Proof Complexity
 Part B: Propositional Pigeonhole Principle, Upper and Lower Bounds

Sam Buss

Satisfiability Boot Camp
Simons Institute, Berkeley, California January-May 2021

Part B. discusses:

- Propositional Pigeonhole Principle
- Polynomial size eF proofs
- Polynomial size \mathcal{F} proofs
- Exponential lower bounds for resolution

Part C. is independent of Part B.

The pigeonhole principle as a propositional tautology

Let $[n]=\{0, \ldots, n-1\}$.
Let i 's range over members of $[n+1]$ and j 's range over [n]. Intuition: $x_{i, j}$ means "Pigeon i is mapped to hole j.
(i is mapped to j.)

$$
\begin{gathered}
\operatorname{Tot}_{\boldsymbol{i}}^{\boldsymbol{n}}:=\bigvee_{j \in[n]} x_{i, j} . \quad \text { "Total at } i " \\
\mathbf{I n j}_{j}^{\boldsymbol{n}}:=\bigwedge_{0 \leq i_{1}<i_{2} \leq n} \neg\left(x_{i_{1}, j} \wedge x_{i_{2}, j}\right) . \quad \text { "Injective at } j " \\
\mathbf{P H P}_{\boldsymbol{n}}^{\boldsymbol{n + 1}}:=\neg\left(\bigwedge_{i \in[n+1]} \operatorname{Tot}_{i}^{n} \wedge \bigwedge_{j \in[n]} \operatorname{Inj}_{j}^{n}\right) .
\end{gathered}
$$

PHP_{n}^{n+1} is a tautology. It is a polynomial size DNF.
Thm: PHP_{n}^{n+1} has polynomial size $e \mathcal{F}$ proofs. [Cook-Reckhow'79]

Cook-Reckhow's eF proof of PHP_{n}^{n+1}

Code the graph of $f:[n+1] \rightarrow[n]$ with variables $x_{i, j}$ indicating that $f(i)=j$.
$\operatorname{PHP}_{n}^{n+1}(\vec{x})$: " f is not both total and injective"

Identify $x_{i, j}^{n}$ with $x_{i, j}$.
Use extension to introduce new variables

$$
x_{i, j}^{\ell-1} \leftrightarrow x_{i, j}^{\ell} \vee\left(x_{i, \ell-1}^{\ell} \wedge x_{\ell, j}^{\ell}\right)
$$

for $i \leq \ell, j<\ell$; where $x_{i, j}^{n} \leftrightarrow x_{i, j}$.
Let $\mathrm{PHP}_{\ell}^{\ell+1}$ be over variables $x_{i, j}^{\ell}$.
Prove, for each ℓ that

$$
\neg \mathrm{PHP}_{\ell}^{\ell+1}\left(\vec{x}^{\ell}\right) \rightarrow \neg \mathrm{PHP}_{\ell-1}^{\ell}\left(\vec{x}^{\ell-1}\right)
$$

Finally derive $\operatorname{PHP}_{n}^{n+1}(\vec{x})$ from $\operatorname{PHP}_{1}^{2}\left(\vec{x}^{1}\right) . \square$

Theorem (Cook-Reckhow '79)

PHP_{n}^{n+1} has polynomial size extended Frege proofs.

Theorem (Cook-Reckhow '79)

PHP_{n}^{n+1} has polynomial size extended Frege proofs.

Proof: The above proofs are polynomial size e \mathcal{F} proofs.
Expanding the uses of the extension rule, causes an exponential blow up in formula size, $\approx 3^{n}$. Thus the eF proofs become exponential size \mathcal{F} proofs.

Open Question: Does extended Frege proofs provide exponential speed up over Frege proofs? And thus, does Frege not p-simulate extended Frege?

Theorem (Cook-Reckhow '79)

PHP_{n}^{n+1} has polynomial size extended Frege proofs.

Theorem (Cook-Reckhow '79)

PHP_{n}^{n+1} has polynomial size extended Frege proofs.

Theorem (B '87)

PHP_{n}^{n+1} has polynomial size Frege proofs.

Theorem (Cook-Reckhow '79)

PHP_{n}^{n+1} has polynomial size extended Frege proofs.

Theorem (B '87)

PHP_{n}^{n+1} has polynomial size Frege proofs.

Theorem (B '15)

PHP_{n}^{n+1} has quasipolynomial size Frege proofs.

Polynomial size \mathcal{F} proofs of $\mathrm{PHP}_{n}^{n+1}\left[\mathrm{~B}^{\prime} 87\right]$

Proof is based on counting.

- There are polynomial-size formulas for vector addition. For $m, n \in \mathbb{N}$, input variables define the n bits of m integers. The $n+\log m$ formulas CSA $_{m, n}$ define the bits of their sum. Based on carry-save-addition circuits.
- \mathcal{F} can prove elementary facts about sums of vectors of integers as computed with CSA formulas and " $2-3$ " adder trees
Proof sketch: (\mathcal{F}) Assume PHP_{n}^{n+1} is false. Proceed by "brute force induction" on $i^{\prime} \leq n+1$ to prove that
- The number of $j \leq n$ such that $\bigvee_{i \leq i^{\prime}} x_{i, j}$ is greater than or equal to i^{\prime}.
Conclude by obtaining a contradiction $n \geq n+1$.

Cook-Reckhow's proof of PHP_{n}^{n+1} as a Frege proof $\left[\mathrm{B}^{\prime} 15\right]$

Let G^{ℓ} be the directed graph with: edges $(\langle i, 0\rangle,\langle j, 1\rangle)$ such that $x_{i, j}$ holds, and edges ($\langle i, 1\rangle,\langle i+1,0\rangle$) such that $i \geq \ell$ (blue edges).
For $i \leq \ell, j<\ell$, let $\varphi_{i, j}^{\ell}$ express
"Range node $\langle j, 1\rangle$ is reachable from domain node $\langle i, 0\rangle$ in $G^{\ell \prime \prime}$.
$\varphi_{i, j}^{\ell}$ is a quasi-polynomial size formula via an NC^{2}
 definition of reachability.

For each ℓ, prove that

$$
\neg \operatorname{PHP}_{\ell}^{\ell+1}\left(\vec{\varphi}^{\ell}\right) \rightarrow \neg \operatorname{PHP}_{\ell-1}^{\ell}\left(\vec{\varphi}^{\ell-1}\right) .
$$

Finally derive $\operatorname{PHP}_{n}^{n+1}(\vec{x})$ from $\operatorname{PHP}_{1}^{2}\left(\vec{\varphi}^{1}\right)$.

Thus, PHP_{n}^{n+1} no longer provides evidence for Frege not quasipolynomially simulating $e \mathcal{F}$.
[Bonet-B-Pitassi'94] "Are there hard examples for Frege?": examined candidates for separating Frege and $e \mathcal{F}$. Very few were found:

- Cook's $A B=I \Rightarrow B A=I$, Odd-town theorem, etc. Now known to have quasipolynomial size \mathcal{F}-proofs, by proving matrix determinant properties with NC^{2} formulas. [Hrubes-Tzameret'15; Tzameret-Cook'21]
- Frankl's Theorem Also quasi-polynomial size \mathcal{F} proofs. [Aisenberg-B-Bonet'15]
[Kołodziejczyk-Nguyen-Thapen'11]: Local improvement principles, mostly settled by [Beckmann-B'14], RLI_{2} still open.

Can the extension rule help resolution?

Yes, extension helps resolution; Since PHP_{n}^{n+1} has polynomial size eF proofs and since:

Thm: [Haken'86, Raz'02, Razborov'03, many others]
The pigeonhole principle (PHP) requires resolution proofs of size $2^{n^{\epsilon}}$ (even PHP $_{n}^{m}$ for $m \gg n$).
For PHP_{n}^{n+1}, a similar bound can be proved for constant-depth Frege proofs.

Thm: [BIKPPW'92]
Depth d Frege proofs of PHP_{n}^{n+1} require size $2^{n^{\epsilon}}$ where $\epsilon=\epsilon(d)$.
Def'n Constant depth Frege proofs are formulated using the sequent calculus, with only connectives \wedge, \vee applied to literals.
The depth of a Boolean formula is the number of alternations of \wedge 's and \vee 's.
The depth of a proof is the max depth of its formulas.

Proof method for PHP_{n}^{n+1} resolution lower bound

Proof uses two ingredients.
Def'n. Let 「 be an unsatisfiable set of clauses.
RESLEN(Γ) is the minimum number of steps in a resolution refutation of Γ.
ResWidth (Γ) is the minimum width of a resolution refutation of Γ, where "width" is the maximum number of literals in any clause.

Theorem (Ben-Sasson, Wigderson'01)
If Γ is a k-CNF over n variables, then

$$
\operatorname{ResLen}(\Gamma) \geq \exp \left(\Omega\left(\frac{(\operatorname{RESWIDTH}(\Gamma)-k)^{2}}{n}\right)\right.
$$

The ResLen - ResWidth tradeoff cannot be used directly with PHP_{n}^{n+1} since the $\operatorname{Tot}_{i}^{n}$ clauses are large and thus force k to be large.

But, sparse PHP can be used instead.
For G a bipartite graph on $[n+1] \oplus[n]$, replace $\operatorname{Tot}_{i}^{n}$ with

$$
G-\boldsymbol{T o t}_{i}^{n}:=\bigvee_{(i, j) \in G} x_{i, j} \text {. "Total at } i "
$$

For G a constant degree graph with suitable expansion properties, we have $\operatorname{RESWIdth}\left(G-\operatorname{PHP}_{n}^{n+1}\right)$ is $\Omega(n)$.
[B-S,W'01] Hence

Theorem (Haken'86, Ben-Sasson,Wigderson'01, and others)
$G-\mathrm{PHP}_{n}^{n+1}$ and hence PHP_{n}^{n+1} requires resolution proofs of size $\exp (\Omega(n))$.

End of part B!

