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Frege proofs

Frege proofs are the usual “textbook” proof systems for
propositional logic, using modus ponens as their only rule of
inference.

Connectives: ∧, ∨, ¬, and →.

Modus ponens: A A → B
B

Axioms: Finite set of axiom schemes, e.g.: A ∧ B → A

Defn: Proof size is the number of symbols in the proof.
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Frege proofs are the usual “textbook” proof systems for
propositional logic, using modus ponens as their only rule of
inference.

Connectives: ∧, ∨, ¬, and →.

Modus ponens: A A → B
B

Axioms: Finite set of axiom schemes, e.g.: A ∧ B → A

Extended Frege proofs allow also the extension axiom, which lets
a new variable x abbreviate a formula A:

x ↔ A

Defn: Proof size is still the number of symbols in the proof.
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Soundness and Completeness: A formula A is provable with a
Frege (or, extended Frege) proof if and only if A is a tautology.
That is, if and only if A is true for all Boolean truth assignments.

Open Question: Is there a polynomial bound on the size of
shortest (extended) Frege proofs of A as a function of the size
of A?
If yes, then NP = coNP. [Cook-Reckhow’74].

Open Question: Do Frege systems polynomially simulate

extended Frege systems?

This is analogous to the open question of whether Boolean circuits
can be converted into equivalent polynomial size Boolean formulas.
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The pigeonhole principle as a propositional tautology

Let [n] = {0, . . . , n − 1}.
Let i ’s range over members of [n+1] and j ’s range over [n].

Totni :=
∨

j∈[n]

xi ,j . “Total at i”

Injnj :=
∧

0≤i1<i2≤n

¬(xi1,j ∧ xi2,j). “Injective at j”

PHPn+1
n := ¬

(

∧

i∈[n+1]

Totni ∧
∧

j∈[n]

Injnj

)

.

PHPn+1
n is a tautology.
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Cook-Reckhow’s eF proof of PHPn+1
n

Code the graph of f : [n + 1] → [n] with
variables xi ,j indicating that f (i) = j .

PHPn+1
n (~x): “f is not both total and injective”

Use extension to introduce new variables

xℓ−1
i ,j ↔ xℓi ,j ∨ (xℓi ,ℓ−1 ∧ xℓℓ,j).

for i ≤ ℓ, j < ℓ; where xni ,j ↔ xi ,j .

Prove, for each ℓ that

¬PHPℓ+1
ℓ (~xℓ) → ¬PHPℓ

ℓ−1(~xℓ−1).

Finally derive PHPn+1
n (~x) from PHP2

1(~x1). � 0

1

i

0

1

j

n−2

n−1

n−2

n−1

n

xn−1
i,j
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Theorem (Cook-Reckhow ’79)

PHPn+1
n has polynomial size extended Frege proofs.

Theorem (B ’87)

PHPn+1
n has polynomial size Frege proofs.

Theorem (B ’15)

PHPn+1
n has quasipolynomial size Frege proofs.
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Cook-Reckhow’s proof of PHPn+1
n as a Frege proof [B’1?]

Let G ℓ be the directed graph with:

edges (〈i , 0〉, 〈j , 1〉) such that xi ,j holds, and

edges (〈i , 1〉, 〈i+1, 0〉) such that i≥ℓ (blue edges).

For i ≤ ℓ, j < ℓ, let ϕℓ
i ,j express

“Range node 〈j , 1〉 is reachable
from domain node 〈i , 0〉 in G ℓ”.

ϕℓ
i ,j is a quasi-polynomial size formula via an NC 2

definition of reachability.

For each ℓ, prove that

¬PHPℓ+1
ℓ (~ϕℓ) → ¬PHPℓ

ℓ−1(~ϕℓ−1).

Finally derive PHPn+1
n (~x) from PHP2

1(~ϕ1).�
0

1

i

0

1

j

ℓ

n−1

ℓ+1

n

ϕℓ−1
i,j
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Thus, PHPn+1
n no longer provides evidence for Frege not

p-simulating eF .

[Bonet-B-Pitassi’94] “Are there hard examples for Frege?”:
examined candidates for separating Frege and eF . We found very
few:

Cook’s AB = I ⇒ BA = I , Odd-town theorem, etc.
[Hrubes-Tzameret’15]

Frankl’s Theorem [Aisenberg-B-Bonet’15]

[Ko lodziejczyk-Nguyen-Thapen’11]: Local improvement principles,
mostly settled by [Beckmann-B’14], RLI2 still open.

[Crãciun-Istrate’14] suggested the Kneser-Lovász theorem as hard
for eF . (!)
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Kneser graph on n.

Def’n: Fix n > 1 and 1 ≤ k < n. The (n, k)-Kneser graph has
(

n
k

)

vertices: the k-subsets of [n]. The edges are the pairs

{S ,T} s.t. S ∩ T = ∅, S ,T ⊂ [n], |S | = |T | = k .

Kneser-Lovász Theorem: [Lovász’78] There is no coloring of the
(n, k)-Kneser graph with ≤ n− 2k + 1 colors.

Usual proof involves the octahedral Tucker lemma, or other
principles from topology. There is no known way to formalize these
topology-based arguments with short propositional proofs, even in
extended Frege systems.
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Definition (Kneser-Lovász tautologies)

Let n ≥ 2k > 1, and let m = n − 2k + 1 be the number of colors.
For S ∈

(

n
k

)

and i ∈ [m], the propositional variable pS,i has the
intended meaning that vertex S of the Kneser graph is assigned the
color i . The Kneser-Lovász principle is expressed propositionally by

∧

S∈(nk)

∨

i∈[m]

pS,i →
∨

S,T∈(n
k)

S∩T=∅

∨

i∈[m]

(pS,i ∧ pT ,i) .

Theorem [ABBCI’15]: Fix a value for k . The Kneser-Lovász
Theorem has polynomial size extended Frege proofs, and
quasipolynomial size Frege proofs.

—
J. Aisenberg, M.L. Bonet, B., A. Crãciun, G. Istrate; ICALP ’15
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The Frege proof is based on a new counting proof.

Proof sketch. Assume there is a coloring with n − 2k + 1 colors.
Let ℓ be a color, and Pℓ the set of k-subsets of n with color ℓ.

Pℓ is star-shaped if the intersection of its members is non-empty.

Claim: If Pℓ is not star-shaped, then |Pℓ| < k2
(

n−2
k−2

)

.

Pf: on next slide ... �

For n large enough (n > k4), there are
(

n
k

)

> (n− 2k + 1) · k2
(

n−2
k−2

)

k-subsets of n. Thus, some color Pℓ is star-shaped.

Remove this color ℓ and the central element of Pℓ. This gives a
(n − 1) − 2k + 1 coloring of the (n−1, k)-Kneser graph.
Proceed by induction on n until n < k4. Now there are only finitely
colorings to consider; this final case can be proved by exhaustive
enumeration by a constant size Frege proof.
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Let Pℓ be a non-star-shaped color:

Fix some S = {a1, . . . , ak} ∈ Pℓ.

For each ai , pick some Si ∈ Pℓ s.t. ai /∈ Si .
(The Si ’s exist, since Pℓ is not star-shaped.)

Can specify arbitrary T ∈ Pℓ, by:

Specifying an ai ∈ T , (since S ∩ T 6= ∅.)

Specifying an a′ ∈ Si ∩ T .

Specifying the remaining k − 2 elements of T .

There are ≤ k · k ·
(

n−2
k−2

)

= k2
(

n−2
k−2

)

possible specifiations.

Thus |Pℓ| ≤ k2
(

n−2
k−2

)

.
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The above argument can be straightforwardly formulated as
polynomial-size extended Frege proofs by:

Straightforward counting (possible with poly size Frege proofs
[B’87]),

Defining the (n−1, k)-Kneser graph from the (n, k)-Kneser
graph using the extension rule,

Showing that the coloring for the (n, k)-Kneser graph induces
a coloring for the (n−1, k)-Kneser graph. (No further uses of
the extension rule needed.)

There are O(n) rounds of extension.
So this is only an extended Frege proof: The extension axioms
cannot be “unwound” without causing exponential blowup in
formula size.
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To get quasipolynomial size Frege proofs, need to have only
O(log n) rounds of extension rules.

Proof idea: 1. Non-star-shaped Pℓ’s have size < k2
(

n−2
k−2

)

.

2. Star-shaped Pℓ’s have size ≤
(

n−1
k−1

)

.

Lemma: Let n > 2k3(k − 1/2). Any coloring of the (n, k)-Kneser
graph has at least 1

2k n star-shaped colors.

Proof is simple counting.

Eliminate, fraction 1/(2k) of the colors in a single step — i.e.,
star-shaped colors. (One round of extension axioms.)

After O(log n) many rounds, have reduced n to a constant,
n < 2k3(k − 1/2).

Unwinding the extension axioms gives quasipolynomial size Frege
proofs. QED
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The Octahedral Tucker Lemma

Definition (Octahedral ball Bn)

Bn := {(A,B) : A,B ⊆ [n] and A ∩ B = ∅}.

Definition (Antipodal)

A mapping λ : Bn → {1,±2, . . . ,±n} is antipodal if λ(∅, ∅) = 1,
and for all other (A,B) ∈ Bn, λ(A,B) = −λ(B ,A).

Definition (Complementary)

(A1,B1) and (A2,B2) in Bn are complementary w.r.t. λ iff
A1 ⊆ A2, B1 ⊆ B2 and λ(A1,B1) = −λ(A2,B2).

Theorem (Tucker lemma)

If λ : Bn → {1,±2, . . . ,±n} is antipodal, then there are two

elements in Bn that are complementary.
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Truncated Tucker Lemma

Definition (Truncated octahedral ball Bn
k)

Bn
k :=

{

(A,B) : A,B ∈
(

n
k

)

∪ {∅}, A ∩ B = ∅ & (A,B) 6= (∅, ∅)
}

.

Definition (� and k-Complementary)

A1 � A2 iff (A1 ∪ A2)≤k = A2.

(A1,B1) � (A2,B2) iff A1�A2, B1�B2, & Ai∩Bj=∅, ∀i , j .

(A1,B1) and (A2,B2) are k-complementary w.r.t. λ if
(A1,B1) � (A2,B2) and λ(A1,B1) = −λ(A2,B2).

Theorem (Truncated Tucker)

Let n ≥ 2k > 1. If λ : Bn
k → {±2k . . . ,±n} is antipodal, then

there are two elements in Bn
k that are k-complementary.
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 R.A. Reckhow, PhD thesis, 1975 

Cook’s Program: Prove NP≠coNP 
by proving there is no polynomially 
bounded propositional proof system. 
 
 
As of 1975: Systems above the line 
were not known to not be 
polynomially bounded. 



 R.A. Reckhow, PhD thesis, 1975 

As of 2014, proof systems 
below the line are known to 
not be polynomially bounded: 

Constant-depth (AC0) Frege 
[Ajtai’88; Pitassi-Beame-Impagliazzo’93;  
Krajicek-Pudlak-Woods’95] 
 
Constant-depth Frege  
with counting mod m axioms 
[Ajtai’94;  
Beame-Impagliazzo-Krajicek-Pitassi-Pudlak’96; B-
Impagliazzo-Krajicek-Pudlak-Razborov-Sgall’96; 
Grigoriev’98] 
 
Cutting Planes 
[Pudlak’97] 
 
Nullstellensatz 
[B-Impagliazzo-Krajicek-Pudlak-Razborov-Sgall’96; 
Grigoriev’98] 
 
Polynomial calculus 
[Razborov’98; Impagliazzo-Pudlak-Sgall’99;  
Ben-Sasson-Impagliazzo’99;  
B-Grigoriev-Impagliazzo-Pitassi’96;  
B-Impagliazzo-Krajicek-Pudlak-Razborov-Sgall’96; 
Alekhnovich-Razborov’01] 

[Haken’86] 
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Thank You!
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