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Part B. discusses:

Propositional Pigeonhole Principle

Polynomial size eF proofs

Polynomial size F proofs

Exponential lower bounds for resolution

Part C. is independent of Part B.
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The pigeonhole principle as a propositional tautology

Let [n] = {0, . . . , n−1}.
Let i ’s range over members of [n+1] and j ’s range over [n].
Intuition: xi ,j means “Pigeon i is mapped to hole j .
(i is mapped to j .)

Totni :=
∨

j∈[n]

xi ,j . “Total at i”

Injnj :=
∧

0≤i1<i2≤n

¬(xi1,j ∧ xi2,j). “Injective at j”

PHPn+1
n := ¬

(

∧

i∈[n+1]

Totni ∧
∧

j∈[n]

Injnj

)

.

PHPn+1
n is a tautology. It is a polynomial size DNF.

Thm: PHPn+1
n has polynomial size eF proofs. [Cook-Reckhow’79]
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Cook-Reckhow’s eF proof of PHPn+1
n

Code the graph of f : [n + 1] → [n] with
variables xi ,j indicating that f (i) = j .

PHPn+1
n (~x): “f is not both total and injective”

Identify xni ,j with xi ,j .

Use extension to introduce new variables

xℓ−1
i ,j ↔ xℓi ,j ∨ (xℓi ,ℓ−1 ∧ xℓℓ,j).

for i ≤ ℓ, j < ℓ; where xni ,j ↔ xi ,j .

Let PHPℓ+1
ℓ be over variables xℓi ,j .

Prove, for each ℓ that

¬PHPℓ+1
ℓ (~xℓ) → ¬PHPℓ

ℓ−1(~xℓ−1).

Finally derive PHPn+1
n (~x) from PHP2

1(~x1). � 0
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Theorem (Cook-Reckhow ’79)

PHPn+1
n has polynomial size extended Frege proofs.
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Theorem (Cook-Reckhow ’79)

PHPn+1
n has polynomial size extended Frege proofs.

Proof: The above proofs are polynomial size eF proofs.

Expanding the uses of the extension rule, causes an exponential blow
up in formula size, ≈ 3n. Thus the eF proofs become exponential
size F proofs.

Open Question: Does extended Frege proofs provide exponential
speed up over Frege proofs? And thus, does Frege not p-simulate
extended Frege?
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Theorem (Cook-Reckhow ’79)

PHPn+1
n has polynomial size extended Frege proofs.
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Theorem (Cook-Reckhow ’79)

PHPn+1
n has polynomial size extended Frege proofs.

Theorem (B ’87)

PHPn+1
n has polynomial size Frege proofs.
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Theorem (Cook-Reckhow ’79)

PHPn+1
n has polynomial size extended Frege proofs.

Theorem (B ’87)

PHPn+1
n has polynomial size Frege proofs.

Theorem (B ’15)

PHPn+1
n has quasipolynomial size Frege proofs.
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Polynomial size F proofs of PHPn+1
n [B’87]

Proof is based on counting.

There are polynomial-size formulas for vector addition. For
m, n ∈ N, input variables define the n bits of m integers. The
n + logm formulas CSAm,n define the bits of their sum.
Based on carry-save-addition circuits.

F can prove elementary facts about sums of vectors of
integers as computed with CSA formulas and “2-3” adder
trees

Proof sketch: (F) Assume PHPn+1
n is false. Proceed by “brute

force induction” on i ′ ≤ n + 1 to prove that

The number of j ≤ n such that
∨

i≤i ′ xi ,j is greater than or
equal to i ′.

Conclude by obtaining a contradiction n ≥ n + 1. �
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Cook-Reckhow’s proof of PHPn+1
n as a Frege proof [B’15]

Let G ℓ be the directed graph with:

edges (〈i , 0〉, 〈j , 1〉) such that xi ,j holds, and

edges (〈i , 1〉, 〈i+1, 0〉) such that i≥ℓ (blue edges).

For i ≤ ℓ, j < ℓ, let ϕℓ
i ,j express

“Range node 〈j , 1〉 is reachable
from domain node 〈i , 0〉 in G ℓ”.

ϕℓ
i ,j is a quasi-polynomial size formula via an NC

2

definition of reachability.

For each ℓ, prove that

¬PHPℓ+1
ℓ (~ϕℓ) → ¬PHPℓ

ℓ−1(~ϕℓ−1).

Finally derive PHPn+1
n (~x) from PHP2

1(~ϕ1).�
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Thus, PHPn+1
n no longer provides evidence for Frege not

quasipolynomially simulating eF .

[Bonet-B-Pitassi’94] “Are there hard examples for Frege?”:
examined candidates for separating Frege and eF . Very few were
found:

Cook’s AB = I ⇒ BA = I , Odd-town theorem, etc.
Now known to have quasipolynomial size F-proofs, by proving
matrix determinant properties with NC

2 formulas.
[Hrubes-Tzameret’15; Tzameret-Cook’21]

Frankl’s Theorem
Also quasi-polynomial size F proofs. [Aisenberg-B-Bonet’15]

[Ko lodziejczyk-Nguyen-Thapen’11]: Local improvement principles,
mostly settled by [Beckmann-B’14], RLI2 still open.
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Can the extension rule help resolution?

Yes, extension helps resolution; Since PHPn+1
n has polynomial

size eF proofs and since:

Thm: [Haken’86, Raz’02, Razborov’03, many others]
The pigeonhole principle (PHP) requires resolution proofs of size
2n

ǫ

(even PHPm
n for m ≫ n).

For PHPn+1
n , a similar bound can be proved for constant-depth

Frege proofs.

Thm: [BIKPPW’92]
Depth d Frege proofs of PHP

n+1
n require size 2n

ǫ

where ǫ = ǫ(d).

Def’n Constant depth Frege proofs are formulated using the sequent calculus,
with only connectives ∧, ∨ applied to literals.

The depth of a Boolean formula is the number of alternations of ∧’s and ∨’s.

The depth of a proof is the max depth of its formulas.
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Proof method for PHPn+1
n resolution lower bound

Proof uses two ingredients.

Def’n. Let Γ be an unsatisfiable set of clauses.
ResLen(Γ) is the minimum number of steps in a resolution
refutation of Γ.
ResWidth(Γ) is the minimum width of a resolution refutation
of Γ, where “width” is the maximum number of literals in any
clause.

Theorem (Ben-Sasson, Wigderson’01)

If Γ is a k-CNF over n variables, then

ResLen(Γ) ≥ exp
(

Ω
((ResWidth(Γ) − k)2

n

)
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The ResLen - ResWidth tradeoff cannot be used directly with
PHPn+1

n since the Totni clauses are large and thus force k to be
large.

But, sparse PHP can be used instead.
For G a bipartite graph on [n + 1] ⊕ [n], replace Totni with

G -Totni :=
∨

(i ,j)∈G

xi ,j . “Total at i”

For G a constant degree graph with suitable expansion properties,
we have ResWidth(G -PHPn+1

n ) is Ω(n). [B-S,W’01]
Hence

Theorem (Haken’86, Ben-Sasson,Wigderson’01, and others)

G-PHPn+1
n and hence PHPn+1

n requires resolution proofs of size

exp(Ω(n)).
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End of part B!
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