
Proof Complexity

Part C: Resolution and CDCL

Sam Buss

Satisfiability Boot Camp
Simons Institute, Berkeley, California

January–May 2021

Sam Buss Proof Complexity Simons Bootcamp, Part C



Part C. discusses:

DPLL proof search

CDCL (Conflict Driven Clause Learning) proof search

Proof logging; RUP and (D)RAT

CDCL solvers can be remarkably successful in solving very
large instances of SAT, routinely solving SAT instances with
100,000’s or even 1,000,000’s of variables.

When CDCL solvers find an instance of SAT to be
unsatisfiable, they (mostly) implicitly find a resolution
refutation.

(D)RAT extends CDCL solvers to be as strong as extended
resolution; hence much stronger than resolution.

See [Beame-Kautz-Sabharwal’04] for an introduction, or the
survey “Proof Complexity” [B-Nordström, in preparation]

Sam Buss Proof Complexity Simons Bootcamp, Part C



SAT Solvers (Satisfiability Solvers)

Problem: Given a set Γ of clauses representing a CNF formula,
determine whether Γ is satisfiable.

CDCL SAT Solvers are built on four principal components:

DPLL proofs: A depth-first search for (tree-like) resolution
refutations.

Unit propagation (trivial resolution) guides the DPLL search
and underpins clause learning.

Clause learning infers new clauses that help prune the search
space.

Restarts interrupt a depth-first DPLL search, and start a new
DPLL search.

and many more optimizations!

Sam Buss Proof Complexity Simons Bootcamp, Part C



Resolution

Resolution is a refutation system, refuting sets of clauses. Thus,
resolution is a system for refuting CNF formulas, equivalently, a
system for proving DNF formulas are tautologies.

A literal is a variable x or a negated variable x .

A clause is a set of literals, interpreted as their disjunction

A set Γ of clauses is a CNF formula

Resolution rule:
x ,C x ,D

C ∪D

A resolution refutation of Γ is a derivation of the empty
clause from clauses in Γ.

This allows resolution to be a proof system for DNF formulas.

Thm: Resolution is sound and complete (for CNF refutations)

Sam Buss Proof Complexity Simons Bootcamp, Part C



Resolution refutation — example

1. x ∨ y Ax
2. x ∨ y ∨ z Ax
3. x ∨ z Ax
4. y ∨ z Ax
5. y ∨ z Ax
6. z res
7. x res
8. x ∨ y res
9. x res

10. ⊥ res

First five lines are
axioms;

last five are inferred
by resolution.

⊥

xx

x ∨ y

z

y ∨ zy ∨ z

x ∨ z

x ∨ y ∨ z

x ∨ y

The refutation is a dag (directed cyclic graph)

It is not regular due to the two resolutions on y along one of the
paths in the dag.

Sam Buss Proof Complexity Simons Bootcamp, Part C



DPLL search procedure

Named after Davis-Putnam-Logemann-Loveland [DP’60, DLL’62]

Input: Γ, a set of clauses.

Goal: A satisfying assignment ρ for Γ or a refutation of Γ

The DPLL algorithm performs a depth-first search through the
space of truth assignments, setting literals one-by-one to form a
partial truth assignment ρ, backtracking when needed (namely,
when some clause is falsified).

Initialization: Set ρ to be the empty assignment.

Then: Use a recursive procedure (next slide)...

Sam Buss Proof Complexity Simons Bootcamp, Part C



DPLL Recursive Procedure:

if the partial assignment ρ falsifies some clause of Γ then
return False;

end
if ρ satisfies Γ then

Output ρ as a satisfying assignment and terminate.
end
Pick some unset literal, x , the “decision literal”;
Extend ρ to set x true;
Call this DPLL procedure recursively;
Update ρ to set x false;
Call this DPLL procedure recursively (again);
return False;

Either

Terminates with a satisfying assignment, or

Terminates with “False” – unsatisfiable.
Implicitly finding a tree-like, regular proof.

Sam Buss Proof Complexity Simons Bootcamp, Part C



A tree-like refutation from DPLL search.

⊥

xx

x ∨ yz

y ∨ zy ∨ zy ∨ z

x ∨ z

x ∨ y ∨ z

x ∨ y

Decision literals: (left-to-right, depth-first traversal)
x , z , ⊥; z , y , ⊥; y , ⊥; x , y , z , ⊥; z, ⊥; y , ⊥; ⊥;

“⊥” means, returning False and backtracking.

Note that the DPLL search does not need to set all variables on
paths of the depth-first traversal.

Sam Buss Proof Complexity Simons Bootcamp, Part C



Unit Propagation

Unit Propagation

Suppose C is a clause in Γ and ρ has all but one of the literals
in C false.

Then any satisfying assignment must set the remaining literal
in C true.

DPLL with UP (unit propagation): Same as the DPLL algorithm,
but all possible unit propagations are carried out before choosing a
decision literal. (See next slide.)

A Unit refutation is a resolution refutation in which each
resolution inference has at least one hypothesis a unit clause.

Proposition: Γ has a unit refutation iff unit propagation finds a
contradiction from Γ starting with ρ the empty assignment.

Sam Buss Proof Complexity Simons Bootcamp, Part C



DPLL with Unit Propagation - recursive procedure

ρ0 ← ρ;
Extend ρ by unit propagation for as long as possible;
if ρ falsifies some clause of Γ then

ρ← ρ0;
return False;

end
if ρ satisfies Γ then

Output ρ as a satisfying assignment and terminate.
end
Pick some literal x not set by ρ (the decision literal);
Extend ρ to set x true;
Call this DPLL procedure recursively;
Update ρ to set x false;
Call this DPLL procedure recursively (again);
ρ← ρ0;
return False;

Sam Buss Proof Complexity Simons Bootcamp, Part C



Trivial resolution
Defn’ A resolution derivation of a clause D from Γ is trivial if

It is an input refutation, i.e., every resolution inference has at
least one hypothesis from Γ, and

It is regular.

Let Γ be a set of clauses, let C be the clause x1 ∨ · · · ∨ xn, and let
ρ be the assignment falsifying the xi ’s in C .

Theorem The following are equivalent

There is a trivial derivation of C from Γ.

Unit propagation with ρ and Γ yields the empty (false) clause.

Notation: This is denoted Γ ⊢1 C .
Or: C is inferred by Reverse Unit Propagation (RUP).
Or: C is an Asymmetric Tautology.

The property Γ ⊢1 C can be checked in polynomial time (even, in
linear time).

Sam Buss Proof Complexity Simons Bootcamp, Part C



Conflict Directed Clause Learning (CDCL)

CDCL algorithms form the core of most of the modern successful
SAT solvers. [Marques-Silva, Sakallah’94; MMZZM’01]

Underlying idea:

Conflicts (falsified clauses) are found after unit propagation.

Unit propagation gives rise to clauses that can be derived
(“learned”) by trivial resolution.

These learned clauses are saved with Γ and used for future
proof search.

The learned clauses help prune the search space, in effective,
reducing the need to re-traverse the same area of the search
space.

An important feature is that the learned clauses help compensate
for poor choices of decision literals.

Fast backtracking (backjumping) allows backtracking past decision
literals that did not participate in the clause learning.

Sam Buss Proof Complexity Simons Bootcamp, Part C



L← 0 ; // L is the decision level

ρ← empty assignment;
loop

Extend ρ by unit propagation for as long as possible;
if ρ satisfies Γ then

return ρ as a satisfying assignment;
end
if ρ falsifies some clause of Γ then

if L == 0 then
return “Unsatisfiable”;

end
Optionally learn one or more clauses C and add them to Γ;
Choose a backjumping level L′ < L;
Unassign all literals set at levels > L′;
L← L′;

else
Pick some unset literal x (the decision literal);
Extend ρ to set x true;
L← L+ 1;

end
continue (with the next iteration of the loop);

end loop

Sam Buss Proof Complexity Simons Bootcamp, Part C



Example of a conflict graph and first-UIP learning

x

z

y
t

u

v

w
⊥

s

a b c

Γ contains x ∨ a ∨ z , x ∨ z ∨ y , y ∨ t, y ∨ v , y ∨ a ∨ u, y ∨ u ∨ v ,
u ∨ b ∨ c ∨ w , t ∨ v ∨ w and a ∨ b ∨ c .
x is the top-level decision literal.
a, b, c were set at lower decision levels.
The first-UIP literal is y .
The learned clause is a ∨ b ∨ c ∨ y .
(Clause minimization based on self-subsumption [Sorensson-Biere’09,Han-Somenzi’09]

can learn the smaller clause a ∨ b ∨ y .)

Sam Buss Proof Complexity Simons Bootcamp, Part C



Example of a conflict graph and first-UIP learning

x

z

y
t

u

v

w
⊥

s

a b c

Γ contains x ∨ a ∨ z , x ∨ z ∨ y , y ∨ t, y ∨ v , y ∨ a ∨ u, y ∨ u ∨ v ,
u ∨ b ∨ c ∨ w , t ∨ v ∨ w and a ∨ b ∨ c .

Once x , a, b, c have been set, unit propagation gives successively
z , y , t, s, u, v , w , and finally ⊥.

Sam Buss Proof Complexity Simons Bootcamp, Part C



Example of a conflict graph and first-UIP learning

x

z

y
t

u

v

w
⊥

s

a b c

Γ contains x ∨ a ∨ z , x ∨ z ∨ y , y ∨ t, y ∨ v , y ∨ a ∨ u, y ∨ u ∨ v ,
u ∨ b ∨ c ∨ w , t ∨ v ∨ w and a ∨ b ∨ c .

By backtracking to the maximum decision level of a, b, c , the learned
clause a∨ b∨ c ∨ y becomes asserting, allowing y to be inferred by
unit propagation.
This in turn can trigger further unit propagation.

Sam Buss Proof Complexity Simons Bootcamp, Part C



w
DEC
←−0

u
u∨w
←−0

x
DEC
←−0

y
u∨x∨y
←− 1

z
x∨y∨z
←− 1

y∨z

⊥

x ∨ y

u ∨ x

w
DEC
←−0

u
u∨w
←−0

x
u∨x
←−1

z
x∨z
←−1

x∨z

⊥

x

x
x
←−0

u
u∨x
←−1

w
u∨w
←−1

u∨w

⊥

u

x

⊥

CDCL refutation of {(u ∨ w), (u ∨ x ∨ y), (x ∨ y ∨ z),
(y ∨ z), (x ∨ z), (x ∨ z), (u ∨ w), (u ∨ w)}.
Decision literals inside diamonds, learned clauses inside bold ovals.

Sam Buss Proof Complexity Simons Bootcamp, Part C



u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x x ∨ z

x ∨ z

x

u ∨ w

u ∨ w

u

x

⊥

The corresponding resolution refutation.

Sam Buss Proof Complexity Simons Bootcamp, Part C



Restarts

A restart backtracks the CDCL proof search back to level
zero, where no decision literals have been.

Learned clauses can be maintained after a restart.

Perhaps surprisingly, restarts are extremely effective in the
practical use of CDCL SAT solvers.

Theorem (Pipatsrisawat-Darwiche,11; Atserias-Fichte-Thurley’11;
Beame-Kautz-Sabharwal’04)

CDCL + Restarts can p-simulate resolution.

The caveat for this is that the CDCL+Restarts must make the
correct (nondeterministic) choices to simulate resolution. It does
not mean it can be done in practice. (This is an open question.)
Conversely,

Theorem

Resolution can p-simulate CDCL(+restarts).

Sam Buss Proof Complexity Simons Bootcamp, Part C



Without restarts

Open: Can the CDCL proof search without retarts p-simulate
resolution?

To formalize this open question, formalize CDCL-without-restarts
as either

Pool resolution [van Gelder’05], or

RegWRTI [B-Hoffmann-Johannsen’08]

Pool resolution refuation: A resolution refutation that, viewed as
a dag, admits a depth-first, regular traversal.

Sam Buss Proof Complexity Simons Bootcamp, Part C



Proof Traces (Refutations from SAT solvers)

As CDCL solvers become more complicated, soundness is a serious
problem. Even without “bugs”, solvers use many techniques, many
optimizations; they interact in subtle ways that can be unsound.

Hence: desirable for SAT solvers to output refutations that can be
verified independently.

[Van Gelder’03; Goldberg-Novikov’08] Output the refutation as
series of RUP clauses.
A RUP proof is a sequence C1, . . . ,Ck with

Γ0 = Γ and Γℓ+1 = Γℓ ∪ {Cℓ+1}

Γℓ ⊢1 Cℓ+1

Ck is the empty clause.

A “Deletion-RUP” (DRUP) proof allows the inclusion of deletion
rules to remove clauses. This can greatly improve the verification
time.

Sam Buss Proof Complexity Simons Bootcamp, Part C



Non-implicational inferences

CDCL solvers also frequently infer clauses C that are not implied
by Γ. For example:

Pure literal: If p appears in Γ but p does not, then infer p.

Extension rule: For a new variable x infer three new clauses
expressing x ↔ q ∧ r :

q ∨ r ∨ x , q ∨ x , r ∨ x .

A useful way to think about these are as “wlog” inferences.
[Rebola-Pardo,Suda’18]
Namely, “wlog p is true” or “wlog x ↔ q ∧ r holds”.

Equisatisfiability: These inferences do not change the
(un)satisfiability of the set of clauses.

Sam Buss Proof Complexity Simons Bootcamp, Part C



RAT - Resolution Asymmetric Tautology

[Heule-Hunt-Wetzler’13; s. Kullmann’99]

Definition (Resolution Asymmetric Tautology (RAT))

Let C := C ′ ∨ p. Then C is RAT wrt p and Γ if, for each clause
p ∨ D ′ in Γ, the resolvent C ′ ∨D ′ is an “asymmetric tautology”;
i.e., Γ ⊢1 C

′ ∨D ′. (I.e., follows from trivial resolution)

Definition (RAT inference )

If C is RAT w.r.t. Γ, then C may be inferred by a RAT inference.

Theorem (Equisatisfiability under RAT)

In this case, Γ is satisfiable iff Γ ∪ {C} is satisfiable.

Proof idea: Consider the first step of the Davis-Putnam procedure
(applied to p).

Sam Buss Proof Complexity Simons Bootcamp, Part C



Proof Traces [HHW’13, WHH’14]

DRAT Proof Trace system:

DRAT (= ’D’ + ’RAT’) Proof Trace (Refutation) consists of a
sequence of clauses updating the current set Γ of clauses with two
rules:

RAT inferences: Introduce C by RAT.

Deletion (D): Remove any clause C .

Inferences preserve satisfiability, so the system is sound.

Often takes longer to verify refutations than generate them. (!)
Deletions help prune the unit propagation search space.

Sam Buss Proof Complexity Simons Bootcamp, Part C



THE LARGEST MATH PROOF

Resolved the Pythogorean Triples Problem (false for 7825)
DRAT proof size 200TB; compressed to 14TB (clause compression
plus bzip2), then to 68GB by special encoding.
Run time: 2 days wall clock time, 37100 CPU hours.
Verification time: About 16000 CPU hours.
[Heule-Kullmann-Marek’16]

Sam Buss Proof Complexity Simons Bootcamp, Part C



Thm: [Kullmann’99; Kiesl–Rebola-Pardo—Heule’18]
The DRAT proof system and extended resolution can p-simulate
each other.

Proof idea: (For DRAT p-simulates extended resolution) The
three clauses of the extension rule for x ↔ q ∧ r :

q ∨ r ∨ x , q ∨ x , r ∨ x

can be introduced one at a time as RAT clauses. �

Thus, DRAT provides a very strong proof system! However, it is
open problem how to extend CDCL solvers to exploit the full
strength of DRAT.

Sam Buss Proof Complexity Simons Bootcamp, Part C



End of part C!

Sam Buss Proof Complexity Simons Bootcamp, Part C


