
Introduction to Bounded Arithmetic I

First- and Second-Order Theories

Sam Buss

Workshop on Proof Complexity
Special Semester on Complexity
St. Petersburg State University

May 15, 2016

Sam Buss Tutorial, Bounded Arithmetic

Bounded arithmetic gives a rich perspective on and a different
approach to fundamental questions in computational complexity
from the point of view of mathematical logic.

It joins the study of

feasible computability and complexity

with questions about

provability and axiomatizability.

Sam Buss Tutorial, Bounded Arithmetic

Bounded Arithmetic Theories S i
2 and T i

2 and more.

Feasible fragments of Peano arithmetic, and Primitive
Recursive Arithmetic. Formulated with restricted induction
axioms.

Have close connections to “feasible” complexity classes (e.g.,
P, polynomial time), and near-feasible complexity classes
(e.g., the polynomial time hierarchy or PSPACE).

Have close connections to propositional proof systems.

Have close connections to open problems in computational
complexity. (E.g., P versus NP, the polynomial time
hierarchy, the existence of pseudorandom number generators,
and the hardness of NP search problems).

Sam Buss Tutorial, Bounded Arithmetic

Bounded arithmetic and bounded quantifiers

Language of bounded arithmetic includes:

0, S , +, ·, ≤, |x |, ⌊12x⌋, x#y , MSP(x , i).

where

|x | := length of binary representation of x .

x#y := 2|x |·|y |; so |x#y | = |x | · |y |+ 1.
MSP(x , i) := ⌊x/2i ⌋. (“most significant part”)

Symbols for Peano Arithmetic plus:

x#y gives polynomial growth rate functions.

MSP gives simple sequence coding using binary
representation.

|x | and ⌊12x⌋ - facilitate “feasible” forms of induction.

Sam Buss Tutorial, Bounded Arithmetic

Definition

Bounded Quantifier: of the form (∀x≤t) or (∃x≤t).

Sharply Bounded Quantifier: of the form (∀x≤|t|) or
(∃x≤|t|).

Definition

A formula is bounded or sharply bounded provided all its
quantifiers are bounded or sharply bounded (resp.).

Definition (Quantifier alternation classes)

∆b
0 = Σb

0 = Πb
0 : Sharply bounded formulas

Σb
i+1: Closure of Πb

i under existential bounded quantification and
arbitrary sharply bounded quantification, modulo prenex
operations.

Πb
i+1 is defined dually.

Sam Buss Tutorial, Bounded Arithmetic

Connections with polynomial time and the polynomial time
hierarchy:

All terms t(x) have polynomial growth rate: |t(x)| = |x |O(1).

Sharply bounded formulas (∆b
0 = Σb

0 = Πb
0) are polynomial

time predicates.

Σb
1-formulas define exactly NP properties.

Πb
1-formulas define exactly coNP properties.

Σb
i - and Πb

i -formulas define exactly the predicates in the
classes Σp

i and Πp
i at the i -th level of the polynomial time

hierarchy.

Sam Buss Tutorial, Bounded Arithmetic

Why include # (smash)?

Gives terms of polynomial growth rate; hence connections
with the polynomial time hierarchy.

Gives the growth rate needed for convenient arithmetization
of metamathematics. (E.g., the operation of substitution
requires polynomial growth rate.)

Gives a quantifier exchange property (together with MSP)

(∀x<|t|)(∃y<s)A(x , y) → (∃w < t#s)(∀x<|t|)A(x , (w)x)

for suitable Gödel decoding function (·)x

Sam Buss Tutorial, Bounded Arithmetic

Axioms for bounded arithmetics:

Basic: A set of open (quantifier-free) statements defining simple
properties of the function symbols. For example,

x + (y + z) = (x + y) + z MSP(x ,S(i)) = ⌊12MSP(x , i)⌋.

Induction axioms: Letting A range over Φ-formulas,

Φ-IND: A(0) ∧ (∀x)(A(x) → A(x+1)) → (∀x)A(x).

Φ-PIND: A(0) ∧ (∀x)(A(⌊12x⌋) → A(x)) → (∀x)A(x).

Φ-LIND: A(0) ∧ (∀x)(A(x) → A(x+1)) → (∀x)A(|x |).

Φ-PIND and Φ-LIND are “polynomially feasible” versions of
induction.

Sam Buss Tutorial, Bounded Arithmetic

The theories S i
2 and T

i
2

Definition (Fragments of bounded arithmetic, B’85)

S i
2: Basic + Σb

i -PIND.
T i
2: Basic + Σb

i -IND.

S2 = ∪iS
i
2 and T2 = ∪iT

i
2.

Note: T2 is essentially I∆0 +Ω1. [Parikh’71, Wilkie-Paris’87]

Theorem (B’85, B’90)

(a) S1
2 ⊆ T 1

2 4∀Σb
2
S2
2 ⊆ T 2

2 4∀Σb
3
S3
2 ⊆ · · ·

(b) Thus, S2 = T2.

Sam Buss Tutorial, Bounded Arithmetic

Proof that T i
2 ⊃ S

i
2:

Lemma

Σb
i -PIND follows from Σb

i -LIND (over Basic, i ≥ 1).

Proof: (Sketch) To prove PIND for A(x), (with c a free variable)

A(0) ∧ (∀x)(A(⌊12x⌋) → A(x)) → A(c)

use LIND on B(i) := A(t(i)) for t(i) := MSP(c , |c |−i).
For this, note B(0) and B(|c |) are equivalent to A(c) and A(0).
Also, t(i) = ⌊12 t(i+1)⌋, so (∀i)(B(i) → B(i+1)) follows from
(∀x)(A(⌊12x⌋) → A(x)). �

Corollary

S i
2 ⊂ T i

2, for i ≥ 1.

Sam Buss Tutorial, Bounded Arithmetic

Provably total functions and Σb
i -definable functions

Definition

A function f : N → N is provably total in a theory R provided
there is a formula Af (x , y) satisfying

Af (x , y) defines the graph of f (x) = y

R proves (∀x)(∃!y)Af (x , y)

Af is polynomial time computable.

Definition

f is Σb
1-definable by R , provided there is a Σb

1-formula A(x , y)
such that

R ⊢ (∀x)(∃y≤ t)A(x , y) for some term t.

R ⊢ (∀x , y , y ′)(A(x , y) ∧ A(x , y ′) → y = y ′).

A(x , y) defines the graph of f .

“Σb
i -definable” is defined similarly, but allowing A ∈ Σb

i .

Sam Buss Tutorial, Bounded Arithmetic

Theorem

Any Σb
1-definable function in S i

2 or T i
2 can be introduced

conservatively into the language of the theory with its defining
axiom, and be used freely in induction formulas.

Theorem (B’85)

S1
2 can Σb

1-define every polynomial time function.

(The converse holds too.)

Hence, we can w.l.o.g. assume that all polynomial time functions
are present in the languages of our theories of bounded arithmetic.

Sam Buss Tutorial, Bounded Arithmetic

Similar definitions and results hold for predicates:

Definition

A predicate P is ∆b
1-definable in R provided there are a

Σb
1-formula A and a Πb

1-formula B which are R-provably equivalent
and which define the predicate P .

Theorem (B’85)

Every polynomial time predicate is ∆b
1-definable by S1

2 .

(Again, a converse holds.)

Thus, every polynomial time predicate can be conservatively
introduced to S i

2 or T i
2 with its defining axioms, and used freely in

induction axioms.

Sam Buss Tutorial, Bounded Arithmetic

Main Theorem for S1
2

The converses of the last theorems also hold: S1
2 can Σb

1-define
exactly the polynomial time functions.

Theorem (Main Theorem for S1
2 , B’85)

Suppose f is Σb
1-defined by S1

2 . Then f is computable in
polynomial time.

In fact, S1
2 can prove f is computed by a polynomial time Turing

machine.

The corresponding theorem for predicates:

Theorem

The ∆b
1-definable predicates of S1

2 are precisely the predicates that
are S1

2 -provably in P.

These show S1
2 has proof-theoretic strength corresponding to

polynomial time computation.

Sam Buss Tutorial, Bounded Arithmetic

The proof of the “Main Theorem for S1
2” uses a “witnessing”

argument.

Applying cut elimination, there is a sequent calculus proof P
of the sequent

→(∃y≤t(c))A(c , y).

in which every formula is Σb
1.

The sequent calculus proof P can be read as a computer
program for computing a y as a function c , together with a
proof of correctness of the program.

The program has polynomial runtime.

The PIND inferences in the proof P correspond to for-loops.

The next three slides spell out a few more details...

Sam Buss Tutorial, Bounded Arithmetic

Special subclasses of prenex formulas:

Strict Σb
i formulas (sΣb

i): Of the form

(∃x1≤t1)(∀x2≤t2) · · · (Qxi≤ti)B(~x),

where B is sharply bounded. (And subformulas of these.)

Sharply strict Σb
i formulas (ssΣb

i): Of the form

(∃x1≤t1)(∀x2≤t2) · · · (Qxi≤ti)(Qxi+1≤|ti+1|)B(~x),

where B is quantifier free. (And subformulas of these.)

Proposition:

Every Σb
i formula is equivalent to an ssΣb

i formula (provably
in S1

2).

S i
2 may be equivalently formalized with ssΣb

i -PIND (i ≥ 1).

Sam Buss Tutorial, Bounded Arithmetic

To prove the witnessing theorem, by free-cut elimination, it suffices
to consider sequent calculus proofs in which every formula is an
ssΣb

i -formula.

Definition

Let A(~c) be ssΣb
i . The predicate WitA(~c , u) is defined so that

If A is (∃x≤t)B(~c, x), B ∈ ∆b
0 , then WitA(~c , u) is the formula

u ≤ t ∧ B(~c , u).

If A is in ∆b
0 , then WitA(~c , u) is just A(~c).

We have immediately

Fact: A(~c) ↔ (∃u)WitA(~c , u).

Fact: WitA is a ∆b
0-formula.

Sam Buss Tutorial, Bounded Arithmetic

Theorem (Witnessing Lemma)

If Γ→∆ is an S1
2 -provable sequent of ssΣb

1 formulas with free
variables ~c, then there is a function f (~c , ~u) which is Σb

1-definable
in S1

2 and computable in polynomial time such that S i
2 proves

∧

γi∈Γ

Witγi (~c , ui)→
∨

δj∈∆

Witδj (~c , f (~c , ~u)).

The witnessing lemma is proved by induction on the number of
lines in a free-cut free S1

2 -proof P of Γ→∆.

The Main Theorem for S1
2 is an immediate corollary. �

Sam Buss Tutorial, Bounded Arithmetic

Generalizations to i > 1.

Theorem (B’85)

Let i ≥ 1. S i
2 can Σb

i -define every function which is polynomial
time computable with an oracle from Σp

i−1.

Recall that for i = 1 this gave just the polynomial time functions.

Conversely:

Theorem (Main Theorem for S i
2, B’85)

Let i ≥ 1. Suppose f is Σb
i -defined by S i

2. Then f is computable in

PΣp
i−1, that is, in polynomial time with an oracle for Σp

i−1.

Sam Buss Tutorial, Bounded Arithmetic

Recall:
S1
2 ⊆ T 1

2 4∀Σb
2
S2
2 ⊆ T 2

2 4∀Σb
3
S3
2 ⊆ · · ·

Theorem (B’90)

Let i ≥ 1.

1. S i+1
2 is ∀∃bi+1-conservative over T i

2.

2. In particular, T i
2 can Σb

i+1 define precisely the functions in

PΣb
i .

Proof idea:

First show that T i
2 can Σb

i+1 define the functions in PΣb
i .

Second, show that T i
2 can prove (each instance of) the

Witnessing Lemma for S i+1
2 .

Sam Buss Tutorial, Bounded Arithmetic

So far, we have characterized the Σb
1-definable functions of only S1

2 .
For T i

2 and S i+1
2 , we have characterized only the Σb

i+1-definable
functions.
We’ll address this for T 1

2 next.

One extra theorem for Part I.a:

Theorem (Kraj́ıček-Pudlák-Takeuti’91, B’95, Zambella’96)

If T i
2 = S i+1

2 , then the polynomial time hierarchy collapses
(provably) — to Σp

i+1/poly and to B(Σb
i+2).

Sam Buss Tutorial, Bounded Arithmetic

Pause

Sam Buss Tutorial, Bounded Arithmetic

Part I.b: T 1
2 and PLS

Sam Buss Tutorial, Bounded Arithmetic

Polynomial Local Search (PLS)

Inspired by Dantzig’s algorithm and other local search algorithms:

Definition (JPY’88.)

A PLS problem consists of polynomial time functions: N(x , s),
i(x), and c(x , s), polynomial time predicate F (x , s), and

polynomial bound b(x) ≤ 2|x |
O(1)

such that

0. ∀x(F (x , s) → s ≤ b(x)).

1. ∀x(F (x , i(x))).

2. ∀x(N(x , s) = s ∨ c(x ,N(x , s)) < c(x , s)).

3. ∀x(F (x , s) → F (x ,N(x , s))).

The input is x .
A solution is a point s such that F (x , s) and N(x , s) = s.

Thus, a solution is a local minimum.

Sam Buss Tutorial, Bounded Arithmetic

Polynomial Local Search (PLS) — and more generally, any
Σb
1-definable function of a theory of bounded arithmetic —

are special kinds of TFNP, Total NP Search, Problems:

Definition (Poljak-Turźık-Pudlák’82, JPY’88, Papadimitriou’94)

TFNP, the class of Total NP Functions is the set of polynomial
time relations R(x , y) such that R(x , y) implies |y | = |x |O(1) and
such that R is total, i.e., for all x , there exists y s.t. R(x , y).

Sam Buss Tutorial, Bounded Arithmetic

T
1
2 and PLS [B-Kraj́ıček’94]

A Polynomial Local Search PLS is formalized in S1
2 provided its

feasible set, initial point function, neighborhood function, and cost
function are Σb

1-defined (as polynomial time functions).

Theorem

T 1
2 can prove that any (formalized) PLS problem is total.

Proof: By Σb
1-minimization, T 1

2 can prove there is a minimum
cost value c0 satisfying

(∃s ≤ b(x))(F (x , s) ∧ c(x , s) = c0).

Choosing s that realizes the cost c0 gives either a solution to the
PLS problem or a place where the PLS conditions are violated. �

Open: Can T 1
2 witness PLS problems using single-valued

Σb
1-definable functions?

Sam Buss Tutorial, Bounded Arithmetic

Theorem (B-Kraj́ıček’94)

If A ∈ Σb
1 and T 1

2 ⊢ (∀x)(∃y)A(x , y), then there is a PLS

problem R such that T 1
2 proves

(∀x)(∀y)(R(x , y) → A(x , (y)1)).

If A ∈ ∆b
1 , then can replace “(y)1” with just “y”.

This gives an exact complexity characterization of the
∀Σb

1-definable functions of T 1
2 , in terms of PLS-computability.

Namely:

Theorem

The Σb
1-definable (multi)functions of T 1

2 are precisely the
projections of PLS functions.

Sam Buss Tutorial, Bounded Arithmetic

Theorem (Witnessing Lemma)

If Γ→∆ is a T 1
2 -provable sequent of ssΣb

1 formulas with free
variables ~c, then there is a PLS problem R(〈~c , ~u〉, v) so that T 1

2

proves
WitΓ(~c , ~u) ∧ R(〈~c , ~u〉, v) → Wit∆(~c , v).

Proof idea: Use a free-cut free T 1
2 -proof, proceed by induction on

number of inferences in the proof. Arguments are similar to to
what was used to prove the witnessing lemma for S i

2 (i = 1 case).
Most cases just require closure of PLS under polynomial time
operations. However, induction (Σb

1-IND inference) now requires
exponentially long iteration: this is handled via the exponentially
many possible cost values. �

The Theorem generalizes to i > 1 for T i
2 with PLS

Σb
i−1. We later

discuss further improvements on this.

Sam Buss Tutorial, Bounded Arithmetic

Pause

Sam Buss Tutorial, Bounded Arithmetic

Part I.c: Second order theories U1
2 and V 1

2

Sam Buss Tutorial, Bounded Arithmetic

We now consider theories of bounded arithmetic formulated in a
second-order language.

Second-order variables X ,Y ,Z , . . . or α, β, γ, These range
over sets of integers.

Viewed computationally, such an X can be viewed as an
oracle.

Notation: t∈X is usually written as X (t).

Second-order variables implicitly have polynomial bounds on
their members. This corresponds to the fact that there is a
polynomial upper bound on the size of oracle queries to X .

Sam Buss Tutorial, Bounded Arithmetic

Relativized versions of S i
2 and T i

2

Definition (Σb
i (α) and Πb

i (α))

Σb
i (α) and Πb

i (α) are defined exactly like Σb
i and Πb

i but now
allowing atomic formulas α(t).

Definition

S i
2(α) is: Basic + Σb

i (α)-PIND.

T i
2(α) is: Basic + Σb

i (α)-IND.

S2(α) = T2(α) = ∪iT
i
2(α).

Theorem

The Σb
1(α)-definable functions of S1

2 (α) are precisely the
functions in P

α (so α is an oracle).

The Σb
1(α)-definable functions of T 1

2 (α) are precisely the
projections of PLSα functions.

Sam Buss Tutorial, Bounded Arithmetic

A Hierarchy of Second-Order Formulas.

Definition

The Σ1,b
0 = Π1,b

0 formulas are the formulas with bounded first
order quantifiers, but no unbounded quantifiers and no
second-order quantifiers.

(For i ≥ 0.) The class of Σ1,b
i+1 contains the formulas of the

form (∃~X)A(~X) for A in Π1,b
i . We also close under

conjunction and disjunction.

The class of Π1,b
i+1-formulas is defined dually.

Informally: We count second-order quantifiers, disregard
first-order quantifiers, and disallow unbounded quantifiers.

Remark: The Σ1,b
1 -formulas define exactly the predicates in

NEXPTIME (nondeterministic exponential time).

Sam Buss Tutorial, Bounded Arithmetic

The theories U1
2 and V

1
2

Definition

U1
2 is Basic+Σ1,b

0 -CA + Σ1,b
1 -PIND.

V 1
2 is Basic+Σ1,b

0 -CA + Σ1,b
1 -IND.

where Σ1,b
0 -CA (Comprehension on bounded formulas) is

(∃α)[(∀x)(α(x) ↔ A(x , ~y , ~β))],

for all Σ1,b
0 -formulas A(x , ~y , ~β).

Theorem (B’85)

The Σ1,b
1 -definable functions

of U1
2 are precisely the PSPACE-functions,

of V 1
2 are precisely the EXPTIME-functions.

Sam Buss Tutorial, Bounded Arithmetic

Summary of theories above

Definability
Theory Axioms Definable functions type

S1
2 Σb

1-PIND Poly. time (P) Σb
1-definable

T 1
2 Σb

1-IND Poly. Local Search (PLS) Σb
1-definable

U1
2 Σ1,b

1 -PIND PSPACE Σ1,b
1 -definable

V 1
2 Σ1,b

1 -IND EXPTIME Σ1,b
1 -definable

S i
2 Σb

i -PIND P
Σb

i−1 Σb
i -definable

T i
2 Σb

i -IND PLS
Σb

i−1 Σb
i -definable

S i+1
2 and T i

2 have the same Σb
i -definable functions and the same

Σb
i+1-definable functions.

Sam Buss Tutorial, Bounded Arithmetic

Pause

Sam Buss Tutorial, Bounded Arithmetic

Introduction to Bounded Arithmetic II
Translations to Propositional Logic

Sam Buss

Workshop on Proof Complexity
Special Semester on Complexity
St. Petersburg State University

May 15, 2016

Sam Buss Tutorial, Bounded Arithmetic

Next topics:

Translations from bounded arithmetic to propositional logic

“Cook-style” translations.
“Paris-Wilkie style” translations.

Sam Buss Tutorial, Bounded Arithmetic

Frege proofs

Frege proofs are the usual “textbook” proof systems for
propositional logic, using modus ponens as their only rule of
inference.

Connectives: ∧, ∨, ¬, and →.

Modus ponens (MP): A A → B
B

Axioms: Finite set of axiom schemes, e.g.: A ∧ B → A

Defn: Proof size is the number of symbols in the proof.

Sam Buss Tutorial, Bounded Arithmetic

Frege proofs and Extended Frege proofs

Frege proofs are the usual “textbook” proof systems for
propositional logic, using modus ponens as their only rule of
inference.

Connectives: ∧, ∨, ¬, and →.

Modus ponens (MP): A A → B
B

Axioms: Finite set of axiom schemes, e.g.: A ∧ B → A

Extended Frege proofs allow also the extension axiom, which lets
a new variable x abbreviate a formula A:

x ↔ A

Defn: Proof size is still the number of symbols in the proof.

Sam Buss Tutorial, Bounded Arithmetic

Open Question

Do Frege proofs (quasi)polynomially simulate extended Frege
proofs?
That is, can every extended Frege proof of size n be transformed
into a Frege proof of size p(n)) or 2p(log n), for some polynomial p?

Intuition: Extended Frege proofs can reason about Boolean
circuits, Frege proofs about Boolean formulas.

It is generally conjectured that Boolean functions computed by a
Boolean circuits can require exponential size to express with
Boolean formulas.

By analogy, it is generally conjected Frege proofs can require
exponential size to simulate extended Frege proofs.

Sam Buss Tutorial, Bounded Arithmetic

Example of a Frege proof of A → A:

A → (B → A) Axiom
(A → (B → A)) → (A → (B → A) → A) → (A → A) Axiom
(A → (B → A) → A) → (A → A) M.P. 1,2
(A → (B → A) → A) Axiom
A → A M.P. 3,4

Sam Buss Tutorial, Bounded Arithmetic

Propositional logic can also be formalized in the sequent calculus.
For Γ, ∆ sets of formulas, the sequent Γ→∆ means the same as∧

Γ →
∨

∆.

Axioms and Rules of Inference: A→A (axiom)

Γ→∆,A
¬:left

¬A, Γ→∆

A, Γ→∆
¬:right

Γ→∆,¬A

A,B , Γ→∆
∧:left

A ∧ B , Γ→∆

Γ→∆,A Γ→∆,B
∧:right

Γ→∆,A ∧ B

and similar rules for ∨, ∧, →, and ↔.

Γ→∆,A A, Γ→∆
Cut

Γ→∆
Γ→∆

where Γ′ ⊇ Γ, ∆′ ⊇ ∆
Γ′→∆′

Sam Buss Tutorial, Bounded Arithmetic

Example: Proof of A → A.

A→A→:right
→(A → A)

Example: A ∧ B → B ∧ A

B→B
Structural

A,B→B
∧:left

A ∧ B→B

A→A
A,B→A

A ∧ B→A∧:right
A ∧ B→B ∧ A

Sam Buss Tutorial, Bounded Arithmetic

The Cook Translation from S
1
2 (PV) to eF

[Cook’75] introduced an equational theory PV of polynomial time
functions. And, characterized the logical strength of PV in terms
of provability in extended Frege (eF).

For a polynomial time identity f (x) = g(x), define a family of
propositional formulas [[f=g]]n.

[[f=g]]n expresses that f (x) = g(x) for all x with |x | < n.

The variables in [[f=g]]n are the bits x0, . . . , xn−1 of x .

If PV ⊢ f (x)=g(x), then the formulas [[f=g]]n have
polynomial size extended Frege proofs. [Cook’75]

These results all lift to S1
2 ...

Sam Buss Tutorial, Bounded Arithmetic

To describe the Cook translation for S1
2 :

Suppose A(x) ∈ Σb
0 (sharply bounded) and S1

2 ⊢ ∀x A(x).

For n > 0, form [[A]]n as a polynomial size Boolean formula.

[[A]]n has Boolean variables x0, . . . , xn−1 representing the bits
of x , where |x | ≤ n.

[[A]]n expresses that “A(x) is true”.

Rather than formally define [[A]], we give an example (on the next
slide).

Remark: A similar construction works if all polynomial time
functions are added to the language and we work with S1

2 (PV). In
this case, [[f=g]]n needs to use extension variables to define the
result of polynomial size circuit computing f (x) and g(x).

Sam Buss Tutorial, Bounded Arithmetic

Simple examples of [[A(x)]]n : [[(∀a≤|x |)(a−1 < x)]]n

For x and a n-bit integers, with bits given by xi ’s and ai ’s:

[[x=a]]n :=
∧n−1

i=0 (xi ↔ ai).

[[x<a]]n :=
∨n−1

i=0

(
(ai ∧ ¬xi) ∧

∧n−1
j=i+1(xj ↔ aj)

)
.

[[x≤a]]n := [[x < a]]n ∨ [[x = a]]n

i -th bit of x − 1: (x−1)i :⇔
(
xi ↔

∨i−1
j=0 xj

)
∧ [[x 6=0]]n

i -th bit of |x |:
∨

j≤n,(j)i=1

(
xj ∧

∨n
k=j+1 ¬xk

)

[[(∀a≤|x |)(a−1 < x)]]n :=
∧n

a=0

(
[[a≤|x |]]n → [[a−1≤x]]n

)
.

The sharply bounded quantifier (∀a≤|x |) becomes a conjunction.
Each of the n+1 values for a is “hardcoded” with constants for its
bits.

Sam Buss Tutorial, Bounded Arithmetic

Theorem (essentially [Cook’75])

If S1
2 ⊢ (∀x)A(x), where A(x) is in ∆b

0 (or a polynomial time
identity), then the tautologies [[A(x)]]n have polynomial size
extended Frege proofs.

Proof construction: Witnessing Lemma again. (Proof omitted.)

Theorem ([Cook’75])

S1
2 ⊢ Con(eF) (the consistency of eF).

For any propositional proof system G, if S1
2 ⊢ Con(G), then

eF p-simulates G.

That is, eF is the strongest propositional proof system whose
consistency is provable by S1

2 .

Sam Buss Tutorial, Bounded Arithmetic

Generalizations to S
i
2 and T

i
2.

Work in quantified propositional logic, with Boolean quantifiers
(∀q), (∃q) ranging over {T ,F}. Sequent calculus rules now
include

Γ→∆,A(B)

Γ→∆, (∃q)A(q)

A(q), Γ→∆

(∃q)A(q), Γ→∆

where B is any formula, and q appears only as indicated. (Similar
rules for ∀.)

Let Gi be the fragment in which only ΣB
i -formulas may occur.

Gi proofs are dag-like.

Let G ∗
i be Gi restricted to use tree-like proofs.

Theorem (Kraj́ıček-Pudlák’90, Cook-Morioka’05)

Let i ≥ 1. Analogously to S1
2 and eF ,

S i
2 corresponds to G ∗

i .

T i
2 corresponds to Gi .

Sam Buss Tutorial, Bounded Arithmetic

Pause

Sam Buss Tutorial, Bounded Arithmetic

Part II.c: The Paris-Wilkie translations

Sam Buss Tutorial, Bounded Arithmetic

The Paris-Wilkie [’85] translation transforms proofs in T k
2 (α) to

constant-depth propositional sequent calculus (LK) proofs.

Propositional variables xi in the LK-proofs correspond to
values α(i) of the second-order α.

Bounded quantifiers in the T k
2 (α) proof become conjunctions

or disjunctions.

The depth of the propositional formulas is ≈ k (including
small fan-in gates at the bottom).

Sam Buss Tutorial, Bounded Arithmetic

Example of the PW translation of PHP

The statement that α(x , y) does not violate the pigeonhole
principle can be expressed as:

PHP
α(a) :=

(∀x≤a)(∃y<a)(α(x , y))
→ (∃x≤a)(∃x ′<x)(∃y<a)[α(x , y) ∧ α(x ′, y)].

For a fixed integer n ∈ N, [[PHPα(a)]]n is the propositional formula
(also denoted PHP

n+1
n):

n∧

i=0

n−1∨

j=0

xi ,j →
n∨

i=0

i−1∨

i ′=0

n−1∨

j=0

(
xi ,j ∧ xi ′,j

)
.

General principles for the translation:

First order values are set to constants, and evaluated to a
fixed value. There are no Boolean variables for bits of
first-order objects.

The Boolean values α(· · ·) become propositional variables.

Sam Buss Tutorial, Bounded Arithmetic

Depth and Σ′-depth of LK formulas and proofs

The depth of a formula is the maximum nesting depth of blocks of
∧’s and ∨’s. Literals have depth 0.

For the Paris-Wilkie translation from bounded arithmetic formulas
to propositional logic, a better notion is Σ′-depth which allows
small fanin at the bottom for free:

Definition

Let S be a proof size parameter (size upper bound). The formulas
that have Σ′-depth d with respect to S are inductively defined as
follows:

If ϕ has size ≤ log S , then ϕ has Σ′-depth 0.

If each ϕi has Σ
′-depth d , then

∨
i∈I ϕi and

∧
i∈I ϕi have

Σ′-depth (d + 1).

Σ′-depth d is often called “depth d +1
2”.

Sam Buss Tutorial, Bounded Arithmetic

Definition

Let S be a size parameter. An LK-proof P is a Σ′-depth d proof
of size S provided:

P has ≤ S symbols,

Every formula in P has Σ′-depth ≤ d , w.r.t. S .

Σ′-depth d proofs are particularly useful for translating ssΣb
d

formulas to propositional logic. The inner, sharply bounded
quantifiers correspond to the bottom level of small fanin gates.

Definitions similar to Σ′-depth given by: [K’94] of Σ-depth;
[BB’03] of Θ-depth.

Sam Buss Tutorial, Bounded Arithmetic

Theorem (Paris-Wilkie translation)

Suppose i ≥ 2 and

A(a, α) is a Σb
i−2(α) formula,

T i
2(α) ⊢ ∀aA(a, α).

Then

There are quasipolynomial size LK proofs Pn of the
propositional translations [[A(a, α)]]n, such that

Pn consists sequents of formulas of depth Σ′-depth ≤ i−2.

Proof. (Proof omitted.) A direct translation of the T i
2(α) proof

gives LK proofs with all formulas Σ′-depth ≤ i .
Exploiting special properties of these proofs, using constructions of
[Razborov’94] and [Kraj́ıček’94] (see also [Beckmann-B’05])
reduces the Σ′-depth by 2. �.

Sam Buss Tutorial, Bounded Arithmetic

Constant Depth Proofs for the Weak Pigeonhole Principle

There is no injective map from [a+1] to ⌊a/2⌋.

WPHP
α(a) :=

(∀x≤a)(∃y<⌊12a⌋)(α(x , y))
→ (∃x≤a)(∃x ′<x)(∃y<⌊12a⌋)[α(x , y) ∧ α(x ′, y)]

For a fixed integer n ∈ N, [[WPHPα(a)]]n is the propositional
formula (also denoted WPHP

n+1
n/2):

n∧

i=0

n/2−1∨

j=0

xi ,j →
n∨

i=0

i−1∨

i ′=0

n/2−1∨

j=0

(
xi ,j ∧ xi ′,j

)
.

Sam Buss Tutorial, Bounded Arithmetic

Theorem (Paris-Wilkie-Woods’88, Maciel-Pitassi-Woods’00)

T 2
2 (α) ⊢ ∀aWPHP

α(a)

The tautologies WPHP
n+1
n/2 have polynomial size LK proofs of

Σ′-depth 0.

Theorem (Kraj́ıček)

T 1
2 (α) (hence S2

2 (α)) does not prove ∀aWPHP
α(a).

Proof idea: If S2
2 (α) did prove WPHP

α(a), then there would be a

P
NP algorithm which, given size parameter a, and oracle access to

α, finds a place where α fails to be a violation of the pigeonhole
principle. (I.e., finds values x , x ′, y).
Such an algorithm can be fooled by an adversary: For each NP

query, the adversary extends a partial 1-1 function so as to give the
NP query the answer “Yes” if this is possible.
At the end the algorithm does not have enough information to
produce the needed values x , x ′, y . �

Sam Buss Tutorial, Bounded Arithmetic

The fact that we can prove the independence of WPHP
α(a) from

T 1
2 (α), but not T

2
2 (α), is typical.

Indeed, T 2
2 (α) represents a complexity barrier: we lack good

independence results for T 2
2 (α).

Some comments / open questions:

We know T 2
2 (α) 6= T2(α). This follows from the existence of

an oracle separating the polynomial time hierarchy.

But do T 2
2 (α) and T 2(α) have the same

∀Σb
0(α)-consequences? The same ∀Σb

1(α)-consequences?

Similar comments apply to Jěrábek’s [’09] bounded arithmetic
theory APC2 of approximate counting.

The Ramsey theorem is known to be provable in T 3
2 (α)

[Pudlák’91]. Is it provable in T 2
2 (α)?

Sam Buss Tutorial, Bounded Arithmetic

Comments/questions continued:

In the non-uniform setting: are there sets of sequents of
Σ′-depth 0, which have size S LK refutations of Σ′-depth 1,
but which do not have quasipolynomial size (in S) LK
refutations of Σ′-depth 0?

More generally, are there super-quasipolynomial separations of
depth k LK proofs from depth k + 1 LK proofs with respect
to refutating sets of clauses?

[Razborov ’95] shows that it is possible to extract natural
proofs from T 1

2 (α) proofs. Is this possible for T 2
2 (α) proofs?

Sam Buss Tutorial, Bounded Arithmetic

Pause

Sam Buss Tutorial, Bounded Arithmetic

Introduction to Bounded Arithmetic III

Provable Total NP Search Problems

Sam Buss

Workshop on Proof Complexity
Special Semester on Complexity
St. Petersburg State University

May 15, 2016

Sam Buss Tutorial, Bounded Arithmetic

Total NP Search Problems — TFNP

Definition (Poljak-Turźık-Pudlák’82; Papadimitriou’94)

A Total NP Search Problem (TFNP) is a polynomial time relation
R(x , y) so that R is

- Total: For all x , there exists y s.t. R(x , y),

- Honest (poly growth rate):
If R(x , y), then |y | ≤ p(|x |) for some polynomial p.

The TFNP Problem for R is:
Given an input x , output a y s.t. R(x , y).

TFNP is intermediate between P (polynomial time) and NP
(non-deterministic polynomial time).

Sam Buss Tutorial, Bounded Arithmetic

Let R(x , y) and Q(x , y) be TFNP problems.

Definition (Many-one reduction, 4)

A (polynomial time) many-one reduction from R to Q (denoted
R 4 Q) is a pair of polynomial time functions f (x) and g(x , y) so
that, for all x , if y is a solution to Q(f (x), y), then g(x , y) is a
solution to R , namely R(x , g(x , y)) holds.

Sam Buss Tutorial, Bounded Arithmetic

TFNP Problems from Complexity Theory

[Papadimitriou’94] identified a large number of TFNP problems:

1st example:

Pigeonhole Principle, Pigeon (PPP)
Input: x ∈ N and injective f : [x] → [x−1] (purportedly)
Output: a 6= b ∈ [x] s.t. either f (a) /∈ [x−1] or f (a) = f (b).

The function f can be specified by either

a. A Boolean circuit (multiple output bits), or

b. An oracle.

Thus, the input size is polynomially bounded in |x |.

The function is exponential size, but is specified implicitly with a
polynomial size description or via an oracle.

Sam Buss Tutorial, Bounded Arithmetic

PPP:

There is no injective map from [x] to [x−1].

PPA:

Any undirected graph with degrees ≤ 2 which has a vertex of
degree 1 has another vertex of degree 1.

PPAD:

Any directed graph with in-/out-degrees ≤ 1 which has a ver-
tex of total degree 1 has another vertex of total degree 1.

PPADS:

Any directed graph with in-/out-degrees ≤ 1 which has a
source, also has a sink.

Sam Buss Tutorial, Bounded Arithmetic

Polynomial Local Search, PLS:
[Johnson, Papadimitriou, Yanakakis’88]

A directed graph with outdegree ≤ 1, and a nonnegative cost
function which strictly decreases along directed edges, has a
sink.

and more ...

Sam Buss Tutorial, Bounded Arithmetic

Σb
1-definable functions of bounded arithmetic give rise to

TFNP problems. The first good example was the Σb
1-definability

of PLS in T 1
2 . The ones listed above are Σb

1-definable in U1
2 .

More examples include:

Colored PLS: [Kraj́ıček-Skelley-Thapen’07]. Herbrandized PLS
search problems with a coNP definable set of feasible solutions.

Πp
k -PLS: [Beckmann-B.’09/’10]. Herbrandized PLS search

problems with Πp
k−1 definable set of feasible solutions.

Theorem. [KST’07, BB’09/’10]

1. Colored PLS is many-one complete for the TFNP problems of
T 2
2 .

2. Πp
k -PLS is many-one complete for the TFNP problems of T k

2 .

Sam Buss Tutorial, Bounded Arithmetic

Weak Pigeonhole and Ramsey

Weak Pigeonhole (WPHP)

There is no injective map from [2x] to [x].

Ramsey

A graph G on [x] has either a clique or an independent set of
size 1

2 log x.

No completeness results are known for these problems:

Theorem

a. WPHP is provable/definable as a TFNP problem in T 2
2 .

[Paris-Wilkie-Woods’88, Maciel-Pitassi-Woods’00/’02]

b. Ramsey is provable/definable as a TFNP problem in T 3
2 .

[Pudlák’91, see also Jerábek’09]

Sam Buss Tutorial, Bounded Arithmetic

Herbrandized Ordering Principle (HOP)

A linear ordering ≺ on [x] cannot have a total immediate pre-
decessor function.

k-round Game Induction Principle (GIk)

A winning strategy for two player k-round game is preserved
under iterations of many-one reductions between games.

Theorem: [B.-Ko lodziejczyk-Thapen’14] HOP is provable in T 2
2 .

It is unlikely HOP is many-one complete for the TFNP problems
of T 2

2 .

Theorem: [Skelly-Thapen’11] GIk is many-one complete for the
TFNP problems of T k

2 .

[Pudlák-Thapen’12]: Similar results for k-round max/min games,
and a related Nash equilibrium principle.

Sam Buss Tutorial, Bounded Arithmetic

Local Improvement Principles

k-round Local Improvement Principle LIk

Labels on a directed acyclic graph on [x] can be consistently
updated in a well-founded manner for k-rounds.

LI (no subscript) allows k = x (exponentially many rounds)
LLI - graph is a line. RLI - graph is a rectangle.

Theory Many-One Complete

T k
2 or Sk+1

2 LIk [KNT’11]
V 1
2 LI [KNT’11]

V 1
2 LIlog, LI with O(log n) rounds [BB’14]

U1
2 LLI, Linear LI [BB’14]

U1
2 LLIlog [KNT’11]

V 1
2 RLI, Rectangular LI [KNT’11]

V 1
2 RLIlog [BB’14]

U1
2 RLI1 [BB’14]

Sam Buss Tutorial, Bounded Arithmetic

Frege proof consistency as a total NP search problem

Code an (exponentially long) Frege proof P with an oracle X . The
value X (i) gives the i -th symbol of P .

Search problem: Show that X does not code a valid Frege proof of
a contradiction.

Frege Consistency Search Problem - Informal

Input: Second-order X and first-order x .
Output: A set of values i1, . . . , iℓ so that the values
X (i1), . . . ,X (iℓ) show X does not code a valid Frege proof of a
contradiction.

Since the Frege proof is exponentially long, it may contain
exponentially long formulas.

However, ℓ should be polynomially bounded by |x |: Frege proofs
need to be carefully encoded to allow this.

Sam Buss Tutorial, Bounded Arithmetic

Frege proofs encoded by oracle X (i) contain:

Fully parenthesized formulas, terminated by commas.

Each parenthesis has a pointer to its matching parenthesis.

Each comma has the type of inference for the previous
formula, plus pointers to the formulas used as hypotheses.

This allows any syntactic error in the Frege proof to be identified
by constantly many positions i1, . . . , iℓ in X .

Sam Buss Tutorial, Bounded Arithmetic

Example of a Frege proof of A → A:

A → (B → A) Axiom
(A → (B → A)) → (A → (B → A) → A) → (A → A) Axiom
(A → (B → A) → A) → (A → A) M.P. 1,2
(A → (B → A) → A) Axiom
A → A M.P. 3,4

Sam Buss Tutorial, Bounded Arithmetic

Example of a Frege “proof” of a contradiction:

A → (¬A → A) Axiom
(A → (¬A → A)) → (A → (¬A → A) → A) → A Axiom
(A → (¬A → A) → A) → A M.P. 1,2
(A → (¬A → A) → A) Axiom
A M.P. 3,4
...
as above, interchanging A and ¬A
...
¬A
obtain a contradiction
⊥

Search Problem: Find the mistake in the proof!

Sam Buss Tutorial, Bounded Arithmetic

Theorem. [Beckmann-B.’??]

The Frege consistency search problem is many-one complete for
the TFNP problems of U1

2 .

Theorem. [Beckmann-B.’??; Kraj́ıček’??]

The extended Frege consistency search problem is many-one
complete for the TFNP problems of V 1

2 .

Recall that U1
2 and V 1

2 have proof complexity corresponding to
polynomial space and exponential time.

Sam Buss Tutorial, Bounded Arithmetic

the end

Sam Buss Tutorial, Bounded Arithmetic

Thank you!

Sam Buss Tutorial, Bounded Arithmetic

	talk_1_slides
	talk_2_slides
	talk_3_slides

