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TutorialOutline

• Day I. Proof Complexity and Feasible ComputationClasses.

• Day II. BoundedArithmetic andPropositional Proofs

• Day III. On the (Lack of) ProgressTowards “P versusNP”.
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Lecture I.TalkOutline

• Propositional formulas: tautologies and proofs.

• Connections to non-determinism andP versusNP.

• A taxonomy of proof systems.

• Proof search and automatizability.

• Anti-cut elimination theorem for Frege systems.

• Interpolation.
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PropositionalLogic

Boolean connectives: ∧ (AND); ∨ (OR); ¬ (NOT); etc.

Boolean variables: p, q, r, . . . , x, y, z, . . . , range over {T, F}.

Tautology: A valid (=always true) formula.

Combinatorial principles as tautologies.

Example1: Thepigeonholeprinciple. Forn ≥ 1, 0 ≤ i ≤ n and 0 ≤ j < n,

¬

[

∧

i

∨

j

pi,j ∧
∧

i<i′

∧

j

¬(pi,j ∧ pi′,j)

]

.
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Example 2: Primality tautologies. Fix a > 1 a prime number. Let a have n
bits in its binary representation. a = (an−1, . . . , a0)2.

¬

[

Product(~p, ~q,~a) ∧ (
∨

i>1

pi) ∧ (
∨

i>1

qi)

]

.

Here “Product” expresses base-2multiplication. ai’s are constants.

Example 3. Partial consistency. Fix n > 0. Encode proofs in ZF set theory
as strings of bits in some natural way. Consider a formula:

¬Encodes Contradiction In ZF (p0, . . . , pn).

This statement can be encoded with a polynomial size formula. With
introduction of extra “helper” variables, it can even be encoded as the negation
of aCNF formula. These are tautologies if set theory is consistent!
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P andNP

Def’n: P is the class of predicates (decision problems) that are decidable in
polynomial time in the length n of the input.

NP is theclassofpredicates forwhich“Yes”answersareverifiable inpolynomial
time.

Examples in P . Given integer x, is x perfect square? Given integers x and y ,
is themiddle bit of the product x · y a ‘1’?

Examples in NP: Is x a composite?

Much less obviously, is x a prime? [Pratt, 1975].
Verymuch less obviously, the set of primes is in P . [Agarwal et al., 2002].

OpenConjecture: Integer Factorization is not in P .
This conjecture and related ones are the basis of the theory of public key
cryptography.
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ExamplesofNP problems

Hamiltonian cycle. Given graphG, does it have aHamiltonian cycle?

SAT (Satisfiability): Given a propositional formula, over connectives AND
(∧), OR (∨), NOT (¬), and with variables p, q, r, . . ., does it have a satisfying
assignment? That is, can the variables be set so as tomake the formula true?

k-Provability. Givenaformula(atheorem),does ithaveaproofof≤ k symbols
in some given formal proof system?

All three of these are NP-complete (the third at least for certain proof systems).
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Def’n A problem is co-NP if its complement is NP. I.e., its “No” answers are
verifiable in polynomial time.

Example 1: The set of primes is obviously in co-NP.

Example 2: The set of tautologies is co-NP-complete.

Note that ϕ is a tautology iff ¬ϕ ∈ SAT.

Methods for proving tautologies: (a)Method of truth tables, (b) decision trees,
(c) Give a proof in a formal system (e.g., a Frege system). (d) Etc.

(a),(b) require exponential size proofs. For (c), it open, firstly, whether
polynomial size proofs exist and, secondly, whether proofs can be found
efficiently.
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Cook’sProgramfor theP -NP problem

Def’n. A Frege proof system, F , is a proof system for propositional logic, say
using ∧, ∨, ¬, →, based on a finite set of axiom schemes such as A → (B →
A), and based on a finite set of inference rules, such asmodus ponens:

A A→ B

B

AFrege system is sound and complete (implicationally).

These are the usual “textbook” proof systems.

Open: Find good upper bounds on the lengths of tautologies. I.e., find slow-
growing function f such that every tautology of length n, has an F -proof of
≤ f(n) symbols.

f(n) = 2O(n) suffices. Can f(n) be polynomial, nO(1)?
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Thm: [Cook’75]. If Frege proof lengths can be polynomially bounded, then
NP = co-NP

Pf. The tautologies are co-NP-complete. If they have polynomial size F -
proofs, they would be in NP (by simply guessing the proof). From this
NP = co-NP would follow. q.e.d.

Cook’s program Starting with weak proof systems for propositional logic,
prove superpolynomial lower bounds on the size of proofs. Work up to
superpolynomial lower bounds on stronger systems such as Frege systems,
eventuallytoallproofsystems. ThiswouldproveNP 6= co-NP,henceP 6= NP.

This has been carried out only for restricted proof systems.
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SomeProofSystems

Truth tables
Resolution

Cutting planes
Nullstellensatz

⋆Constant-depth (cd) Frege
cd-Fregewith counting axioms
..............................................
cd-Fregewith counting gates

⋆Frege systems
⋆Extended Frege systems
Quantified Frege systems

Set theory

–
Clauses

Linear integer inequalities
Finite field identities

–
–

..............................................
–

Poly size formulas
Poly size circuits

Non-uniformPolynomial Hierarchy
–

Superpolynomial lower bounds are known for systems above the dotted line.
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ExtendedFregesystems

An extended Frege system is a Frege system augmented with the ability to
introduce abbreviations on the flywith the extension rule:

q ↔ A

where A is any formula, and q must be a “new” variable that does appear yet
in the proof, in A, or in the formula to be proved. This introduces q as an
abbreviation forA.

Introducing abbreviations allows proof length to be shorter (well, this is open),
since long formulas can be replaced by abbreviations.

Equivalently: extended Frege systems are Frege systems that use Boolean
circuits instead of formulas.
Also equivalent: Extended Frege systems are Frege systems with proof length
measured in terms of the number of inferences in the proof.
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Thepigeonholeprinciple (PHP)asatautology

Let [n] = {0, . . . , n}.

The PHP states there is no 1-1 function f : [n] → [n − 1]. To encode this as a
tautology, use propositional variables pi,j which express the truth of f(i) = j .

The PHPn+1
n tautology is:

¬

[

∧

i

∨

j

pi,j ∧
∧

i 6=i′

∧

j

¬(pi,j ∧ pi′,j)

]

.

Let’s give a proof of this by contradiction ....
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Phase 1: Define variables qk
i,j that

define a violation of PHP k+1
k . For

this, let qn
i,j = pi,j and define

qk
i,j ↔ qk+1

i,j ∨ (qk+1
i,k−1 ∧ q

k+1
k,j ).

Phase 2: Prove that if qk+1’s violate
thePHP, then so do the qk ’s.

Phase 3: Proof is done, the PHPn+1
n

implies PHP 2
1 , which is impossible.

QED

... ...

... ...

...

...
...

...

0

1

i

k-1

k

0

1

j

k-1

qk
i,j

qk+1
i,k−1

qk+1
k,j

This gives poly size extended Frege proof, but not poly size Frege proof.
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Thm. The PHPn+1
n tautologies have polynomial size Frege proofs.

Thm. [Haken] The PHPn+1
n tautologies require exponential size resolution

proofs. (Actually, refutations.)

Def’nThedepth of a propositional formula is the number of alternations of∧’s
and ∨’s. For this count, implications are replaced and negations are pushed to
the variables.

A constant depth Frege proof is a (family) of proofs in which the depth of
formulas are bounded by a constant.

Thm. [PBI,KPW] The PHPn+1
n tautologies require exponential size

constant-depth Frege proofs.

Proof used an extension of theHastad switching lemma.
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AutomatizabilityandProofSearch

Cook’s program concerned only the existence of proofs. For practical
application, proof search is at least as important.

Def’n A proof system T is automatizable provided there is an algorithm f(x)
and a constant c > 0 such that, whenever T ⊢ ϕ with a proof of k symbols,
then f(ϕ) runs for less than kc steps and outputs a T -proof of ϕ.

Automatizabilitymeans there is a polynomial time algorithm for proof search.
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Def’nAproduct of two primes congruent to 3mod 4 is called aBlum integer.

Thm [Bonet-Pitassi-Raz] If Frege proof systems are automatizable, then there
is a probabilistic polynomial algorithm for factoringBlum integers.

(Same holds for TC0-Frege andweaker results for constant depth Frege.)

Proof - outline. The proof is based on a reduction from automatizability to
Craig interpolation usingDiffie-Hellman cryptographic hardness.

For P a Blum integer, g ∈ Z
∗
P , i = 0, 1, the formulas Ai(P, g,X, Y, a, b, . . .)

state:

ga ≡ X mod P and gb ≡ Y mod P and ((gab mod P ) mod 2) = i.

Intuitively, 〈P, g,X, Y 〉 encode bit value “i” in theDiffie-Hellman encoding.
The ‘. . . ’ means extra variables present that depend only P, g,X, Y and help
the encoding. The extra variables are polynomial time computable.
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Proof - continued

Claim: There are poly size Frege proofs of

¬A0(P, g,X, Y, a, b) ∨ ¬A1(P, g,X, Y, c, d).

Pf of Claim: This is the correctness of Diffie-Hellman: Namely, if both
A0(P, g,X, Y, a, b) andA1(P, g,X, Y, c, d) then

gab ≡ gcd mod P,

which is a contradiction. Thisproof,with suitable extra variables, canbecarried
outwith poly-size Frege proofs.
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Proof - continued

If i = 0 is correct, then for suitable choice of a0, b0 there is a poly-size Frege
proof of A0(P, g,X, Y, a0, b0) — a0, b0 are constants. By the claim, there is
then a short proof of ¬A1(P, g,X, Y, c, d) where c, d are left as variables.

Dually, if i = 1 is correct, there is a short proof of ¬A0(P, g,X, Y, a, b).

These short proofs can be found by the automatizability algorithm. This Frege
is proof is evidence that the bit 0 (resp., 1) is encoded by 〈P, g,X, Y 〉.

ThisalgorithmwouldsolvetheDiffie-Hellmancryptographicschemepolynomial
time and this is known to allow factorization of Blum integers in probabilistic
polynomial time orwith polynomial-size circuits [Biham-Boneh-Reingold’97].
qed.
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EffectiveCraig Interpolation

The above proof used a kind of Craig interpolation property. Namely, it would
be sufficient to assume that, if we are given a Frege proof of

¬A(~q) ∨ ¬B(~r),

then we can obtain in polynomial time either a proof of ¬A(~q) or a proof of
¬B(~r).

Some proof systems are known to have polynomial timeCraig interpolation:

Resolution, cut-free LK, cutting planes,
intuitionistic propositional logic, nullstellensatz.

Often, polynomial time Craig interpolation properties leads to lower bounds on
proof size.
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An“anti-cut-elimination”theorem.

However, assuming Blum integer factorization is hard, Frege systems do not
have feasibleCraig interpolation. In fact, this implies an “anti-cut-elimination”
or “anti-subformula” property for propositional logic:

Thm. Assume the non-feasibility of Blum integer factorization. Then, there is
no feasible algorithm for transforming a Frege proof of

¬A(~q) ∨ ¬B(~r),

into a Frege proof of either ¬A(~q) or ¬B(~r).

As a corollary, there cannot be a polynomial time algorithm for creating proofs
that enjoy an analogue of the subformula property (in terms of keeping ~q and ~r
separated).
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Some“big”openproblemsonthe frontierof research

• Lower bounds on constant-depth Frege systemswith counting gates.

• Separate thedepth d Frege systems fromthedepth d+1 Frege systemswith
respect to lengths of proofs of low depth tautologies.

• Superpolynomial lowerboundsonproofs in intuitionistic propositional logic.

• Better understanding of automatizability and interpolation.

• Better proof search algorithms for resolution and stronger systems.
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Lecture II.TalkOutline

• Weak induction axioms and bounded arithmetic.

• Translations to propositional proofs.

• Thewitnessing theorems for S1
2 and T 1

2 .
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BoundedArithmeticTheories

Language: 0,, S , +, ·, #, ⌊1
2x⌋, |x|,≤, Gödel β function, 〈〉, ∗ (last three for

sequence coding operations).
Smash: x#y = 2|x|·|y| - polynomial growth rate.

BoundedQuantifiers: (∀x ≤ t), (∃x ≤ t).

SharplyBoundedQuantifiers: (∀x ≤ |t|), (∃x ≤ |t|).
Intuition: sharply bounded quantifiers are feasible (poly time) quantifiers.

Σb
i - and Πb

i -formulas . Count alternations of bounded quantifiers, ignoring
sharply bounded quantifiers.
The sets definable by Σp

i -formulas are precisely the Σb
i -predicates.

Themost important case is i = 1.
Here Σb

1 formulas define exactly theNP -predicates.
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Def’n. Theories S1
2 and T i

2 are arithmetic are defined with axioms defining the
non-logical symbols (the “basic” axioms) andwith

Σb
i -PIND induction axioms For Si

2:
A(0) ∧ (∀x)(A(⌊1

2x⌋) → A(x)) → (∀x)A(x).

Σb
i -IND induction axioms For T i

2 :
A(0) ∧ (∀x)(A(x) → A(x+ 1)) → (∀x)A(x).

S2 = ∪iS
i
2, and T2 = ∪iT

i
2 .

Intuition: PIND is a “feasible” (poly time) induction scheme.

All these theories can Σb
1-define the polynomial time functions, so w.l.o.g., all

polynomial time functionsmay be added to the theories.

Thm: S1
2 ⊆ T 1

2 4 S2
2 ⊆ T 2

2 4 S3
2 ⊆ · · · .
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TheWitnessingTheorems forBoundedArithmeticFragments

Def’n. A function is Σb
1-defined by a theoryR provided

R ⊢ ∀x(∃y ≤ t)Af(x, y), whereAf is a function defining the graph of f .
W.l.o.g.,R ⊢ (∀x)(∃!y)Af(x, y).

Fact. ForR one of the theories Si
2, T

i
2 , i ≥ 1, the function f maybe added as a

defined function symbol and used freely in induction axioms.

“MainThm” for S1
2 , T 1

2 .

• The Σb
1-definable functions of S1

2 are precisely the polynomial time
functions. [Buss]

• The Σb
1-definable functions of T 1

2 are precisely thePLS functions.
[Buss-Kraj́ıček]

Analogous theorems hold for i > 1 for Si
2 and T i

2 for computability at higher
levels of the polynomial time hierarchy.
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The intuition for the Witnessing Theorem for S1
2 is that Σb

1-PIND axioms can
be “unwound” in polynomial time. Some care is needed to define the notion of
witnessing correctly, since the induction is onNP -predicates.

A similar intuition applies to T 1
2 andPLS.

However,wepresentaproofbasedontheParis-Wilkie translation frombounded
arithmetic to constant-depth propositional proofs.

Remark: There is a second important method of translating from bounded
arithmetic to propositional logic, due to Cook. — This is not covered in this
talk.
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Somesimplifyingtechnical conditions

A formula is form restricted Σb
i if it is:

(∃y1 ≤ t1)(∀y2 ≤ t2) · · · (Qyi ≤ ti)(Qz ≤ |r|)B,

where B is quantifier-free. Quantifiers alternate between ∃ and ∀. Every Σb
i -

formula is equivalent to a form restricted one, provably in Si
2.

Restrictedbyparametervariables. LetP beaproof. The freevariables in the
endsequent,~a, arecalledparametervariables. Aproof is restrictedbyparameter
variables iff
(a) everyquantifier is boundedbya termthat involvesonlyparameter variables,
(b) every induction term involves only parameter variables. and
(c)every sequentwhichcontainsanon-parameter b containsa formula b ≤ t(~a)
in its antecedent.
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Theorem1. LetR beSi
2 orT i

2 , i ≥ 1. IfA is a formrestricted Σb
i -formulaand

R ⊢ A, then there is anR-proof ofA which is restricted by parameter variables
and inwhich every formula is form restricted Σb

i .

Such proofs are called restricted-Σb
i . These proofs are conveniently formed for

translation into propositional logic.

Pf: Uses free-cut elimination heavily.
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ConstantdepthpropositionalLK proofs

Syntax: Tait-style calculus. Variables: p. Literals: p, p.

Unbounded faninOR’s andAND’s:
∨

and
∧

.

A cedent Γ is set of formulas; intendedmeaning is the disjunction
∨

Γ.

Axioms: Neg: p, p Taut: Γ , where Γ is a tautology.

Rules of inference:

∨

: Γ, ϕi0 , where i0 ∈ I
Γ,

∨

i∈I ϕi

∧

: Γ, ϕi for all i ∈ I
Γ,

∧

i∈I ϕi

Weakening: Γ
Γ,∆

Cut: Γ, ϕ Γ, ϕ
Γ
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Σ′-depthof LK formulasandproofs

Definition Let S be a proof size parameter (size upper bound). The formulas
that have Σ′-depth d with respect to S are inductively defined as follows:

a. If ϕ has size ≤ logS , then ϕ has Σ′-depth 0.

b. If eachϕi has Σ′-depth d, then
∨

i∈I ϕi and
∧

i∈I ϕi have Σ′-depth (d+1).

Definition Let S be a size parameter. An LK-proof P is a Σ′-depth d proof of
size S provided:

a. P has ≤ S symbols,

b. Every formula in P has Σ′-depth d,

c. EveryTaut axiomhas size atmost logS . (Only small tautologies allowed).

Similardefinitions: Kraj́ıček[’94]of Σ-depth;Beckmann-Buss[’03]of Θ-depth.
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Conversion fromSi
2, T

i
2 toLK

Let d ≥ 1 and R be one of Sd
2 or T d

2 . Suppose A(x) is form restricted Σb
d and

R ⊢ A. We describe how to transform a restricted proof ofA into a Σ′-depth d
LK proof. W.l.o.g., x is the only parameter variable.

First step: choose an arbitrary value n ∈ N. The translation [[A]]n is a
propositional formula stating thatA(x) is true for all x such that |x| ≤ n. The
free variables of [[A]]n are variables px,i representing the i-th bit of the binary
representation of x.

For quantifier-free formulas ϕ, the formula [[ϕ]] is defined with any polynomial
size formula thatexpresses thevalueofϕ. (All functionand relation symbolsare
describable with polynomial size formulas.) Because we have the Taut axioms,
the choice of translation formula [[ϕ]] is unimportant. Note [[ϕ]] has size only
mO(1) if the free variables of ϕ are integers of length ≤ m. We will have m =
nO(1) andm < logS(n).
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Consider a sharply bounded formula (∀y ≤ |s|)B or (∃y ≤ |s|)B .
Because the term s contains only parameter variables as variables, and since the
parameter variables have at most n bits, we can find a bound ny = nO(1) such
that |s| ≤ ny . Then,

[[(∀y ≤ |s|)B]] =

ny
∧

i=0

[[y ≤ |s| → B]]/(y 7→ i). (1)

The notation “ψ/(y 7→ i)” means replace each py,j by the (constant) jth bit
of the integer i. [[(∀y ≤ |s|)B]] has size only nO(1). Thus, it has Σ′-depth 0 for

suitable S(n) = 2nO(1)
.

General bounded quantifiers translated by exactly the same construction, but

have bigger size: 2nO(1)
.

A Σb
d-formula becomes a Σ′-depth d formula for suitable S(n) = 2nO(1)

.
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To translate a cedent Γ, view it as a Tait-style cedent by moving all formulas to
right of the sequent. All non-parameter variables y1, . . . , yk are restricted by
parameter variables. So |yj| ≤ nj for some nj = nO(1).

Γ is translated into a set of cedents, one cedent for each choice of i1, . . . , ik with
each |ij| < nj . The cedents are just

[[Γ]]/(y1 7→ i1, . . . , yk 7→ ik),

where the translation is applied individually to each formula. Note: the only
variables left are px,i.

As thenext theoremstates, the translatedcedents Γ canbepieced together into
a valid proof.
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Paris-Wilkie translationtheorem

Theorem2. Let i ≥ 1. Suppose A(x) ∈ Σb
i . Let [[A]]n denote the

propositional translation ofA; [[A]]n has free variables px,i, for i < n.

a. SupposeSi
2 ⊢ A. Then there is a functionS(n) = 2nO(1)

such that, foralln,
[[A]]n has a Σ′-depth i proof of size S(n). This proof

i. has heightO(log logS(n)), and
ii. contains onlyO(1) many formulas in each cedent.

b. SupposeT i
2 ⊢ A. Thenthere is a functionS(n) = 2nO(1)

suchthat, foralln,
[[A]]n has a Σ′-depth i proof of size S(n). This proof

i. has heightO(logS(n)), and
ii. contains onlyO(1) many formulas per cedent.

[Rk: The originalW-P translation applies to Si
2(α) and T i

2(α).]
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Onecaseof theproof: translationof∧:right inference

An ∧:right inference

Γ, ϕ Γ, ψ
Γ, ϕ ∧ ψ

translates to

[[Γ]], [[ϕ]]

[[Γ]], [[ψ]]

[[ψ ∧ ϕ]], [[ϕ]], [[ψ]]
Weakening

[[Γ]], [[ψ ∧ ϕ]], [[ϕ]], [[ψ]]
Cut

[[Γ]], [[ψ ∧ ϕ]], [[ϕ]]
Cut

[[Γ]], [[ψ ∧ ϕ]]

Note that the upper right sequent is aTaut axiom.
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Anothercaseof theproof: induction rule

Consider an induction inference in P . This translates into m Cut inferences
in the LK proof, where m is the “length” of the induction. By balancing the
tree of cuts, the height (maximal number of cedents along any branch) is only
O(logm). (The induction bound t involves only parameter variables.)

IfR is Si
2, the induction inference translates into |t| = nO(1) many cuts, so the

height isO(logn).

If R is T i
2 , the induction inference translates into t = 2nO(1)

many cuts, so the
height isO(nO(1)). 2

Importantfact: AlthoughtheLK-proofsgivenbyTheorem2areexponentially
big, they are also polynomial time uniform.
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MainTheoremforS1
2

Theorem3. (Buss [’85]) Suppose A(x, y) ∈ Σb
1 and that S1

2 proves
(∀x)(∃y)A(x, y). Then there is a polynomial time function f(x) = y such
that for all x ∈ N,A(x, f(x)) holds.

Proof By Parikh, S1
2 ⊢ (∃y ≤ s(x))A(x, y). x is the parameter variable.

Applying Theorem 2(a) yields a Σ′-depth 1 proof; adding a Cut to the end of
this proof turns the proof into a refutationR of

[[∀y ≤ s(x))¬A(x, y)]]. (2)

We give a polynomial time procedure that is has as input a particular value
for x, and traverses the refutation R until it arrives at a false initial cedent. Of
necessity this false initial cedent is the cedent (2), and when it is reached, the
procedure will know a value y that falsifies the cedent. This value for y will be
the value of f(x).
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The polynomial time procedure acts as follows: it starts at the root of the proof
andtraversestheproofupward,backtrackingasneededasdescribedbelow. The
root is labeled with the empty sequent. At each stage, the procedure is at some
cedent Γ in the proof that it believes to be false. In particular, every Σ′-depth 0
formula in Γ is False. (Recall that the variables px,i are the only variables in R,
and the procedure has values for these.) Furthermore, for any formula in Γ
which is a conjunction of Σ′-depth 0 formulas, a particular conjunct is known
to be false. For the formulas which are a disjunction of Σ′-depth 1 formulas,
the procedure does not know for sure that they are false, it merely tentatively
assumes they are false.

At the beginning, the procedure is at the endsequent of R, which is the empty
cedent.

Other cases areCut inference,
∧

inference, and
∨

inference....
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If the procedure is at the lower cedent of a cut inference

Γ, ϕ Γ, ϕ
Γ

If ϕ is Σ′-depth 0, then it can be evaluated as being either True or False. If it is
true, the procedure proceeds to the left upper cedent, otherwise, it proceeds to
the right upper cedent. Otherwise,ϕ isw.l.o.g. a disjunction, and the algorithm
proceeds to the right upper cedent.

If the procedure is at the lower cedent of a
∧

-inference:

Γ, ψi , for i ∈ I
Γ,

∧

i∈I ψi

the algorithm acts as follows. By assumption, the procedure knows a value i0
such that the conjunct ψi0 is false. The algorithmproceeds to the upper cedent
Γ, ψi0 where i = i0.
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If the procedure is at the lower cedent of a
∨

-inference:

Γ, ψi0

Γ,
∨

i∈I ψi

the algorithm acts as follows. If ψi0 is false, it proceeds to the upper cedent.
However, if it is true, the algorithm has discovered a disjunct of ϕ =

∨

i∈I ψi

which is true, contradicting the tentative assumption that ϕ was false. The
procedure then backtracks down the path towards the root until it finds theCut
inference where the formula ϕ was added to the cedent. It then proceeds to the
other upper cedent of the Cut, and saves the information about which conjunct
of ϕ is false.

The run time is O(nO(1)), because there are only this many Cut’s. It thus can
terminate only at the cedent (2). When it reaches this, it knows a value for y
that falsifies it. This value of y satisfiesA(x, y). 2

19



TheMainTheoremforT i
2

PLS = Polynomial Local Search [Johnson, Papadimitriou, Yanakakis, ’88].

APLSproblem is amultivalued function f(x) defined by:

• Apolynomial bound, t(x) = 2|x|
O(1)

, on possible solutions.

• Apolynomial time cost function c(s, x) – cost of solution s.

• Apolynomial time functionN(s, x).

such that f(x) = y where y < t and c(y) ≤ c(N(s, x), x).

Theorem4. (Buss, Kraj́ıček, ’94]) Suppose A(x, y) ∈ Σb
1 and that T 1

2

proves (∀x)(∃y)A(x, y). Then there is a Polynomial Local Search (PLS)
function f(x) = y such that for all x ∈ N,A(x, f(x)) holds.

20



The proof is identical to before, based on exactly the same procedure. Now the

proceduremayneed 2nO(1)
steps, insteadof nO(1). Use the position in the proof

to define a decreasing cost function. 2

Remark: Theorems3and4bothhold if all true Πb
1-formulasareaddedasaxioms

(no change to proof needed).
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Lecture III.TalkOutline

• Logical intuitions for P 6= NP .

• Oracle results.

• Connectionswith bounded arithmetic.

• Randomization, one-way hardness.

• The state of the art: Independence via inability to count.
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A logical reason forP 6= NP ?

[Rk: “logical” reason as compared to “combinatorial” reason.]

G.Kreisel, Symp. onAutomaticDeduction, LNM#125, 1968:

“Supposewe ... have a proof system; ... the ’faith’ is that in a natural way
this will yield a feasible proof procedure for feasible theorems.

“Conjecture: Under reasonable conditions on feasibility, there is an
analogue to Gödel’s second incompleteness theorem, that is the article
of faith above is unjustified.”

2



AnotherExpertOpinion...

Here is R. Solovay’s sought for proof of “P 6= NP ”:

Proof:
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AnotherExpertOpinion...

Here is R. Solovay’s sought for proof of “P 6= NP ”:

Proof: LetM be a nonstandardmodel of Th(N).
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AnotherExpertOpinion...

Here is R. Solovay’s sought for proof of “P 6= NP ”:

Proof: LetM be a nonstandardmodel of Th(N).

Therefore P 6= NP . q.e.d.
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AnotherExpertOpinion...

Here is R. Solovay’s sought for proof of “P 6= NP ”:

Proof: LetM be a nonstandardmodel of Th(N).

(fill in the details of proof here)

Therefore P 6= NP . q.e.d.
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What“logical” reasonsare there forbelieving P 6=NP ? One is that P=NP
would make the practice of mathematics too easy: The process of proof search
could be automated (automatized) by formalizing mathematical questions
completely and then blindly search for proofs of conjectured statements. If
P = NP , this process could succeed whenever proofs are not too large. This
would be amajor change in the practice ofmathematics.

Gödel [1956 letter to von Neumann]: “... consequences of the greatest
importance. ... The mental work of a mathematician concerning Yes-No
questions could be completely replaced by amachine.”
See [Buss 1995, in Feas. Math. II] for a detailed discussion.

A related objection is that it would mean mathematics would become
completely formal, with little room left for human intuition and understanding.

The conservative viewpoint is that this would be undesirable and thus it is
deemed unlikely.
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Off-the-record comments go here.
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From Kreisel’s suggestion, one might think to try diagonal or self-referential
statements. E.g.,

“I do not have a polynomial size proof in theoryR”.

“I do not have a feasible proof.”

“Mypropositional translation does not have a poly size Frege proof.”

Etc.

These self-referential statements can be formulated, but none of these seem to
imply anything about P 6= NP .
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Another ideawouldbetofind co-NP predicates that lackpolynomial sizeproofs.

Example: Partial Consistency Statements. Let R be a theory, let k > 0.
Define

Con(k,R) ⇔ “There is noR-proof of a contradiction of length≤ k symbols.”

However, we have the following theorems:

• PA
poly

Con(k, PA). [H. Friedman, Pudlák]

• S1
2

poly
Con(k, S1

2).

• eF
poly

Con(k, eF). [Cook.]

• F
poly

Con(k,F). [Buss.]
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The idea behind the above proofs of partial consistency statement is that it
is possible to define polynomial size partial truth definitions (that is, truth
definitions for formulas of length≤ k).

[Buss’85] suggestsadifferentapproach: LetJR bethe jumpof thetheoryR and
bedefined tobe the theoryR plus a truthpredicate forR-formulas andallowing
the truth definition to be used in induction formulas.

Question: S1
2

poly
Con(k, JS1

2
)?

If not, S1
2 cannot prove P = co-NP.

RelatedQuestion: S1
2

poly
Con(k, ZF )?
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IndependenceofP vsNP?

Traditional “independence” results include:

a. Oracle results [Baker-Gill-Solovay]

b. Natural proofs. [Razborov-Rudich]

Most present day proof methods for lower bounds fall into one of these
categories.

What about independence from a formal theory, e.g., bounded arithmetic?
Potentially could give concrete measurement of the hardness of proving
P 6= NP.
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IndependenceofP vsNP?

There are several ways to formalize whether bounded arithmetic can prove
P = NP, or the collapse of the polynomial hierarchy (PH ↓).

(1). Does S2 prove each bounded formula is expressible in Σb
i , for somefixed i?

Notation: S2 ⊢ (PH ↓)

Thm.
(a) [KPT] If Si

2 ≺Σb
i
T i

2 then PH ↓. Thus, if S2 ↓, then PH ↓.

(b) [B,Z] S2 ⊢ (PH ↓) iff S2 ↓.

Notation: S2 ↓ means S2 is finitely axiomatized, or equivalently, that the
hierarchy Si

2 collapses.

Unfortunatelywe have no idea how to show ¬(S2 ↓). If we could, this would say
something about the logical difficulty of proving P 6= NP.
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(2) Another approach: Show S2 cannot prove super-polynomial lower bounds
on circuit size....

One simple idea for independence from S1
2 : Let C denote a function computed

by aBoolean circuit, ϕ a proposition formula, τ a truth assignment. Define

SAT (ϕ) :⇔ (∃τ ≤ ϕ)TRU(ϕ, τ).

Assuming P 6= NP is it possible to prove that

S1
2 0 ∀C∃ϕ∃τ [TRU(ϕ, τ) ∧ ¬SAT (ϕ,C(ϕ))] ?

Motivation: given C , it might be hard to find ϕ and τ ; contradicting the
polynomial timewitnessing theorem for S1

2 .

14



But this is not likely to work. Standard cryptographic assumptions about the
existence of pseudorandom number generators imply that it is easy to find hard
instances of satisfiability.

Let f : {0, 1}n → {0, 1}n be a hard one-way function.

Let ϕ(x, y) express f(x) = y . For a fixed y0 = f(x0), ϕ(x) := ϕ(x, y0) is
satisfiable (by x = x0).

But under commonly accepted cryptographic conjectures there are polynomial
time computable functions f for which there is no feasible algorithm (or
polynomial size circuit) that computes x from y .

GivenC , chosex0 at random,andsetϕ = ϕ(x0, y) and τ = x0. Thiswitnesses
the formula

∃ϕ∃τ [TRU(ϕ, τ) ∧ ¬SAT (ϕ,C(ϕ))].
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A related cryptographic assumption is:

Strong pseudo-random number generator (SPRNG) conjecture. There
are polynomial time computable functions f : {0, 1}n → {0, 1}2n such that
thevalues f(x) arecomputationally indistinguishable fromrandomvalues from
{0, 1}n.

Thm [Razborov] Fix any polynomial hierarchy predicate A(x). Assume that
a strong pseudo-random number generator (SPRNG) conjecture holds. Then
S2

2(α) cannot prove any superpolynomial lower bound on the size of a circuit
(coded by α) forA(x).

The predicate α serves to encode a circuit for A(x). Note S2
2(α) can use IND

induction on the size of the circuit, but not its Gödel number.

Proof ideawastotheuseconservativityofS2
2(α) overT 1

2 (α),witnessing inPLS,
interpolation, and then natural proof independence of Razborov-Rudich which
depends on SPRNG.
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However, a subsequent ideabyRazborovandan independence resultofKraj́ıček
give amuch strong result (and a less satisfying result).

Thm [essentiallyRazborov,Kraj́ıček] (NoSPRNGassumption.) S2
2(α) cannot

prove any superpolynomial lower bound on the size of a circuit forA(x).

Proof idea:

Part 1. Claim: [K] Let S2
2(h) + ¬PHP (h) be the theory S2

2 augmentedwith a
new function symbol h(x) plus an axiom that states h(x) is a one-one mapping
from [2n] onto [nω(1)]. Then S2

2(h) is consistent. This is true even if there a
function symbol for h−1 aswell.

Pf. Based on the conservativity of S2
2 over T 1

2 and the PLS witnessing theorem
for T 1

2 . A diagonal type of argument that thwarts anyPLSalgorithm seeking an
explicit violation of the pigeonhole principle.
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Part 2, [R] Use the inability to count. Given the trivial CNF circuit for
satisfiability,which is exponentially big, of size 2n, use h to convert it to a circuit
of size nω(1). Hence it is consistent with S2

2(α) that there are circuits of size
nω(1) for satisfiability.

The size nω(1) is barely superpolynomial and can be smaller than any particular
superpolynomial bound.

[This proof idea was first used by Razborov to prove the independence of
superpolynomial circuit size from resolution.]
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One last idea [Kraj́ıček, ABRW]:

LetR be a proof system, e.g., R is the Frege proof system.

Let f : {0, 1}n → {0, 1}2n be a suitably strong pseudo-random number
generator.

Conjecture. Choose y at random. Then

¬(∃x)(f(x) = y)

does not (always) have polynomial size proofs.
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Conclusions

Our best lower bound results for separating P from NP amount to exploiting
theories that are so weak that they cannot count well enough to separate
exponential size fromnear polynomial time.

One more idea: return to Razborov-Rudich natural proofs. These in effect say
that a strong version of P 6= NP (theSPRNGconjecture) implies the hardness
of finding proof that P 6= NP . Perhaps this can be extended to give better
results. (??? —One can always hope!)
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