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The Satisfiability Problem

A literal is a variable x or a negated variable x .

A clause is a set of literals, interpreted as their disjunction

An instance of satisfiability (SAT-instance) is a set Γ of
clauses. This represents a CNF formula.

The satisfiability problem is the problem of either finding a
satisfying assignment for Γ or showing Γ to be unsatisfiable.

One way to show unsatisfiable: Implicitly find a resolution
refutation, often using a CDCL solver.
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Resolution

Resolution is a refutation system for sets of clauses (or, a proof
system for DNF formulas).

Resolution rule:
x , C x , D

C ∪D

A resolution refutation of Γ is a derivation of the empty
clause ⊥ from clauses in Γ.

This allows resolution to be a proof system for DNF formulas.

Resolution is sound and complete as a refutation/proof
system.
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Conflict-Driven Clause Learning (CDCL) Solvers

Problem: Satisfy or refute a set Γ of clauses.

CDCL SAT Solvers are built on four five principal
components:

DPLL proofs: A depth-first search for (tree-like) resolution
refutations.

Unit propagation guides the DPLL search and underpins
clause learning.

Clause learning infers new clauses that help prune the search
space.

Backjumping (Nonchronological backtracking) backs up the
depth first traversal to where a learned clause is asserting.

Restarts interrupt a depth-first DPLL search, and start a new
DPLL search.

and many more optimizations!
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DPLL search procedure

Named after Davis-Putnam-Logemann-Loveland [DP’60, DLL’62]

Input: Γ, a set of clauses.

Goal: A satisfying assignment ρ for Γ or a refutation of Γ

The DPLL algorithm performs a depth-first search through the
space of truth assignments, setting literals one-by-one to form a
partial truth assignment ρ, backtracking when needed (namely,
when some clause is falsified).
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Unit Propagation

Unit Propagation (UP)

Suppose C is a clause in Γ, and ρ has all but one of the
literals in C false.

Then any satisfying assignment extending ρ must set the
remaining literal in C true.

DPLL with UP (unit propagation): Same as the DPLL algorithm,
but all possible unit propagations are carried out before choosing a
decision literal.

DPLL+UP uses a recursive procedure.
- Initialize ρ to the empty partial truth assignment.
- Then call the recursive procedure (next slide)
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DPLL with Unit Propagation - recursive procedure

ρ0 ← ρ;
Extend ρ by unit propagation for as long as possible;
if ρ falsifies some clause of Γ then

ρ← ρ0;
return False;

end
if ρ satisfies Γ then

Output ρ as a satisfying assignment and terminate.
end
Pick some literal x not set by ρ (the decision literal);
Extend ρ to set x true;
Call this DPLL+UP procedure recursively;
Update ρ to set x false;
Call this DPLL+UP procedure recursively (again);
ρ← ρ0;
return False;
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Conflict Directed Clause Learning (CDCL)

CDCL algorithms form the core of most of the modern successful
SAT solvers. [Marques-Silva, Sakallah’94; MMZZM’01]

Underlying idea:

Conflicts (falsified clauses) are found after unit propagation.

Unit propagation gives rise to clauses that can be derived
(“learned”) by trivial resolution.

These learned clauses are saved with Γ and used for future
proof search.

The learned clauses help prune the search space, in effect
reducing the need to re-traverse the same area of the search
space.

An important feature is that the learned clauses help compensate
for poor choices of decision literals.

Fast backtracking (backjumping) allows backtracking past decision
literals that did not participate in the clause learning.
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L← 0 ; // L is the decision level

ρ← empty assignment;
loop

Extend ρ by unit propagation for as long as possible;
if ρ satisfies Γ then

return ρ as a satisfying assignment;
end
if ρ falsifies some clause of Γ then

if L == 0 then
return “Unsatisfiable”;

end
Optionally learn one or more clauses C and add them to Γ;
Choose a backjumping level L′ < L;
Unassign all literals set at levels > L′;
L← L′;

else
Pick some unset literal x (the decision literal);
L← L + 1;
Extend ρ to set x true;

end
continue (with the next iteration of the loop);

end loop
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Learned clauses: Typically, the following holds.

There is a single learned clause C , a first-UIP clause.

We have Γ ⊢1 C ; namely, letting σ be the assignment
falsifying the literals in C ,

Γ↾σ implies ⊥ by unit propagation.

“C is inferred by reverse unit propagation (RUP)” or “C is an
asymmetric tautology (AT)”.

C is asserting: All literals are false in the current partial
assignment ρ (before backtracking). One literal is set at some
level ℓ; remaining are set at lower levels, namely at ℓ′ < ℓ and
lower.

Backtracking must return to level L′ < ℓ ≤ L.
Common choice is to backtrack to level L′ = ℓ′.
Called “fast backtracking” if L′ < L−1.
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Example of a conflict graph and first-UIP learning

x

z

y
t

u

v

w
⊥

s

a b c

Γ contains x ∨ a ∨ z , x ∨ z ∨ y , y ∨ t, y ∨ v , y ∨ a ∨ u, y ∨ u ∨ v ,
u ∨ b ∨ c ∨ w , t ∨ v ∨ w and a ∨ b ∨ c.
x is the top-level decision literal.
a, b, c were set at lower decision levels.
The first-UIP literal is y .
The learned clause is a ∨ b ∨ c ∨ y .
(Clause minimization based on self-subsumption [Sorensson-Biere’09,Han-Somenzi’09]

can learn the smaller clause a ∨ b ∨ y .)
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Example of a conflict graph and first-UIP learning

x

z

y
t

u

v

w
⊥

s

a b c

Γ contains x ∨ a ∨ z , x ∨ z ∨ y , y ∨ t, y ∨ v , y ∨ a ∨ u, y ∨ u ∨ v ,
u ∨ b ∨ c ∨ w , t ∨ v ∨ w and a ∨ b ∨ c.

By backtracking to the maximum decision level of a, b, c, the learned
clause a∨ b∨ c ∨ y becomes asserting, allowing y to be inferred by
unit propagation.
This in turn can trigger further unit propagation.
This can force “fast backtracking” to a level L′

< L−1.
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L← 0 ; // L is the decision level

ρ← empty assignment;
loop

Extend ρ by unit propagation for as long as possible;
if ρ satisfies Γ then

return ρ as a satisfying assignment;
end
if ρ falsifies some clause of Γ then

if L == 0 then
return “Unsatisfiable”;

end
Learn an asserting clause (and possibly other clauses); add them to Γ;
Choose a backjumping level L′ < L compatible with the asserting clause;
Unassign all literals set at levels > L′;
L← L′;

else
Pick some unset literal x (the decision literal);
L← L + 1;
Extend ρ to set x true;

end
continue (with the next iteration of the loop);

end loop
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Restarts

A restart backtracks the CDCL proof search back to level
zero (L′ = 0), where no decision literals have been.

Learned clauses can be maintained after a restart.

Perhaps surprisingly, restarts are extremely effective in the
practical use of CDCL SAT solvers.

Theorem

Resolution can p-simulate CDCL+restarts.

Proof idea: All learned clauses are inferred by Reverse Unit
Propagation, hence can be derived by resolution. �

The converse holds too...
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Theorem (Pipatsrisawat-Darwiche,11; Atserias-Fichte-Thurley’11;
Beame-Kautz-Sabharwal’04)

CDCL + Restarts can p-simulate resolution.

The caveat for this is that the CDCL+Restarts must make the
correct (nondeterministic) choices to simulate resolution. It does
not mean it can be done in practice.
Indeed, if P 6= NP, then resolution is not automatizable.
[Atserias-Müller’19].

Proof on next slides ...
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Proof (sketch). Suppose R is a resolution refutation of Γ.
R contains the clauses C1, C2, C3, . . . , Cm =⊥.
We want to build a CDCL+restarts refutation of Γ.

The idea is to let the CDCL algorithm learn successively each
clause Ci .

However, we do not know how to do this.

Instead we arrange that the CDCL algorithm learns clauses
enlarging Γ, so that, successively for each Ci , we have

first, Γ ⊢1 Ci and second, Γ absorbs Ci .

Def’n: Γ absorbs C = x1 ∨ x2 ∨ · · · ∨ xk provided:
For each xi , setting all xj , j 6= i , to false yields a unit propagation
derivation (from Γ) of either xi or ⊥.
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Lemma 1:

If C ∈ Γ, then Γ ⊢1 C and Γ absorbs C .

If Γ absorbs both x ∨ C and x ∨D, then Γ ⊢1 C ∨D.

Pf: These are easy to check. �

We cannot conclude however that C ∨ D is absorbed (since C and
D may have a common literal). But instead:

Lemma 2: If Γ ⊢1 C , then CDCL can learn Γ∗ ⊃ Γ such that Γ∗

absorbs C .

Proof on next slide ...
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Let C = x1 ∨ x2 ∨ · · · ∨ xk . If C is not absorbed w.r.t. xk , choose
the decision literals (always!) in the order x1, . . . , xk and run
CDCL — learning (and enlarging Γ) and backtracking as usual.
(But skip any decision literal x j that is already set to that
polarity.)

If after setting x1, . . . , x i where i < k, UP infers ⊥ or xk , or
xj for j < k, we are done. C has been absorbed w.r.t. xk .

Otherwise, since Γ ⊢1 C , a conflict occurs. Some literal z is
asserted in the learned clause, with z not an xj or x j for j < k.
z is a UP-consequence of x1, . . . xk−1.

The newly asserted literals must be distinct, hence the last
case can happen only once per variable in Γ.

The above procedure is repeated for each literal in C until C is
absorbed w.r.t. each xi . �

Q.E.D.
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Without restarts

Open: Can the CDCL proof search without retarts p-simulate
resolution?

To formalize this open question, formalize CDCL-without-restarts
as either

Pool resolution [van Gelder’05], or

RegWRTI [B-Hoffmann-Johannsen’08]

Pool resolution refutation: A resolution refutation that, viewed
as a dag, admits a depth-first, regular traversal.
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Pool resolution refutation — example

⊥

xx

x ∨ y

z

y ∨ zy ∨ z

x ∨ z

x ∨ y ∨ z

x ∨ y

It is not regular due to the two resolutions on y along one of the
paths in the dag.

However, it has a regular depth-first traversal, hence it is a
pool resolution refutation. The point is that the first time z is
traversed, it becomes learned and does not need to be re-traversed.
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However: Modern CDCL solvers infer clauses that do not fit within
either Pool resolution or RegWRTI.

A self-subsumption inference is a resolution inference where
the conclusion is a subclause of one of the hypotheses.

Self-subsumption inferences are often done during clause
learning.

As implemented in CDCL solvers, self-subsumption is
performed on clauses in which all literals have been assigned
value.

Question: Does CDCL without restarts, but with self-subsuming
resolution on clauses which participated in unit propagation,
polynomially simulate resolution?
What if “self-subsuming” is dropped?
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CDCL w/o restarts effectively p-simulates resolution

For an “effective p-simulation”, it is allowed to transform a
formula F ; in our case, by disjoining it with a satisfiable formula
over different variables.

Construction:

Given a CNF formula F (~x) in n variables ~x , with a resolution
refutation of size k.

Find a suitable satisfiable CNF formula Gn(~y). The formula
Gn(~y) depends only on n, not F or k.

Show that F (~x) ∨ Gn(~y) has a CDCL refutation without
restarts, of size kO(1).

This construction works for CDCL solvers that use the usual
methods of asserting learning and backtracking.

[Beame-Sabharwal’14] building on
[Hertel-Bachus-Pitassi-van Gelder’08; B-Hoffmann-Johannsen’08]
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Construction for the effective p-simulation:

A CDCL+restarts solver S1 refutes F (~x) using an
execution E1 with at most kc restarts.

W.l.o.g. k ≤ 22n. Choose Gn(~y) to be satisfiable such that
there is an execution E2 of the CDCL solver S2 finding Gn to
be satisfiable that fast-backtracks > 22cn many times.
C2 does not use restarts.

Then a CDCL refutation without restarts of F ∨ Gn repeats
the following loop:

Continue running the execution E2 of S2 on Gn until just
before a fast-backtrack.
Continue running the execution E1 of S1 on F until it needs to
restart.
Run one more step of E2 on Gn causing a fast-backtrack,
which effectively backtracks the execution E1 of S1 back to its
decision level 0.

Moral: Fast-backtracking has a lot in common with restarts.
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II. Algebra and Semialgebraic Proof Systems
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DPLL

Regular resolution

CDCL w/o restarts

CDCL+restarts Resolution

constant depth Frege (c.d. F)

c.d. F w/ mod p axioms

c.d. F w/ mod p gates

TC0-Frege

Frege

extended Frege

Hierarchy of proof systems
(p is prime)
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DPLL

Regular resolution

CDCL w/o restarts

CDCL+restarts Resolution

constant depth Frege (c.d. F)

c.d. F w/ mod p axioms

c.d. F w/ mod p gates

TC0-Frege

Frege

extended Frege

Nullstellensatz

Polynomial calculus Sherali-Adams

Sum of Squares (SoS)

Ideal proof system∗

Hierarchy of proof systems
(p is prime)

Sam Buss Proof Complexity Simons Bootcamp, Live Part



Definitions of the algebraic proof systems (NS and PC)

Work over a field (optionally finite).
Variables x1, x2, . . . are 0/1 valued.
Identify 0 with True and 1 with False.

A polynomial f is identified with the assertion f = 0.

Example: A clause x ∨ y ∨ z can be expressed with the polynomial

(1− x) · y · (1− z)

An algebraic refutation of a set of polynomials fj shows that the
fj ’s cannot be simultaneously given value zero by finding a
polynomial identity

∑

j

fj · gj +
∑

i

(x2
i − xi) · hi = 1.

The use of (x2
i − xi) is justified since only Boolean (0/1) values are

allowed for variables.
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A Nullstellensatz refutation is given by explicitly writing out the
polynomials gj and hi such that

∑

j

fj · gj +
∑

i

(x2
i − xi) · hi = 1.

A Polynomial Calculus refutation uses inference steps: initial
formulas are the fj ’s and (x2

i − xi)’s; the inference rules are
addition and multiplication:

f g
f + g

f
f · g

The final line of a polynomial calculus refutation is the
polynomial 1.

Nullstellensatz is called a “static” proof system. The polynomial
calculus is called a “dynamic” proof system.

The polynomial calculus and the nullstellensatz systems can refute
the same sets of polynomials; but a polynomial calculus can be
substantially shorter, or have lower degree, due to cancellation of
monomials in intermediate steps.
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The semialgebraic proof systems (S.A. and SoS)

Work in an ordered field.
Variables x1, x2, . . . are 0/1 valued.
Identify 0 with True and 1 with False.

We now work with polynomial inequalities f ≥ 0.

Example: A clause x ∨ y ∨ z can be expressed with the inequality

x − y + z ≥ 0.

A set Γ of clauses expresses a set of polynomial inequalities of the
forms fj ≥ 0 and x2

i − xi ≥ 0 and xi − x2
i ≥ 0.

A semialgebraic refutation of Γ gives (or proves there exists) a
polynomial identity ∑

k

pk · rk = − 1,

where the polynomials pk range over the fj ’s, the (x2
i − xi)’s and

the (xi − x2
i )’s, and where the rk ’s are polynomials which are

known to be nonnegative for Boolean inputs.
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The Sherali-Adams refutation system (static version) gives a
polynomial identity ∑

k

pk · rk = − 1,

where the rk ’s which are equal to products of terms of the form xi

and (1− xi).
For example, rk could be (1− x1)x2(1− x3).
(This is sometimes called a “non-negative junta”.)

The Sum of Squares refutation gives the same kind of polynomial
identity, but with the rk ’s equal to squares, that is, rk = s2

k for
some polynomial sk .

Both systems can also be stated in dynamic form as well.
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Ideal Proof System (IPS)

The ideal proof system is an algebraic proof system.
Again, work in a field and identify 0 with True and 1 with False.

Let fi be a set of polynomials representing an unsatisfiable set Γ of
clauses. Here fi = 0 expresses that the i-th clause is true.
Let the polynomials pk range over the polynomials fi and the
polynomials (x2

i − xi).

A Ideal Proof System (IPS) refutation of Γ is an algebraic circuit
C(~u, ~v) so that the two identities hold:

C(~u, ~v) = 0, and

C(~u, ~p) = 1.

Caveat: IPS is not quite a proper proof system (as far as we
know), as testing algebraic circuit identities is only known in to be
randomized polynomial time (RP) instead of in deterministic
polynomial time (P).
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III. Two open problems at frontier of proof complexity
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Frege

extended Frege

Hierarchy of proof systems
(p is prime)
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Constant depth Frege separations?

The depth of a propositional formula is the number of alternating
blocks of ∨’s and ∧’s (assume wlog that negations are pushed to
the atoms).

A depth d Frege proof means a Frege proof in which all formulas
have depth d .

[BIKPPW’92,PBI’93,KPW’95;Ajtai’88]: Exponential lower bounds
for constant depth Frege proofs of the pigeonhole principle.

[BDGMP’04] Conditional non-automatizability of constant-depth
Frege, based on hardness of Diffie-Hellmann.
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Open problem: Give an exponential separation (or even a
super-quasipolynomial separation) between depth d and
depth d+1 Frege proofs refuting sets of clauses.

——
[Kraj́ıček’19, Impagliazzo-Kraj́ıček’02] gives a super-polynomial
separation.

Constant depth Frege has exponential speedup over resolution for
the weak pigeonhole principle.
——

Note that, from Håstad’s switching lemma, depth d + 1 formulas
can give exponential speedup over depth d formulas, so depth d+1
Frege has more expressive power than depth d Frege
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Mod-p Frege systems

Fix a prime p.
A ⊕p gate (unbounded fanin) outputs 1 iff the number of true
inputs is 0 mod p.

Open problem: Give exponential lower bounds on depth d Frege
proofs over the propositional language ¬, ∨, ∧ and ⊕p.

Notation: AC0(⊕p)-Frege.

Suggestion: For a prime q 6= p, are there subexponential size
AC0(⊕p)-Frege proofs of the Mod-q Counting Principle?

By [Razborov’87, Smolensky’87], AC0(⊕p) circuits for counting
modulo q require exponential size.
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The Mod-q Counting Principle generalizes the Parity Principle
for q 6= 2.

Defn: (Mod-q Counting Principle). For n not a multiple of q,
there is no partition of [n] into sets of size q.

Variables xS for each S ⊂ [n] such that |S| = q.

Clauses:∨
i∈S

xS , for each i ∈ [n]. And

xS ∨ xS′ , for each S, S ′ such that 0 < |S ∩ S ′| < q.
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Thank you!
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