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Part D. discusses:

Cutting Planes

Clique-Coloring Principle

Interpolation

Nullstellensatz

Polynomial Calculus

Automatizability
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Cutting planes proofs

Cutting planes is a propositional proof system based on integer
programming [Gomory’63; Chvátal’73; Cook-Coullard-Turán’87]

Variables x1, x2, . . . are 0/1 valued (0=“False”, 1=“True”).

Lines in a cutting planes proof are linear inequalities with
integer coefficients:

a1x1 + a2x2 + · · ·+ anxn ≥ a0.

Clauses become inequalities: for example

x ∨ y ∨ z becomes x + y + z ≥ 1, and

x ∨ y ∨ z becomes x − y + z ≥ 0.

Note that y is replaced with 1− y .
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Cutting planes refutations

Cutting planes is a refutation system:
Initial lines are logical axioms,
or encode hypotheses (often obtained from clauses).

Logical axioms: xi ≥ 0 and −xi ≥ −1.

Valid inferences are Addition and Division.

Addition rule:

∑
aixi ≥ a0

∑
bixi ≥ b0∑

(ai+bi )xi ≥ a0+b0

Division rule: If c > 0 and c |ai for all i > 0,

∑
aixi ≥ a0∑

(ai/c)xi ≥ ⌈a0/c⌉

The final line of a refutation must be 0 ≥ 1.
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Example: Let Γ contain the clauses

x ∨ y and x ∨ z and y ∨ z .

This expresses “No two of x , y , z are true”.

Cutting planes expresses these clauses as three inequalities:

−x − y ≥ −1 and − x − z ≥ −1 and − y − z ≥ −1.

Addition gives: −2x − 2y − 2z ≥ −3.

Division by c = 2 gives: −x − y − z ≥ −1.

I.e., x + y + z ≤ 1. This is a more succinct way of expressing that
no two of x , y , z are true.
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Theorem: Cutting planes has polynomial size refutations of the
PHP

n+1
n principle.

Proof idea: Use the totality axioms to derive
∑

i ,j xi ,j ≥ n+1.

Use the injectivity axioms to prove
∑

i ,j xi ,j ≤ n, similar to the
argument in the example.

Conclude 0 ≥ 1. �

Hence: Resolution does not p-simulate cutting planes.

Also: Constant-depth Frege does not p-simulate cutting planes.
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Two simulations

Theorem: Cutting planes p-simulates resolution.

Proof idea: It is straightforward to simulate a single resolution
step with addition and division by two.

Thm: [Goerdt’92] Cutting planes is p-simulated by Frege systems.

Proof idea: Use carry-save-addition iterated integer division
formulas to express the lines in a cutting planes refutation.

Sam Buss Proof Complexity Simons Bootcamp, Part D



Two simulations

Theorem: Cutting planes p-simulates resolution.

Proof idea: It is straightforward to simulate a single resolution
step with addition and division by two.

Thm: [Goerdt’92] Cutting planes is p-simulated by Frege systems.

Proof idea: Use carry-save-addition iterated integer division
formulas to express the lines in a cutting planes refutation.

Thm: [Pudlák’97] Cutting planes requires exponential size proofs
(refutations) for the Clique-Coloring clauses.

Clique-Coloring is defined on the next slide....
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Clique Coloring clauses

The following (unsatisfiable!) set of clauses state that a graph on
n nodes has both a clique of size m and a coloring of m−1.

Variables: a ∈ [m], c ∈ [m−1], and i < j ∈ [n].
· pa,i - node i is the a-th member of a clique.
· qi ,c - node i has color c .
· ri ,j - there is a edge joining vertices i and j .

A(~p, ~r) clauses: (Clique of size m)
·
∨

i pa,i - for each a ∈ [m]
· pa,i ∨ pa′,i - for a < a′ ∈ [m], i ∈ [n].
· pa,i ∨ pa′,j ∨ ri ,j - for distinct a, a

′ ∈ [m], distinct i , j ∈ [n].

B(~q, ~r) clauses: (Coloring of size m−1)
·
∨

c qi ,c - for i ∈ [n].
· qi ,c ∨ qi ,c′ - for c < c ′ ∈ [m−1], i ∈ [n].
· qi ,c ∨ qj ,c ∨ ri ,j - for c ∈ [m−1], distinct i < j ∈ [n].
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Theorem (Kraj́ıček’97)

Any resolution refutation of the clique-coloring tautology for
m = n1/2 requires exponential size 2ω(n

3/4).

Theorem (Pudlák’97)

Cutting planes requires exponential size proofs (refutations) for the
Clique-Coloring clauses.

Both proofs use a Craig interpolation and the known exponential
lower bounds on the size of monotone Boolean circuits that
distinguish between graphs with large cliques and graphs with large
colorings. [Razborov’85, Alon Boppana’87]

Interpolation for resolution is described next ...
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Craig Interpolation

[Bonet-Pitassi-Raz’95, Razborov’95, Kraj́ıček’97, Pudlák’97]

Defn: Suppose A(~p, ~r) ∧ B(~q, ~r) is unsatisfiable, where A and B
depend only on the variables indicated.
A Craig interpolant for this formula is a predicate C (~r) such that

If ¬C (~r), then A(~p, ~r) is unsatisfiable.

If C (~r ), then B(~q, ~r ) is unsatisfiable.

Equivalently, A(~p, ~r) → C (~r) and C (~r) → ¬B(~q, ~r ) are both
tautologies.

Thm: A Craig interpolant always exists when A(~p, ~r) ∧ B(~q, ~r) is
unsatisfiable.

Pf: Take C (r) to be either

(∃~p)A(~p, ~r ) or (∀~q)¬B(~q, ~r).

However, the Craig interpolant may not be a feasible predicate of ~r .
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Theorem (Kraj́ıček’97)

Suppose a set of clauses A(~p, ~r),B(~q, ~r ) has a resolution refutation
of size m, and that variables ~r all appear only positively in the
clauses in A(~p, ~r) or only negatively in the clauses in B(~q, ~r).
Then, there is a Craig interpolant which is computed by a
monotone Boolean circuit of size O(m).

A monotone circuit is constructed from literals ri , and ∧ and ∨.
If the refutation is tree-like, the interpolant is a monotone Boolean
formula.

Application: The clique-coloring principles require exponential size
resolution refutations.
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Proof of the Craig interpolation property:
A resolution refutation R transforms directly to a monotone circuit.

Each clause C in R corresponds to a gate gC .

C is an A(~p, ~r) clause gC :=⊥

C is a B(~q, ~r) clause gC := ⊤

C , pi D, pi / C ,D gCD := gCpi ∨ gDpi

C , qi D, qi / C ,D gCD := gCqi ∧ gDqi

C , ri D, ri / C ,D gCD := (ri ∨ gCri ) ∧ gDri , or
gCD := gCri ∨ (ri ∧ gDri ),
depending on whether ~r is

monotone in A or in B .

Invariant: gC computes an interpolant that is correct for any
assignment falsifying C .
I.e., gC is false (true) implies some clause of A (resp. B) is false. �
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Theorem [Kraj́ıček’97] Any resolution refutation of the

clique-coloring tautology for m = n1/2 requires size 2ω(n
3/4).

Proof: Apply the Craig Interpolation Theorem for resolution.

The variables ~r encode a graph G .

C (~r) is false means: A(~p, ~r) is unsatisfiable, i.e., G does not
have a clique of size m.

C (~r) is true means: B(~q, ~r ) is unsatisfiable, i.e., G does not
have an m−1 coloring.

If the resolution refutation has size S , then there is a Craig
interpolation of size s; namely, a monotone Boolean circuit in the
variables ~r of size s separating graphs with a clique of size m from
those with a coloring of size m−1.
This contradicts the known exponential lower bounds on the size
of monotone Boolean circuits that distinguish between graphs with
large cliques and graphs with large colorings.
[Razborov’85, Alon Boppana’87] �
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A cutting planes bound for Clique-Coloring

Thm: [Pudlák’97] Suppose a set of clauses A(~p, ~r ),B(~q, ~r) has a
cutting planes refutation of m steps, and that the variables ~r
appear only positively in the clauses in A(~p, ~r) or only negatively in
the clauses in B(~q, ~r). Then, there is Craig interpolant which is
computed by a monotone real circuit of size mO(1).

Defn: A real monotone circuit is a circuit with unary and binary
gates computing monotone real functions.
We use a threshhold gate as the output gate.

Corollary: (Using a modification of [Razborov’85;Alon-Boppana’87].)

Cutting Planes does not have polynomial size refutations of the
Clique-Coloring clauses expressing that a graph both is k-colorable
and has a k + 1 clique.

Open: Find methods other Craig interpolation for giving lower bounds to

cutting planes proofs.

Sam Buss Proof Complexity Simons Bootcamp, Part D



The Nullstellensatz proof system

[Beame-Impagliazzo-Kraj́ıček-Pitassi-Pudlák’97]
Work over a finite field, characteristic p.

Variables x1, x2, ... are 0/1 valued.

A polynomial f is identified with the assertion f = 0.

A set of initial polynomials {fj}j is refuted in the Nullstellensatz
system by polynomials gj , hi such that

∑
fj · gj +

∑
(x2i − xi) · hi = 1,

where equality indicates equality as polynomials.

Note the equality cannot hold if all fj(~x) equal zero for some
(Boolean) inputs ~x .
Hence a Nullstellsatz refutation indeed serves as a refutation.
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Nullstellensatz is known not to simulate resolution. Conversely,
resolution and even constant depth Frege systems do not simulate
Nullstellensatz.

It is traditional to work with the degree of Nullstellensatz proofs,
rather than their size. It is also common to work over fields of
finite characteristic p.

Sample lower bounds on Nullstellensatz include:

Super-constant degree lower bounds for Nullstellensatz
refutations of “counting mod q”, for q not a power of p.
[BIKPP’97]

Ω(n) degree lower bounds for PHPn+1
n .

[Beame-Cook-Edmonds-Impagliazzo-Pitassi’98, Razborov’98]
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Applications of Nullstellensatz lower bounds include:

Separation results for constant depth Frege proofs.

Separations for subclasses of TFNP.

Lower bounds for monotone span programs.

Lower bounds for cutting planes refutations via lifting
theorems.
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The Polynomial Calculus proof system

A Polynomial Calculus refutation uses the inferences of addition
and multiplication:

f g
f + g

f
f · g

A Polynomial Calculus Refutation of a set of polynomials {fj}j
is a derivation of 1 from the fj ’s and the polynomials (x2i − xi ).

The polynomial calculus and the nullstellensatz systems can refute
the same sets of polynomials; but a polynomial calculus can be
substantially shorter due to cancellation of monomials in
intermediate steps.

One sample result:

Thm: [Razborov’98] Any polynomial calculus proof of PHPn+1
n

must have degree Ω(n).
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Automatizability

Defn: A proof system T is automatizable (in polynomial time) if
there is a procedure, which given a formula ϕ, produces a T -proof
of ϕ in time bounded by a polynomial of the size of the shortest
T -proof of ϕ (if any).

Defn: A proof system T has feasible interpolation if there is
polynomial time procedure C (−,−) so that if P is a T -proof of
¬(A(~p, ~r) ∧ B(~q, ~r)), then C (~p, ~r ) is a Craig interpolant for
A(~p, ~r) ∧ B(~q, ~r).

Thm: [Bonet-Pitassi-Raz’00] If T is automatizable, then T has
feasible interpolation.
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Thm: [Kraj́ıček-Pudlák’95, also B’97] The extended Frege system
eF does not have feasible interpolation and thus is not
automatizable, unless the RSA encryption function, the discrete
logarithm encryption function, and the Rabin encryption function
can be inverted in polynomial time.

Thm: [Bonet-Pitassi-Raz’00] The Frege system F does not have
feasible interpolation and thus is not automatizable, unless Blum
integers can be factored in polynomial time.

Defn: Blum integers are products of two primes, each congruent
to 3 mod 4.

A related theorem holds for bounded depth Frege systems under a
stronger hardness assumption about Blum integers. [BDGMP’03].
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Theorem

Suppose P 6= NP. Then

Resolution is not automatizable. [Atserias-Müller’20]

Cutting Planes in not automatizable. [Göös-Koroth-Mertz-Pitassi’20]

The Nullstellensatz and Polynomial Calculus proof systems are
not automatizable.
[de Rezende-Göös-Nordström-Pitassi-Robere-Sokolov’20]

On the other hand:

Theorem (Beame-Pitassi’96; building on CEI’96)

Tree-like resolution is automatizable in time nlog S where n is the
number of variables, and S is the size of the shortest tree-like
resolution refutation. (This is quasipolynomial time.)

Resolution is automatizable in time n
√
n log S .

Sam Buss Proof Complexity Simons Bootcamp, Part D



End of part D!
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