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Lecturel. Talk Qutline

Propositional formulas: tautologies and proofs.
Connections to non-determinism and P versus NP.
A taxonomy of proof systems.

Proof search and automatizability.

Anti-cut elimination theorem for Frege systems.

Interpolation.



Propositional Logic

Boolean connectives: A (AND); V (OR); = (NOT); etc.
Booleanvariables: p,q,7,...,x,y,z2,...,rangeover {T, F'}.
Tautology: A valid (=always true) formula.

Combinatorial principles as tautologies.

Examplel: Thepigeonholeprinciple. Forn > 1,0 <7 <nand0 <j <n,
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Example 2: Primality tautologies. Fix a > 1 a prime number. Let a haven
bitsin its binary representation. a = (an_1,...,00)2.

= | Product(p, q,a) N (\/ i) A (\/ q;)

i>1 i>1
Here “Product” expresses base-2 multiplication. a;'s are constants.

Example 3. Partial consistency. Fixn > 0. Encode proofsin Z F’ set theory
as strings of bits in some natural way. Consider a formula:

—Encodes_Contradiction_In_Z F(pg, ..., Dn)-
This statement can be encoded with a polynomial size formula. With

introduction of extra “helper” variables, it can even be encoded as the negation
of a CNF formula. These are tautologies if set theory is consistent!



Pand NP

Def’'n: P is the class of predicates (decision problems) that are decidable in
polynomial timein the length n of the input.

NPistheclassof predicates forwhich “Yes" answers are verifiable in polynomial
time.

Examplesin P. Given integer x, is x perfect square? Given integers x and v,
is the middle bit of the product z - ya‘1'?

Examplesin NP: |s x a composite?

Much less obviously, is x a prime? [Pratt, 1975].
Very much less obviously, the set of primesisin P. [Agarwal et al., 2002].

Open Conjecture: Integer Factorizationisnotin P.
This conjecture and related ones are the basis of the theory of public key

cryptography.



Examples of NP problems

Hamiltonian cycle. Given graph GG, does it have a Hamiltonian cycle?

SAT (Satisfiability): Given a propositional formula, over connectives AND
(A),OR(V), NOT (—), and with variables p, ¢, r, . . ., does it have a satisfying
assignment? Thatis, canthevariables be set so as to make the formula true?

k-Provability. Given aformula(atheorem), doesithavea proofof < k symbols
in some given formal proof system?

All three of these are NP-complete (thethird at least for certain proof systems).
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Def’n A problem is co-NP if its complement is NP. l.e., its “No” answers are
verifiable in polynomial time.

Example 1: The set of primesis obviously in co-NP.
Example 2: Theset of tautologies is co-NP-complete.
Note that ¢ isa tautology iff —p € SAT.

Methods for provingtautologies: (a) Method of truth tables, (b) decision trees,
(c) Give a proofin a formal system (e.g., a Frege system). (d) Etc.

(a),(b) require exponential size proofs. For (c), it open, firstly, whether
polynomial size proofs exist and, secondly, whether proofs can be found
efficiently.



Cook’s Program for the P- NP problem

Def’'n. A Frege proofsystem, F, is a proof system for propositional logic, say
using A, V, -, —, based on a finite set of axiom schemessuchas A — (B —
A), and based on afinite set of inference rules, such as modus ponens:

A A— B
B

A Frege system is sound and complete (implicationally).
These are the usual “textbook” proof systems.

Open: Find good upper bounds on the lengths of tautologies. |.e., find slow-
growing function f such that every tautology of length n, has an F-proof of
< f(n) symbols.

f(n) = 290" suffices. Can f(n) be polynomial, n®1)?



Thm: [Cook'75]. If Frege proof lengths can be polynomially bounded, then
NP = co-NP

Pf. The tautologies are co-NP-complete. If they have polynomial size F-
proofs, they would be in NP (by simply guessing the proof). From this
NP = co-NP would follow. g.e.d.

Cook’s program Starting with weak proof systems for propositional logic,
prove superpolynomial lower bounds on the size of proofs. Work up to
superpolynomial lower bounds on stronger systems such as Frege systems,
eventuallytoall proof systems. Thiswould prove NP # co-NP, hence P # NP.

This has been carried out only for restricted proof systems.



Some Proof Systems

Truth tables —

Resolution Clauses
Cutting planes Linear integer inequalities
Nullstellensatz Finite field identities

x Constant-depth (cd) Frege —
cd-Frege with counting axioms -

cd-Frege with counting gates —

* Frege systems Poly size formulas
* Extended Frege systems Poly size circuits
Quantified Frege systems Non-uniform Polynomial Hierarchy
Set theory -

Superpolynomial lower bounds are known for systems above the dotted line.



Extended Frege systems

An extended Frege system is a Frege system augmented with the ability to
introduce abbreviations on the fly with the extension rule:

q—A

where A is any formula, and ¢ must be a “new” variable that does appear yet
in the proof, in A, or in the formula to be proved. This introduces ¢ as an
abbreviation for A.

Introducing abbreviations allows proof length to be shorter (well, this is open),
since long formulas can be replaced by abbreviations.

Equivalently: extended Frege systems are Frege systems that use Boolean
circuits instead of formulas.

Also equivalent: Extended Frege systems are Frege systems with proof length
measured in terms of the number of inferences in the proof.

10



The pigeonhole principle (PHP) as a tautology

Let [n] = {0,...,n}.

The PHP states thereis no 1-1 function f : [n] — [n — 1]. Toencodethisasa
tautology, use propositional variables p; ; which express the truth of f(¢) = j.

The PHP"*! tautology is:

I AVpris A N N\-ijApij)|.
j

i i j

Let's give a proof of this by contradiction ....
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Phase 1: Define variables qu that
’ k-1 k-1

define a violation of PHPIfH. For
this, let ¢;'; = p; ; and define

: k+1
bt 1 U, 5.
k k+1 k+1 k+1 o1 -
q?,,] < q’l,,] \/ <ql,k—1 /\ qk,] ). q'[,’:k 1 .j
k
* i,

Phase 2: Prove that if ¢**!'s violate
the PHP, thensodothe ¢*'s.

Phase 3: Proofis done, the PH P 1

implies PH P?, which isimpossible. 1'><°1
Qe 0

QED

This gives poly size extended Frege proof, but not poly size Frege proof.
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Thm. The PH P! tautologies have polynomial size Frege proofs.

Thm. [Haken] The PHP"*! tautologies require exponential size resolution
proofs. (Actually, refutations.)

Def’n The depth of a propositional formula isthe number of alternationsof A's
and V's. For this count, implications are replaced and negations are pushed to
the variables.

A constant depth Frege proof is a (family) of proofs in which the depth of
formulas are bounded by a constant.

Thm. [PBI,KPW] The PHP""! tautologies require exponential size
constant-depth Frege proofs.

Proof used an extension of the Hastad switching lemma.

13



Automatizability and Proof Search

Cook's program concerned only the existence of proofs. For practical
application, proof searchis at least as important.

Def’n A proof system T is automatizable provided there is an algorithm f(x)
and a constant ¢ > 0 such that, whenever T' - ¢ with a proof of k& symbols,
then f () runsfor lessthan k€ steps and outputsa 7T-proof of .

Automatizability meansthereis a polynomial time algorithm for proof search.

14



Def’n A product of two primes congruent to 3 mod 4 is called a Blum integer.

Thm [Bonet-Pitassi-Raz| If Frege proof systems are automatizable, then there
is a probabilistic polynomial algorithm for factoring Blum integers.

(Same holds for TC°-Frege and weaker results for constant depth Frege.)

Proof - outline. The proof is based on a reduction from automatizability to
Craiginterpolation using Diffie-Hellman cryptographic hardness.

For P a Bluminteger, g € Z}, 1 = 0,1, theformulas A;(P, g, X,Y,a,b,...)
state:

g% = X mod P and ¢®* =Y mod P and ((¢** mod P) mod 2) = 1.

Intuitively, (P, g, X, Y ) encode bit value “i" in the Diffie-Hellman encoding.
The . .. " meansextravariables present that depend only P, g, X, Y and help
the encoding. The extravariables are polynomial time computable.
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Proof- continued

Claim: There are poly size Frege proofs of
-Ao(P,g,X,Y,a,b) V-A1(P,g,X,Y,c,d).

Pf of Claim: This is the correctness of Diffie-Hellman: Namely, if both
Ao(P,g9,X,Y,a,b)and A1(P, g, X,Y,c,d) then

g = ¢°® mod P,

whichisacontradiction. This proof, with suitable extra variables, can be carried
out with poly-size Frege proofs.
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Proof- continued

If : = O is correct, then for suitable choice of a(, by thereis a poly-size Frege
proof of Ag(P, g, X,Y, ag,by) — ag, by are constants. By the claim, there is
then a short proof of A (P, g, X, Y, ¢, d) where ¢, d are left as variables.

Dually, if i = 1 is correct, thereis a short proof of ~Ay(P, g, X, Y, a,b).

These short proofs can be found by the automatizability algorithm. This Frege
is proof is evidence that the bit O (resp., 1) isencoded by (P, g, X,Y).

Thisalgorithm would solve the Diffie-Hellman cryptographicscheme polynomial
time and this is known to allow factorization of Blum integers in probabilistic
polynomial time or with polynomial-size circuits [Biham-Boneh-Reingold'97].
ged.

17



Effective Craig Interpolation

The above proof used a kind of Craig interpolation property. Namely, it would
be sufficient to assume that, if we are given a Frege proof of

~A(q) v —B(7r),

then we can obtain in polynomial time either a proof of —=A(q) or a proof of
—B(7).

Some proof systems are known to have polynomial time Craig interpolation:

Resolution, cut-free LK, cutting planes,
intuitionistic propositional logic, nullstellensatz.

Often, polynomial time Craig interpolation properties leads to lower bounds on
proof size.

18



An “anti-cut-elimination’ theorem.

However, assuming Blum integer factorization is hard, Frege systems do not
have feasible Craiginterpolation. Infact, thisimplies an “anti-cut-elimination”
or “anti-subformula” property for propositional logic:

Thm. Assume the non-feasibility of Blum integer factorization. Then, there s
no feasible algorithm for transforming a Frege proof of

-A(q) vV ~B(7),

into a Frege proof of either = A(q) or = B(7).

As a corollary, there cannot be a polynomial time algorithm for creating proofs
that enjoy an analogue of the subformula property (in terms of keeping ¢’and 7
separated).

19



Some “big” open problems on the frontier of research

Lower bounds on constant-depth Frege systems with counting gates.

Separatethedepth d Frege systems from the depth d + 1 Frege systems with

respect to lengths of proofs of low depth tautologies.

Superpolynomial lower boundson proofsinintuitionistic propositional logic.

Better understanding of automatizability and interpolation.

Better proof search algorithms for resolution and stronger systems.
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Lecturell. Talk Outline

e \Weak induction axioms and bounded arithmetic.
e Translationsto propositional proofs.

e Thewitnessing theorems for S3 and T, .



Bounded Arithmetic Theories

x|, <, Godel 3 function, (), * (last three for

Language: 0,, S, +, -, #, |3/,
sequence coding operations).
Smash: z#y = 2/#I'1¥l - polynomial growth rate.

Bounded Quantifiers: (Vx <t), (dx <1t).

Sharply Bounded Quantifiers: (Va < |t|), (3= < |¢]).
Intuition: sharply bounded quantifiers are feasible (poly time) quantifiers.

»2-and I1¢-formulas . Count alternations of bounded quantifiers, ignoring

sharply bounded quantifiers.
The sets definable by 3% -formulas are precisely the > %-predicates.

Themost importantcaseis? = 1.
Here % formulas define exactly the N P-predicates.



Def’'n. Theories S5 and T+ are arithmetic are defined with axioms defining the
non-logical symbols (the “basic” axioms) and with

>2-PIND induction axioms For S&:
A(0) A (Vz)(A([32]) — A(z)) — (Vo) A(z).

>2-IND induction axioms For T%:
A0) A (Vo) (Az) — Az +1)) — (Vo) A(2).
So = UiSé, and 15 = UZTQZ
Intuition: PIND isa “feasible” (poly time) induction scheme.

All these theories can X¢-define the polynomial time functions, sow.l.o.g., all
polynomial time functions may be added to the theories.

Thm: S CTy < S2CT2<83C---



The Witnessing Theorems for Bounded Arithmetic Fragments

Def’n. A function is ¥.%-defined by a theory R provided
REVx(3y <t)As(x,y), where Ay isafunction defining the graph of f.
W.lo.g., R (Vx)3ly)As(x,y).

Fact. For R oneof the theories S%, T%, i > 1, thefunction f may beadded asa
defined function symbol and used freely in induction axioms.

“Main Thm” for S1, T} .

e The X%-definable functions of S} are precisely the polynomial time
functions. [Buss]

e The XY-definable functions of T.} are precisely the PLS functions.
[Buss-Kraji¢ek]

Analogous theorems hold for i > 1 for S% and T% for computability at higher
levels of the polynomial time hierarchy.



The intuition for the Witnessing Theorem for S1 is that X4-PIND axioms can
be “unwound” in polynomial time. Some care is needed to define the notion of
witnessing correctly, since the induction ison N P-predicates.

A similar intuition applies to T3 and PLS.

However, we present a proof based on the Paris-Wilkie translation from bounded
arithmetic to constant-depth propositional proofs.

Remark: There is a second important method of translating from bounded
arithmetic to propositional logic, due to Cook. — This is not covered in this
talk.



Some simplifying technical conditions

A formula is form restricted X? if itiis:

(Fyr < t1)(Vy2 < t2) -+ (Qui < )(Qz < |r|) B,

where B is quantifier-free. Quantifiers alternate between 4 and V. Every EI,L?—
formulais equivalent to a form restricted one, provably in 53.

Restricted by parametervariables. Let P beaproof. Thefreevariablesinthe
endsequent, a, arecalled parametervariables. A proofis restricted by parameter
variables iff

(a) every quantifierisbounded by a term that involves only parameter variables,

(b) every induction term involves only parameter variables. and

(c) every sequent which containsa non-parameter b containsaformula b < ¢(a)
in its antecedent.



Theorem1. LetRbeSiorTs,i > 1. IfAisaformrestricted ¥.0-formulaand
R+ A, then thereisan R-proofof A which is restricted by parameter variables
and in which every formula is form restricted 3%

Such proofs are called restricted-X?. These proofs are conveniently formed for
translation into propositional logic.

Pf: Uses free-cut elimination heavily.



Constant depth propositional LK proofs

Syntax: Tait-style calculus. Variables: p. Literals: p, p.
Unbounded fanin OR'sand AND's: \/ and A.

A cedent I is set of formulas; intended meaning is the disjunction \/ T".
Axioms: Neg: p,p Taut: T" ,whereI'isatautology.

Rules of inference:

. I', p; . . .o, foralli e T
V: ) Pig “whereig € 7 N ¥
Fa \/iGI P 0 Pa /\ie_’[ ¥i
Weakening: L _ Cut: 1. 1'\®

T A T



>'-depth of LK formulas and proofs

Definition Let S be a proof size parameter (size upper bound). The formulas
that have YX'-depth d with respect to S are inductively defined as follows:

a. If ¢ hassize < log .S, then ¢ has ¥'-depth 0.
b. Ifeach ¢; has¥'-depth d, then\/,_; p;and A\, _; ; have X'-depth (d+1).

Definition Let S be a size parameter. An LK-proof P isa >’-depth d proof of
size S provided:

a. P has < S symbols,
b. Everyformulain P has ¥'-depth d,

c. Every Taut axiom hassize at most log .S. (Only small tautologies allowed).

Similardefinitions: Krajicek['94] of 3-depth; Beckmann-Buss|'03] of ©-depth.

9



Conversion from S, T% to LK

Let d > 1 and R beoneof S§ or T§'. Suppose A(x) is form restricted 3% and
R A. Wedescribe how to transform a restricted proof of A into a >’-depth d
LK proof. W.l.o.g., x isthe only parameter variable.

First step: choose an arbitrary value n € N. The translation [A]  is a
propositional formula stating that A(x) is true for all = such that |z| < n. The
free variables of [A], are variables p, ; representing the ¢-th bit of the binary
representation of x.

For quantifier-free formulas ¢, the formula [¢] is defined with any polynomial
size formula that expressesthe value of ¢. (All function and relation symbolsare
describable with polynomial size formulas.) Because we have the Taut axioms,
the choice of translation formula ] is unimportant. Note [¢] has size only
mOP (1) if the free variables of ¢ are integers of length < m. We will have m =
n®W) and m < log S(n).

10



Consider a sharply bounded formula (Vy < |s|)B or (Jy < |s|)B.
Becausetheterm s containsonly parameter variables asvariables, and since the
parameter variables have at most n bits, we can find a bound n,, = nP) such
that |s| < n,. Then,

[ < IsDB] = A\ [y < Isl = BI/(y ). (1

The notation “¢/(y — )" means replace each p,, ; by the (constant) jth bit

of theinteger i. [(Vy < |s|)B] hassizeonly n®") . Thus, it has ¥/-depth 0 for
. o)

suitable S(n) = 2™ .

General bounded quantifiers translated by exactly the same construction, but

have bigger size: on?t.

A 3% -formula becomes a 3'-depth d formula for suitable S(n) = ont).

11



Totranslate a cedent I', view it as a Tait-style cedent by moving all formulas to
right of the sequent. All non-parameter variables 1, ..., y; are restricted by
parameter variables. So |y;| < n; forsome n; = n®M).

I' istranslated into a set of cedents, one cedent for each choiceof 71, . . ., i with
each |i;| < n;. Thecedentsare just

[CD/(y1 = i1y yi = k),

where the translation is applied individually to each formula. Note: the only
variablesleftare p, ;.

Asthe next theoremstates, thetranslated cedents I' can be pieced togetherinto
a valid proof.

12



Paris-Wilkie translation theorem

Theorem2. Leti > 1. Suppose A(x) € X!. Let [A], denote the
propositional translation of A; | A]|, has free variablesp, ;, fori < n.

a. SupposeSi A. Thenthereisafunction S(n) = oY suchthat, foralln,
[A], hasaX'-depthi proofofsize S(n). This proof

i. has height O(loglog S(n)), and
ii. containsonly O(1) many formulasin each cedent.

b. SupposeT:  A. Thenthereisafunction S(n) = 2" suchthat, foralln,
|A]l,, has a ¥'-depth i proofofsize S(n). This proof

i. hasheight O(log S(n)), and
ii. containsonly O(1) many formulas per cedent.

[Rk: The original W-P translation applies to S%(a) and T2 () ]

13



One caseof the proof: translation of A:right inference

An A:right inference

Iy Iy
I,y

translatesto

[v Al [l [¥]

—— Weakening
WO A AT
[T}, [¢] ], [ A el I .,
[C], [ A ]

Note that the upper right sequentisa Taut axiom.

14



Another case of the proof: inductionrule

Consider an induction inference in P. This translates into m Cut inferences
in the LK proof, where m is the “length” of the induction. By balancing the
tree of cuts, the height (maximal number of cedents along any branch) is only
O(logm). (Theinduction bound ¢ involves only parameter variables.)

If Ris S5, theinduction inference translatesinto |t| = n©(1) many cuts, so the
heightis O(logn).

. ; . . . . O(1
If R isT5, the induction inference translatesintot = 2" . many cuts, so the
heightis O(n°M). O

Important fact: Althoughthe LK-proofsgivenby Theorem 2 areexponentially
big, they are also polynomial time uniform.
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Main Theorem for S

Theorem3. (Buss ['85]) Suppose A(x,y) € X% and that Si proves
(Vx)(Jy)A(x,y). Then there is a polynomial time function f(x) = y such
thatforallx € N, A(z, f(x)) holds.

Proof By Parikh, S1 F (Jy < s(z))A(x,y). x is the parameter variable.
Applying Theorem 2(a) yields a 3’-depth 1 proof; adding a Cut to the end of
this proof turns the proof into a refutation R of

[Vy < s(x))-A(z,y)]. (2)

We give a polynomial time procedure that is has as input a particular value
for x, and traverses the refutation R until it arrives at a false initial cedent. Of
necessity this false initial cedent is the cedent (2), and when it is reached, the
procedure will know a value y that falsifies the cedent. This value for y will be
thevalueof f(x).

16



The polynomial time procedure acts as follows: it starts at the root of the proof
andtraversesthe proof upward, backtrackingasneeded asdescribed below. The
root is labeled with the empty sequent. At each stage, the procedure is at some
cedent I in the proof that it believes to be false. In particular, every >'-depth 0
formulain I' is False. (Recall that the variables p,. ; are the only variablesin R,
and the procedure has values for these.) Furthermore, for any formula in T
which is a conjunction of >’-depth 0 formulas, a particular conjunct is known
to be false. For the formulas which are a disjunction of >’-depth 1 formulas,
the procedure does not know for sure that they are false, it merely tentatively
assumes they are false.

At the beginning, the procedure is at the endsequent of R, which is the empty
cedent.

Other cases are Cut inference, /\ inference, and \/ inference....

17



If the procedure is at the lower cedent of a cut inference

g TI,o
T

If ©is X/-depth 0, then it can be evaluated as being either True or False. Ifitis
true, the procedure proceeds to the left upper cedent, otherwise, it proceeds to
the right upper cedent. Otherwise, @ isw.l.0.g. adisjunction, and the algorithm
proceeds to the right upper cedent.

If the procedure is at the lower cedent of a /\ -inference:

I',vy; fori el
Fv /\iEI %

the algorithm acts as follows. By assumption, the procedure knows a value i
such that the conjunct ¢;, is false. The algorithm proceeds to the upper cedent
I', ¢;, where ¢ = 1.

18



If the procedure is at the lower cedent of a \/-inference:

P? wio
Fv \/z‘eI %

the algorithm acts as follows. [f 1;, is false, it proceeds to the upper cedent.
However, if it is true, the algorithm has discovered a disjunct of ¢ = \/. _v;
which is true, contradicting the tentative assumption that ¢ was false. The
procedure then backtracks down the path towards the root until it finds the Cut
inference where the formula ¢ was added to the cedent. It then proceeds to the
other upper cedent of the Cut, and saves the information about which conjunct
of v isfalse.

The run timeis O(n®()), because there are only this many Cut's. It thus can
terminate only at the cedent (2). When it reaches this, it knows a value for y
that falsifiesit. Thisvalue of y satisfies A(z, y). O

19



The Main Theorem for 7%
PLS = Polynomial Local Search [Johnson, Papadimitriou, Yanakakis, '88].

A PLS problem is a multivalued function f(x) defined by:

|O(1)

e A polynomial bound, t(x) = 2l@ ,on possible solutions.

e A polynomial time cost function ¢(s, x) —cost of solution s.

e A polynomial time function N (s, x).

such that f(x) = ywherey < tandc(y) < ¢(N(s,x),x).

Theorem4. (Buss, Krajicek, '94]) Suppose A(xz,y) € X% and that Tj
proves (VYx)(3Jy)A(x,y). Then there is a Polynomial Local Search (PLS)
function f(x) = y such that forallxz € N, A(x, f(x)) holds.

20



The proof is identical to before, based on exactly the same procedure. Now the

O(1 . - .
procedure may need 2" W steps, instead of n®(1) . Use the position in the proof
to define a decreasing cost function. O

Remark: Theorems3and4 both holdifall true IT1S-formulas are added as axioms
(no change to proof needed).
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Lecturelll. Talk Outline

Logical intuitionsfor P = N P.
Oracle results.

Connections with bounded arithmetic.
Randomization, one-way hardness.

The state of the art: Independence via inability to count.



A logicalreasonfor P == N P?

[Rk: “logical” reason as compared to “combinatorial” reason.]

G. Kreisel, Symp. on Automatic Deduction, LNM #125, 1968:

“Suppose we ... have a proof system; ... the 'faith’ isthat in a natural way
this will yield a feasible proof procedure for feasible theorems.

“Conjecture: Under reasonable conditions on feasibility, there is an
analogue to Godel's second incompleteness theorem, that is the article
of faith above is unjustified.”



Another Expert Opinion...

Hereis R. Solovay's sought for proof of “P £ N P":

Proof:
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Another Expert Opinion...

Hereis R. Solovay's sought for proof of “P £ N P":
Proof: Let M beanonstandard model of Th(N).

Therefore P # NP. q.e.d.



Another Expert Opinion...

Hereis R. Solovay's sought for proof of “P £ N P":
Proof: Let M beanonstandard model of Th(N).

(fill in the details of proof here)

Therefore P # NP. q.e.d.



What “logical” reasons are there for believing PAN P? Oneisthat P=N P
would make the practice of mathematics too easy: The process of proof search
could be automated (automatized) by formalizing mathematical questions
completely and then blindly search for proofs of conjectured statements. |f
P = NP, this process could succeed whenever proofs are not too large. This
would be a major change in the practice of mathematics.

Godel [1956 letter to von Neumann]: “... consequences of the greatest
importance. ... The mental work of a mathematician concerning Yes-No

questions could be completely replaced by a machine.”
See [Buss 1995, in Feas. Math. 1] for a detailed discussion.

A related objection is that it would mean mathematics would become
completely formal, with little room left for human intuition and understanding.

The conservative viewpoint is that this would be undesirable and thus it is
deemed unlikely.



OfF-the-record comments go here.



From Kreisel's suggestion, one might think to try diagonal or self-referential
statements. E.g.,

“l do not have a polynomial size proof in theory R" .
“l do not have a feasible proof.”

“My propositional translation does not have a poly size Frege proof.”

Etc.

These self-referential statements can be formulated, but none of these seem to
imply anything about P # NP.



Anotherideawould betofind co-IVP predicatesthat lack polynomial size proofs.

Example: Partial Consistency Statements. Let R be a theory, let & > 0.
Define

Con(k, R) < “Thereisno R-proof of a contradiction of length < k£ symbols.”

However, we have the following theorems:

o PA P Con(k,PA). [H. Friedman, PudlK]
o SL PN Con(k,SL).

o eF P Con(k, eF). [Cook.]

o F % Con(k,F). [Buss.]
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The idea behind the above proofs of partial consistency statement is that it
is possible to define polynomial size partial truth definitions (that is, truth
definitions for formulas of length < k).

[Buss'85] suggestsadifferent approach: Let Ji bethe jump ofthetheory R and
be defined to be the theory R plusa truth predicate for R-formulas and allowing
the truth definition to be used in induction formulas.

Question: S 2% Con(k, Js;)?
If not, S5 cannot prove P = co-NP.

Related Question: S! %Y Con(k, ZF)?
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Independenceof P vs NP?

Traditional “independence” results include:

a. Oracleresults [Baker-Gill-Solovay]

b. Natural proofs. [Razborov-Rudich]

Most present day proof methods for lower bounds fall into one of these
categories.

What about independence from a formal theory, e.g., bounded arithmetic?

Potentially could give concrete measurement of the hardness of proving
P # NP.

12



Independenceof P vs NP?

There are several ways to formalize whether bounded arithmetic can prove
P = NP, or the collapse of the polynomial hierarchy (PH |).

(1). Does S prove each bounded formula is expressible in 2, for some fixed i ?
Notation: Sy - (PH |)

Thm.
(a) [KPT] IfS; ~<52b T2i then PH |. Thus,if Sy |,then PH |.
(b)[B,Z] So = (PH |)iff Sy |.

Notation: Sy | means S5 is finitely axiomatized, or equivalently, that the
hierarchy 53 collapses.

Unfortunately we have no idea how to show —(.Ss |). If we could, this would say
something about the logical difficulty of proving P # NP.
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(2) Another approach: Show S5 cannot prove super-polynomial lower bounds
on circuitsize....

One simple idea for independence from Si: Let C denote a function computed
by a Boolean circuit, ¢ a proposition formula, 7 a truth assignment. Define

SAT(p) & (I < ©)TRU (o, 7).

Assuming P == N P isit possible to prove that

Sy ¥ YCIp3r[TRU (o, 7) A =SAT (p, C(p))]?

Motivation: given C, it might be hard to find ¢ and 7; contradicting the
polynomial time witnessing theorem for S..
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But this is not likely to work. Standard cryptographic assumptions about the
existence of pseudorandom number generators imply that it is easy to find hard
instances of satisfiability.

Let f:{0,1}" — {0,1}" be ahard one-way function.

Let p(z,y) express f(x) = y. Forafixed yg = f(zg), o(x) := ©(x,yo) is
satisfiable (by x = xg).

But under commonly accepted cryptographic conjectures there are polynomial
time computable functions f for which there is no feasible algorithm (or
polynomial size circuit) that computes x from y.

Given C, chose zg atrandom, andset ¢ = ¢(xg,y) and 7 = xg. Thiswitnesses
the formula

T[T RU (p, 7) AN =S AT (p, C(p))].
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A related cryptographic assumptioniis:

Strong pseudo-random number generator (SPRNG) conjecture. There
are polynomial time computable functions f : {0,1}* — {0,1}" such that
thevalues f(x) are computationally indistinguishable from random values from

(0,1},

Thm [Razborov| Fix any polynomial hierarchy predicate A(xz). Assume that
a strong pseudo-random number generator (SPRNG) conjecture holds. Then

S2 () cannot prove any superpolynomial lower bound on the size of a circuit
(coded by ) for A(x).

The predicate a serves to encode a circuit for A(z). Note S3(«) can use IND
induction on the size of the circuit, but not its Godel number.

Proofideawastothe use conservativity of S5 (/) over T} (c), witnessingin PLS,

interpolation, and then natural proof independence of Razborov-Rudich which
dependson SPRNG.
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However, asubsequentidea by Razborovand anindependenceresult of Kraji¢ek
give a much strong result (and a less satisfying result).

Thm [essentially Razborov, Kraji¢ek] (No SPRNG assumption.) S3(a) cannot
prove any superpolynomial lower bound on the size of a circuit for A(x).

Proofidea:

Part 1. Claim: [K] Let S3(h) + —PH P(h) bethetheory S augmented with a
new function symbol h(x) plus an axiom that states h(x) is a one-one mapping
from [27] onto [n“(D]. Then S3(h) is consistent. This is true even if there a

function symbol for =1 as well.

Pf. Based on the conservativity of S5 over T3 and the PLS witnessing theorem
for T,y . A diagonal type of argument that thwarts any PLS algorithm seeking an
explicit violation of the pigeonhole principle.
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Part 2, [R] Use the inability to count. Given the trivial CNF circuit for
satisfiability, which isexponentially big, of size 2™, use h to convert it toacircuit
of size n(1) | Hence it is consistent with S3(«) that there are circuits of size

n“() for satisfiability.

The size n¥(1 is barely superpolynomial and can be smaller than any particular
superpolynomial bound.

[This proof idea was first used by Razborov to prove the independence of
superpolynomial circuit size from resolution. ]
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One last idea [Kraji¢ek, ABRW]:
Let R beaproofsystem, e.g., Risthe Frege proof system.

Let f : {0,1}" — {0,1}?" be a suitably strong pseudo-random number
generator.

Conjecture. Choose y at random. Then

~(3z)(f(z) = y)

does not (always) have polynomial size proofs.
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Conclusions

Our best lower bound results for separating P from NP amount to exploiting
theories that are so weak that they cannot count well enough to separate
exponential size from near polynomial time.

One more idea: return to Razborov-Rudich natural proofs. These in effect say
thatastrong version of P # N P (the SPRNG conjecture) implies the hardness
of finding proof that P # N P. Perhaps this can be extended to give better
results. (77?7 — One can always hope!)
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