Proof Complexity Part B: Propositional Pigeonhole Principle, Upper and Lower Bounds

Sam Buss

Satisfiability Boot Camp Simons Institute, Berkeley, California January–May 2021 Part B. discusses:

- Propositional Pigeonhole Principle
- Polynomial size $e\mathcal{F}$ proofs
- Polynomial size ${\cal F}$ proofs
- Exponential lower bounds for resolution

Part C. is independent of Part B.

The pigeonhole principle as a propositional tautology

Let $[n] = \{0, ..., n-1\}$. Let *i*'s range over members of [n+1] and *j*'s range over [n]. Intuition: $x_{i,j}$ means "Pigeon *i* is mapped to hole *j*. (*i* is mapped to *j*.)

$$\mathbf{Tot}_i^n := \bigvee_{j \in [n]} x_{i,j}.$$
 "Total at i"

$$\mathsf{Inj}_j^n := \bigwedge_{0 \leq i_1 < i_2 \leq n} \neg (x_{i_1,j} \land x_{i_2,j}).$$
 "Injective at j "

$$\mathsf{PHP}_{n}^{n+1} := \neg \Big(\bigwedge_{i \in [n+1]} \mathrm{Tot}_{i}^{n} \land \bigwedge_{j \in [n]} \mathrm{Inj}_{j}^{n}\Big).$$

 PHP_n^{n+1} is a tautology. It is a polynomial size DNF.

Thm: PHPⁿ⁺¹ has polynomial size $e\mathcal{F}$ proofs. [Cook-Reckhow'79]

★ 3 → 3

Cook-Reckhow's $e\mathcal{F}$ proof of PHP_n^{n+1}

Code the graph of $f : [n + 1] \rightarrow [n]$ with variables $x_{i,j}$ indicating that f(i) = j. PHPⁿ⁺¹_n(\vec{x}): "f is not both total and injective" Identify $x_{i,j}^n$ with $x_{i,j}$.

Use extension to introduce new variables

 $\begin{aligned} x_{i,j}^{\ell-1} \leftrightarrow x_{i,j}^{\ell} \lor (x_{i,\ell-1}^{\ell} \land x_{\ell,j}^{\ell}). \\ \text{for } i \leq \ell, \, j < \ell; \text{ where } x_{i,j}^{n} \leftrightarrow x_{i,j}. \\ \text{Let } \text{PHP}_{\ell}^{\ell+1} \text{ be over variables } x_{i,j}^{\ell}. \\ \text{Prove, for each } \ell \text{ that} \\ \neg \text{PHP}_{\ell}^{\ell+1}(\vec{x}^{\ell}) \rightarrow \neg \text{PHP}_{\ell-1}^{\ell}(\vec{x}^{\ell-1}). \end{aligned}$

Finally derive $PHP_n^{n+1}(\vec{x})$ from $PHP_1^2(\vec{x}^1)$. \Box

 PHP_n^{n+1} has polynomial size extended Frege proofs.

・日本 ・日本 ・日本 -

æ

 PHP_n^{n+1} has polynomial size extended Frege proofs.

Proof: The above proofs are polynomial size $e\mathcal{F}$ proofs.

Expanding the uses of the extension rule, causes an exponential blow up in formula size, $\approx 3^n$. Thus the $e\mathcal{F}$ proofs become exponential size \mathcal{F} proofs.

Open Question: Does extended Frege proofs provide exponential speed up over Frege proofs? And thus, does Frege not p-simulate extended Frege?

くぼう くほう くほう

 PHP_n^{n+1} has polynomial size extended Frege proofs.

▲御 と ▲ 臣 と ▲ 臣 と …

æ

 $\operatorname{PHP}_{n}^{n+1}$ has polynomial size extended Frege proofs.

Theorem (B '87)

 PHP_n^{n+1} has polynomial size Frege proofs.

э

 PHP_n^{n+1} has polynomial size extended Frege proofs.

Theorem (B '87)

 PHP_n^{n+1} has polynomial size Frege proofs.

Theorem (B '15)

 PHP_n^{n+1} has quasipolynomial size Frege proofs.

イロト 不得 とくき とくき とうき

Proof is based on counting.

- There are polynomial-size formulas for vector addition. For m, n ∈ N, input variables define the n bits of m integers. The n + log m formulas CSA_{m,n} define the bits of their sum. Based on carry-save-addition circuits.
- \mathcal{F} can prove elementary facts about sums of vectors of integers as computed with CSA formulas and "2-3" adder trees

Proof sketch: (\mathcal{F}) Assume PHP_n^{n+1} is false. Proceed by "brute force induction" on $i' \leq n+1$ to prove that

• The number of $j \le n$ such that $\bigvee_{i \le i'} x_{i,j}$ is greater than or equal to i'.

Conclude by obtaining a contradiction $n \ge n+1$.

Cook-Reckhow's proof of PHP_n^{n+1} as a Frege proof [B'15]

Let G^{ℓ} be the directed graph with: edges $(\langle i, 0 \rangle, \langle j, 1 \rangle)$ such that $x_{i,j}$ holds, and edges $(\langle i, 1 \rangle, \langle i+1, 0 \rangle)$ such that $i \ge \ell$ (blue edges) For $i \le \ell, j < \ell$, let $\varphi^{\ell}_{i,j}$ express "Range node $\langle j, 1 \rangle$ is reachable from domain node $\langle i, 0 \rangle$ in G^{ℓ} ".

 $\varphi_{i,j}^{\ell}$ is a quasi-polynomial size formula via an NC^2 definition of reachability.

For each ℓ , prove that

$$\neg \mathrm{PHP}_{\ell}^{\ell+1}(\vec{\varphi^{\ell}}) \to \neg \mathrm{PHP}_{\ell-1}^{\ell}(\vec{\varphi^{\ell-1}}).$$

Finally derive $\operatorname{PHP}_n^{n+1}(\vec{x})$ from $\operatorname{PHP}_1^2(\vec{\varphi}^1)$. \Box

Thus, PHP_n^{n+1} no longer provides evidence for Frege not quasipolynomially simulating $e\mathcal{F}$.

[Bonet-B-Pitassi'94] "Are there hard examples for Frege?": examined candidates for separating Frege and $e\mathcal{F}$. Very few were found:

- Cook's AB = I ⇒ BA = I, Odd-town theorem, etc. Now known to have quasipolynomial size *F*-proofs, by proving matrix determinant properties with NC² formulas. [Hrubes-Tzameret'15; Tzameret-Cook'21]
- Frankl's Theorem

Also quasi-polynomial size \mathcal{F} proofs. [Aisenberg-B-Bonet'15]

[Kołodziejczyk-Nguyen-Thapen'11]: Local improvement principles, mostly settled by [Beckmann-B'14], RLl₂ still open.

く 同 と く ヨ と く ヨ と

Yes, extension helps resolution; Since PHP_n^{n+1} has polynomial size $e\mathcal{F}$ proofs and since:

Thm: [Haken'86, Raz'02, Razborov'03, many others] The pigeonhole principle (PHP) requires resolution proofs of size $2^{n^{\epsilon}}$ (even PHP^m_n for $m \gg n$).

For PHP_n^{n+1} , a similar bound can be proved for constant-depth Frege proofs.

Thm: [BIKPPW'92] Depth *d* Frege proofs of PHP_n^{n+1} require size $2^{n^{\epsilon}}$ where $\epsilon = \epsilon(d)$.

Def'n Constant depth Frege proofs are formulated using the sequent calculus, with only connectives \land , \lor applied to literals.

The **depth** of a Boolean formula is the number of alternations of \land 's and \lor 's. The **depth** of a proof is the max depth of its formulas.

(人間) シスヨン スヨン 三日

Proof uses two ingredients.

Def'n. Let Γ be an unsatisfiable set of clauses. RESLEN(Γ) is the minimum number of steps in a resolution refutation of Γ . RESWIDTH(Γ) is the minimum width of a resolution refutation of Γ , where "width" is the maximum number of literals in any clause.

The RESLEN - RESWIDTH tradeoff cannot be used directly with PHP_n^{n+1} since the Tot_i^n clauses are large and thus force k to be large.

But, **sparse PHP** can be used instead. For G a bipartite graph on $[n + 1] \oplus [n]$, replace $\operatorname{Tot}_{i}^{n}$ with

$$G$$
-**Tot**^{*n*}_{*i*} := $\bigvee_{(i,j)\in G} x_{i,j}$. "Total at *i*"

For *G* a constant degree graph with suitable expansion properties, we have $\operatorname{ResWIDTH}(G\operatorname{-PHP}_n^{n+1})$ is $\Omega(n)$. [B-S,W'01] Hence

Theorem (Haken'86, Ben-Sasson, Wigderson'01, and others)

G-PHPⁿ⁺¹ and hence PHPⁿ⁺¹ requires resolution proofs of size $exp(\Omega(n))$.

End of part B!

æ

() 《문》《문》