characterized by TFNPdt problems, while certain152

models of monotone circuits are characterized by problems in TFNPcc. Göös et al. [26] observed that153

in all-known examples of TFNP problems which admit both a characterization by a proof system and154

a monotone circuit, there exists both an interpolation theorems and query-to-communication lifting155

theorem between that proof system and monotone circuit. This is to be expected, as a key component156

of both interpolation and query-to-communication lifting theorems proceeds by relating SF to mKWf157

for associated pairs (F, f). In fact, it is not difficult to see that whenever a TFNP class admits a158

characterization by both a proof system and a monotone circuit model then there is an interpolation159

theorem between this proof system and circuit model — this follows by the simple observation that160

communication protocols can simulate decision trees [46]! Thus, the landscape of TFNP, together161

with characterizations of TFNP problems by proofs and circuits, appears to provide a roadmap for162

potential interpolation and query-to-communication lifting theorems.163

1.2 Our Results164

Our first main result is a characterization of when a proof system admits a characterization by a165

TFNPdt problem. We show that this occurs for any any proof system P which meets the following166

two criteria:167

i) Closure under decision-tree reductions: whenever there is a small P -proof of a formula H , and168

SF efficiently reduces to SH , then there is also a small P -proof of F .169

ii) Proves its own soundness: P can prove that its proofs are sound. That is, P has small proofs of a170

reflection principle about itself, encoded in an efficiently-verifiable manner.171

S. Buss, N. Fleming, and R. Impagliazzo 65:5

Conversely, we show that every TFNPdt problem has a proof system which characterizes it. Further-172

more, this proof system satisfies both conditions (i) and (ii). Out first main results can be informally173

stated as follows.174

I Theorem 1 (Informal). The following hold:175

– For any TFNPdt problem R there is a proof system P satisfying (i) and (ii) such that R charac-176

terizes P in the sense that P has short proofs of F iff SF is efficiently reducible to R.177

– For any proof system P which satisfies (i) and (ii) there is a TFNPdt problem R such that R178

characterizes P .179

By writing down an efficiently verifiable reflection principle for a proof system, this provides a180

somewhat systematic way of generating a TFNPdt problem which characterizes that proof system.181

As an example, we define a new TFNP subclass called IND-PPA, which contains problems which182

can be solved by inductive inductive parity arguments. We show that the IND-PPA-complete problem183

characterizes the F2-Polynomial Calculus proof system, and furthermore that the F2-Polynomial184

Calculus can prove its own soundness.185

I Theorem 2 (Informal). IND-PPAdt = F2-PC. As well, F2-PC has small proofs of an efficiently186

verifiable reflection principle about itself.187

As a bonus, we show that the technique that we use to generate the TFNPdt problem which charac-188

terizes the F2-Polynomial Calculus can readily be applied in order to generate TFNPdt problems189

which characterize all of the dynamic variants of static proof systems for which TFNPdt are known.190

In Subsection 2.4, we provide TFNPdt problems for Fq-Polynomial Calculus, unary Polynomial191

Calculus, and unary dag-like Sherali-Adams.192

Our second main result is a characterization of the conditions under which monotone circuit193

models admit corresponding TFNPcc problems. We formalize the concept of a monotone circuit194

model as a monotone partial function complexity measure (mpc) — a mapping of partial monotone195

functions to non-negative integers. We show that a TFNPcc problem is characterized by a mpc iff the196

mpc meets the following criteria:197

i) Closure under low-depth reductions: if whenever f is a partial function and h is computable by a198

depth-d monotone Boolean circuit then mpc(f ◦ h) is only polynomially larger in 2d and mpc(f).199

ii) Admits a universal family: a family of functions Fm such that whenever mpc(g) ≤ m for a200

monotone partial function g, there is a string zg so that F (x ◦ zg) solves g(x).201

I Theorem 3 (Informal). Let mpc be a complexity measure. There is a R ∈ TFNPcc such that202

Rcc characterizes mpc iff mpc satisfies (i) and (ii).203

Finally, we investigate whether this characterization can be extended from partial function204

complexity measures to total function measures. Since complexity measures on total functions induce205

measures on partial functions, this allows us to give a general condition under which a complexity206

measure on total functions has a TFNPcc characterization (Theorem 17) by applying Theorem 3.207

A Note on the Provability of Reflection Principles.208

Theorem 1 establishes that the property of P having short proofs of a reflection principle about itself209

is closely related to having a TFNPdt characterization of P . The reflection principle for propositional210

proof systems has already been studied in prior work. In particular, Cook [11] showed that extended211

Frege (eF) has short proofs its consistency statements, and Buss [8] showed that Frege (F) has short212

proofs of its consistency statements. From their results, it follows readily that both proof systems,213

ITCS 2023

65:6 TFNP Characterizations of Proof Systems and Monotone Circuits

extended Frege and Frege, have short (polynomial size) proofs of their reflection principles. It is also214

well-known that the extended Frege and Frege proof systems can be characterized as very strong215

TFNPdt classes characterizable in terms of second-order theories of bounded arithmetic, see [5].216

Analogous results were obtained for even stronger propositional proof systems by [23]. On the other217

hand, Garlik [22] showed that resolution requires exponential length for refutations of (a particular218

“leveled” version of) its reflection principle, and Atserias-Müller [1] gave exponential lower bounds219

on resolution refutations of a relativized reflection principle.220

Theorem 1 requires that the proof system P has short proofs of a variant of a reflection principle221

about itself. There are two main differences between our encodings and previous ones in the literature.222

The first is that the reflection principle is parameterized by a complexity parameter c (see Section 2)223

rather than the typical size parameter. The second is that the reflection principle must be efficiently224

verifiable, meaning that an error in the purported P -proof in the reflection principle can always be225

verified by examining in a small number of bits. Thus, for example, the bound of Garlik [22] does not226

contradict our results.227

2 Proof Complexity and Black-Box TFNP228

We begin by defining black-box TFNP. A total search problem is a sequence of relations Rn ⊆229

{0, 1}n ×On, one for each n ∈ N which is total — for each x ∈ {0, 1}n there is i ∈ O such that230

(x, i) ∈ Rn. A total search problem is in TFNPdt its solutions are verifiable: for each i ∈ O there231

there is a decision tree T oi of polylog(n) depth such that232

T oi (x) = 1 ⇐⇒ (x, i) ∈ Rn.233

Decision Tree Reductions. A decision tree reduction from Q ∈ {0, 1}s ×O′ to R ⊆ {0, 1}n ×O is a234

set of decision trees Ti : {0, 1}s → {0, 1} for i ∈ [n] and T oj : {0, 1}s → O′ for j ∈ O such that for235

any x ∈ {0, 1}s,236

((T1(x), . . . , Tn(x), j) ∈ R =⇒ (x, T oj (x)) ∈ Q.237

That is, the Ti’s map inputs to from Q to R, and the T oj ’s maps solutions to R back to solutions to Q.238

The depth of the reduction is d, the maximum depth of any of the decision trees involved, and the size239

is n. The complexity of the reduction is logn+ d and the complexity of reducing Q to R, denoted240

Rdt(Q), is the minimum complexity of any decision tree reduction from Q to R. The TFNPdt sub-241

class associated with R, denoted Rdt, is the set of all Q ∈ TFNPdt such that Rdt(Q) = polylog(n).242

243

Black-box TFNP is intimately connected with proof complexity. This connection can be summar-244

ized by the following claim from [25, 26].245

B Claim 1. Let R ∈ {0, 1}n × O be any search problem in TFNPdt. Then there exists an246

unsatisfiable CNF formula F on |O|-many variables such that R is equivalent to SF .247

Proof. As R ∈ TFNPdt there are polylog(n)-depth decision trees {Ti}i∈O which verify R. Define248

a canonical CNF formula associated with R to be249

F :=
∧
i∈O
¬T oi ,250

where we have abused notation and associated T oi with the DNF obtained by taking a disjunction over251

the (conjunction of the literals along) the accepting paths in T oi . This makes a ¬T oi a CNF formula252

expressing that T 0
i outputs 0. It is not difficult to check that a solution to SF is equivalent to a solution253

to R. J254

S. Buss, N. Fleming, and R. Impagliazzo 65:7

The upshot is that black-box TFNP is exactly the study of the false clause search problem!255

Thus, it suffices to study the search problems for the canonical CNF formulas SF associated with256

R ∈ TFNPdt instead of R itself. Furthermore, note that this is robust as for any pair of decision trees257

{T oi } and {T ′oi } that verify the same R ∈ TFNPdt, the resulting false clause search problems SF and258

SF ′ are polylog(n)-reducible.259

Using this connection, Göös et al. [26] observed that many important proof systems are char-260

acterized by associated TFNPdt problems in the sense that the CNF formulas F that are efficiently261

provable in that proof system are exactly the problems SF that are efficiently reducible to that TFNPdt262

problem.263

Complexity Measure. The known characterizations of proof systems by TFNPdt problems are in264

terms of a somewhat non-standard, but very natural, complexity parameter. For a proof system P and265

unsatisfiable CNF formula F let the complexity required by P to prove F be266

P (F) := min{deg(Π) + log size(Π) : Π is a P -proof of F},267

where deg denotes an associated degree measure of the proof system. For Nullstellensatz and Sherali-268

Adams, this degree measure is the maximum degree of any polynomial in their proofs, while for269

Resolution, degree is the proof width. While nonstandard, this complexity parameter is very natural.270

Indeed, all of the query-to-communication lifting theorems referenced in the introduction lift lower271

bounds on a complexity parameter for some proof system to lower bounds on some monotone circuit272

model.273

We say that a TFNPdt problem R characterizes a proof system P if Rdt = {SF : P (F) =274

polylog(n)}; this is reflexive and so we also say that P characterizes R. In fact, many of these275

characterizations hold in the following stronger sense: let P be any of the proof systems listed276

above, and R be the canonical complete problem for its corresponding TFNPdt class, then for any277

unsatisfiable CNF formula F ,278

P (F) = Θ(Rdt(SF)).279

In this section we give necessary and sufficient conditions for such a characterization to occur.280

The first condition is that the proof system proves an efficiently verifiable variant of a reflection281

principle.282

What is a Reflection Principle?283

The second condition of Theorem 1 is that the proof system must be able to prove its own soundness.284

A reflection principle RefP for a proof system P states that P -proofs are sound; it says that if Π285

is a P -proof of a CNF formula H then H must be unsatisfiable. This is formalized with variables286

encoding a CNF H , a proof Π, and a truth assignment α to H . The formula (falsely) asserts that Π is287

a P -proof of H and α satisfies H ,288

ProofP (H,Π) ∧ Sat(H,α).289

We say that a reflection principle is efficiently verifiable if it is encoded as a low-width CNF290

formula. In this case, solutions to the false clause search problem for the reflection principle (also291

known as the wrong proof problem [4, 24]) can be efficiently verified, which is essential for the292

reflection principle search problem to belong to TFNP.293

For a proof system P , there are many ways to encode its proofs, with the choice of the encoding294

potentially affecting the complexity of proving the associated reflection principle. Rather than295

worrying about the particular encoding, we will instead define one reflection principle for each296

ITCS 2023

65:8 TFNP Characterizations of Proof Systems and Monotone Circuits

efficiently verifiable way of encoding P -proofs, which we call a verification procedure. Recall that297

the complexity c of a proof is always an upper bound on the width of the CNF being proven. For this298

reason, and to simplify notation, we will bound the width of the CNF H by c.299

Verification Procedure. A verification procedure V for a proof system P is a mapping of tuples300

(n,m, c) to CNF formulas that generically encodes complexity-c (or O(c)) P -proofs of n-variate301

CNF formulas with m clauses of width at most c. Specifically, the CNF formula Vn,m,c has three sets302

of variables x,H,Π, such that:303

– An assignment to the variables H := {Ci,j : i ∈ [m], j ∈ [c]} specifies a CNF formula with m304

clauses over n variables, where Ci,j ∈ [2n] is the index of the j-th literal of the i-th clause of H;305

if Ci,j ≤ n then it specifies a positive literal, and otherwise it specifies a negative literal.306

– An assignment to the variables Π specifies a (purported) P -proof of H , such that any error in Π307

can be verified by looking at the assignment to at most poly-logarithmically many variables of308

Vn,m,c.309

– The CNF formula Vn,m,c has 2Θ(c) many variables.310

As the complexity parameter c bounds the logarithm of the size of the proof, and by the third point,311

the number of variables is exponential in Θ(c), the second condition ensures that Vn,m,c has width312

poly(c) and can be verified by looking at polynomial-in-c many variables. The third condition can be313

relaxed, and larger numbers of variables can be tolerated at the cost of worse bounds in Theorem 6.314

We give a concrete example of a verification procedure for the Polynomial Calculus proof system in315

Section 2.3.316

For concreteness, we have fixed a particular encoding of H in order to avoid pathological codings;317

e.g., ones in which a SAT oracle is used to decide whether the formula is satisfiable. Since we allow318

arbitrary codings of proofs, this will be robust under different encodings of CNFs as long as they are319

polynomial-time computable from ours.320

We can now define a reflection principle for any proof system based on a verification procedure.321

Reflection Principle. Let P be a proof system and V be a verification procedure for P -proofs. The322

reflection principle RefP,V associated with (P, V) is the unsatisfiable formula323

ProofnH ,mH ,c(H,Π) ∧ SatnH ,mH ,c(H,α),324

where H is a CNF formula over nH variables with mH clauses of width at most c. The j-th literal (if325

any) of the i-th clause of H is specified by a vector Ci,j of log(2nH + 1) many Boolean variables,326

and327

– ProofnH ,mH ,c(H,Π) := VnH ,mH ,c(H,Π).328

– SatnH ,mH ,(d,nF)(H,α) is the CNF formula stating that α is a satisfying assignment for H . This329

is expressed as,330

∀i ∈ [mH],∃j ∈ [c]
[(

[[Ci,j = xk]] ∧ αk
)
∨
(
[[Ci,j = ¬xk]] ∧ ¬αk

)]
,331

where [[p = `]] is the indicator function of p being equal to `. This can be encoded as a CNF332

formula of width O(c lognH) and size mH exp(O(c lognH)).333

For simplicity of notation, we will drop the subscripts P, V from Ref when the proof system and334

verification procedure is clear. One technicality is that TFNPdt problems have one instance for each335

number of variables n; to ensure that this is the case for Ref we could use a pairing function on the336

multiple sets of variables for Ref, however we are going to ignore this detail. Each reflection principle337

gives rise to a TFNPdt problem. Indeed, by construction Ref is verifiable by observing polylog(n)338

many bits, where n is the total number of variables.339

S. Buss, N. Fleming, and R. Impagliazzo 65:9

Conditions for a TFNP Characterization340

The first necessary condition for a proof system to admit a characterization by a TFNPdt problem will341

be that the proof system must efficiently prove a reflection principle about itself. The second necessary342

condition is that the proof system must be closed under decision-tree reductions, as TFNPdt is closed343

under these reductions.344

Closure under Decision Tree Reductions. A proof system P is closed under decision tree reductions345

if whenever there is a P -proof of complexity c of an unsatisfiable formula F , and H reduces to F by346

depth-d decision trees, then there is a P -proof of H of complexity O(cd).347

348

In all of the proof systems which are known to admit characterization by a TFNPdt problem,349

closure under decision tree reductions takes the form of directly substituting (an appropriate encoding350

of) decision trees into the proofs, resulting in a proof of complexity O(cd). For example, if H351

reduces to F and we have a Resolution proof of F , then we can obtain a Resolution proof of H by352

replacing each variable in the proof of F by the (DNF formula corresponding to the accepting paths353

of) corresponding decision tree from the reduction.354

We are now ready to prove Theorem 1, which we state formally as follows.355

I Theorem 1. The following hold:356

i) For any TFNPdt problem R there is a proof system P such that R characterizes P . Furthermore,357

P is closed under decision tree reductions and there is a reflection principle RefP for P such that358

P (RefP) ≤ polylog(n).359

ii) For any proof system P which is closed under decision tree reductions and for which there is360

a reflection principle RefP of which P has polylog(n)-complexity proofs, there is a TFNPdt361

problem R which characterizes P .362

In fact, we prove a tighter characterization over the following two subsections, from which363

Theorem 1 will follow. Part (i) follows from Theorem 6, with the “furthermore” part proven in364

Theorem 5, while part (ii) is proven in Theorem 4.365

2.1 A Proof System for any TFNP Problem366

We begin by describing how any TFNPdt problem R can be transformed into a proof system for367

refuting unsatisfiable CNF formulas of polylog width. The key observation is that because each368

TFNPdt problem is equivalent to the search problem for some unsatisfiable CNF formula, we can369

view decision tree reductions between TFNPdt problems as proofs in a proof system — indeed, these370

reductions are sound and efficiently verifiable! More formally, a proof Π in this proof system, of the371

(unsatisfiability) of a CNF formula H , will consist of a low-depth decision reduction from SH to an372

instance of the false clause search problem SF for the unsatisfiable formula F associated with the373

TFNP problem R. For this, we first define a notion of reduction between CNF formulas.374

Suppose C is a clause over n variables, and T = {Ti}i∈[n] is a sequence of depth-d decision trees,375

where Ti : {0, 1}s → {0, 1}. We write C(T) to denote the CNF formula obtained by substituting the376

decision trees Ti for each of the variables xi in C and rewriting the result as a CNF formula. Formally,377

C(T) is formed by creating the a stacked decision tree TC that sequentially runs the trees Ti for each378

variable xi used in C. A leaf of TC is labelled with a 1 if the root-to-leaf path causes the trees Ti to379

output a satisfying assignment for C; the other leaves are labelled with 0. Then C(T) is the CNF380

C(T) :=
∧
{¬p : p is a rejecting path of T},381

ITCS 2023

65:10 TFNP Characterizations of Proof Systems and Monotone Circuits

where a path p is identified with the conjunction of the literals set true along the path, and ¬p is its382

negation.383

Reductions Between CNF Formulas. Next, we define what is means to reduce one false clause search384

problem to another. We say that a CNF formula H on nH variables and mH clauses reduces to an385

unsatisfiable F = C1 ∧ · · · ∧ Cm over n variables via depth-d decision trees if there exist depth-d386

decision trees T = {Ti}i∈n where Ti : {0, 1}nH → {0, 1}, and {T oi }i∈[m] with T oi : {0, 1}nH →387

[mH] so that the following conditions hold. Let FH be the CNF formula388

FH :=
∧
i∈[m]

∧
p∈T o

i

Ci(T) ∨ ¬p,389

where p ranges over all paths of T oi . Since Ci(T) is a CNF, FH is readily written as a CNF by390

distributing ¬p into Ci(T). Then each clause Ci(T) ∨ ¬p must either be tautological (contains a391

literal and its negation) or be a weakening of the clause of H indexed by the label at the end of the392

path p.393

Observe that a depth-d decision tree reduction of SH to SF introduces a new false clause search394

problem SFH
that is directly a refinement of H . Clearly, if F is unsatisfiable, then so is FH and395

consequently also H is unsatisfiable.396

Canonical Proof System. Let SF ∈ TFNPdt. The canonical proof system PF for SF proves an397

unsatisfiable CNF formula H on nH variables if H is reducible to an instance of F on some n398

variables. A PF -proof Π consists of the decision trees T = {Ti}i∈[n] and T 0 = {T oi }i∈[m] of the399

reduction. The size of Π is the number of variables n of the instance of F , and the depth is the400

maximum depth among the decision trees. The complexity of proving an unsatisfiable CNF formula401

H is then the minimum over all P -proofs of H ,402

PF (H) := min{depth(Π) + log size(Π) : Π is a PF -proof of H}.403

This proof system is sound as any substitution of an unsatisfiable CNF formula is also unsatisfiable.404

To see that it is efficiently verifiable, observe that it suffices to form the CNF FH from F and the405

decision trees Ti and T 0
i , and check that each of the clauses of FH is either tautological or is a406

weakening of a clause in H . This can be done in polynomial-time in the size of the proof. Finally,407

note that the Note that the canonical proof system is closed under decision tree reductions.408

The next theorem states that PF has a short proof of H iff SH efficiently reduces to SF . This is409

almost immediate from the definitions.410

I Theorem 4. Let SF ∈ TFNPdt and H be an unsatisfiable CNF formula. Then,411

(a) If H has a size s and depth d proof in PF , then SH has a depth d and size O(s) reduction to SF .412

(b) If SH has a size s and depth d reduction to SF , then H has a size s2O(d) and depth d proof in PF .413

In particular, SdtF (SH) = Θ(PF (H)).414

Proof. To prove (b), suppose T1, . . . , Tn and T o1 , . . . , T
o
m is a size-s and depth-d decision-tree415

reduction from SH to SF . Construct FH as above using these decision trees. Let L be a clause of416

Ci(T) for some i ∈ [m] and let p be a path in T oi . If Ci(T) ∨ ¬p is tautological, then we are done.417

Otherwise, we will argue that it is a weakening of a clause of H . Fix any assignment x which falsifies418

L ∨ ¬p, then Ci is falsified by the assignment T1(x), . . . , Tn(x) and T oi (x) follows path p. Thus, by419

the correctness of the reduction, whenever L ∨ ¬p is false, the T oi (x)-th clause of ¬H must also be420

false, and so L∨¬p is a weakening of this clause. Each decision tree in the proof has depth at most d421

and therefore the size is at most s2O(d).422

S. Buss, N. Fleming, and R. Impagliazzo 65:11

To prove (a), let n, T1, . . . , Tn, T
o
1 , . . . , T

o
m be a PF proof of H of size s and depth d. We claim423

that this is also a reduction from SH and SF . Indeed, fix any assignment x such that T1, . . . , Tn(x)424

falsifies clause Ci of F and the decision tree T oi (x) follows some path p. Then, a clause of the425

formula Ci(T) ∨ ¬p is falsified under x, and furthermore that clause is a weakening of the T oi (x)-th426

clause of H . Thus, (x, T oi (x)) ∈ SH . This reduction has depth d and size n = O(s). J427

Canonical Proof Systems Prove their own Soundness428

In this section we define a natural formulation of the reflection principle for the proof system PF429

for any TFNPdt problem SF by way of defining a verification procedure for PF . We show that the430

canonical proof system can prove this encoding of the reflection principle. To encode proofs Π in the431

canonical proof system — which are decision tree reductions — we require the notion of a generic of432

a decision tree, which is a template for decision trees of depth at most d — any decision tree of depth433

at most d (over a set of variables α1, . . . , αn and output set O) can be recovered from an assignment434

to the variables of a generic decision tree.435

A generic decision tree of depth d over variables α1, . . . , αn and with output in O is a complete436

binary tree in which the label of every internal vertex v is given by a vector of logn of variables xv437

whose value specifies the index of some variable αi, and such that one child of v is labelled 0 and the438

other is labelled 1. Each leaf l is labelled with log |O| variables xl. For a given truth assignment to the439

variables xv , the generic decision tree induces a decision tree that queries the variables α1, . . . , αn as440

specified by the values of all of the xv’s. Specifically, for a given internal vertex v, the truth values441

assigned to the vector xv at v in the generic decision tree determines a value i so that αi is queried442

at the corresponding vertex of the induced decision tree. Similarly, for a leaf l, the values of the443

variables xl specify an j ∈ O which is the label for the corresponding leaf in the induced decision444

tree.445

Recall that in the reflection principle Proof(H,Π) states that the proof Π (which we will encode446

using generic decision trees) is indeed a proof of H . To state Proof(H,Π), it will be helpful to have447

the following definition. The decision tree simulating a generic decision tree T̂ is obtained from T̂ as448

follows: Replace each internal vertex v of T̂ by a complete binary tree querying the variables of xv,449

and at each leaf where xv = i, queries αi. The leaves l of the generic decision tree are replaced with450

complete binary trees querying xl in which each leaf where xl = j is labelled by the output j ∈ O.451

Verification Procedure for PF . Let SF ∈ TFNPdt. We define a verification procedure V PF

nH ,mH ,(d,nF)452

for PF , which encodes a complexity c = (d+lognF) P -proof Π of a CNF formulaH on nH variables453

and mH clauses as follows. Π is specified by nF depth-d generic decision trees T̂1, . . . , T̂nF
with454

output in {0, 1} and mF depth-d generic decision trees T̂ o1 , . . . , T̂
o
mF

with output in [mH]. The455

constraints of Proof enforce that each clause of the reduced CNF formula FH is a weakening of a456

clause of H . For each i ∈ [nF], let Si be the decision tree simulating T̂i but eliminating the queries457

to the variables αi.2 Recall that the assignment of truth values to the vector of variables xv at a vertex458

v determines the index i ∈ [nH] of the variable being queried at v in the decision tree. Let zk ∈ [nF]459

denote the k-th variable of F .460

We will construct the constraints of Proof from the following decision trees TCi
, for each clause461

Ci in F : First, it runs the decision trees Sk for every k ∈ [nF] such that Ci involves zk: this462

determines the literals which occur in one of the clauses of FH , namely in one of the clauses that463

is formed by applying the decision trees T̂i to the clause Ci. We temporarily use C ′ to denote this464

clause of FH . Note that C ′ involves variables of H; however, the truth values (the αi values) of the465

2 ProofnH ,mH ,(d,nF)(H,Π) does not involve the variables αi.

ITCS 2023

65:12 TFNP Characterizations of Proof Systems and Monotone Circuits

variables in C ′ have not been queried and are instead treated in the next phase as being set to the466

values that falsify C ′. Second, it runs the decision tree simulating T̂i. A vertex of T̂i labelled with an467

xv is handled by querying the variables xv . The results of the queries to xv specify a variable αi. The468

variable αi may appear in C ′ and if so is treated as having the value that falsifies C ′. If, however,469

the variable αi does not appear in C ′, then it is non-deterministically queried; that is, the tree TCi
470

branches to try both 0 and 1 as truth values for αi. The result of running the decision tree simulating471

T̂i is a value ` specifying a clause of H . Third, it queries the vector of variables C`,j for j ∈ [c]:472

this determines the literals of the `-th clause of H . If a path in this decision tree determines that the473

clause C ′ of FH is not a weakening of the `-th clause of H , then the path is called “bad”.474

The CNF formula ProofnH ,mH ,(d,nF)(H,Π) is
∧

bad p ¬p, expressing that there is no bad path.475

It thus is satisfied only when the Π is a valid PF -proof of H .476

As each generic decision tree has depth at most d, F has width at most polylog(nF), and H has477

width at most c, the resulting CNF formula has width dpolylog(nF) + logmH + c lognH .478

Canonical Reflection Principle. Let SF ∈ TFNPdt. We define its canonical reflection principle RefF479

to be the conjunction480

ProofnH ,mH ,(d,nF)(H,Π) ∧ SatnH ,mH ,(d,nF)(H,α),481

where Sat is defined as in the definition of the reflection principle and Proof := V PnH ,mH ,(d,nF). In482

total, this is a CNF formula of width d lognF+logmH+c lognH over n = mF 2d+1+nF 2d lognH+483

cmH log 2nH many variables. In particular, under any assignment to the variables, any clause of484

RefF can be evaluated by looking at the values of polylog(n) many variables, where n is number of485

variables of Ref. Thus, SRefF
∈ TFNPdt.486

I Theorem 5. For any SF ∈ TFNPdt, PF (RefF) ≤ polylog(n).487

Proof. Fix an instance of SRefF
. By Theorem 4, it suffices to show that SRefF

is reducible to an488

instance of SF . Let the instance of RefF be specified with parameters (nH ,mH , (d, nF)), letting489

c = d+ lognF . For each generic decision tree T̂i of RefF , let Si be the decision tree that simulates490

it. As well, let Soi be the decision tree that simulates T̂ oi .491

We will define the decision trees T1, . . . , TnF
, T o1 , . . . , T

o
mF

of the reduction from SRefF
to an492

instance of SF on nF variables. Define Ti := Si, and let T oi be the decision tree implementing493

the following algorithm which takes as input x ∈ {0, 1}n and outputs a falsified clause of RefF (x)494

provided that the truth assignment (T1(x), . . . , TnF
(x)) falsifies clause Ci of F . First, the algorithm495

runs the decision trees Ti for each i ∈ vars(Ci), and then it runs the decision tree for Soi .496

Let x∗ be the restriction of x to the variables queried thus far in the algorithm. As (T1(x∗), . . . TnF
(x∗))497

falsifies Ci, there must be a clause of FH falsified by x∗. This clause should be a weakening of498

T oi (x∗)-th clause of H . To check whether this is indeed the case, we ask for the indices of the499

variables that occur in the T oi (x∗)-th clause of H — this requires us to query at most c lognH many500

variables. If our clause is indeed a weakening of the T oi (x∗)-th clause of H , then our x∗ must falsify501

the T oi (x∗)-th clause of H , violating a constraint of SAT. Thus, our algorithm will output the index502

of this violated clause SAT. Otherwise, if this is not the case, then x∗ must falsify a clause of Proof,503

and so we can output the index of this violated clause.504

To convert this algorithm into a decision tree we must label the leaves which are the terminals505

of paths which are not followed in any run of this algorithm. For a path not to be followed by this506

algorithm, it must either correspond to a partial assignment x∗ such that (T1(x∗), . . . , TnF
(x∗))507

satisfies Ci, and therefore the output at that leaf can be arbitrary. As H has width at most c and F has508

width polylog(nF), the depth d∗ of the resulting decision tree is d∗ = O(c(d lognH + logmH)) +509

polylog(nF) and the number of variables is nF ; thus the complexity of the reduction is d∗ + lognF ,510

which is poly-logarithmic in n, the number of variables of RefF . J511

S. Buss, N. Fleming, and R. Impagliazzo 65:13

2.2 TFNP Problems for Proof systems which Prove their own512

Soundness513

In this section we identify the necessary conditions for a proof system to be characterized by a TFNPdt514

problem. The first necessary condition is that the proof system must be closed under decision-tree515

reductions, as TFNPdt is closed under these reductions. That is, it must admit short proofs of a516

reflection principle about itself. As we will show, any verification procedure for its proofs will do.517

I Theorem 6. Let P be a proof system that is closed under decision tree reductions, let V be a518

verification procedure for P , and denote RefP,V by Ref. For any unsatisfiable CNF formula H , the519

following hold.520

i) SdtRef(SH) ∈ O(P (H)).521

ii) P (H) ∈ O(SdtRef(SH)P (Ref)).522

In particular, if P has polylog(n)-complexity proofs of Ref then P is characterized by SRef .523

The first statement says that any P -proof of H induces a reduction from SH to SRef of the same524

complexity. The second statement is a converse, saying that if there is a reduction from SH to SRef525

and P can efficiently prove Ref then there is a P -proof of H whose complexity is not much larger526

than the complexity of the reduction — in particular, it is factor of the complexity needed for P to527

prove Ref larger than the complexity of the reduction.528

Before proving this theorem we will give a high-level sketch of the proof for the case of polylog(n)-529

complexity reductions. Let P be any proof system that is closed under decision tree reductions.530

Observe that SRef ∈ TFNPdt as Ref is efficiently verifiable. Consider any SH ∈ TFNPdt such that531

SdtRef(SH) = polylog(n) (SH reduces to SRef with polylog-depth decision trees). Then, as P is closed532

under decision tree reductions and there is a O(polylog(n))-complexity P -proof of RefP , there must533

also be an efficient P -proof of H . Conversely, suppose that Π is a polylog(n)-complexity P -proof of534

an unsatisfiable CNF formula H . We can construct a reduction from SH to SRef by hard-wiring H535

and Π into SRef , leaving the only truth assignment variables free. On any input α to the variables of536

H , the hard-wired instance of SRef must output a falsified clause of H as Π is a valid P -proof of H .537

Proof of Theorem 6. We will begin by proving (ii). Let H be any unsatisfiable CNF formula and538

recall that SdtRef(SH) denotes the complexity of reducing SH to SRef . As P is closed under decision539

tree reductions, there is a P -proof of H with complexity P (H) = O(SdtRef(SH)P (Ref)).540

To prove (i), suppose that Π is a complexity c := P (H) proof in P of an unsatisfiable CNF541

formula H . We will construct a reduction from SH to an instance of SRef as follows. Let nH ,mH be542

the number of variables and number of clauses of H respectively. The reduction T = (T1, . . . , Tn)543

hardwires the input (H,Π) into the instance of SRef with parameters nH ,mH , c, using constant544

decision trees, leaving only α unspecified. Next, we argue that this reduction is correct. Let545

α ∈ {0, 1}nH be any assignment to SH then, as Π is a valid P -proof of H , the only outputs of546

SRef(T (α)) are clauses of H which are falsified under α. As the number of variables of the instance547

of Ref is exponential in Θ(c), and the decision trees T are constant, SdtRef(SH) = O(P (H)). J548

2.3 Example: The Polynomial Calculus549

As an example, we give a characterization of the Polynomial Calculus by a natural TFNPdt problem550

and show that it can prove a reflection principle about itself, establishing Theorem 2. This answers551

an open question from [25], asking for a characterization of the Polynomial Calculus. To define our552

characterization of the F2-Polynomial Calculus, we will leverage the characterization of its static553

variant, F2 Nullstellensatz, by PPA-complete problems [26]. PPA is the class of TFNP problems554

ITCS 2023

65:14 TFNP Characterizations of Proof Systems and Monotone Circuits

which can be solved by parity arguments, and the standard PPA-complete problem is LEAF — given555

a fan-in ≤ 2 graph and a designated leaf v∗, find another leaf. To characterize the F2-Polynomial556

Calculus, we define the TFNP class IND-PPA which corresponds to inductive parity arguments, and557

whose complete problem is the LEAF problem defined over a directed acyclic graph. At the end of558

this section we discuss how this appears to be a general phenomenon — for any TFNP problem which559

characterizes a static proof system, we can define an induction variant of that problem to characterize560

the dynamic variant of that proof system. Using this, we give TFNP problems which characterize the561

Fq-Polynomial Calculus, unary Polynomial Calculus, and unary dag-like Sherali-Adams.562

The Polynomial Calculus (PC). The F2-Polynomial Calculus proves that an unsatisfiable system563

of F2-polynomial equations {pi(x) = 0}i∈[m] has no solutions over {0, 1}. An unsatisfiable CNF564

formula F = C1 ∧ . . . ∧ Cm is encoded as such a system of equations by mapping each clause to565

the equation Ci such that Ci(x) = 1 iff Ci(x) = 0 (for example, (x1 ∨ ¬x2 ∨ x3) represented as566

(1 + x1)x2(1 + x3) = 0). Note that the degree of Ci is equal to the width of Ci. We will operate567

exclusively with multilinear arithmetic; that is, x2
i and xi are represented by the same function.568

Formally, we operate modulo the ideal 〈x2
i = xi〉i∈[n].569

A F2-PC proof is a derivation of the trivially false polynomial 1 = 0 from {pi(x) = 0}i∈[m] by570

the following two rules:571

Addition. From two previously derived polynomials p, q, deduce p+ q.572

Multiplication by a Variable. From a previously derived polynomial p, deduce xip for some573

i ∈ [n].574

The size of a proof is the number of monomials (with multiplicity) in the proof, the length is the575

number of lines (applications of rules), and the degree is the maximum degree of any polynomial at576

any step in the proof. The complexity of proving an unsatisfiable CNF formula F in F2-PC is577

min{size(Π) + log degree(Π) : F2-PC proofs Π of F}578

Next, we define IND-PPA, the subclass of TFNPdt problems which are reducible to the IND-579

PPA-complete problem IND-LEAF, which will characterize F2-PC. At a high level this is the LEAF580

problem defined over a directed acyclic graph (dag). An instance of this problem is given by a set set581

of N nodes (corresponding to monomials) and a set of L pools (corresponding to lines in the proof).582

The pools are arranged in a dag; each pool ` ∈ [L] has a set of immediate predecessors described by583

variables P (`)
`′ ∈ {0, 1} for `′ < `. Each pool ` is associated with a set of nodes A(`) ⊆ [N] and we584

hard-code that the root pool L has A(`) = {1} for some distinguished 1-node. We have an instance585

of LEAF defined over the nodes of this dag as follows: for each pool ` we have a matching M (`)
586

between the nodes of ` and the nodes of its predecessors; see Figure 1. Since the L-th pool contains587

only a single node, there must be some pool with an unmatched node. A solution is an unmatched or588

mismatched node.589

We remark that the dag of pools is specified by input variables P (`)
`′ to the problem. This is crucial;590

if the dag was fixed in advance, then this problem would be in PPA — there is a simple reduction to591

LEAF — and thus gives rise to a Nullstellensatz proof.592

Induction PPA. The IND-PPA-complete problem IND-LEAF is defined as follows593

– Structure. [L] pools and [N] nodes. We think of each ` ∈ [L] as being associated with its own594

copy of [N].595

– Variables. For each ` ∈ L and `′ < ` we have P (`)
`′ ∈ {0, 1} indicating whether `′ is an immediate596

predecessor of pool `. For each pool ` ∈ [L] and node m ∈ [N], we have a variable A(`)
m ∈ {0, 1}597

indicating whether node m is active at pool `. Finally, we have a matching between the nodes of598

S. Buss, N. Fleming, and R. Impagliazzo 65:15

` ∈ [`] and the nodes of all of its predecessors: For each `′ < ` and m ∈ [N] there is a variable599

M
(`)
`′,m′ ∈ [`]× [N] indicating where `′’s copy of node m′ is matched in the matching for pool `.600

The root pool L has A(L)
1 = 1 and A(L)

m = 0 for all m 6= 1.601

– Solutions. Since the root has an odd number of active nodes, and each matching is even, there must602

be some pool ` ∈ [L] with an erroneous matching. A solution is any triple (`, `′,m) ∈ [L]2× [N]603

such that `′ is a predecessor of ` and m is an active node for `′, and m is matched to some node604

m′ of some pool `′′ which is not matched to m. That is, P (`)
`′ = 1, A(`)

m = 1, M (`)
(`′,m) = (`′′,m′),605

and either P (`)
`′′ = 0, A(`′′)

m′ = 0, or M (`)
`′′,m′ 6= (`′,m).606

Observe that this problem is in TFNPdt, as any candidate solution can be verified by observing607

the values of O(logn) many variables.608

I Theorem 7. For any unsatisfiable CNF formula F ,609

– If there is a depth-d reduction fron SF to an instance of IND-LEAF on s variables, then there is a610

degree-O(d), size-s22O(d) F2-PC proof of F .611

– If F has a size-s and degree-d F2-PC proof of F , then there is a depth-O(d) reduction from SF612

to an instance of IND-LEAF on O(s2)-variables.613

In particular, IND-LEAFdt(SF) = Θ(F2-PC(F)).614

1

3

5
7

1
2

7

2

55
3

1

Pool 4

Pool 1 Pool 2

Pool 3

M
(4)
3,2 = (2, 2) andM(4)

2,2 = (3, 2)

A
(3)
5 = 1

P
(4)
3 = P

(4)
2 = 1 and P (4)

1 = 0

Figure 1 An example matching for Pool 4. The pink area indicates the active predecessors of Pool 4. The
yellow circles indicate the active nodes for that pool; for example Pool 1 has only node 1 active: A(1)

1 = 1, while
A

(1)
m = 0 for all m 6= 1. The edges correspond to the matching for pool 4. For example, M (4)

2,2 = (3, 2) and

M
(4)
3,2 = (2, 2) meaning that in the matching for pool 4, the copy of node 2 in pools 3 and 2 are matched.

We remark that an analogous statement holds for the F2-PCR proof system, which builds on615

F2-PC to include additional “dual” variables xi for each i ∈ [n] to represent ¬xi, along with the616

additional axioms xi + xi = 0. Indeed, this is only a change to the encoding of the CNF formula F617

as a set of polynomials and does not affect the resulting TFNPdt problem. Note that this does not618

ITCS 2023

65:16 TFNP Characterizations of Proof Systems and Monotone Circuits

contradict the separation between PC and PCR due to de Rezende et al. [13], as their separation is in619

terms of size, while this characterization is in terms of the complexity measure.3620

We break the proof of this theorem into two lemmas, Lemma 8 and Lemma 9. In the proofs of621

both lemmas we will crucially use the fact that any depth-d decision tree (as well as any path in that622

decision tree) can be encoded as a degree-d polynomial.623

I Lemma 8. Let F be an unsatisfiable CNF formula. If SF is reducible to an instance of IND-LEAF624

on n variables using decision trees of depth at most d then there is an O(d)-degree and size-n22O(d)
625

F2-Polynomial Calculus proof of F .626

Proof. Let F be an unsatisfiable CNF formula and suppose that SF is reducible to an instance of627

IND-LEAF on n variables using decision trees of depth at most d. That is, each variable x of the628

IND-LEAF instance is computed by a depth-d decision tree Tx querying variables of F ; for simplicity,629

we will abuse notation and associate each variable x with the polynomial formed by taking the sum630

over the (product of the literals on each of the) accepting paths of Tx (those labelled 1). As well, let631

{T oi }i be the decision trees for each solution i of the IND-LEAF instance.632

For ` ∈ L let633

q` :=
∑
m∈[N]

A(`)
m ,634

over F2. We will derive by induction on ` = 1, . . . , L that q` = 0. Roughly, this polynomial states635

that there is a perfect matching between the nodes in ` and the nodes in its predecessors. This636

will be sufficient to complete the proof as A(L)
1 = 1 and A(L)

m = 0 for all m 6= 1, and so the637

decision trees for these variables are identically 1 and 0 respectively. Thus, we will have derived638

0 =
∑
m∈[N]A

(L)
m = A

(L)
1 = 1.639

Now, suppose that we have derived q`′ = 0 for all `′ < ` with with a degree-O(d) F2-PC proof;640

we show how to drive q` = 0. At a high level, this follows from the fact that there is a perfect641

matching between the nodes of pool ` and all of its predecessors. For simplicity of exposition, we642

will define an additional variable P (`)
` := 1, whose decision tree is the constant 1 function.643

B Claim 2. There is a degree-O(d), size-NL2O(d) F2-PC proof of the polynomial644 ∑
`′≤`

P
(`)
`′

∑
m∈[N]

A(`′)
m = 0,645

from the axioms.646

This claim is sufficient to complete the proof. Indeed, we can use it in order to derive q` = 0 from647

q`′ = 0 for `′ < ` (which we have derived by induction) without significantly increasing the degree.648

To see this, multiply each q`′ by P (`)
`′ and sum them to obtain649 ∑

`<`′

P
(`)
`′ q`′ =

∑
`<`′

P
(`)
`′

∑
m∈[N]

A(`′)
m = 0.650

Adding this polynomial to
∑
`′≤` P

(`)
`′
∑
m∈[N]A

`′

m = 0, which has a low-degree proof from F by651

the previous claim, gives p` = 0. Note that since every p`′ is a degree-d polynomial, each of these652

3 Indeed, for any CNF formula F of width w, there are 2w-depth decision tree reductions between SF and SD

where D is the encoding of F as a system of polynomial equations using dual variables. That SF reduces to SD is
immediate. To reduce SD to SF define decision trees Ti = xi for each i ∈ [n] (querying the positive dual variable
for xi). For each clause Cj of F define decision trees T o

j as follows: for each variable xi ∈ Cj , query xi and its
dual variable xi; if these variables are not consistent, output the index of the constraint xi + x̄i = 0 which is violated.
Otherwise, if all xi and x̄i are consistent, output the index of the (polynomial encoding the) clause Cj .

S. Buss, N. Fleming, and R. Impagliazzo 65:17

polynomials has degree at most 2d. Therefore, this inductive step requires degree O(d) and size653

LN2O(d). J654

Proof of Claim 2. To prove this claim we will show that this polynomial can be written as a sum of655

indicator functions of whether each active monomial in a predecessor of ` is correctly matched. Then,656

we break this polynomial up into indicators corresponding to correct and erroneous matchings. We657

show that the correct matchings sum to 0 by a parity argument, and that the erroneous matchings can658

be derived from the axioms (using the fact that they produce a solution to the IND-LEAF instance).659

For any function f element o in the range of f , denote by [[f = o]] the indicator polynomial which660

is 1 on input x if f(x) = o and 0 otherwise. For m ∈ [N] and `′ < ` consider the polynomial661

match(`)
m,`′ :=662 ∑

m∗∈[N],
`∗∈[`]

[[
M

(`)
m,`′ = (m∗, `∗)

]] ∑
α,β∈{0,1}

[[
P(`)
`∗ = α

]][[
A

(`∗)
m∗ = β

]] ∑
m̂∈[N],

ˆ̀∈[`]

[[
M

(`)
m∗,`∗ = (m̂, ˆ̀)

]]
,663

664

which records all possible matchings for m and matchings of the node that it is matched to. That is,665

match(`)
m,`′ is the sum over all of the paths in the decision tree that results from sequentially running666

the decision trees for M (`)
m,`′ , P

(`)
`∗ , A

(`∗)
m∗ , and finally M (`)

m∗,`∗ . As match(`)
m,`′ is the sum over all of the667

paths in a decision tree, it follows that match(`)
m,`′ = 1. Using this polynomial, define668

match(`) :=
∑
`′∈[`]

P
(`)
`′

∑
m∈[N]

A(`′)
m match(`)

m,`′ ,669

which records the matching for pool `. Note that match(`) =
∑
`′∈[`]

∑
m∈[N] P

(`)
`′ A

(`′)
m as match(`)

m,`′670

is equal to 1.671

We will partition the terms of match(`) into two sets, where C is the set of terms where the copy672

of m belonging to `′ is correctly matched — that is, for all `′ ≤ ` and m ∈ [N] with P (`)
`′ = 1 and673

A
(`′)
m = 1, m is matched to a node m∗ ∈ [N] belonging to a pool `∗ ≤ ` (M (`)

`′,m = (`∗,m∗)) with674

P
(`)
`∗ = 1 and A(`∗)

m∗ = 1 which is matched back to m (M (`)
`∗,m∗ = (`′,m)) — and E the remaining675

terms corresponding to erroneous matchings. Observe that each term in C occurs an even number of676

times, as (m, `′) is matched to (m∗, `∗) iff (m∗, `∗) is matched to (m, `′). Thus, summing over the677

terms in C gives
∑
t∈C t = 0.678

Consider a term t ∈ E. This term corresponds to a node m in some pool `′ being incorrect679

matched; let s be this incorrect matching and we will denote by ts that t witnesses the incorrect680

matching s. Let T os be the decision tree for solution s and abuse notation by identifying it with the681

polynomial obtained by summing over (the product of the literals on) each of its paths. Recalling that682

the result of summing over all paths in a decision tree is 1, we have683

match(`) =
∑
t∗∈C

t∗ +
∑
ts∈E

ts = 0 +
∑
ts∈E

ts · T os .684

An incorrect matching s is a solution to IND-LEAF instance. Thus, as this instance of IND-LEAF685

solves SF , any truth assignment x which satisfies ts must also falsify the T os (x)-th clause of F . It686

follows each term of ts · T os which is not identically 0 must contain the polynomial C for some clause687

C of F , and therefore ts · T os = 0 can be derived by multiplication from the axiom C = 0. Thus, as688

each of the P (`),M (`), and A(`) variables are computed by depth-d decision trees,689 ∑
`′≤`

P
(`)
`′

∑
m∈[N]

A(`′)
m =

∑
`′∈[`]

P
(`)
`′

∑
m∈[N]

A(`′)
m match(`)

m,`′ = match(`) =
∑
ts∈E

ts · T os = 0690

ITCS 2023

65:18 TFNP Characterizations of Proof Systems and Monotone Circuits

x1x2 + x1x3

x1x2 + x1 x1x3 + x1

x3 + x1

x1x2

x1

x1

x1x3

x3

x1

x1x3

x1x2

x1

11

Figure 2 A IND-LEAF instance constructed from a Polynomial Calculus derivation. Left: a Polynomial
Calculus derivation. Right: the corresponding IND-LEAF instance. The non-zero variable of the IND-LEAF is
labelled with the variables that they query in their decision tree. The red area is represents the children of the
pool corresponding to the line x1x2 + x1x3 (i.e., P (4)

2 = P
(4)
3 = 1), while the blue area indicates the children

of the line x1x3 + x1 (P (2)
1 = x1). The black lines indicate the matchings.

has a degree-6d and size-NL2O(d) F2-PC derivation. J691

692

We now prove the converse of Theorem 7, which follows from the next lemma noting that the693

length of a F2-PC proof is always upper-bounded by the size.694

I Lemma 9. Let F be an unsatisfiable CNF formula on n variables. If there is a F2-Polynomial695

Calculus proof of F with size s, length-L, and degree-d then SF is reducible by decision trees of696

depth O(d) to an instance of IND-LEAF on O(sL) variables.697

A representation of this construction is given in Figure 2.698

Proof. LetN be the number of distinct monomials that appear in the F2-PC proof of F . We construct699

an instance of IND-LEAF over pools [L] and nodes [N]. We will abuse notation and associate each700

` ∈ [L] with the `-th line in the proof and each m ∈ [N] with its corresponding monomial.701

Fix some ` ∈ [L] and for each monomial m ∈ [N] occurring in line ` define A(`)
m to be the702

depth-d decision tree which outputs 1 iff m(x) = 1. For the remaining monomials m, set A(`)
m = 0.703

Next, we set the predecessor variables as follows. If ` was derived by addition from `′, `′′, then set704

P
(`)
`′ = P

(`)
`′′ = 1 and P (`)

`∗ = 0 for all other `∗ ∈ [L]. Otherwise, if ` was derived by multiplication705

by a variable xi from `′, then we set P (`)
`′ = xi and P (`)

`∗ = 0 for all `∗ 6= `′. Finally, if ` was an706

initial clause of F then we set P (`)
`∗ = 0 for all `∗.707

Next, we set the matching variables of each ` which does not correspond to an initial clause of F708

as follows. Observe that if ` was derived by addition from `′, `′′ then every monomial m in ` must709

occur in exactly one of `′, `′′ as otherwise it would have cancelled over F2. Thus, if `′ is the child710

of ` in which m also occurs, then we set M (`)
`′,m = (`,m) and M (`)

`,m = (`′,m), matching those two711

occurrences of the m-th node. Otherwise, if m does not appear in `, but is in one of the predecessors712

of `, say `′, then it must also appear in `′′. In this case we set M (`)
`′,m = (`′′,m) and M (`)

`′′,m = (`′,m).713

Finally if m does not occur in any of these lines, then we set M (`)
`∗,m arbitrarily for `∗ ∈ {`, `′, `′′}.714

S. Buss, N. Fleming, and R. Impagliazzo 65:19

Otherwise, if ` was derived from `′ by multiplication with some variable xi then we set the715

matching in a similar way as above. A monomial m occurs in ` if either m or m \ xi occurs in `′,716

but not both. For each m ∈ [N], if m occurs in ` then we set M (`)
`,m match it to the m or m \ xi that717

occurs in `′, and set the matching variable for this node to match it back to (`,m). Otherwise, if m718

and m \ xi occur in `′ then set M (`)
`′,m = (`′,m \ xi) and M (`)

`′,m\xi
= (`′,m). Finally, for match the719

m which do not occur in ` or `′ arbitrarily.720

Lastly, we set the matching variables of the ` ∈ L which correspond to an axiom A ∈ {C : C ∈721

F}. Each M (`)
`,m is defined by querying the variables in A (of which there are at most d by definition).722

If A is satisfied, then we fix an arbitrary matching between the monomials of A, and otherwise if A is723

falsified then we fix an arbitrary false matching (say, match each of the monomials in A in a cycle).724

Observe that violations occur only in the matchings of ` ∈ [L] which correspond to clauses of F725

that are falsified. Thus, any solution to this instance of IND-LEAF will be a solution to SF and we can726

define the output decision trees for these clauses as such. The output decision trees corresponding to727

other solutions can be set to output a fixed arbitrary solution as those solutions will never occur. J728

The Polynomial Calculus Proves its own Soundness729

Next, we state a reflection principle for the F2-Polynomial Calculus using a natural verification730

procedure.731

A Verification Procedure for F2-PC. We define the following verification procedure V PC
nH ,mH ,(d,s,L)(H,Π)732

for c = d + log s + logL. For simplicity of description we have included a length parameter L,733

however since L ≤ s, we could have used s instead and included additional variables to indicate734

which lines are actually part of the proof and which are not; this would only affect the complexity up735

to log-factors. As well, for simplicity, we will group the F2-PC rules into a single inference rule:736

l1 l2
l1x+ l2y

737

for any x, y ∈ {0, 1, x1, . . . , xn}.738

Every line ` ∈ [L] is described by a list of s degree-d monomials mon(`)
m for m ∈ [s], where739

mon(`)
m,i ∈ [nH] for i ∈ [d] specifies the i-th variable in m. The (nh + 1)-st value is understood to740

indicate the 1 polynomial. However, not every line contains all s monomials, and so we include741

a variable a(`)
m ∈ {0, 1} which indicates whether the i-th monomial is active — that is, whether it742

occurs in line `. We reserve the first mH lines ` ∈ [L] for the input clauses of H . Each line ` > mH743

has two predecessor pointers p(`)
1 , p

(`)
2 ∈ [` − 1] indicating the lines from which ` was derived (if744

any), and a pair of indices v(`)
1 , v

(`)
2 ∈ [nH + 2] indicating the variables x, y that the lines indicated745

by p(`)
1 , p

(`)
2 were multiplied by in order to obtain `; the final two values nH + 1, nH + 2 indicate746

the constants 0 and 1 respectively. Finally, to ensure that each inference is sound, for every line `747

there is a matching between the monomials of ` and those of `′ < `. We will require that each active748

monomial for ` is matched to an appropriate active monomial of its predecessors. The matching is749

given by variables match(`)
`′,m′ ∈ {0, 1, 2} × [s], where 0 indicates that m′ is matched to a monomial750

in `, 1 to a monomial in p(`)
1 and 2 means that it is matched to a monomial in p(`)

2 . For the leaves751

` ∈ [mH] we enforce that there is a matching between its active monomials match(`)
`,m′ ∈ [s].752

The constraints are as follows:753

– Initial Clauses. We enforce that the first mH lines are active, that the monomials of ` ∈ [mH] are754

exactly the monomials of the `-th clause of H , and that each active monomial is matched with755

another active monomial in `.756

ITCS 2023

65:20 TFNP Characterizations of Proof Systems and Monotone Circuits

– Root. To require that this is indeed a proof of H , we enforce that the root L of the proof has757

a
(L)
1 = 1, mon(L)

1,i = nH + 1 (i.e., is the constant 1 polynomial) for all i ∈ [d], and a(`)
m = 0 for758

all m 6= 1.759

– Inference. To express the inference rule, we will require that if line ` > mH was derived from lines760

p
(`)
1 , p

(`)
2 with variables v(`)

1 , v
(`)
2 , then the monomials of ` are exactly those in v(`)

1 p
(`)
1 + v

(`)
2 p

(`)
2761

after cancelling mod2. More concretely, that each active monomial in ` is matched to the active762

monomial in p(`)
1 or p(`)

2 from which it was derived.763

Define RefPC := Sat ∧ ProofPC where ProofPC := V PC. We show that F2-PC has efficient764

proofs of RefPC.765

I Theorem 10. PC(RefPC) ≤ polylog(n).766

Proof. By Theorem 7 it suffices to construct a reduction from SRefPC to the IND-PPA-complete767

problem IND-LEAF Fix an instance of RefPC with parameters nH ,mH , (d, s, L). We construct an768

instance of IND-LEAF with L pools and s nodes. The high-level idea of the proof is simple: we view769

RefPC as IND-LEAF, where each node for each line corresponds to a monomial which is encoded by770

d lognH bits. We then arrange the matching in the IND-LEAF instance so that two nodes m,m′ that771

are matched in RefPC are matched in IND-LEAF if they were correctly derived — if m is derived772

from m′ by multiplication by a variable x then we check that indeed m = m′x.773

First, we define the decision trees for the variables of IND-LEAF. For each ` ∈ [L] and `′ < `, we774

define its predecessor variables P (`)
`′ by querying p(`)

1 and p(`)
2 and outputting 1 if either of these is `′,775

and 0 otherwise.776

We define the activity A(`)
m of the m-th node of ` by querying whether a(`) = 1, then querying777

the d lognH bits of mon(`)
m , and then checking that αi = 1 for all i ∈ Vars(mon(`)

m) (the variables in778

monomial m). A(`)
m = 1 if all of these checks pass, and 0 otherwise.779

Finally, the matching variables M (`)
`′,m′ are defined as follows. If `′ 6= ` we query p(`)

1 and p(`)
2780

to determine if `′ is one of the children of `. If it is not then the output of M (`)
`′,m′ can be arbitrary.781

Otherwise, if `′ = ` then we can continue. We query v(`)
1 to determine the variable y that was used782

to derive monomial m′, and we query match(`)
`′,m to obtain a pair j ∈ {0, 1, 2} × [s] and m∗ ∈ [s]783

indicating to which child of ` and which monomial m∗ the monomial m is matched. As well, we784

query match(`)
p

(`)
j
,m∗

to ensure that this matching is consistent. Finally, query mon(`)
m and mon(p(`)

j
)

m∗ ,785

where p(`)
0 := `. If the variables occurring in m are not the the same as those in v(`)

1 m∗, then let786

M
(`)
`′,m be some arbitrary (ˆ̀, m̂) such that ˆ̀ 6= p

(`)
1 , p

(`)
2 . In particular, this means that a(ˆ̀) = 0 and787

this will cause a violation (solution). Otherwise, set M (`)
`′,m = (p(`)

j ,m∗).788

Next, we define the output decision trees for the solutions of this instance of IND-LEAF. Let789

(`, `′,m) be a solution, we create a decision tree mapping this solution back to a falsified clause of790

RefPC as follows. If ` is one of the initial clauses C` of H , i.e., ` ≤ mH , then we query whether791

C`(α) = 0, and if so we output the index of the falsified constraint of SAT which states that the `-th792

clause of H is satisfied under α. Otherwise, this decision tree queries the decision tree for M (`)
`′,m.793

If we discover that m is matched to a monomial m∗ with m 6= v
(`)
1 m∗, or if m is matched to a794

monomial m∗ but that monomial is not matched to m, then we output the index of the clause of795

RefPC which states that this should not happen.796

This completes the description of the reduction. Each of the decision trees involved queries at most797

polylog(n) many variables and thus by Theorem 7 it follows that there is a polylog(n)-complexity798

F2-PC proof of RefPC. J799

S. Buss, N. Fleming, and R. Impagliazzo 65:21

2.4 Characterizing Dynamic Variants of Static Systems800

We end this section by discussing how induction variants of TFNP problems can be used to generalize801

TFNPdt characterizations of static proof systems (such as Nullstellensatz and Sherali-Adams) to802

characterizations of their dynamic variants (such as the Polynomial Calculus and dag-like Sherali-803

Adams). At a high-level, this is done as follows: if a static proof system is characterized by a TFNP804

problem R then we can define an IND-R problem to characterize the dynamic version of the proof805

system as follows: there are pools 1, . . . , L which correspond to the lines of the proof, and each806

` ∈ [L] has children defined by variables P (`)
`′ which indicates whether `′ is an immediate predecessor807

of `. Thus, the pools together with their predecessors define the dag-structure of the proof. We808

then have an instance of the TFNP problem R defined over this dag. The crucial part is that the809

predecessors P (`) of ` are not fixed. As examples of this, we show how to leverage the known TFNPdt810

characterizations of the static proof systems Fq-Nullstellensatz [31], unary Nullstellensatz [25], and811

unary Sherali-Adams [25] to define TFNPdt problems which characterize their dynamic variants,812

Fq-PC, unary PC, and unary dag-like Sherali-Adams.813

Fq-Polynomial Calculus.814

First, it is straightforward to generalize the IND-PPA-complete problem IND-LEAF to characterize815

Fq-Polynomial Calculus for other q 6= 2. The IND-PPAq-complete problem IND-LEAFq will be816

defined as IND-LEAF except that one matches q-tuples rather than pairs. It is not difficult to see that817

this characterizes Fq-Polynomial Calculus. Using IND-LEAFq , one can obtain a variant of Theorem 7818

for Fq-PC by an almost identical proof.819

Unary Polynomial Calculus.820

The unary Polynomial Calculus (uPC) proof system is the Polynomial Calculus operating over the821

integers, rather than a finite field. Unary refers to the fact that the size of a uPC proof is measured822

with coefficients written in unary — if a monomial αm, for α ∈ Z, occurs in some line in the823

proof then it contributes |α| towards the size. We will use the following non-standard definition of824

the Polynomial Calculus over the integers. An unsatisfiable CNF formula F = C1 ∧ . . . ∧ Cm is825

encoded as a system of equations by mapping each Ci clause to the polynomial equation Ci such826

that Ci(x) = 1 iff Ci(x) = 0. The unary Polynomial Calculus will prove that F is unsatisfiable827

by deriving the constant −1 from the equations {Ci(x) = 0,−Ci(x) = 0 : Ci ∈ F} using the the828

addition and multiplication by a variable rules as stated for F2-PC4. As before, we operate over the829

ideal 〈x2
i = xi〉i∈[n], thus multi-linearization is done implicitly.830

Using the characterization of the unary Nullstellensatz proof system (the static version of uPC) by831

the PPAD-complete problem END-OF-LINE [25], one can define an IND-END-OF-LINE problem832

which will be complete the complete problem for a corresponding IND-PPAD class, in order to833

characterize uPC. The main difference between IND-END-OF-LINE and IND-LEAF is that the edges834

in the matchings of IND-END-OF-LINE are directed. The direction of the edges in the matching835

will be used to indicate the signs of monomials in the uPC proof as follows: If a node m ∈ [N]836

belonging to pool ` occurs are the head of an arrow (directed edge) in the matching M (`) then it is837

considered positive, while if it occurs are the tail of an arrow in M (`) then it is negative. However, if838

4 Typically, the Polynomial Calculus is defined with a multiplication rule rather than addition, where one may derive
αp + βq from previously derived polynomials p, q and α, β ∈ Z. However, as we are measuring coefficients in
unary, multiplication by positive coefficients may be simulated by repeated addition. To simulate the use of negative
coefficients, we push the negations to the leaves of the proof and include both Ci = 0 and −Ci = 0 as axioms.

ITCS 2023

65:22 TFNP Characterizations of Proof Systems and Monotone Circuits

m belongs to a pool ` then if it occurs at the head of an arrow in M (`∗) for `∗ > ` then it is considered839

negative and if it as the tail then it is positive. This change in meaning depending on whether this is840

the matching for the pool ` to which it belongs versus a parent pool should be thought of as the sign841

of monomials propagating from the children ` to the parent `∗ in the matching M (`∗).842

2.4.0.1 Induction PPAD.843

The IND-PPAD complete problem IND-END-OF-LINE is defined as follows:844

– Structure. [L] pools and [N] nodes. Each ` ∈ [L] will correspond to a line in the polynomial845

calculus proof and be associated with its own copy of [N].846

– Variables. For each ` ∈ [L] and `′ < ` we will have a predecessor variable P (`)
`′ ∈ {0, 1}847

indicating whether `′ is a predecessor of `. For each pool ` ∈ [L] and each node m ∈ [N]848

we have a variable A(`)
m ∈ {0, 1} indicating whether node m is active in pool `. There is a849

distinguished node 1 ∈ [N] and we hardcode that A(`)
1 = 1 and A(`)

m = 0 for all m 6= 1.850

Finally, we have a directed matching between the nodes in pools `′ ≤ `, defined by variables851

M
(`)
`′,m ∈ {−,+} × [L]× [M] indicating to which node and pool `′’s copy of m is matched in a852

directed fashion, and whether it appears at the head (+) or tail (-) of the arrow.853

– Solutions. IND-PPAD will state the following: (i) For each pool ` with no predecessors, M (`)
854

enforces that there is a matching between the nodes of pool `. (ii) if `′ < ` is a predecessor of pool855

` then either every active node of m of ` occurs at the opposite end of an arrow in the matching856

M (`) for ` than in matching for M (`′) (e.g., m occurs at the tail of an edge in M (`) and the head857

of an edge in M (`′)), or every active node m of ` occurs at the same end of an arrow in M (`) as in858

M (`′). (iii) The root pool L contains only a distinguished 1-node. Observe that (i) – (iii) cannot859

hold simultaneously, and thus IND-PPAD is total. Formally, the solution of IND-PPAD are as860

follows:861

Matching Solutions. A triple (`, `′,m) ∈ [L]2 × [N] such that `′ is either a predecessor of `862

or ` itself, m is an active node of `′ and m is matched to a node m′′ of some pool `′′ but m′′863

is not matched back to m. That is, P (`)
`′ = 1 or ` = `′, A(`′)

m = 1, M (`)
`′,m = (α, `′′,m′′) for864

some `′′ ∈ [L],m′′ ∈ [N], α ∈ {−,+}, but either A(`′′)
m′′ = 0 or M (`)

`′′,m′′ 6= (β, `′,m), where865

β is the opposite sign of α (i.e., m is the head of an arrow to m′′, but m′′ is not the tail).866

Polarity Solutions. A tuple (`, `′,m) ∈ [L]2 × [N]2 which violates (ii). That is, A(`′)
m = 1,867

P
(`)
`′ = 1, M (`′)

`′,m = (α, ∗, ∗) and M (`)
`′,m = (α, ∗, ∗).868

A portion of an instance of IND-END-OF-LINE is depicted in Figure 3.869

S. Buss, N. Fleming, and R. Impagliazzo 65:23

1

3

5

1
2

2

5 3

1 is a negative node in pool 4 3 is a positive node in pool 4

Pool 2’s positive node 2 cancels with Pool 3’s negative node 2

Pool 3

Pool 2 Pool 1

Figure 3 Part of an IND-END-OF-LINE instance. The yellow circles indicate the active nodes of each pool;
for example A(4)

1 = A
(4)
3 = A

(4)
5 = 1 and A(4)

m = 0 for all other m. The pink area indicates the predecessors of
pool 4; P (4)

1 = P
(4)
2 = 1. The solid arrows indicate the matching M (4) for pool 4, while the dashed arrows

indicate that matchings for pools 1 and 2. For example M (4)
4,1 = (+, 2, 1) and M (4)

2,1 = (−, 4, 1). Positive nodes
are nodes which correspond to positive monomials in the uPC proof, while negative nodes correspond to negative
monomials.

I Theorem 11. For any unsatisfiable CNF formula F ,870

– If there is a depth-d reduction from SF to an instance of IND-END-OF-LINE on s variables then871

there is a degree-O(d) and size-s32O(d) uPC proof of F .872

– If F has a size-s and degree-d uPC proof of F then there is a depth-O(d) reduction from SF to873

an instance of IND-END-OF-LINE on O(s2)-many variables.874

In particular, IND-END -OF-LINEdt(SF) = Θ(uPC(F)).875

A proof of this theorem is given in the Appendix.876

Unary DAG-Like Sherali-Adams.877

The unary dag-like Sherali-Adams proof system is a generalization of the uPC proof system and the878

Sherali-Adams proof system (see e.g., [18] for a definition), which allows one to introduce additional879

conical juntas at each step in the proof. A conical junta is a polynomial of the form J =
∑
λiDi880

where λi ≥ 0 and Di is of the form
∏
i∈S xi

∏
j∈T (1− xj) for some S, T ⊆ [n]. Formally, unary881

dag-like Sherali-Adams (uDSA) proves that an unsatisfiable CNF formula F is unsatisfiable by882

deriving the contradiction −1 ≥ 0 from the equations {Ci(x) = 0,−Ci(x) = 0 : Ci ∈ F} using the883

addition and multiplication by a variable rules from uPC along with the following addition rule:884

– Junta Rule. From a previously derived polynomial p ≥ 0, derive p+ J ≥ 0 for ay conical junta885

J .886

ITCS 2023

65:24 TFNP Characterizations of Proof Systems and Monotone Circuits

As before, we work over the ideal 〈x2
i = xi〉i∈[n], multi-linearizing implicitly. We measure the degree887

of a uDSA proof by the maximum degree of any polynomial derived, and the size as the sum of the888

sizes of the polynomials derived, where coefficients are written in unary.889

Using the characterization of unary Sherali-Adams by the PPADS complete problem SINK-OF-890

LINE, we can define a TFNP subclass IND-PPADS whose complete problem IND-SINK-OF-LINE891

will characterize uDSA. IND-SINK-OF-LINE restricts the solutions of IND-END-OF-LINE to permit892

nodes occurring at the head of arrows to be incorrectly matched. This corresponds to allowing one to893

introduce positive monomials (and thus conical juntas) free-of-charge in the uDSA proof. Formally,894

we replace the matching solutions with the following:895

– Matching Solutions*. A triple (`, `′,m) ∈ [L]2 × [N] such that m is an active node of `′ and896

either (a) `′ is a predecessor of ` and m is matched to some node m′′ of some pool `′′ but m′′ is897

not matched back to m, or (b) `′ = ` and m occurs at the tail of an arrow in the matching for `898

and m is matched to a node which is not matched back to it. That is, A(`′)
m = 1 and either899

(a) P (`)
`′ = 1 and M (`)

`′,m = (α, `′′,m′′), but either A(`′′)
m′′ = 0 or M (`)

`′′,m′′ 6= (β, `′,m), where β is900

the opposite sign of α, or901

(b) ` = `′ and M (`)
`,m = (−,m′′, `′′) for some m′′ ∈ [N], `′′ < ` and M (`)

`′′,m′′ 6= (+, `′,m) or902

P
(`)
`′′ = 0.903

We also add the following solution5, which requires that the node in the final line occurs at the904

tail of an arrow (is negative) in M (L).905

– Final Pool Solution. A pair (L, 1) such that M (L)
L,1 = (+, `′,m) for some `′ ≤ ` and m ∈ [N].906

One can obtain a characterization theorem of uDSA by IND-SINK-OF-LINE (analogous to The-907

orem 11) by combining by combining the proof of Theorem 11 with the proof of the characterization908

of uSA by SINK-OF-LINE from [25].909

3 Communication TFNP and Monotone Circuit Complexity910

In addition to proof system characterizations of black-box TFNP problems, the communication911

versions of TFNP problems have provided characterizations of monotone circuit models [26, 32, 45].912

When combined with lifting techniques translating decision tree lower bounds to communication913

complexity lower bounds, this has resulted in numerous new lower bounds for a variety of monotone914

circuit models. For example, bounds on the F2-Nullstellensatz proof system, which is characterized by915

black-box PPA were lifted to communication-PPA lower bounds, which characterizes F2-monotone916

span programs [40]. Converseley, as described in the introduction, a black-box and communication917

characterization of the same TFNP subclass generically gives rise to a monotone interpolation918

theorem, translating small proofs in the associated proof system into efficient computations in the919

associated model of computation.920

In this section, we give generic conditions under which a monotone circuit model has a communication-921

TFNP characterization. We will formalize monotone circuit models as complexity measures on partial922

monotone functions. As has been pointed out in the past, there is a direct mapping from TFNP923

problems to partial monotone functions, and we utilize this mapping. This will allow us to give an924

exact characterization of when a complexity measure on partial functions has a TFNP characteriza-925

tion, proving Theorem 3. Since complexity measures on total functions induce complexity measures926

5 Note that we could have added this final pool solution to our definition of IND-END-OF-LINE without changing
its complexity. Indeed, this solution just enforced that the final line is −1 in the uPC proof, which can be assumed
without loss of generality, and thus IND-END-OF-LINE with the final pool solution reduces to IND-END-OF-LINE.

S. Buss, N. Fleming, and R. Impagliazzo 65:25

on partial functions, this also gives a general condition under which a complexity measure on total927

monotone functions has a TFNP characterization. Unfortunately, we don’t have a converse statement928

for total functions and it is conceivable that measures that don’t meet our criteria also have TFNP929

characterizations.930

It would be plausible to propose that some of the results in this section might have analogs for931

non-monotone models of computation. However, the techniques we use seem not to hold for these932

models, which might indicate why TFNP or other communication complexity characterizations of933

non-monotone circuits are much more difficult to use to prove lower bounds.934

3.1 Communication TFNP935

For n bit strings x and x′, we say that x′ dominates x, written x ≤ x′, if xi ≤ x′i for every i ∈ [n]. A936

partial Boolean function f on n bit strings is described by two disjoint sets of inputs, Nof which is937

the set of strings that f rejects, and Yesf , the strings that it accepts. f is total if Nof ∪Yesf = {0, 1}n.938

A partial Boolean function f is monotone if whenever x ∈ Nof and x′ ≤ x, then x′ ∈ Nof and939

whenever y ∈ Yesf and y ≤ y′ then y′ ∈ Yesf . For partial functions f and g, we say f is solved by g940

if Nof ⊆ Nog and Yesf ⊆ Yesg . That is, g contains f as a sub-function.941

Let h : {0, 1}n → {0, 1}n′ , and let f be a partial function on n′-bit inputs. Then f ◦ h is the942

partial function where Yesf◦h = {x|h(x) ∈ Yesf} and Nof◦h = {x|h(x) ∈ Nof}. If h is monotone943

in its input, and f is monotone, then f ◦ h is monotone.944

3.1.0.1 Monotone Partial Function Complexity Measures.945

A monotone partial function complexity measure mpc is a map from partial monotone functions to946

non-negative integers that is Monotone Under Solutions: whenever g solves f , mpc(g) ≥ mpc(f).6947

Typical such measures are the minimum circuit size in a monotone model of a total function that948

solves f , but we won’t include a circuit model explicitly.949

950

We are now ready to define what a communication-TFNP characterization of a measure means.951

For a partial Boolean function f on n inputs, the Karchmer-Wigderson game for f , denoted KWf , is952

the communication problem where one player has x ∈ Nof the other has y ∈ Yesf and the output is953

a position i so that xi 6= yi. Similarly, for a monotone Boolean function f on n inputs, the monotone954

Karchmer-Wigderson game for f , denoted mKWf , is a restriction of the Karchmer-Wigderson game955

to require that the output is a position i such that xi < yi. Karchmer and Wigderson [32] showed that956

communication complexity of KWf (mKWf) is an exact characterization of the (monotone) circuit957

depth needed to compute f , or equivalently communication-FP.958

3.1.0.2 Communication TFNP.959

Consider relational communication problems defined by a predicate R ⊆ X × Y × [`]. The960

corresponding communication problem has one player given x ∈ X , the other y ∈ Y , and the goal961

being to output an index i so that R(x, y, i) holds. We say this problem is in t-bit communication-962

TFNP if for every x ∈ X , y ∈ Y , for some i, R(x, y, i); and given i, there is a t-bit communication963

protocol V (x, y, i) to determine whether R(x, y, i) holds. We say that R ∈ TFNPcc if R is in964

polylog(n)-bit communication TFNP.965

We say that one communication problem R ⊆ X × Y × [`] mapping reduces to another R′ ⊆966

X ′ × Y ′ × [`′] with communication t if there are functions MX : X → X ′ , MY : Y → Y ′ and a967

6 Recall that a partial function g solves f if Nof ⊆ Nog and Yesf ⊆ Yesg .

ITCS 2023

65:26 TFNP Characterizations of Proof Systems and Monotone Circuits

t-bit communication protocol S(x, y, i′) which outputs i so that968

R′(MX(x),MY (y), i′) =⇒ R(x, y, S(x, y, i′)).969

In particular this means that R requires at most t more bits of communication than R′ to solve. We970

say that two communication problems R,R′ are equivalent under t-bit mapping reductions if they971

t-bit mapping reduce to each other.972

The following lemma says that TFNPcc is exactly the study of the monotone Karchmer-Wigderson973

search problem.974

I Lemma 12. For any search problem R ⊆ X × Y × [`] in t-bit communication TFNP, there is a975

partial function F , on 2t` many variables, such that R is equivalent to mKWF under t-bit mapping976

reductions.977

Proof. Let S(x, y, j) be a t-bit protocol that verifies that j ∈ [`] is a valid solution on input (x, y).978

We define a partial function F on N = 2t` input bits. We think of each coordinate as representing979

a solution j ∈ [`] and a communication pattern for S(x, y, j). We then construct the accepting and980

rejecting sets for F ; for each x ∈ X we construct an input α(x) ∈ {0, 1}N in NoF as follows: for981

each j ∈ [`] and t-bit communication pattern p ∈ {0, 1}t we set982

α
(x)
(j,p) =

{
1 if there is a y ∈ Y such that S(x, y, j) evolves according to p and S(x, y, j) = 1,

0 otherwise.
983

To construct YesF we build an input β(y) ∈ {0, 1}N in the same way, except we reverse 0 and 1:984

β
(y)
(j,p) =

{
0 if there is a x ∈ X such that S(x, y, j) evolves according to p and S(x, y, j) = 1,

1 otherwise.
985

We claim that mKWF is equivalent to R, using this construction as the map. Let j be a solution986

to R on input (x, y). We simulate S(x, y, j) and output j together with the communication pattern987

p for the simulation. This gives an index (j, p) such that α(x)
(j,p) = 1 > 0 = β

(y)
(j,p), which is a988

solution to mKWF on input (α(x), β(y)). In the reverse direction, if we are given a bit (j, p) such that989

α(x) > β(y), then we know that S(x, y, j) accepts, and we can return j. J990

Thus, we can restrict attention to instances of the monotone Karchmer-Wigderson search problem.991

Analogous to black-box TFNP, we measure the complexity of reducing one search problem to another992

as the amount of communication needed together with the logarithm of the number of bits of the993

resulting input (up to a constant). Formally, let Rn ⊆ Xn × Yn × [`n] be a sequence of TFNPcc-994

problems where Xn, Yn ⊆ {0, 1}poly(n) and `n = poly(n). Define the complexity measure Rcc on995

monotone partial Boolean functions f as996

Rcc(mKWf) := min logn+ t,997

over the set of n, t so that mKWf mapping reduces to Rn with t-bits of communication. We say that998

a family of TFNPcc problems R characterizes a mpc if Rcc(mKWf) = logΘ(1) mpc(f) for every999

monotone function f .1000

We will also need the following notion which will essentially allow us to pad a search problem.1001

Say that the sequence Rn is paddable if there is a quasi-polynomial function p and a function1002

t(n) = polylog(n) so that Rn is t(n′)-communication reducible to Rn′ for all n′ ≥ p(n). The1003

condition that the sequence Rn be paddable looks a bit artificial at first. However, if we drop it, we1004

would allow totally unrelated TFNP subclasses to be used in a characterization, e.g., a class that is1005

S. Buss, N. Fleming, and R. Impagliazzo 65:27

essentially PPA for infinitely many sizes and suddenly switches to the pigeon-hole principle, and1006

back again. Or have all of TFNP by slowly introducing TFNP problems into the sequence in a1007

non-computable way. So we think natural subclasses of TFNP with complete problems will have the1008

paddable property.1009

In the remainder of this section we will prove Theorem 3. We will first give conditions for a1010

TFNPcc characterization which involve a stronger notion of a universal family of functions, which1011

we will call complete families (Theorem 13). Using this, we then weaken the requirement of having a1012

complete family to admitting a universal family (Theorem 17), which gives Theorem 3. In between,1013

we explore sufficient conditions for TFNPcc-characterizations of total functions.1014

3.2 Complete Problems give TFNP Characterizations1015

Our first characterization of mpc measures with TFNPcc connections involves three properties:1016

i) Closed Under Reductions. Say that an mpc is closed under reductions if for any h : {0, 1}n →1017

{0, 1}n′ that is computable by monotone Boolean circuits of depth d, and any partial monotone1018

function f on n′ bit inputs, mpc(f ◦ h) ≤ poly(n, n′,mpc(f), 2d).1019

ii) Admits a Complete Family. A complete family for an mpc is a family Fm of partial functions1020

on N(m) ≤ quasipoly(m) bit inputs such that for every partial monotone function f with1021

mpc(f) ≤ m, there is a polylog(m)-depth monotone circuit computing a function h so that1022

Fm ◦ h solves f , and mpc(Fm) ≤ quasipoly(m).71023

We are now ready to prove the main theorem of our section which describes when mpc measures1024

have TFNPcc characterizations.1025

I Theorem 13. Let mpc be a complexity measure. Then there is a paddable sequence of TFNP1026

communication problems Rn which characterizes mpc iff (i) and (ii) hold. Moreover, the sequence1027

Rn can be made explicit (i.e., computably described) iff the sequence of complete functions for f can1028

be made explicit.1029

To prove this, we will use the following lemma which says that reductions between monotone1030

Karchmer Wigderson games and monotone reductions between functions are identical. Note that1031

while this is intuitive and has a simple proof, the proof does not seem to extend to non-monotone1032

complexity. This might be an important distinction between monotone and non-monotone circuit1033

complexity.1034

I Lemma 14. Let f and g be monotone partial Boolean functions. Then mKWf has a communication-1035

t mapping reduction to mKWg iff there is a function h computable by a depth-t monotone circuit so1036

that g ◦ h solves f .1037

Proof. As before, let Yesf ,Nof and Yesg,Nog be the set of accepting and rejecting inputs of f and1038

g respectively.1039

For the if direction, suppose that there is a function h computable by depth-t monotone circuits1040

such that g ◦ h solves f . From this, we define a reduction from mKWf to mKWg as follows: first, we1041

let h be bothMX andMY ; it remains to define S. Since g◦h solves f , for every (x, y) ∈ Nof×Yesf ,1042

we have (h(x), h(y)) ∈ Nog × Yesg. Thus, (h(x), h(y)) is a valid input to mKWg. A solution to1043

7 Note that in the definition of admitting a complete family are insisting that f reduce to Fm for an m only dependent
on its complexity, not its input size. Most natural notions of circuit complexity have circuit size be always at least the
number of bits the function actually depends on, and the reduction can ignore the irrelevant bits, so this should not
usually be a problem.

ITCS 2023

65:28 TFNP Characterizations of Proof Systems and Monotone Circuits

mKWg on this input is a bit position i such that h(x)i < h(y)i. Let hi be the partial function,1044

defined on inputs in Nof ∪ Yesf , which outputs the i-th bit of h. Since h is computable by depth-t1045

monotone circuits, so is hi. Thus, by the Karchmer-Wigderson transformation [32], there is a t-bit1046

communication protocol Si(x, y) for mKWhi . Following this protocol on any input (x, y) for which1047

h(x)i < h(y)i will output a position j such that xj < yj , which is a solution to mKWf . Thus, we1048

can define S as follows: on input (x, y, i) it runs Si(x, y) and outputs the answer.1049

Conversely, suppose that we have a t-bit communication reduction MX ,MY , S(x, y, i) from1050

mKWf to mKWg . From the protocol S, which maps solutions i to mKWg on input MX(x),MY (y)1051

back to solutions S(x, y, i) to mKWf on input (x, y), we construct a function h computable with1052

depth-t monotone circuits such that g ◦ h solves f . For each i, consider the monotone partial function1053

Hi whose no-inputs are the x for which there is an x ≤ x′ with x′ ∈ Nof and MX(x′)i = 0, and1054

whose yes-inputs are those y for which there is y ≤ y′ with y′ ∈ Yesf and MX(y′)i = 1; we call1055

such an input pair a dominating and dominated pair for Hi.1056

By the definition of reduction, whenever x′ ∈ Nof ,MX(x′)i = 0, y′ ∈ Yesf and MY (y′)i = 1,1057

the communication protocol S(x′, y′, i) returns a position j with x′j < y′j . Given any input pair1058

(x, y) to mKWf where there is a dominating and dominated pair (x′, y′) for Hi as above, the parties1059

can, without communication, find x′ and y′ respectively and then run the protocol S(x′, y′, i) to1060

obtain the index j. By definition, xj ≤ x′j < y′j ≤ yj , so this modified protocol solves the1061

mKWHi
game. Therefore, by the Karchmer-Wigderson transformation [32], there is a depth-t1062

monotone circuit computing a function hi that rejects all x ∈ Nof with MX(x)i = 0 and accepts1063

all y ∈ Yf with MY (y)i = 1; it follows that hi(x) ≤ MX(x)i for all x ∈ Nof , and if y ∈ Yesf1064

then MY (y)i ≤ hi(y). Letting h = (h1, . . . , hn), where n is the number of input bits to f , we have1065

that for each x ∈ Nof , h(x) ≤ MX(x) ∈ Nog, so by monotonicity of g, h(x) ∈ Nog. Similarly, if1066

y ∈ Yesf , MX(y) ≤ h(y) and h(y) ∈ Yesg. Thus, g ◦ h solves f and g is computable by depth-t1067

monotone circuits. J1068

We will now use the lemma to prove the theorem.1069

Proof of Theorem 13. Let mpc be a complexity measure with properties (i) and (ii) and let Fm1070

be the complete family of partial monotone functions guaranteed by (ii). Let Rm := mKWFm
be1071

the monotone Karchmer-Wigderson game for Fm. Observe that as Fm is complete, it reduces to1072

Fm′ for all m′ ≥ mpc(Fm) = quasipoly(m) via depth-polylog(m′) reductions. Thus by Lemma 14,1073

Rn = mKWFm reduces to Rm′ = mKWFm′ with communication-polylog(m′) for all such m′, and1074

so R is paddable.1075

We claim Rcc(mKWf) = logΘ(1) mpc(f) for every monotone partial function f . Letting m =1076

mpc(f), f reduces to Fm with a polylog(m)-depth monotone circuit, as Fm is complete. Then1077

by Lemma 14, mKWf reduces to mKWFm
with polylog(m) bits of communication. It follows1078

by definition that Rcc(mKWf) ≤ polylog(m) = polylog(mpc(f)). In the other direction, let1079

Rcc(mKWf) = M . Then there are n, t with t + logn = M so that mKWf is t-communication1080

reducible to mKWFn . By Lemma 14, it follows that Fn ◦ h solves f for some depth-t circuit h. Then1081

by monotonicity under solutions, and closure under reductions,1082

mpc(f) ≤ mpc(Fn ◦ h) ≤ poly(mpc(Fn), 2t) = poly(n, 2t) = 2O(M).1083

Next we prove the converse direction of the theorem. Let Rn be any paddable sequence of1084

communication TFNP problems and define a monotone partial function complexity measure mpc as1085

mpc(f) := 2R
cc(mKWf)

1086

for every monotone partial function f . By construction, mpc is monotone under solutions. We will1087

show that mpc has the properties (i) and (ii). First, assume g ◦ h solves f and h is computable by1088

S. Buss, N. Fleming, and R. Impagliazzo 65:29

depth-t monotone circuits. Then by Lemma 14, mKWf has a t-bit reduction to mKWg. As well,1089

mKWg has a t′ bit reduction to Rn where t′ + logn = Rcc(mKWg). Stringing these together, f1090

has a t + t′ bit reduction to Rn, and so Rcc(mKWf) ≤ t + t′ + logn = t + Rcc(mKWg), and1091

mpc(f) ≤ 2tmpc(g). Therefore, mpc is closed under reductions.1092

Finally, we give a complete family for mpc. Let FN be the sequence of partial monotone functions1093

given by Lemma 12 such that RN is equivalent to mKWFN
. Note that by definition FN has at most1094

N2t many input bits where t = polylog(N) is the number of bits that need to be communicated in1095

order to verify solutions to RN , and also that mpc(FN) = 2Rcc(mKWFN
) ≤ 2t = quasipoly(N).1096

We will show that for eachm, there is anN ′ = quasipoly(m) so that every partial function f with1097

mpc(f) ≤ m reduces to FN ′ via a polylog(m)-depth reduction. Fix some f with mpc(f) ≤ m and1098

let M = log mpc(f) = Rcc(mKWf). Then mKWf reduces to some Rn in t bits of communication,1099

where t + logn = M ; in particular, t is at most M and logn ≤ M . Then by paddability, we can1100

reduce this to some RN ′ where N ′ = quasipoly(n) ≤ quasipoly(M) is a fixed function of m, and1101

the further communication is at most polylog(M). Then by Lemma 14, f has a polylog(M)-depth1102

circuit reduction to FN ′ as desired. Thus, mpc is closed under reductions and admits a complete1103

family. J1104

A Partial Characterization for Complexity Measures on Total Functions1105

Analogous to measures on partial functions, let a monotone (total function) complexity measure mc1106

map total monotone functions to non-negative integers. From any mc we can extract a monotone1107

complexity measure mpc on partial functions by1108

mpc(F) := min{mc(f) : total f solving F}.1109

Observe that mpc will always satisfy monotonicity under solutions because if g solves f , the set of1110

total functions that solve g is a subset of those that solve f , so the min for g will be at least that for f .1111

Generalizing the definition for partial functions, say that a monotone complexity measure mc1112

has a complete family if there is a family of total monotone functions Fm such that for every total1113

monotone function f on n bit inputs with mc(f) ≤ m, there is a logm-depth monotone circuit1114

computing a function h so that Fm ◦ h solves f , and mc(Fm) ≤ poly(m).1115

We will prove the following lemma, whose corollary gives sufficient conditions for a monotone1116

complexity measure to give rise to a corresponding TFNPcc problem.1117

I Lemma 15. mpc is closed under reductions and has a complete (partial function) family if and1118

only if mc is closed under reductions and has a complete total function family.1119

An immediate consequence is the following.1120

I Corollary 16. If a monotone complexity measure mc is closed under reductions and has a1121

complete family, then it has a TFNPcc characterization by a sequence of paddable relations. If not,1122

mc has no such characterization.1123

This still leaves open the possibility that there is a characterization of the complexity measure that1124

does not extend to partial functions for some complexity measures without complete problems.1125

Proof of Lemma 15. To prove the lemma, we will first assume mc is closed under reductions, e.g.,1126

mc(f ◦ h) ≤ poly(mc(f), 2d) when h is computable in depth d. Let F be a partial function, and let1127

f be a total function of minimal complexity solving F . Then f ◦ h solves F ◦ h, so mpc(F ◦ h) ≤1128

mc(f ◦ h) ≤ poly(mc(f), 2d) = poly(mpc(F), 2d). Conversely, since mpc(f) = mc(f) for total1129

functions, it follows immediately that if mpc is closed under reductions, then so is mc.1130

ITCS 2023

65:30 TFNP Characterizations of Proof Systems and Monotone Circuits

If Fm is a family of complete partial functions for mpc, let fm be the corresponding minimal1131

complexity total functions solving Fm. Note that mc(fm) = mpc(Fm) = quasipoly(m). Let g1132

be any total function and let m = mpc(g) = mc(g). Then there is a function h computable by1133

polylogm-depth monotone circuits such that Fm ◦ h solves h. Furthermore, fm ◦ h solves Fm ◦ h,1134

and so fm ◦ h solves g. However, the only way for one total function to solve another is if they are1135

equal, so fm ◦ h = g. It follows that fm is also complete and, by assumption, is total.1136

Conversely, if fm is complete for mc, then let G be any partial function, let g be a minimal1137

complexity total function solving G, and let m = mpc(G) = mc(g). Then g = fm ◦ h for some1138

function h computable by polylogm-depth circuits, and so solves G. Thus, fm is also complete for1139

mpc. J1140

3.3 Universal Functions vs. Complete Functions1141

We can simplify the condition that there be complete functions in the class to having universal families1142

of functions, replacing (ii) in Theorem 17 by the following:1143

ii†) Admits a Universal Family. Let Fm be a sequence of partial monotone functions, and let mpc be a1144

complexity measure on such functions. We say Fm is universal for mpc if whenever mpc(g) ≤ m1145

, there is a fixed string zg so that F (x ◦ zg) solves g(x). Observe that such an Fm can be viewed1146

as complete under depth 0 reductions.1147

I Theorem 17. Let mpc be a monotone partial function complexity measure satisfying (i) and (ii).1148

Then mpc admits a universal family if and only if it admits a complete family.1149

Using Lemma 15, we can derive an analogous statement to Corollary 16 for total functions as well.1150

Next, we state Theorem 3 formally, which follows immediately from Theorem 17 and Theorem 13.1151

I Theorem 3. Let mpc be a complexity measure. Then there is a paddable sequence of TFNP1152

communication problems Rn which characterizes mpc iff (i) and (ii†) hold. Moreover, the sequence1153

Rn can be made explicit (i.e., computably described) iff the sequence of complete functions for f can1154

be made explicit.1155

Proof of Theorem 17. If there is a universal family Fm for mpc then we can let Gm = Fm since1156

as mentioned above, Fm is complete under depth 0 reductions.1157

Conversely, say that a monotone partial complexity measure mpc admits a complete family under1158

d(m)-depth reductions if there exists a family Gm of functions such that mpc(Gm) ≤ 2d(m) and1159

for every partial monotone function f with mpc(f) ≤ m, there is a depth-d(m) monotone circuit1160

computing a function h so that Gm ◦ h solves f . Suppose that Gm(x) is complete under depth d(m)1161

reductions, where the input size |x| = M ≤ poly(m). We want to construct a partial function Fm1162

which can code any composition g(x) = Gm(h(x)) for any g with mpc(g) ≤ m and for any h1163

computable by monotone circuits of depth at most d(m). We will actually end up coding a more1164

powerful set of reductions, because we cannot code exactly this family and be monotone. Observe1165

that h has at most m input bits, M output bits, and at most 2d(m) gates total. Thus, we can embed h1166

into a depth-2d(m) alternating unbounded fan-in ∧-∨ circuit with m inputs, M outputs, and 2d(m)M1167

gates at each intermediate level. We can represent the connectivity of the embedding by having one1168

bit for each pair of gates, including inputs and outputs, saying whether the earlier gate is an input to1169

the later one.1170

So, we let Fm be a partial monotone function with m+ (m+ (2d(m)− 2)M2d(m) +M)2 inputs.1171

The first m inputs to Fm code the input x to g, and the other bits, denoted Bi,j , code the connectivity1172

relation for the circuit computing h. The gates at even levels will be ∨-gates, and those at odd levels1173

∧-gates. Because we need the circuit evaluation problem to be monotone, we cannot enforce that1174

S. Buss, N. Fleming, and R. Impagliazzo 65:31

each gate has exactly two incoming wires, so we allow the gates to be arbitrary fan-in instead. If j is1175

a gate on an even levels, for each earlier gate i including input positions, we let Bi,j be 1 if i is an1176

input to j and 0 otherwise. For odd levels, we reverse the roles of 0 and 1.1177

To compute Fm, we work our way up the circuit computing a bit Hi for each gate i. For i in the1178

first level,Hi is the i-th input bit (the i-th bit of x. For other levels, we use the ruleHj =
∨

(Hi∧Bi,j)1179

at even levels, and Hj =
∧

(Hi ∨Bi,j) at odd levels, where the scope of i is all gates at earlier levels.1180

After computing the values Hj for the gates at the top level, we apply Gm to the result.1181

By construction, Fm reduces to Gm via a depth 4d(m) monotone circuit with fan-in M2d(m) ∧’s1182

and ∨’s, which can also be computed by a depth 4d(m)(d(m) + logM) depth fan-in two monotone1183

circuit. Thus, by composition with reductions, mpc(Fm) is quasi-polynomial in m. Also, for any g1184

with mpc(g) ≤ m, g can be solved by F ◦ h where h can be computed by monotone depth-d circuits.1185

The input zg includes the values Bi,j according to the connectivity for h; unused bits in zg can be set1186

to 0. By construction, Fm(x ◦ zg) = Gm(h(x)) which solves g. J1187

4 Future Directions1188

The TFNP connection, mapping proof systems to circuit lower bounds via lifting, has been extremely1189

successful. Our results show that this TFNP connection is generic , and characterize the conditions1190

under which it can be made. However, there are many gaps left in making these lower bounds1191

systematic rather than ad hoc, and extending them to new models of computation and proof systems.1192

In particular,1193

1. We have a generic relationship between proof systems and decision tree TFNP problems, and a1194

generic relationship between monotone circuit complexity problems and circuit lower bounds. Can1195

we complete the chain by proving a generic lifting theorem, and show that for each TFNP problem,1196

lower bounds for the corresponding proof systems and complexity measures are equivalent?1197

2. Our characterization of proof systems that correspond to TFNP problems involves proving their1198

own soundness. Can we use this to show a version of Gödel’s second incompleteness theorem,1199

that some proof systems cannot prove their own soundness because they do not have a tight TFNP1200

connection?1201

3. TFNP has a direct connection to monotone complexity via the monotone KW games. Can we1202

similarly characterize the class of communication problems corresponding to non-monotone KW1203

games?1204

4. We showed that reductions between the monotone KW games were equivalent to small depth1205

monotone reductions between the corresponding functions. Does this extend to non-monotone1206

games and non-monotone reductions? If not, can we give an example of functions with reductions1207

between the KW games and no reductions between the corresponding functions? (Since this is1208

interesting even for sub-logarithmic bit reductions, this could possibly be shown unconditionally1209

without proving new formula lower bounds.)1210

References1211

1 Albert Atserias and Moritz Müller. Automating resolution is NP-hard. Journal of the Association for1212

Computing Machinery, 67(5):31:1–31:17, 2020.1213

2 Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space trade-offs in resolution: Superpolynomial1214

lower bounds for superlinear space. SIAM J. Comput., 45(4):1612–1645, 2016. doi:10.1137/1215

130914085.1216

3 Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The relative1217

complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3–19, 1998. doi:10.1006/jcss.1218

1998.1575.1219

ITCS 2023

https://doi.org/10.1137/130914085
https://doi.org/10.1137/130914085
https://doi.org/10.1137/130914085
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1006/jcss.1998.1575

65:32 TFNP Characterizations of Proof Systems and Monotone Circuits

4 Arnold Beckmann and Sam Buss. The NP search problems of frege and extended frege proofs. ACM1220

Trans. Comput. Log., 18(2):11:1–11:19, 2017. doi:10.1145/3060145.1221

5 Arnold Beckmann and Samuel R. Buss. The NP search problems of Frege and extended Frege proofs.1222

ACM Transactions on Computational Logic, 18(2):Article 11, 2017.1223

6 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs with small1224

coefficients. J. Symb. Log., 62(3):708–728, 1997. doi:10.2307/2275569.1225

7 Josh Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and propositional1226

proof systems. In 19th Annual IEEE Conference on Computational Complexity (CCC 2004), 21-24 June1227

2004, Amherst, MA, USA, pages 54–67. IEEE Computer Society, 2004. doi:10.1109/CCC.2004.1228

1313795.1229

8 Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the 19-th1230

Annual ACM Symposium on Theory of Computing, pages 123–131, May 1987.1231

9 Samuel R. Buss, Leszek Aleksander Kolodziejczyk, and Neil Thapen. Fragments of approximate counting.1232

J. Symb. Log., 79(2):496–525, 2014. doi:10.1017/jsl.2013.37.1233

10 Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint satisfaction1234

requires large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016. doi:10.1145/2811255.1235

11 Stephen A. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings of the1236

Seventh Annual ACM Symposium on Theory of Computing, pages 83–97. Association for Computing1237

Machinery, 1975.1238

12 Susanna F. de Rezende, Mika Göös, and Robert Robere. Guest column: Proofs, circuits, and communica-1239

tion. SIGACT News, 53(1):59–82, 2022. doi:10.1145/3532737.3532746.1240

13 Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry Sokolov. The power of negative1241

reasoning. In Valentine Kabanets, editor, 36th Computational Complexity Conference, CCC 2021, July1242

20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of LIPIcs, pages 40:1–40:24.1243

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CCC.2021.40.1244

14 Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and Marc Vinyals.1245

Lifting with simple gadgets and applications to circuit and proof complexity. In Sandy Irani, editor,1246

61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,1247

November 16-19, 2020, pages 24–30. IEEE, 2020. doi:10.1109/FOCS46700.2020.00011.1248

15 Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction hinders real1249

communication (and what it means for proof and circuit complexity). Electron. Colloquium Comput.1250

Complex., page 6, 2021. URL: https://eccc.weizmann.ac.il/report/2021/006.1251

16 Noah Fleming. The Proof Complexity of Integer Programming. PhD thesis, University of Toronto, Canada,1252

2021. URL: http://hdl.handle.net/1807/108797.1253

17 Noah Fleming, Mika Göös, Stefan Grosser, and Robert Robere. On semi-algebraic proofs and algorithms.1254

In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022,1255

January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 69:1–69:25. Schloss1256

Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.69.1257

18 Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient algorithm design.1258

Found. Trends Theor. Comput. Sci., 14(1-2):1–221, 2019. doi:10.1561/0400000086.1259

19 Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random Θ(logn)-CNFs are hard1260

for cutting planes. J. ACM, 69(3):19:1–19:32, 2022. doi:10.1145/3486680.1261

20 Anna Gál. A characterization of span program size and improved lower bounds for monotone span1262

programs. Comput. Complex., 10(4):277–296, 2001. doi:10.1007/s000370100001.1263

21 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds from1264

resolution. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th1265

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June1266

25-29, 2018, pages 902–911. ACM, 2018. doi:10.1145/3188745.3188838.1267

22 Michal Garlik. Resolution lower bounds for refutation statements. In Proc. 4 Intl. Symp. on Mathematical1268

Foundations of Computer Science (MFCS), pages 37:1–37:13, 2019.1269

23 Paul Goldberg and Christos Papadimitriou. Towards a unified complexity theory of total functions. Journal1270

of Computer and System Sciences, 94:167–192, 2018.1271

https://doi.org/10.1145/3060145
https://doi.org/10.2307/2275569
https://doi.org/10.1109/CCC.2004.1313795
https://doi.org/10.1109/CCC.2004.1313795
https://doi.org/10.1109/CCC.2004.1313795
https://doi.org/10.1017/jsl.2013.37
https://doi.org/10.1145/2811255
https://doi.org/10.1145/3532737.3532746
https://doi.org/10.4230/LIPIcs.CCC.2021.40
https://doi.org/10.1109/FOCS46700.2020.00011
https://eccc.weizmann.ac.il/report/2021/006
http://hdl.handle.net/1807/108797
https://doi.org/10.4230/LIPIcs.ITCS.2022.69
https://doi.org/10.1561/0400000086
https://doi.org/10.1145/3486680
https://doi.org/10.1007/s000370100001
https://doi.org/10.1145/3188745.3188838

S. Buss, N. Fleming, and R. Impagliazzo 65:33

24 Paul W. Goldberg and Christos H. Papadimitriou. Towards a unified complexity theory of total functions.1272

Electron. Colloquium Comput. Complex., page 56, 2017. URL: https://eccc.weizmann.ac.il/1273

report/2017/056.1274

25 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere,1275

and Ran Tao. Separations in proof complexity and TFNP. CoRR, abs/2205.02168, 2022. arXiv:1276

2205.02168, doi:10.48550/arXiv.2205.02168.1277

26 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone complexity and1278

TFNP. In Avrim Blum, editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019,1279

January 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 38:1–38:19. Schloss1280

Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ITCS.2019.38.1281

27 Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is NP-hard. In1282

Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors,1283

Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,1284

IL, USA, June 22-26, 2020, pages 68–77. ACM, 2020. doi:10.1145/3357713.3384248.1285

28 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles are1286

nonnegative juntas. SIAM J. Comput., 45(5):1835–1869, 2016. doi:10.1137/15M103145X.1287

29 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition number.1288

SIAM J. Comput., 47(6):2435–2450, 2018. doi:10.1137/16M1059369.1289

30 Pavel Hrubeš and Pavel Pudlák. Random formulas, monotone circuits, and interpolation. In 58th IEEE1290

Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,1291

2017, pages 121–131, 2017. doi:10.1109/FOCS.2017.20.1292

31 Pritish Kamath. Some hardness escalation results in computational complexity theory. PhD thesis,1293

Massachusetts Institute of Technology, 2019.1294

32 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-logarithmic1295

depth. SIAM J. Discret. Math., 3(2):255–265, 1990. doi:10.1137/0403021.1296

33 Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by juntas and1297

weakly-exponential lower bounds for LP relaxations of CSPs. In Hamed Hatami, Pierre McKenzie,1298

and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of1299

Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 590–603. ACM, 2017. doi:1300

10.1145/3055399.3055438.1301

34 Jan Krajícek. Interpolation theorems, lower bounds for proof systems, and independence results for1302

bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997. doi:10.2307/2275541.1303

35 Jan Krajícek. Interpolation by a game. Math. Log. Q., 44:450–458, 1998. doi:10.1002/malq.1304

19980440403.1305

36 Jan Krajícek. Randomized feasible interpolation and monotone circuits with a local oracle. J. Math. Log.,1306

18(2):1850012:1–1850012:27, 2018. doi:10.1142/S0219061318500125.1307

37 James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of semidefinite1308

programming relaxations. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-1309

Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June1310

14-17, 2015, pages 567–576. ACM, 2015. doi:10.1145/2746539.2746599.1311

38 László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the decision tree1312

model. SIAM J. Discret. Math., 8(1):119–132, 1995. doi:10.1137/S0895480192233867.1313

39 Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. Lifting with sunflowers.1314

In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022,1315

January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 104:1–104:24. Schloss1316

Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.104.1317

40 Toniann Pitassi and Robert Robere. Lifting nullstellensatz to monotone span programs over any field. In1318

Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM1319

SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,1320

pages 1207–1219. ACM, 2018. doi:10.1145/3188745.3188914.1321

41 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb.1322

Log., 62(3):981–998, 1997. doi:10.2307/2275583.1323

ITCS 2023

https://eccc.weizmann.ac.il/report/2017/056
https://eccc.weizmann.ac.il/report/2017/056
https://eccc.weizmann.ac.il/report/2017/056
http://arxiv.org/abs/2205.02168
http://arxiv.org/abs/2205.02168
http://arxiv.org/abs/2205.02168
https://doi.org/10.48550/arXiv.2205.02168
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.1145/3357713.3384248
https://doi.org/10.1137/15M103145X
https://doi.org/10.1137/16M1059369
https://doi.org/10.1109/FOCS.2017.20
https://doi.org/10.1137/0403021
https://doi.org/10.1145/3055399.3055438
https://doi.org/10.1145/3055399.3055438
https://doi.org/10.1145/3055399.3055438
https://doi.org/10.2307/2275541
https://doi.org/10.1002/malq.19980440403
https://doi.org/10.1002/malq.19980440403
https://doi.org/10.1002/malq.19980440403
https://doi.org/10.1142/S0219061318500125
https://doi.org/10.1145/2746539.2746599
https://doi.org/10.1137/S0895480192233867
https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://doi.org/10.1145/3188745.3188914
https://doi.org/10.2307/2275583

65:34 TFNP Characterizations of Proof Systems and Monotone Circuits

42 Pavel Pudlák. On the complexity of finding falsifying assignments for herbrand disjunctions. Arch. Math.1324

Log., 54(7-8):769–783, 2015. doi:10.1007/s00153-015-0439-6.1325

43 Pavel Pudlák and Jirí Sgall. Algebraic models of computation and interpolation for algebraic proof systems.1326

In Paul Beame and Samuel R. Buss, editors, Proof Complexity and Feasible Arithmetics, Proceedings1327

of a DIMACS Workshop, New Brunswick, New Jersey, USA, April 21-24, 1996, volume 39 of DIMACS1328

Series in Discrete Mathematics and Theoretical Computer Science, pages 279–295. DIMACS/AMS, 1996.1329

doi:10.1090/dimacs/039/15.1330

44 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Comb., 19(3):403–435, 1999.1331

doi:10.1007/s004930050062.1332

45 Alexander Razborov. Unprovability of lower bounds on circuit size in certain fragments of bounded1333

arithmetic. Izvestiya Mathematics, 59(1):205–227, 1995.1334

46 Robert Robere. Separations in proof complexity and TFNP. Talk at the Satisfiability: Theory, Practice,1335

and Beyond Reunion, Simons Institute, Berkeley, 2022.1336

47 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential lower bounds1337

for monotone span programs. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of1338

Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,1339

pages 406–415. IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.51.1340

Appendix: Proof of Theorem 111341

In this appendix we prove Theorem 11, which we break into the following two lemmas. Recall that1342

the length of a uPC proof is the number of lines (deductions) in the proof.1343

I Lemma 18. Let F be an unsatisfiable CNF formula on n variables. If there is a uPC proof of F1344

with size-s, length-L, and degree-d then there is a depth-O(d) decision-tree reduction from SF to an1345

instance of IND-END-OF-LINE on O(sL) many variables.1346

Proof. Fix a unary Polynomial Calculus proof Π of some unsatisfiable CNF formula F . For each1347

monomial m, let cm be the maximum absolute value of any coefficient of m that occurs in Π, and1348

define N :=
∑
m cm. We will have cm nodes for monomial m and implicitly identify any of these1349

cm nodes with the monomial m. We define an IND-END-OF-LINE instance on L pools and N nodes1350

in much the same way as we did for F2-PC.1351

For each ` ∈ [L], we define the active nodes m ∈ [N] for pool ` as follows. If monomial m1352

occurs in the `-th line of Π with coefficient c, let m1, . . . ,mc be the first c nodes corresponding to1353

copies of monomial m and set A(`)
mi = m(x) for all i ∈ [c]. Fix A(`)

m′ = 0 for the remaining nodes1354

m′ ∈ [N] \ {m1, . . . ,mc}. Note that as m is a monomial of degree ≤ d, m(x) can be computed by1355

a depth-d decision tree.1356

If line ` is derived by addition from two lines `′, `′′, set P (`)
`′ = P

(`)
`′′ = 1 and P (`)

`∗ = 0 for1357

all `∗ 6= `′, `′′. If ` was derived from `′ by multiplication by some variable xi set P (`)
`′ = xi and1358

P
(`)
`∗ = 0 for all `∗ 6= `′.1359

Finally, for each ` ∈ [L] we define the matching M (`) as follows. For this it will be convenient to1360

think of each line ` in Π as a multi-set of monomials, each with an associated positive or negative1361

coefficient, and a corresponding node in N . There are three cases:1362

Case 1. If ` was derived by addition from some `′, `′′ < ` then every monomial m in line ` comes1363

from one of `′, `′′ — suppose that m comes from `′ — and so we match m to the copy of m in `′.1364

If m has a positive coefficient in `, then we set M (`)
`,m = (+, `′,m) and M (`)

`′,m = (−, `,m), and1365

if it has a negative coefficient we set M (`)
`,m = (−, `′,m) and M (`)

`′,m = (−, `,m).1366

It remains to define the matchings for all monomials m which occur in `′ or `′′ but not in1367

`; suppose that m belongs to `′. For this to happen, m must have cancelled with a negative1368

https://doi.org/10.1007/s00153-015-0439-6
https://doi.org/10.1090/dimacs/039/15
https://doi.org/10.1007/s004930050062
https://doi.org/10.1109/FOCS.2016.51

S. Buss, N. Fleming, and R. Impagliazzo 65:35

coefficient copy of itself in `′′ and so we match them. That is, if m occurs positively in `′ then1369

we set M (`)
`′,m = (−, `′′,m) and M (`)

`′′,m = (+, `′,m), and if it occurs negatively then we set1370

M
(`)
`′,m = (+, `′′,m) and M (`)

`′′,m = (−, `′,m). The matching variables for the remaining nodes1371

(which do not correspond to monomials occurring in lines `, `′, `′′) can be set arbitrarily.1372

Case 2. If ` was derived by multiplication by a variable xi from some `′ < ` then for every monomial1373

m in line `, there must be a monomial m′ = m \ xi or m′ = m belonging to `′ from which it1374

was derived. If m is positive in ` then match M (`)
`,m = (+, `′,m′) and M (`)

`′,m′ = (−, `,m), and1375

if m is negative in ` then M (`)
`,m = (−, `′,m′) and M (`)

`,m = (+, `,m). Finally, we match the1376

remaining nodes corresponding to monomials in `′ that have yet to be matched. Each of these1377

remaining monomials must have cancelled after multiplication by xi so as to not appear in `. The1378

only cancellations which can occur are pairs (m,mxi) such that m does not contain xi and m1379

and mxi occur with different signs in `′. Suppose that m occurs positively in `′ then we match1380

M
(`)
`′,m = (−, `′,mxi) and M (`)

`′,mxi
= (+, `′,m), and similarly if m occurred negatively then1381

we match M (`)
`′,m = (+, `′,mxi) and M (`)

`′,mxi
= (−, `′,m). The remaining nodes (which do not1382

correspond to nodes in ` or `′) may be matched arbitrarily.1383

Case 3. If ` is an axiom of F — that is, ` isC for someC ∈ F — then for each monomialm ∈ C, the1384

matching M (`)
`,m is defined by querying the ≤ d variables in C. If we discover that C(x) = 0 (that1385

is, C is satisfied) then we fix an arbitrary matching between the positive and negative monomials1386

in C which are not set to 0 under x such that each negative monomial is at the tail of some arrow1387

and each positive monomials is at the head of some arrow. Otherwise, if C(x) 6= 0 then we fix1388

the matching variables arbitrarily (there will always be a solution in this case).1389

Observe that the only solutions to the constructed IND-END-OF-LINE instance occur at the1390

pools ` ∈ [L] corresponding to an axioms C ∈ F for which C(x) = 0. Thus, any solution to1391

IND-END-OF-LINE will be in a violated clause of F , a solution to SF . Using this, we can define1392

the output decision trees: for any solution s belonging a pool ` ∈ [L] which corresponds to an initial1393

clause Ci ∈ F , the output decision tree T os outputs i. The output decision trees corresponding to1394

the remaining solutions (which do not occur in this instance of IND-END-OF-LINE) can be set1395

arbitrarily. J1396

I Lemma 19. Let F be an unsatisfiable CNF formula. If SF reduces to an instance of IND-END-1397

OF-LINE on n variables using depth-d decision trees, then there is an degree-O(d) and size n32O(d)
1398

uPC proof of F .1399

Proof. Let F be an unsatisfiable CNF formula and suppose that SF reduces by depth-d decision trees1400

to an IND-END-OF-LINE instance on n variables. For each variable x of the IND-END-OF-LINE let1401

Tx be the decision tree computing x. As before, we will associate Tx with the polynomial formed by1402

taking a sum over the accepting paths in Tx. As well, for each solution s of the IND-END-OF-LINE1403

instance let T os be the output decision tree. We will say that a node m which active for ` is positive if1404

it appears at the head of an arrow in M (`) and negative otherwise. Recall that for a function f element1405

o in the range of f , [[f = o]] denotes the indicator polynomial which is 1 on input x if f(x) = o and1406

0 otherwise.1407

For ` ∈ [L] define the polynomial1408

q` :=
∑
m∈[N]

A(`)
m

(∑
m∗∈[N],`∗≤`

[[
M

(`)
`,m = (+, `∗,m∗)

]]
−

∑
m∗∈[N],`∗≤`

[[
M

(`)
`,m = (−, `∗,m∗)

]])
1409

which records the difference between the number of positive and negative nodes for pool `. We will1410

derive by induction on ` = 1, . . . , L that q` = 0 and −q` = 0. This will complete the proof as for1411

ITCS 2023

65:36 TFNP Characterizations of Proof Systems and Monotone Circuits

pool L, A(L)
1 = 1 and A(L)

m = 0 for all m 6= 1 and so1412

0 = qL =
∑

m∗∈[N],`∗≤L

[[
M

(L)
L,1 = (+, `∗,m∗)

]]
−

∑
m∗∈[N],`∗≤L

[[
M

(L)
L,1 = (−, `∗,m∗)

]]
.1413

From which we can derive the 1 = 0 by the following claim, noting that the terms of qL are exactly1414

the paths in the decision tree for M (L)
L,1 .1415

B Claim 3. Let T be any depth-d decision tree and let q(x) =
∑
p∈T αpp(x), where the sum is1416

taken over (the polynomial representation of) each root-to-leaf path p in T , and αp ∈ {±1}. Then1417

there is a uPC degree-2d and size O(|T |) derivation of 1 = 0 from q(x) = 0 and −q(x) = 0.1418

Proof. From q = 0 we will derive p = 0 for each p ∈ T . This completes the proof as
∑
p∈T p = 11419

for any decision tree T . For any path p′ ∈ T with αp′ = 1 observe that p′q =
∑
p∈T αpp

′p = p′ as1420

any pair of paths p 6= p′ contain an opposing literal (i.e., x and (1− x) for some variable x) and thus1421

sum to 0. Similarly, we can derive p′ = 0 for any p′ ∈ T with αp′ = −1 by multiplying −q = 0 by1422

p′. J1423

It remains to show that q` = 0 can be derived from q`′ = 0 for `′ < `. Note that we can derive1424

−q` = 0 by a symmetric argument by using −A(x) = 0 for each axiom A(x) = 0 used in the1425

derivation of q` = 0. Our induction will rely on (i) the matching M (`), and (ii) the consistencies of1426

polarities — if m is a node of `′ which occurs at one end of an arrow in the matching for `′, then it1427

must occur at the other end of an arrow in the matching for `, if `′ is a predecessor of `. We will1428

represent (i) by the following polynomial which records the difference between the number of positive1429

and negative nodes involved in the matching for pool `1430

deriv(`) :=
∑
`′≤`

P
(`)
`′

∑
m∈[N]

A(`′)
m

 ∑
m∗∈[N],`∗≤`′

[[
M

(`)
`,m = (+, `∗,m∗)

]]
−
[[
M

(`)
`,m = (−, `∗,m∗)

]] ,1431

where, for convenience of notation, we have introduced an additional variable P (`)
` which is fixed to1432

1.1433

We will represent (ii) by the polynomial1434

consist(`)
`′ = P

(`)
`′

∑
m∈[N]

A(`′)
m

∑
`∗≤`

([[
M

(`)
`′,m = (−, `∗,m∗)

]]
−
[[
M

(`)
`′,m = (+, `∗,m∗)

]])
−P (`)

`′ q`′ .1435

The equation consist(`)
`′ = 0 states that the active nodes for line `′ must occur with the same polarity1436

in the matching for pool `′ as in the matching for pool `. The following claims give short uPC1437

derivations of these polynomials from the axioms.1438

B Claim 4. For any ` ∈ [L], deriv(`) = 0 has a degree-O(d) and size-NL2O(d) uPC proof from1439

the axioms.1440

B Claim 5. For any ` ∈ [L] and `′ < `, consist(`)
`′ has a degree-O(d) and size-NL2O(d) uPC proof1441

from the axioms.1442

Assuming these claims, we show how to derive q` = 0 from q`′ = 0 for all `′ < `. For each1443

`′ < `, sum the polynomial P (`)
`′ q`′ = 0 with consist(`)

`′ to deduce1444

P
(`)
`′

∑
m∈[N]

A(`′)
m

∑
`∗≤`

([[
M

(`)
`′,m = (−, `∗,m∗)

]]
−
[[
M

(`)
`′,m = (+, `∗,m∗)

]])
= 0.1445

Summing these polynomials with deriv(`) = 0 gives q` = 0. We apply Claim 4 ` ≤ L times and1446

Claim 5 once. Thus, this induction step can be performed in degree O(d) and size NL22O(d). J1447

S. Buss, N. Fleming, and R. Impagliazzo 65:37

Proof of Claim 4. For `′ ≤ `, m ∈ [N] and α ∈ {−,+} define1448

match(`)
α,m,`′ :=

∑
m∗∈[N],
`∗∈[`]

[[
M

(`)
m,`′ = (α,m∗, `∗)

]] ∑
γ,δ∈{0,1}

[[
P

(`)
`∗ = γ

]][[
A

(`∗)
m∗ = δ

]]
·1449

∑
m̂∈[N],ˆ̀∈[`]
β∈{−,+}

[[
M

(`)
m∗,`∗ = (β, m̂, ˆ̀)

]]
,1450

1451

which records whether node m belonging to `′ is at the head or tail of an arrow, and whether it is1452

correctly matched in the matching M (`) for `. Note that1453 ∑
γ,δ∈{0,1}

[[
P

(`)
`∗ = γ

]][[
A

(`∗)
m∗ = δ

]] ∑
m̂∈[N],ˆ̀∈[`]
β∈{−,+}

[[
M

(`)
m∗,`∗ = (β, m̂, ˆ̀)

]]
= 1, (1)1454

1455

as it is the polynomial obtained from summing over all paths in the stacked decision tree obtained by1456

running the decision trees for P (`)
`∗ , A(`∗)

m∗ and then M (`)
m∗,`∗ .1457

Now, consider the polynomial P (`)
`′ A

(`′)
m match(`)

α,m,`′ and partition its terms into two sets, a set1458

C
(`′,m)
α which corresponds to correct matchings — that is, m is matched to a node m∗ ∈ [N]1459

belonging to a pool `∗ ≤ ` (M (`)
`′,m = (α, `∗,m∗)) with P (`)

`∗ = 1 and A(`∗)
m∗ = 1 which is matched1460

back tom, meaning thatM (`)
`∗,m∗ = (γ, `′,m), where γ is the opposite sign of α— andE(`′,m)

α which1461

will contain the remaining terms, corresponding to erroneous matchings. Using these polynomials,1462

define1463

match(`) :=
∑
`′∈[`]

∑
m∈[N]

A(`′)
m P

(`)
`′

(
match(`)

+,m,`′ −match(`)
−,m,`′

)
,1464

which records the matching for pool `. By (1), this polynomial is equivalent to deriv(`), and therefore1465

it suffices to show that this polynomial has a low-degree derivation from the axioms. To do so,1466

partition the terms of match(`) into three sets, C+, C−, E as above, where Cα =
⋃
C

(`′,m)
α for1467

α ∈ {−,+}, and E =
⋃
E

(`′,m)
+ ∪ E(`′,m)

− where the unions are taken over `′ ≤ ` and m ∈ [N].1468

Observe that because the matchings in C+ and C− are correct, for every node at the head of an arrow,1469

a node occurs at the tail of that arrow. It follows that
∑
t∈C+

t−
∑
t′∈C− t

′ = 0.1470

Next, consider a term t ∈ E. This term corresponds to a node m in some pool `′ ≤ ` that is1471

incorrectly matched; let s be this incorrect matching. We will denote by ts that the term t witnesses1472

s. Let T os be the output decision tree for solution s and abuse notation by letting T os also denote the1473

polynomial formed by taking the sum over all of the paths in the decision tree T os . Recalling that the1474

sum over all paths in a decision tree is 1,1475

match(`) =
∑
t∈C+

t−
∑
t′∈C−

t′ +
∑
ts∈E

ts = 0 +
∑
ts∈E

ts =
∑
ts∈E

ts · T os .1476

An incorrect matching is a solution to IND-END-OF-LINE. Therefore, because this instance solves1477

SF , any truth assignment x which satisfies ts must falsify the T os (x)-th clause of F . It follows that1478

each term of ts · T os that is not identically 0 must contain the polynomial C = 0 for some clause C of1479

F . Thus, ts ·T os can be derived by multiplication from the axioms C = 0 and−C = 0. It follows that1480

deriv(`) has a proof of degree at most the degree and size of match(`), which are 6d and NL2O(d)
1481

respectively. J1482

ITCS 2023

65:38 TFNP Characterizations of Proof Systems and Monotone Circuits

Proof of Claim 4. For α ∈ {−,+}, define the polarity polynomial1483

pol(`
′)

α := P
(`)
`′

∑
m∈[N]

A(`′)
m

∑
`∗≤`′,m∗∈[N]

[[
M

(`′)
`′,m = (α, `∗,m∗)

]] ∑
ˆ̀≤`,m̂∈[N]
β∈{−,+}

[[
M

(`)
`′,m = (β, ˆ̀, m̂)

]]
,1484

which records for each node at the α-end of an arrow in the matching for `′, which end of an arrow it1485

occurs at in the matching for pool `′. We will partition the set of terms of this polynomial into two1486

sets, C(`′)
α and E(`′)

α C
(`′)
α . C(`′)

α will be the terms t which are the indicators of correct assignments1487

of polarities of the nodes in pool `′ in the matchings M (`) and M (`′) — that is, if m is an active node1488

for `′ and m occurs at the head of an arrow in the matching for M (`′) then it is at the tail of an arrow1489

in the matching for M (`) if `′ is a predecessor of `. E(`′)
α C

(`′)
α will be the remaining terms which1490

correspond to erroneous assignments of polarities. As well, observe that1491

pol(`
′)

α = P
(`)
`′

∑
m∈[N]

A(`′)
m

∑
`∗≤`′,m∗∈[N]

[[
M

(`′)
`′,m = (α, `∗,m∗)

]]
· 1,1492

as
∑

ˆ̀≤`,m̂∈[N],β∈{−,+}[[M
(`)
`′,m = (β, ˆ̀, m̂)]] is the polynomial obtained by taking a sum over all1493

paths in the decision tree for M (`)
`′,m = (β, ˆ̀, m̂), which sums to 1.1494

Similarly, let1495

pol(`)α := P
(`)
`′

∑
m∈[N]

A(`′)
m

∑
`∗≤`,m∗∈[N]

[[
M

(`)
`′,m = (α, `∗,m∗)

]] ∑
ˆ̀≤`′,m̂∈[N]
β∈{−,+}

[[
M

(`′)
`′,m = (β, ˆ̀, m̂)

]]
,1496

be the polynomial which records for each active node of `′ which occurs at the α-end of an arrow in1497

M (`), which end of an arrow it occurs at in M (`′). Define C(`)
α and E(`)

α analogously, and note that1498

pol(`)α = P
(`)
`′

∑
m∈[N]

A(`′)
m

∑
`∗≤`,m∗∈[N]

[[
M

(`)
`′,m = (α, `∗,m∗)

]]
· 1,1499

by the same reasoning as above.1500

Putting these together, we have1501

consist(`)
`′ = pol(`)− − pol(`)+ − pol(`

′)
+ + pol(`

′)
− .1502

We will derive pol(`)+ − pol(`
′)
− = 0 and pol(`)− − pol(`

′)
+ = 0 separately from the axioms, beginning1503

with pol(`)+ − pol(`
′)

+ = 0. Consider any term t in C(`′)
+ and observe that since t is correct, it records1504

that an active monomial m of `′ which occurs at the head of an arrow in M (`′) occurs at the tail of1505

an arrow in M (`). Thus, t occurs also in C(`)
− . By a symmetric argument, any term t occurring in1506

C
(`)
− occurs in C(`′)

+ . Thus,
∑
t∈C(`′)

+
t−

∑
t∈C(`)

−
t = 0, and also

∑
t∈C(`′)

−
t−

∑
t∈C(`)

+
t = 0 by a1507

similar argument. Denoting the union of all of the error sets by E := E
(`)
+ ∪E

(`)
− ∪E

(`′)
+ ∪E(`′)

− , we1508

have1509

consist(`)
`′ =

(∑
t∈C(`′)

+

t−
∑
t∈C(`)

−

t
)

+
(∑
t∈C(`′)

−

t−
∑
t∈C(`)

+

t
)

+
∑
t∈E

t = 0 +
∑
t∈E

t.1510

It remains to show that each term t ∈ E can be derived from the axioms with a low-degree uPC proof.1511

As each t ∈ E witnesses a node which switched polarity between the matching for line `′ and the1512

matching for line `, this is a solution s to IND-END-OF-LINE; we will denote denote t by ts to record1513

the fact that t witnesses solution s. Let T os be the output decision tree corresponding to solution s, and1514

S. Buss, N. Fleming, and R. Impagliazzo 65:39

abuse notation by identifying it with polynomial formed by taking the sum over all paths in T os . As1515

the sum over all paths in a decision tree gives the 1 polynomial, we have ts = ts ·T os . As ts witnesses1516

solution s, it follows that any assignment x such that ts(x) = 1 must falsify the T os (x)-th clause C of1517

F . Thus, ts · T os can be derived from the axioms C = 0 and −C = 0. It follows that1518

consist(`)
`′ = 0 +

∑
ts∈E

ts · T os = 01519

has a uPC proof from the axioms of degree at most 4d and size NL2O(d). J1520

ITCS 2023

	1 Introduction
	1.1 Overview: Connections Proof Complexity, and Circuit Complexity, and TFNP
	1.2 Our Results

	2 Proof Complexity and Black-Box TFNP
	2.1 A Proof System for any TFNP Problem
	2.2 TFNP Problems for Proof systems which Prove their own Soundness
	2.3 Example: The Polynomial Calculus
	2.4 Characterizing Dynamic Variants of Static Systems

	3 Communication TFNP and Monotone Circuit Complexity
	3.1 Communication TFNP
	3.2 Complete Problems give TFNP Characterizations
	3.3 Universal Functions vs. Complete Functions

	4 Future Directions

