
An Application of Boolean Complexity to

Separation Problems in Bounded Arithmetic

Samuel R. Buss∗

Department of Mathematics

University of California, San Diego

Jan Kraj́ıček†

Mathematics Institute

Czechoslovakian Academy of Sciences, Prague

November 16, 1992

Abstract

We develop a method for establishing the independence of some
Σb

i(α)-formulas from Si
2(α). In particular, we show that T i

2(α) is not
∀Σb

i(α)-conservative over Si
2(α).

We characterize the Σb
1 -definable functions of T 1

2 as being precisely
the functions definable as projections of polynomial local search (PLS)
problems.

Although it is still an open problem whether bounded arithmetic S2 is
finitely axiomatizable, considerable progress on this question has been made:
Si+1

2 is ∀Σb
i+1 -conservative over T i

2 [3], but it is not ∀Σb
i+2 -conservative unless

Σp
i+2 = Πp

i+2 [10], and in addition, T i
2 is not ∀Σb

i+1 -conservative over Si
2

∗Supported in part by NSF grants DMS-8902480 and INT-8914569. Part
of this work performed while visiting the Czechoslovakian Academy of Sciences.
Email address: sbuss@ucsd.edu.

†Supported in part by NSF grant INT-8914569. Part of this work performed while
visiting the Univ. of Illinois, Champaign-Urbana. Email address: krajicek@csearn.bitnet.

1

unless LogSpaceΣp
i = ∆p

i+1 [8]. In particular, S2 is not finitely axiomatizable
provided that the polynomial time hierarchy does not collapse [10].

For the theory S2(α) these results imply (with some additional argu-
ments) absolute results: Si+1

2 (α) is ∀Σb
i+1(α)-conservative but not ∀Σb

i+2(α)-
conservative over T i

2(α), and T i
2(α) is not ∀Σb

i+1(α)-conservative over Si
2(α).

Here α represents a new uninterpreted predicate symbol adjoined to the
language of arithmetic which may be used in induction formulas; from a
computer science perspective, α represents an oracle.

In this paper we pursue this line of investigation further by showing that
T i

2(α) is also not ∀Σb
i(α)-conservative over Si

2(α). This was known for i = 1, 2
by [9, 17], see also [2], and our present proof uses a version of the pigeonhole
principle similar to the arguments in [2, 9].

Perhaps more importantly, we formulate a general method (Theorem 2.6)
which can be used to show the unprovability of other Σb

i(α)-formulas from
Si

2(α).
Our methods are analogous in spirit to the proof strategy of [8]: prove a

witnessing theorem to show that provability of a Σb
i+1(α)-formula A in Si

2(α)
implies that it is witnessed by a function of certain complexity and then
employ techniques of boolean complexity to construct an oracle α such that
the formula A cannot be witnessed by a function of the prescribed complexity.
Our formula A shall be Σb

i(α) and thus we can use the original witnessing
theorem of [2]. The boolean complexity used is the same as in [8], namely
Hastad’s switching lemmas [6].

Johnson, Papadimitriou and Yannakakis [7] introduced a class of poly-
nomial local search (PLS) problems. In the final section of this paper, we
provide a characterization of the Σb

1 -definable (multivalued) functions of T 1
2 ,

by showing that for any PLS problem L , the existence of local optima for L
can be expressed as a ∀Σb

1 formula provable in T 1
2 , and conversely, by showing

that every ∀Σb
1 -formula provable in T 1

2 can be witnessed by a function which
is a projection of a PLS problem.

We assume the reader is familiar with bounded arithmetic and with the
basics of boolean complexity. A reference on boolean complexity is [6] and on
bounded arithmetic is [2] or the broader survey in the monograph [5]. The
boolean circuits used in this paper are always constructed with unbounded
fanin AND’s and OR’s in alternating levels; NOT gates are not used, instead
input signals p may be negated (denoted p).

2

1 Some Boolean Complexity

(1.1) For k , m ≥ 1, i ≥ 0 we shall consider the set Bk,i(m) of mk+i

Boolean variables px1,...,xk,y1,...,yi
, where 0 ≤ x1, . . . , xk, y1, . . . , yi < m .

The set Bk,i(m) is partitioned into mk+i−1 blocks (Bk,i(m))j of the
form (Bk,i(m))j = {px1,...,xk,y1,...,yi−1,z|z < m} ; where j is the tuple
〈x1, . . . , xk, y1, . . . , yi−1〉 . We shall henceforth use ~x as an abbreviation for
x1, . . . , xk . Note that Bk,0(m) is the set of variables p~x with ~x < m .

(1.2) A restriction ρ is a partial truth evaluation of propositional variables,
i.e., a partial map into {0, 1} . Instead of saying that ρ(p) is undefined we
shall write ρ(p) = ∗ .

(1.3) ΣS,t
j is the class of depth (j + 1) circuits with arbitrary variables,

with top gate (level j + 1) OR and at most S gates in each of the levels
2, 3, . . . , j + 1, and with bottom gates (level 1) of arity at most t . Recall
our convention that all circuits have unbounded fanin ANDs and ORs in
alternating levels.

(1.4) R
+
k,i,m(q), 0 < q < 1, is the probability space of restrictions ρ defined

on Bk,i(m) as follows: for any j and for any p ∈ (Bk,i(m))j , ρ(p) = sj

with probability q and ρ(p) = 1 with probability 1 − q , where sj = ∗ with
probability q and sj = 0 with probability 1 − q .

The probability space R
−
k,i,m(q) is defined in the same way as R

+
k,i,m(q)

except that the values 0 and 1 of ρ are interchanged.

(1.5) For i ≥ 1, ηi is the map from Bk,i(m) onto Bk,i−1(m) defined by:

ηi(p~x,y1,...,yi
) = p~x,y1,...,yi−1

.

For ρ in R
+
k,i,m(q), g(ρ) is a restriction assigning value 1 to every variable

p~x,y1,...,yi−1,s which was given ∗ by ρ such that for some s < t < m , the
variable p~x,y1,...,yi−1,t was also assigned ∗ by ρ . Thus g(ρ) changes all but

3

one ∗ in every block (Bk,i(m))j into 1 (if there were any ∗ ’s). If ρ is from
R

−
k,i,m(q), then the map g(ρ) is defined identically using 0 instead of 1.

ηi(ρ) is abbreviation for the composition of restrictions � g(ρ) � ηi . The
effect of the restriction ηi(ρ) is, in each block of variables, to rename one
(if any) ∗ ’ed variable p~x,y1,...,yi

to p~x,y1,...,yi−1
. If there are multiple ∗ ’ed

variables in a block then only one is renamed and the rest are mapped to 1
(respectively, 0).

(1.6) The next lemma is Hastad’s second switching lemma, see [6].

Lemma(Hastad) Let C be a ΣS,t
j+1 circuit with variables from Bk,i(m),

i, j ≥ 1, and 0 < q < 1. Assume that a restriction ρ is randomly chosen from
R

+
k,i,m(q) or R

−
k,i,m(q). Then the probability that the function (C � ρ) � ηi(ρ)

is not computable by a ΣS,t
j circuit with variables from Bk,i−1(m) is at most

S · (6qt)t .

The function (C � ρ) � ηi(ρ) is defined in the obvious way: first partially
evaluate and rename variables by ρ and ηi and then compute as C .

(1.7) Now we shall consider particular circuits D`
i,m(~x) of depth i , one for

every choice of x1, . . . , xk < m . These circuits compute modified Sipser
functions, see [6], and are defined by

D`
i,m(~x) = AND

y1<m
OR
y2<m

· · · Qi−1

yi−1<m
Qi

yi<(1
2
`m log(m))

1/2

p~x,y1,...,yi
,

where Qi−1 (resp. Qi) is AND if i is even (resp. odd) and is OR otherwise.
Our logarithms are always base 2. Note that for distinct tuples ~x , the
circuits D`

i,m(~x) contain distinct propositional variables. The parameter `
is introduced for technical reasons and its value will be fixed in the proof of
Lemma 1.8.

(1.8) The next lemma is also due to Hastad [6]. As our parameters are
slightly different from those in [6] we include a brief proof-sketch.

We say that circuit C contains circuit D if by renaming and/or erasing
some variables we can transform C into D .

4

Lemma Let `,m, i ≥ 1 and x1, . . . , xk < m and D be D`
i,m(~x). Let q =

(

2` log(m)
m

)1/2

and assume q ≤ 1/5. For m sufficiently large, the following

hold:
(a) Assume i ≥ 2 and that a restriction ρ is randomly chosen from

R
+
k,i,m(q) if i is odd or from R

−
k,i,m(q) if i is even. Then the probability that

(D � ρ) � ηi(ρ) does not contain D`−1
i−1,m(~x) is at most 1

3
m−`+i−1 .

(b) Assume i = 1 and that a restriction ρ is randomly chosen from
R

+
k,1,m(q). Then with probability at least 1− 1

6
m−`+k all mk circuits D`

1,m(~x),
for every choice of x1, . . . , xk < m, are collapsed by � ρ � η1(ρ) to ∗ or 0, and
with probability at least 1− 1

6
m−`+k , at least ((`− 1) log(m))1/2mk−1/2 ∗’s are

assigned.

Proof (Sketch, see [6]): (a) assume that i ≥ 2 is odd and ρ is chosen
randomly from R

+
k,i,m(q) (the case of i even is analogous). Then a depth 2

subcircuit of D is an OR of m ANDs each of them of size
(

1
2
`m log(m)

)1/2
:

OR
yi−1<m

AND
yi<(1

2
`m log(m))

1/2
px1,...,xk,y1,...,yi

.

Each AND corresponds to one class (Bk,i(m))j of the decomposition of
Bk,i(m). An AND gate takes value sj with probability at least

1 − (1 − q)(
1
2
`m log(m))

1/2

= 1 −
(

1 −
(

2` log(m)

m

)1/2
)(1

2
`m log(m))

1/2

> 1 − e−` log(m) > 1 − 1

6
m−`,

for m sufficiently large. Thus with probability at least 1 − 1
6
m−`+i−1 this is

true of all mi−1 ANDs on level 1.
For each depth two subcircuit (OR of ANDs), the expected num-

ber of ANDs for which the value of sj is equal to ∗ instead of 0 is:

m · q = (2`m log(m))1/2 , and, in fact, there are at least ((`−1)m log(m)
2

)1/2 ∗ ’s
among sj ’s with probability at least 1 − 1

6
m−` . This is seen by the following

argument:

5

Let ru be the probability that exactly u of the sj ’s corresponding to
ANDs of the OR gate, are equal to ∗ . Then

ru =

(

m

u

)(

2` log(m)

m

)u/2
(

1 −
(

2` log(m)

m

)1/2
)m−u

.

For u ≤ (`m log(m))1/2 it holds that ru/ru−1 ≥
√

2 and, as r(`m log(m))1/2 < 1,
we get the estimate:

(1
2
`m log(m))

1/2

∑

u=0

ru ≤ r
(1

2
`m log(m))

1/2

∞
∑

u=0

2−u/2

< 4 · r
(1

2
`m log(m))

1/2

≤ 4
(√

2
)−(1−2−1/2)(`m log(m))1/2

· r(`m log(m))1/2

≤ 4
(√

2
)−(1−2−1/2)7` log(m)

≤ 1

6
m−`,

for m sufficiently large. (The next-to-last inequality used m ≥ 49` log m
which follows from q ≤ 1/5.)

As there are mi−2 ORs on level 2 at D , the probability that every such

OR gets assigned at least
(

1
2
(` − 1)m log(m)

)1/2 ∗ ’s is at least 1− 1
6
m−`+i−2 .

This proves part (a). Part (b) is proved completely analogously.
Q.E.D. Lemma 1.8

2 Oracle computationsofwitnessing functions

(2.1) A polynomial time oracle machine M is a Turing machine running in
polynomial time and querying an oracle; for different oracles the machine
may compute different functions. Thus we think of the machine as described
independently of a specific oracle.

6

(2.2) A Σp
i (α)-oracle machine is a pair (M,B(x)), where B(x) is a Σb

i(α)-
formula and M is a polynomial-time oracle machine. For the rest of this
section, α is a (k + i)-ary predicate symbol.

For a particular predicate α ⊆ N
k+i , B(x) defines a subset of N , i.e.,an

oracle, and (M,B(x)) computes a particular function. We shall denote by
Mα machine M with the oracle B(x).

(2.3) A circuit oracle is a function C assigning to each u ∈ N a boolean
circuit Cu with variables from some Bk,i(m), m = m(u) being a function
of u and k, i fixed. For a particular α ⊆ N

k+i , the circuit oracle C defines
a subset Cα of N of those u for which Cu computes 1 when propositional
variables are assigned truth values according to:

px1,...,xk,y1,...,yi
= 1 iff (x1, . . . , xk, y1, . . . , yi) ∈ α.

For M an oracle Turing machine and α ⊆ N
k+i , we let Mα denote the

machine M using the oracle Cα . The context will always distinguish between
the two definitions (2.2) and (2.3) of Mα .

For S, t and m functions of u , a circuit oracle is called ΣS,t
j -circuit oracle

with variables from Bk,i(m) if Cu is a Σ
S(u),t(u)
j -circuit with variables from

Bk,i(m(u)) for all u .

There is a close correspondence between the Σb
i(α)-oracles and ΣS,t

i -
circuit oracles with variables from Bk,i(m), with S = 2(log m)c

, t = log S and
m = 2(log u)c

(see [4]). Namely, if (M,B(x)) is as in (2.2), then the oracle B(x)
is equivalent to a family of ΣS,t

i circuits Cu with variables from Bk,i(m), with
S, t,m bounded as above for some constant c depending on the runtimes
of M and B . As B(x) ∈ Σb

i , B(x) may be computed by making i blocks of
existential/universal guesses and then running for polynomial time. Hence,

for each u , a ΣS,t
i circuit Cu with variables from Bk,i(m) (m = 2(log u)O(1)

)
may be constructed that computes B(u) by letting i levels of OR’s and AND’s
in Cu correspond to blocks of existential and universal guesses, respectively,
and at the bottom of the circuit, expressing a polynomial time execution of
B (performed after all nondeterministic choices are finished), as either an OR
of AND’s of fanin ≤ t or an AND of OR’s of fanin ≤ t (if i is odd or even,
respectively). Merging adjacent OR’s (respectively, AND’s) in the second
and third levels from the bottom of the circuit, makes Cu have depth i + 1 as
desired.

7

Thus any Σb
i(α)-oracle may be viewed as a ΣS,t

i -circuit oracle with
variables from Bk,i(m) and S, t,m bounded in terms of u as above. The

converse is not true; however, any such ΣS,t
i -circuit oracle may nonetheless be

viewed as analogous to a non-uniform Σb
i(α)-oracle.

(2.4) Fix m ; let [m] denote the set {0, 1, . . . ,m− 1} . A (k−u)-dimensional
cylinder in [m]k is any set of the form:

{(x1, . . . , xk) ∈ [m]k: xi1 = a1, . . . , xiu = au}

for any fixed values i1 < . . . < iu and a1, . . . , au < m . There are
(

k
r

)

mk−r

many r -dimensional cylinders in [m]k .

(2.5) For α a k + i-ary predicate, denote by Ai,α(a, x1, . . . , xk) the Πb
i(α)-

formula:

∀y1 < a ∃y2 < a · · ·Qyi−1 < a Q′yi <
(

1
2
`a log a

)1/2
α(x1, . . . , xk, y1, . . . , yi).

Thus Ai,α has (k + 1) free variables. The parameter ` relates to ` in (1.7)
and its value will be fixed later.

Let β(x1, . . . , xk) be a k -ary predicate symbol and let B(a, β) be a
bounded formula containing β in which a is the only free variable, in which
every quantifier is bounded by a , which contains no function symbols, and in
which every occurence of β has k bound variables as arguments. Obviously,
B(a, β) depends only on the values of β(a1, . . . , ak) where a1, . . . , ak < a .
Define B(a,Ai,α) to be the Σb

∞(α) formula obtained from B(a, β) by replacing
all occurences of β(x1, . . . , xk) by Ai,α(a, x1, . . . , xk).

We shall assume B begins with an existential quantifier, so B is
∃ x < a D . A witness for B(a, . . .) is a value for z such that D(a, z, . . .)
holds. We shall see examples of such formulas in the next section.

(2.6) The next theorem is the main technical result of this paper.

Theorem Assume i, k ≥ 1 and that α, Ai,α and B(a, β) are as in (2.5).
Assume also that M is a polynomial time oracle machine with a Σb

i+1(α)-
oracle, such that for every α ⊆ N

k+i the machine Mα computes from input a
some witness to formula B(a,Ai,α).

8

Then there is a constant c ≥ 1 such that for m sufficiently large there is a
Q ⊆ N

k and a ΣS,t
1 -circuit oracle C1 with variables from Bk,0(m) so that the

following conditions hold:

(i) for all u, m(u) = m,S(u) = 2(log m)c
and t(u) = log S = (log m)c ,

(ii) for every r -dimensional cylinder U in [m]k , r = 1, . . . , k ,

|U\Q| ≥ mr−1/2

(iii) for every α0 ⊆ N
k s.t. α0 ∩ Q = ∅, machine Mα0

computes on input m
a witness to formula B(m,α0).

Note that for any given m , S(u), t(u) and m(u) are constants independent
of u and that the variables of the ΣS,t

1 -circuit oracle are of the form px1,...,xk
,

with x1, . . . , xk < m , and thus Mα0
is correctly defined for any α0 ⊆ N

k .
To better understand Theorem 2.6, first consider a converse of it: if

N is a Turing machine which, given an input m and given a ΣS,t
1 -circuit

oracle C involving variables p~x , always outputs a witness for B(m,α0), then
the same Turing machine N can find a witness for B(m,Ai,α) when given
m as input and given a ΣS,t

i+1 -circuit oracle C ′ with variables from Bk,i(m).
This converse is easily proved if C ′ is defined from C by replacing variables
p~x by ΠS,t

i subcircuits for Ai,α (with variables from Bk,i(m))— note that in
C , variables p~x give the truth values of α0(~x), while in C ′ , variables p~x,y1,...,yi

give truth values of α(~x, y1, . . . , yi).
Since a Σb

i+1(α)-oracle can be translated into a ΣS,t
i+1 -circuit oracle with

variables from Bk,i(m), Theorem 2.6 essentially states that the converse can
be partially reversed, at least for α0 ’s that avoid the set Q . The set Q is small
in the sense that, in any cylinder, at least a fraction 1/

√
m of the k -tuples

from the cylinder are not in Q (and hence may be α0).
Another way to think about Theorem 2.6 is as follows: Suppose there is a

machine M that finds witnesses for B(a,Ai,α) with a Σb
i+1(α)-oracle. Since

Ai,α is a Πb
i -formula, M has the power to ask existential questions involving

Ai,α . The point of Theorem 2.6 is that M does not have very much more
power; namely, if M asks instead ΣS,t

1 -circuit oracle queries about β , then M
can find a witness for B(a, β) for many β ’s (the ones that avoid Q).

Proof of the theorem: The proof consists of several steps, employing heavily
the lemmas from section 1.

9

1. Choose m sufficiently large so that Lemma 1.8 holds and fix a = m . Let
` ≥ i + 2k .

2. For technical reasons (Lemma 1.8), we forbid into α any mem-
bers (x1, . . . , xk, y1, . . . , yi) with x1, . . . , xk, y1, . . . , yi−1 ≥ m or with
yi ≥ (1

2
`m log(m))1/2 ; this can be done without loss of generality

because of the form of the bounded quantifiers in B and in Ai,α .
Clearly the truth value of Ai,α(a, x1, . . . , xk) is computed by the circuit
D`

i,m(x1, . . . , xk) under the evaluation of variables:

px1,...,xk,y1,...,yi
= 1 iff (x1, . . . , xk, y1, . . . , yi) ∈ α.

3. Let E(x) be the Σb
i+1(α)-oracle of the oracle machine. Since the ma-

chine M is polynomial time, any number u occuring in the computation

is bounded by 2(log m)O(1)

. For any u < 2(log m)O(1)

, the truth value of
E(u) is computed by a ΣS,t

i+1 -circuit Cu with variables from Bk,i(m),
where S ≤ 2(log m)c

and t = log(S), for c large enough.

Thus we henceforth think of M as being a ΣS,t
i+1 -circuit–oracle (with

variables from Bk,i(m)) machine with S, t,m constants.

4. Let ρj be randomly chosen restrictions from R
εj

k,j,m(qj), for j = i, i − 1, . . . , 1,

where εj is + if j is odd and − if j is even, and qj =
(

2(`−i+j) log(m)
m

)1/2

.

We are interested in what the effect of the composed restriction

κ =� ρi � ηi(ρi) � ρi−1 � ηi−1(ρi−1) � . . . � ρ1 � η1(ρ1)

is on the circuits Cu and D`
i,m(x1, . . . , xk)

5. By (1.8), any circuit D`+j−i
j,m (x1, . . . , xk) contains, after being restricted

by ρj � ηj(ρj), the circuit D`+j−i−1
j−1,m (x1, . . . , xk) with probability at least

1− 1
3
m−`+i−1 , and thus this is true for all mk circuits D`+j−1

j,m (x1, . . . , xk)
obtained by considering all values of x1, . . . , xk < m , with probability
at least

1 − 1

3
m−`+k+i−1.

6. Applying successively the restrictions ρj � ηj(ρj), with j = i, . . . , 2, to
D`

i,m(x1, . . . , xk), transforms the circuit into

(D`
i,m(x1, . . . , xk)) � ρi � ηi(ρi) � . . . � ρ2 � η2(ρ2),

10

and therefore, by the preceeding paragraph, with probability at least

1 − 1

3
(i − 1)m−`+k+i−1

each of these mk circuits contains the circuit D`−i+1
1,m (x1, . . . , xk).

7. To establish condition (ii) of the theorem, we have to be more careful in
assessing what happens to D`−i+1

1,m (x1, . . . , xk) after being restricted by
the randomly chosen � ρ1 � η1(ρ1).

Let U be any r -dimensional cylinder; r ≥ 1. Then analogously
to part (b) of Lemma 1.8 and by reasoning similar to the proof of
Lemma 1.8(a), with probability at least

1 − 1

6
m−`+i−1+r,

there are at least

mr

(

(` − i) log(m)

m

)1/2

≥ mr−1/2

many ∗ ’s assigned to the mr many circuits corresponding to
(x1, . . . , xk) ∈ U . At the same time, with probability at least

1 − 1

6
m−`+i−1+r

none of these circuits collapses to 1. Summing up, with probability at
least

1 − 1

3
m−`+i−1+r,

all mr circuits corresponding to (x1, . . . , xk) ∈ U collapse to either ∗
(i.e. to px1,...,xk

) or to 0, with at most m − mr−1/2 collapsing to 0.

Counting over all cylinders of dimension ≥ 1, the above holds for all
such cylinders U with probability at least

1 −
k
∑

r=1

(
1

3
m−`+i−1+rmk−r

(

k

r

)

) = 1 − 1

3
m−`+i−1+k

k
∑

r=1

(

k

r

)

≥ 1 − 1

3
m−`+i−1+k2k

≥ 1 − 1

3
m−`+i−1+2k.

11

8. Now we turn our attention to what effect κ has on the oracle circuits Cu .

By Lemma 1.6, any ΣS,t
j+1 circuit with variables from Bk,j(m) is trans-

formed by the restriction � ρj � ηj(ρj) into a ΣS,t
j -circuit with variables

from Bk,j−1(m) with probability at least

1 − S(6qjt)
t.

Therefore with probability at least

1 − S(6t)t

(

1
∑

j=i

qt
j

)

≥ 1 − S(6t)t · i · (qi)
t

(since qi ≥ qi−1 ≥ . . . ≥ q1), a ΣS,t
i+1 circuit Cu with variables from

Bk,i(m) is transformed by κ into a ΣS,t
1 -circuit C1

u with variables from
Bk,0(m). It follows that with probability at least

1 − S2 · i · (6qit)
t

C1
u = Cu � κ is a ΣS,t

1 -circuit, for all u < S . In other words, every circuit
oracle that M may query collapses to a ΣS,t

1 with this probability. It is
easy to compute that for m large enough (w.r.t. ` and c):

1 − S2 · i · (6qit)
t ≥ 1 − 2−

1
3

log(m)c+1

.

9. By 6. and 7., κ collapses every D`
i,m(x1, . . . , xk) into px1,...,xk

or 0, with
“cylinder property” of 7. satisfied, with probability at least

1 − 1

3
(i − 1)m−`+k+i−1 − 1

3
m−`+i−1+2k ≥ 1 − i

3
m−`+i−1+2k.

By 8., with probability at least

1 − 2−
1
3

log(m)c+1

,

every C1
u = Cu � κ is a ΣS,t

1 -circuit with variables from Bk,0(m).

Thus both these events happen, for random κ = ρi � ηi(ρi) � . . . � ρ1 �

η1(ρ1), with probability at least:

1 − i

3
m−`+i−1+2k − 2−

1
3

log(m)c+1 ≥ 1 − i

3m
− 1

8
≥ 1

2
,

since ` ≥ i + 2k , for m large enough.

12

10. By 9., there is at least one κ satisfying conditions at 8. Define

Q = {(x1, . . . , xk) | D`
i,m(x1, . . . , xk) � κ = 0}.

Q satisfies property (ii) of Theorem 2.6 by 7.

Define the ΣS,t
1 -circuit oracle by

C1
u := Cu � κ.

Now, condition (iii) of Theorem 2.6 is satisfied by construction.

Q.E.D. Theorem 2.6

(2.7) Observe that the above proof works even if S is considerably larger: up

to S = 2m(1
2−ε)

, ε > 0 fixed. In other words, we can allow the machine M to

run in time 2m(1
2−ε)

. The only modification to the proof is to the calculations
in 8., recall that t = log S .

3 The Pigeonhole Principle

In this section we apply Theorem 2.6 to show the unprovability of a weak
form of the pigeonhole principle in Si

2(α).

(3.1) Let β(x1, x2, x3) be a predicate symbol. Let WPHP (a, β) be the
formula:

(∀u1, u2, v1, v2, w < a)[(β(u1, u2, w) ∧ β(v1, v2, w)) → (u1 = v1 ∧ u2 = v2)]

∧(∀u1, u2, v, w < a)[(β(u1, u2, v) ∧ β(u1, u2, w)) → v = w]

→ (∃u1, u2 < a)(∀v < a)(¬β(u1, u2, v)).

If we think of a pair of numbers x1 , x2 < a as coding a single number < a2 ,
then the formula WPHP says that β(x1, x2, x3) does not define the graph of
a one-to-one function from a2 to a . Clearly WPHP is Σb

2(β)-formula.

(3.2) Let α(x1, x2, x3, y1, . . . , yi) be a (i + 3)-ary predicate symbol and
Ai,α(a, x1, x2, x3) be the Πb

i(α)-formula defined in (2.5). Then we have:

13

Theorem(Paris-Wilkie-Woods) For all i ≥ 0, WPHP (a,Ai,α) is provable
by T i+2

2 (α).

Proof In [15] it was shown that WPHP (a, β) is provable in I∆0(β) + Ω1 ,
and thus also in T2(β). Already [2] has observed that this proof can be carried
out in T 2

2 (β). This implies the theorem.
Q.E.D. Theorem 3.2

(3.3) Theorem Let i ≥ 0. The Σb
i+2(α)-formula WPHP (a,Ai,α) is not

provable in Si+2
2 (α).

Proof Case i = 0 was proved in [9]. We use Theorem 2.6 to essentially
reduce the case i > 0 to the case i = 0 (we include the i = 0 argument here
too).

Let i ≥ 1 and assume that Si+2
2 (α) proves WPHP (a,Ai,α). Then by the

“main theorem” for bounded arithmetic [2], the formula WPHP (a,Ai,α) is
witnessed by a �P

i+2(α)-function, i.e., by a function which is computed by a
polynomial time oracle machine M with a Σb

i+1(α)-oracle E(x). We shall
consider only α ’s such that Ai,α defines a partial 1-1 function from a2 to a ;
in other words, such that

(∀u1, u2, v1, v2, w < a)[(Ai,α(a, u1, u2, w) ∧ Ai,α(a, v1, v2, w))

→ (u1 = v1 ∧ u2 = v2)]

∧(∀u1, u2, v, w < a)[(Ai,α(a, u1, u2, v) ∧ Ai,α(a, u1, u2, w)) → v = w]

For such α ’s, Mα on input a , will witness the truth of WPHP (α, β) by
producing as output values u1, u2 < a such that

(∀v < a)(¬Ai,α(a, u1, u2, v);

in other words, Mα outputs values for u1, u2 such that the partial function
defined by Ai,α is undefined at the pair u1, u2 .

We now apply Theorem 2.6 with B(a, β) the Σb
2 -formula which is the

prenex form of WPHP (a, β). Theorem 2.6 implies, for all m sufficiently
large, there is a ΣS,t

1 -circuit oracle, C1
u , with variables from B3,0(m), where

S = 2log(m)c
and t = log(m)c , and there is a Q ⊆ [m]3 such that whenever

α0 ⊆ [m]3 and α0 ∩Q = ∅ , the machine Mα0
outputs a witness to B(m,α0).

We show that this is impossible. To prove this, we shall build an oracle α0

for which Mα0
(a) fails to witness B(m,α0) — the oracle is constructed by

14

executing Mα(m) and creating sets X+
i and X−

i at the i-th oracle query.
The set X+

i (respectively, X−
i) is a set of triples that is forced to be in α0

(respectively, out of α0). Initially, X+
0 = ∅ and X−

0 := Q . Let “C1
u1

?” be
the first circuit-oracle query. There are two possibilities:

(a) There is α ⊆ [m]3 , X+
0 ⊆ α , α ∩ X−

0 = ∅ , such that α is a graph of
partial 1 − 1 map from m2(= m × m) to m , and C1

u1
evaluates to 1,

(b) There is no α satisfying (a).

In Case (a), since C1
u1

is a ΣS,t
1 -circuit, it is an OR of AND’s of size ≤ t ;

thus, C1
u1

can be forced true by specifying the the truth values ≤ t = (log m)c

atoms. Choose any partial evaluation ξ that forces C1
u1

true such that ξ sets
≤ t values and is consistent with conditions in (a). Form X+

1 (respectively,
X−

1) by adding to X+
0 (respectively, to X−

0) all (x1, x2, x3) such that px1,x2,x3

given value 1 (respectively, value 0) by ξ . Now answer YES to the machine
and resume its computation.

In Case (b) put X+
1 := X+

0 , X−
1 := X−

0 , answer NO, and resume the
computation.

Arriving at (i + 1)-st query, we have already defined X+
i , X−

i so that

|X+
i | ≤ i(log m)c, |X−

i \Q| ≤ i(log m)c,

and X+
i ∩ X−

i = ∅ , and the answers to the first i oracle queries have been
fixed, for any graph α of a partial 1-1 function with X+

i ⊆ α and α∩X−
i = ∅ .

Form X±
i+1 analogously as above.

At the end of computation (which has ≤ (log m)c steps), we define

X+ =
⋃

i

X+
i , X− =

⋃

i

X−
i

and then we have that

|X+| ≤ (log m)2c, |X−\Q| ≤ (log m)2c

with Q ⊆ X− . Furthermore, for all partial 1-1 maps α such that α ⊇ X+ and
α∩X− = ∅ , the oracle queries of Mα(a) are fixed and thus the output (u1, u2)
of Mα is the same; in other words, there is a fixed output (u1, u2) which
witnesses WPHP (m,α(x1, x2, x3)) for all such α . But this is impossible:
since Q was chosen to satisfy Theorem 2.6(ii), there are at least m1/2 v ’s

15

such that (u1, u2, v) /∈ Q , and thus at least (m1/2 − (log m)2c) ≥ 1 such v ’s
not in X− . Hence we can set α = X+ ∪ {(u1, u2, v)} for some v such that
α ∩ X− = ∅ , but obviously (u1, u2) then does not witness WPHP (m,α).
Q.E.D. Theorem 3.3

(3.4) Corollary T i
2(α) is not ∀Σb

i(α)-conservative over Si
2(α), i ≥ 1.

Actually, T i
2(α) is not ∀Σb

i(α)-conservative over any Si
j(α), i ≥ 1, j ≥ 2.

Proof The corollary follows from Theorems 3.2 and 3.3.
Use Remark (2.7) for the second part.

Q.E.D. Corollary 3.4

The second part of Corollary 3.4 complements [12] where it was shown
that T i

j+1 is not Πb
1 -conservative over T i

j , i , j ≥ 1.

4 The Iteration Principle

(4.1) The previous section showed that T i
2 is not ∀Σb

i(α)-conservative over
Si

2(α) by reducing — via Theorem 2.6 — the general case i > 2 to the base
case which is essentially equivalent to the case where i = 2. In this section,
we give a example of another proof of the same result; the most important
novel feature, is that now the base case corresponds to i = 1. For this, we
need to prove a useful analogue of Theorem 2.6.

(4.2) A ∆S,t
1 -circuit C with variables from Bk,0(m) is a pair of ΣS,t

1 -circuits
C+ and C− with variables from Bk,0(m) such that C+ by definition computes

the value of the ∆S,t
1 -circuit and C− must compute its negation.

A ∆S,t
1 -circuit oracle with variables from Bk,0(m) is a family of ∆S,t

1 -
circuits with variables from Bk,0(m), one for each oracle query, analagously
to the definitions of (2.3). S, t and m may depend on u as before.

(4.3) Theorem Assume i, k ≥ 1 and that α(~x, ~y), Ai,α and B(a, β) are as
in (2.5). Assume also that M is a polynomial time oracle machine with a
Σb

i(α)-oracle, such that for every α ⊆ N
k+i the machine Mα computes from

input a some witness to the formula B(a,Ai,α).
Then there is a constant c ≥ 1 such that for m sufficiently large there is a

Q ⊆ N
k and a ∆S,t

1 -circuit oracle C with variables from Bk,0(m) so that the
following conditions hold:

16

(i) for all u,m(u) = m,S(u) = 2(log m)c
and t(u) = log S = (log m)c ,

(ii) for every r -dimensional cylinder U in [m]k , r = 1, . . . , k ,

|U\Q| ≥ mr−1/2

(iii) for every α0 ⊆ N
k s.t. α0 ∩ Q = ∅, machine Mα0

computes on input
m a witness to formula B(m,α0). (Recall that Mα0

operates with the
circuit oracle Cα0

instead of the original Σb
i -oracle.)

The difference between Theorems 2.6 and 4.3 that the former assumes
M has a Σb

i+1 oracle and states the existence of a ΣS,t
1 -circuit oracle, whereas

the latter assumes M has a Σb
i oracle and states the existence of a ∆S,t

1 -circuit
oracle. Having a ∆S,t

1 -circuit oracle is analogous to having only an oracle for
(a polynomial time function of) α , in the same way that having a ΣS,t

1 -circuit
oracle was analogous to having a Σb

1 -oracle. More precisely, when we construct
an α by simulating M with a ∆S,t

1 -circuit, if an oracle query answer has not
yet been forced, then it will always be possible to force the oracle query to
a desired Yes/No answer by setting only a relatively small number (namely,
≤ t) many values of α . This is because both Cα,+ and its complement Cα,−

are OR’s of small AND’s; and thus either a Yes or No answer may be forced by
setting values of α to make one AND true in Cα,+ or in Cα,− (respectively).

Proof The proof of Theorem 4.3 is nearly identical to the proof of Theorem 2.6
except for the last step. Before the last step of the proof, Ai,α ’s have been
collapsed to circuits consisting a single AND gate, and the Σb

i -oracle has been
collapsed to a ΣS,t

1 -oracle C1 (with variables from Bk,1(m) in this case).
After one more random restriction (from R

+
k,1,m) the AND gates of the

the Ai,α ’s collapse, with high probability, to 0 or to p~x with the cylinder
property (ii) valid, exactly as in the proof of Theorem 2.6; It remains to
consider what this final restriction does to the circuit C1 : since C1 is a family
of ΣS,t

1 -circuits, it certainly remains one after being restricted; in addition,
by the switching lemma (Lemma 1.6), its complement ¬C1 becomes, with
high probability, a family of ΣS,t

1 -circuits too. In other words, after the final
restriction, the circuit oracle becomes a ∆S,t

1 -circuit oracle with variables from
Bk,0(m).

The computations of the probabilities are identical to the proof of
Theorem 2.6.
Q.E.D. Theorem 4.3

17

(4.4) We shall consider an iteration principle Iter0(f, a) which states
“If f satisfies the three conditions

(1) 0 < f(0),

(2) ∀x < a, f(x) = a ∨ f(x) < f(f(x)), and

(3) ∀x < a, f(x) ≤ a ,

then there exists a b < a such that f(b) = a”.
Note that Iter0(f, a) is expressible by a Σb

1 -formula.

Theorem The formula (∀x)Iter0(f, x) is provable in T 1
2 (f) but not in S1

2(f).

Proof To see that T 1
2 ` Iter0(f, a), let ϕ(u) be the Σb

1 -formula

(∃x ≤ u)(u < f(x) ∧ f(x) ≤ a).

Then clearly, T 1
2 (f) proves ϕ(0) by (1) of the definition of Iter0 . Also, T 1

2 (f)
proves

u ≤ a − 2 ∧ ϕ(u) → ϕ(u + 1);

to prove this, note that if xu witnesses ϕ(u) then either f(xu) = u + 1 or
f(xu) > u + 1, and in the former case, f(f(xu)) is witness for ϕ(u + 1), and
in the latter case, xu is already a witness for ϕ(u + 1). Now, by Σb

1 -IND,
T 1

2 (f) can prove that ϕ(a − 1) holds and a witness b for ϕ(a − 1) must
satisfy f(b) = a .

Now, for the sake of a contradiction, assume S1
2(f) ` Iter0(f, a). Then

there is a polynomial time Turing machine with an oracle for the function f
such that, on input a , if f satisfies conditions (1)-(3) of the definition of
Iter0 , then M outputs a value b < a so that f(b) = a . We prove this is
impossible by constructing an f for which M fails.

For fixed M , take a sufficiently large and start the computation of M
on a . After the i-th oracle query of M , we will have values 0 = r0 < r1 <
· · · < rt < i and values s1, . . . , sm such that t + m ≤ i and such that we
have specified the values f(rj) = rj+1 for all j < t and we have specified the
values f(sj) = 0 for all j ≤ m and such that no other values of f have been
specified. In particular, the value of f(rt) has not been specified. Thus, after
i oracle queries, ≤ i values of f have been specified (t and m vary with i , of
course).

18

Suppose the (i + 1)-st oracle query is for the value of f(u). If f(u) has
already been specified, no action is taken and the computation of M continues
with the already specified valued. If u 6= rt , then specify that f(u) = 0; this
makes u one of the sj ’s. Otherwise, if u = rt , fix f(u) to be equal to the first
value rt+1 > rt for which the value of f has not yet been specified.

At the end of M ’s computation, f has been defined consistently and so
that conditions (1)-(3) are satisfied. Since M runs for at most |a|c steps for
some constant c , we take a large enough so that a > |a|c . Clearly M can
not reliably output a value b such that f(b) = a ; since, for any particular b
either b is among rt ’s and then f(b) < a , or it is possible to set f(b) = 0
consistently with conditions (1)-(3).
Q.E.D. Theorem 4.4

(4.5) For technical reasons, we slightly generalize the iteration principle to a
principle Iter(f, a, a0) by replacing conditions (1) and (2) by:

(1′) a0 < a ∧ a0 < f(a0).

(2′) (∀x < a)(a0 ≤ f(x) → (f(x) = a ∨ f(x) < f(f(x))).

Obviously, Iter0(f, a) is just Iter(f, a, 0).
It is interesting to note that the iteration principle is a simplified form

of a Skolemization of the induction axiom for (∃y ≤ x)α(x, y) (compare to
Kraj́ıček [9]). To see this, let the Skolemization of the induction axiom for
(∃y ≤ x)α(x, y) be

(α(0, 0) ∧ ∀x, y ≤ a ((α(x, y) ∧ y ≤ x) → (α(x + 1, g(x, y)) ∧ g(x, y) ≤ x + 1))

→ (∃b ≤ a)α(a, b).

Consider the pairing function [x, y] := x(a + 1) + y and let f be the function
such that

f([x, y]) =







[x + 1, g(x, y)] if y ≤ x < a and α(x, y)
(a + 1)2 if x = a and α(x, y)
0 otherwise

It is easy to see that if the hypothesis of the Skolemization is satisfied, then
f satisfies the hypothesis of Iter(f, (a + 1)2, 0) and thus Iter(f, (a + 1)2, 0)
implies that there is a pair [x, y] < (a + 1)2 such that f([x, y]) = (a + 1)2 .

19

From the definition of f , x = a and α(a, y) and y < a , i.e., (∃b ≤ a)α(a, b)
is true.

(4.6) A unary function f : a → a can be coded as a binary relation β(x, i)
on a × |a| by letting β(x, i) be true if and only if the i-th bit of the binary
representation of f(x) is equal to 1. The predicate β is called the bit graph
of f . A formula f(x) = y is then equivalent to the sharply bounded formula

y < a ∧ (∀i < |a|)((y)i = 1 ↔ β(x, i)),

where (y)i denotes the i-th bit of the binary representation of y . So by
standard techniques, any Σb

i -formula C(f) involving f can be rewritten as
an equivalent Σb

i -formula C ′(β) containing β instead of f (see Theorem 2.2
of [2]). Furthermore, w.l.o.g., every occurence of β in C ′(β) has only bound
variables as arguments. This allows us to generalize the concept of Ai,α

from (2.5) to functions; namely, with k = 2, Ai,α(a, x1, x2) can be viewed as
the bit graph of a function F i,α : a → a so that F (x1) has x2 -th bit equal
to 1 iff Ai,α(a, x1, x2) holds.

This treatment of functions as relations also translates to oracle machines,
namely, one oracle query about a function’s value can be replaced by |a| many
queries about the bit graph of the function.

Let Iter(F i,α, a, a0) be the Σb
i+1 -formula obtained by first expressing

Iter(f, a, a0) as an equivalent Σb
1 -formula involving the bit graph β of f

instead of f , and then replacing every β(y, z) by the formula Ai,α(a, y, z).

(4.7) We next wish to show that the formulas Iter(F i,β, a, a0) separate the
theories T i+1

2 and Si+1
2 . For this, we would like to use the following variation

of Theorem 4.3; although we conjecture that this holds, we have not been able
to prove it yet.

Conjecture Theorem 4.3 still holds with paragraph (ii) replaced by the
condition

|{〈x1, . . . , xk−1〉 ∈ [m]k−1}∀xk ∈ [log m], 〈x1, . . . , xk〉 /∈ Q| > mk− 2
3 .

(4.8) Theorem Assume that the Conjecture 4.7 holds. For i ≥ 0, the
Σb

i+1(β)-formula Iter(F i,β, a, a0) is provable in T i+1
2 (β) but not in Si+1

2 (β).

Proof The proof that Σb
i+1 -IND implies the iteration principle is completely

analogous to the proof of the first part of Theorem 4.4; we leave it to the
reader to check the details.

20

It remains to show that Si+1
2 (β) does not prove Iter(F i,β, a, a0); assume,

for the sake of a contradiction, that it does prove this. Then, by [2],
Iter(F i,β, a, a0) is p

i+1 -witnessed, i.e., there is a polynomial time Turing
machine M with a Σb

i(β)-oracle that on inputs a and a0 produces a witness
for Iter(F i,β, a, a0). By the Collapsing Theorem 4.3 this implies that for
many functions f : a → a , Iter(f, a, a0) is “nearly” p

1(f)-witnessed. More
precisely, there is a polynomial time machine M β and for any sufficiently large
m a ∆S,t

1 -circuit oracle C with variables from Bk,0(m) so that S = 2(log m)c

and t = log S for some constant c ,and there is a set Q ⊆ m× log(m) with the
cylinder property (ii) of Theorem 4.3 holding, such that whenever f : m → m
is coded by β ⊆ m× log(m) with β ∩Q = ∅ and whenever m0 < m , then the
machine M with circuit-oracle C outputs a witness to Iter(f,m,m0). Since
we will consider only functions f which satisfy the hypotheses 1′ , 2′ and 3 of
the iteration principle, the witness output by M will be a value b such that
f(b) = m .

We shall prove that no such machine M with ∆S,t
1 -circuit oracle C exists;

this suffices to show that Si+1
2 does not prove Iter(F i,β, a, a0).

Our stategy is to diagonalize against an execution of M to produce a β
which codes a function f satisfying the three hypotheses of the iteration
principle but for which M fails to output a value b such that f(b) = m .
Each time an M makes an oracle query we shall set sufficiently many values
of β so as to fix the answer to the query (no matter how β is extended in the
future). We shall adopt the convention that β(x, j) will be false if x ≥ m or
if j > log m . We also adopt the convention that whenever a truth value of
β(x, j) is set (that is the value of the j -th bit of f(x) is specified), then the
rest of the the values β(x, s), for s ≤ log m , are set (so that the value of f(x)
is completely specified). Thus, at any point during the construction of β , if
x < m , then either f(x) is completely unspecified or a value for f(x) has
been chosen.

We construct β by executing M with a fixed, sufficiently large m : after the
q -th query of M we shall have constructed a partial relation βq ⊆ m × log m
which defines a partial function fq : m → m . (A partial relation is a
partially specified relation in which some values of βq are set and others are
yet undefined.) Initially, we let the domain dom(f0) of f0 be the set of
x for which 〈x, j〉 is in Q , for some j and set f ’s value to be zero on its
domain. And β0 is the corresponding partial relation; namely, β0(x, s) = 0 iff
〈x, j〉 ∈ Q for some j ≤ log m . We let m0 be the least value not in dom(f0)
and begin the execution of M on the inputs m and m0 .

21

For conceptual clarity, we shall transform the ∆S,t
1 -circuits of the oracle

circuits which use the function f in place of the relation β . Each circuit C±
u

consists of an OR of AND’s, each of fanin ≤ t (recall that the family C
contains a pair of circuits C+

u , C−
u for each possible oracle query u). The

literals in the AND’s are assertions of the form β(x, s) or ¬β(x, s). Each such
literal may be replaced by an OR of the at most m/2 assertions f(x) = y
compatible with the assertion. After this replacement, the circuit may be put
back into disjunctive normal form, yielding a circuit which consists of an OR
of AND’s, each of fanin ≤ t — now each input to an AND is an assertion of
the form f(x) = y . Each AND may obviously be thought of as specifying
a partial map with domain of size ≤ t . For the rest of this proof, we shall
consider the C±

u ’s as being in this form, as it makes our arguments easier to
understand (this doesn’t change the argument in any essential way).

After the k -th query made by M , we shall have defined a partial
function fk ⊇ fk−1 ⊇ · · · ⊇ f0 and a sequence m0 < m1 < · · · < msk

satisfying the following conditions:

(1) |dom(fk)| ≤ |dom(f0)| + kt2 ≤ m −√
m + k(log m)2c .

(2) For j < sk , fk(mj) = mj+1 ; and fk(msk
) is undefined.

(3) For all v ∈ dom(fk) \ {m0, . . . ,msk−1} , fk(v) = 0.

(4) sk ≤ kt and msk
≤ m −√

m + kt2 .

(5) Any f ⊇ fk gives the same answers as fk to M ’s first k oracle queries.

These five conditions are clearly already fulfilled for k = 0 at the beginning
of M ’s execution (conditions (1) and (4) holds because the cylinder property
(ii) of Theorem 4.3 is satisfied by Q .) We must ensure that these conditions
remain true for the entire computation of M — note that these conditions
imply that fk can be extended (in many ways) to a total function satisfying
the hypotheses of the iteration principle.

Now we describe how to define fk+1 at M ’s (k + 1)-st oracle query.
Suppose M ’s (k + 1)-st query is u , so the oracle answer is computed by the
∆S,t

1 -circuit Cu consisting of two ΣS,t
1 -circuits C+

u and C−
u computing each

other’s complements. We will define fk+1 from fk adding at most t2 elements
to the domain so that one of C+

u and C−
u is forced to be true and so that

conditions (1)-(5) hold.

22

The circuits C±
u each comprise an OR and AND’s; each AND is a

conjunction of ≤ t statements of the form f(x) = y . Thus each AND
corresponds in the obvious way to a partial function g with domain of
cardinality ≤ t (namely, g is the minimal partial function such that f = g
satisfies the AND). Let pf(C+

u), respectively, pf(C−
u) be the set of partial

functions corresponding to the AND’s of the circuits C+
u , respectively, C−

u .
It is an elementary fact, that for any g ∈ pf(C+

u) and any h ∈ pf(C−
u) there

must be a value x such that that g(x) and h(x) are defined and are unequal;
otherwise there would be a total function f ⊃ g ∪ h which would satisfy both
C+

u and C−
u .

If there is no g ∈ pf(C+
u) which is compatible with fk then fk already

forces C−
u true and we set fk+1 := fk . Otherwise, pick any g1 ∈ pf(C+

u)
which compatible with fk and choose msk+1 to be least number greater than
msk

which is not in dom(g1) ∪ dom(fk). Let k1 be the partial function with
dom(k1) equal to dom(fk) ∪ dom(g1) ∪ {msk

} and defined by

k1(x) =







fk(x) if x ∈ dom(fk)
msk+1 if x = msk

0 if x ∈ dom(g1) \ dom(fk) and x 6= msk
.

Now if k1 forces either C+
u or C−

u to be true, we set fk+1 := k1 . Otherwise,
note that for each h ∈ pf(C−

u) there is at least one value in dom(k1)∩dom(h);
in other words, there are at most t − 1 values in dom(h) \ dom(k1). Now
pick an arbitrary g2 ∈ pf(C+

u) which is compatible with k1 and choose msk+2

to be equal to the least value greater than msk+1 not in dom(g2) ∪ dom(k1).
Define the partial function k2 from k1 , g2 and msk+2 in exactly the same
fashion as k1 was defined from fk , g1 and msk+1 . As before, either k2 forces
one of C+

u or C−
u to be true and we set fk+1 := k2 ; or we have that for all

h ∈ pf(C−
U), there are at most t − 2 values in dom(h) \ dom(k2). We iterate

this process until we find a k` with ` ≤ t such that k` forces one of C+
u and

C−
u to be true; then we set fk+1 := k` . It is straightforward to verify that

fk+1 satisfies conditions (1)-(5).
The above completes the definition of the fk ’s. Since M runs in

polynomial time we choose c so that M(m) makes k ≤ (log m)c queries.
fk is the partial function constructed at the end of the above process. By
condition (4), we have

23

msk
≤ m −√

m + k · t2
≤ m −√

m + (log m)c(log m)2c

< m

for m sufficiently large. Likewise |dom(fk)| << m . Now M cannot reliably
output a witness to the iteration principle Iter(f,m,m0) since, for any output
value b of M(m), we may extend fk to a total function f , such that f satisfies
the hyptheses 1′ , 2′ , 3 of the iteration principle and such that f(b) 6= a ;
namely, if b 6= msk−1 let f have value 0 whenever fk is undefined, and if
b = msk−1 let f(msk

) = msk
+ 1 and otherwise have value 0 whenever fk is

undefined.
Q.E.D. Theorem 4.7.

5 T 1
2 and Polynomial Local Search

(5.1) In [7] a Polynomial Local Search problem (PLS-problem) L is defined
to be a maximization problem satisfying the following conditions: (we have
made some inessential simplifications to the definition in [7])

• For every instance x ∈ {0, 1}∗ , there is a set FL(x) of solutions,
an integer valued cost function cL(s, x) and a neighborhood function
NL(s, x),

• The binary predicate s ∈ FL(x) and the functions cL(s, x) and NL(s, x)
are polynomial time computable. And there is a polynomial pL so that
for all s ∈ FL(x), |s| ≤ pL(|x|). Also, 0 ∈ FL(x).

• For all s ∈ {0, 1}∗ , NL(s, x) ∈ FL(x).

• For all s ∈ FL(x), if NL(s, x) 6= s then cL(s, x) < cL(NL(s, x), x).

• The problem is solved by finding a locally optimal s ∈ FL(x), i.e., an s
such that NL(s, x) = s .

It follows from these conditions that there is a polynomial time computable
ML(x) such that ML(x) > cL(s, x) for all s ∈ FL(x).

A PLS-problem L can be expressed as a Πb
1 -sentence saying that the

conditions above hold; if these are provable in T 1
2 then we say L is a PLS-

problem in T 1
2 . The formula OptL(x, s) is the ∆b

1 -formula NL(s, x) = s .

24

(5.2) Theorem Let L be a PLS-problem in T 1
2 . Then T 1

2 `
(∀x)(∃y)OptL(x, y).

Proof It is known [2] that T 1
2 proves the Σb

1 -MIN axioms; this immedi-
ately implies also the Σb

1 -MAX principle. Arguing informally in T 1
2 , we

have that, for all x , there is a maximum value c0 < ML(x) satisfying
(∃s ∈ FL(x))(cL(s, x) = c0). Taking s to be witness for this last formula, s
is globally optimal and hence satisfies OptL(x, s), and the theorem is proved.
Q.E.D. Theorem 5.2

(5.3) Now we establish a converse to Theorem 5.2. We shall use the definition
of the formula Witness from [2]. We also adopt the convention that witnesses
are efficiently coded, i.e., for every Σb

1 -formula C(~u) there is a term tC(~u) so
that any witness for C(~u) must be ≤ tC(~u), as in Theorem 5.3 of [2].

Theorem Let θ(a) be a Σb
1 -formula such that T 1

2 ` (∀x)θ(x). Then there is
a PLS-problem L in T 1

2 such that T 1
2 proves

(∀x)(∀s)(OptL(x, s) → Witness1,a
θ (s, x)).

The point of the previous two theorems is that, on one hand, any PLS-
problem can be expressed as a Σb

1 -defined function in T 1
2 and that, conversely,

any Σb
1 -function of T 1

2 can be expressed as a PLS-problem composed with a
projection function.

Proof If T 1
2 proves (∀x)θ(x), then by free-cut elimination, there is a T 1

2 -
proof P in the Gentzen sequent calculus system LKB of the sequent >θ(u1)
such that every sequent in P is of the form

A1(~u), . . . , Ak(~u) >B1(~u), . . . , B`(~u)

where ~u is a vector of r free variables (which includes the variable u1) and
where all the formulas Ai and Bi are Σb

1 -formulas.
We shall prove by induction on the number of proof steps that any sequent

of the above form provable in T 1
2 corresponds computationally to a PLS-

problem. Namely, there is a PLS-problem L′ such that (1) inputs to L′ are
(encodings of) k + r -tuples 〈m1, . . . ,mr, v1, . . . , vk〉 where m1, . . . ,mr are
values for the variables u1, . . . , ur and (2) for input a tuple 〈~m,~v〉 , the locally
optimal solutions are the k + r +1-tuples of the form 〈~m,~v, w〉 with the same

25

~m and ~v values such that if each vi witnesses Ai(~m) then w is a witness for
one of the formulas B1(~m), . . . , B`(~m). From such problem L′ we get problem
L satisfying the requirement of the theorem by adding to each L′ -solution
〈~v, w〉 a new neighbour w with higher cost, provided w is a witness to θ .

The existence of the PLS-problem is obvious for initial sequents, which by
definition contain only atomic formulas. The induction step splits into cases
depending on the final inference of the proof P . The cases where the final
inference is a propositional inference or a structural inference other than cut
are very simple, requiring only minor changes to the PLS-problem. The case
where the final inference of P is an ∃:right inference

Γ >∆, A(t)
t ≤ s, Γ >∆, (∃x ≤ s)A(x)

can be handled easily also: the induction hypothesis states that there is a
PLS problem L that applies to the upper sequent. We now sketch how to
modify L to construct a PLS problem L′ that works for the lower sequent.
First, let cL′(s, x) = cL(s, x) + 1 for s ∈ FL(x). Inputs 〈~m, v0, ~v〉 to L′

that provide witnesses to Γ are assigned cost 0 and have as neighbour the
input 〈~m,~v〉 to L . An output 〈~m,~v, w〉 of L has as its L′ -neighbour a tuple
〈~m, v0, ~v, w′〉 with cost ML(〈~m,~v〉) + 1, where w′ = w or w′ = 〈t(~m), w〉 ,
whichever provides a witness to a formula in the succedent ∆, (∃x ≤ s)A . It
is easily checked that L′ has the desired properties.

Similarly the case where the final inference of P is an ∃ ≤:left or a ∀:left
is handled by simple modifications to the PLS-problem. The case where the
final inference is a ∀:right is more complicated: it is comparable to the case
where the final inference is an induction rule (treated below) and we leave it
to the reader.

In the case where the final inference of P is a cut inference

Π >A A >∆

Π >∆

we have, by the induction hypothesis, two PLS-problems L1 and L2 which
apply to the upper sequent. A PLS problem for the lower sequent is formed as
a “composition” of PLS problems. (To simplify this case, we assume w.l.o.g.
that the cut formula A is the only formula in the succedent (antecedent) of
the left (right, resp.) upper sequent.) By coding, the PLS problems L1 and
L2 can be modified to have domains FL1 and FL2 disjoint. The local optima
(outputs) of the PLS problem L1 can have as neighbours inputs to L2 . By

26

adding ML1(· · ·) to the cost function of L2 , the cost of any L2 -solution is
greater than the cost of any L1 -solution. This makes it possible to arrange
that any local optimum of the PLS combined problem can be found by
applying L2 to a local optimum of L1 . We leave the precise details to the
reader.

Finally consider the case where the final inference of P is an induction
inference

A(u0, ~u) >A(u0 + 1, ~u)
A(0, ~u) >A(t(~u), ~u)

W.l.o.g., there are no side formulas to the induction inference.∗ Given a PLS
problem L for the upper sequent, we form a PLS-problem L′ for the lower
sequent. The general idea is, of course, that L′ is an exponentially long
iteration of instances of L . First, the set FL′(〈~m, v〉) is the set of tuples
〈m0, z, s〉 where m0 < t(~m) and s ∈ FL(〈m0, ~m, z〉); thus FL′ is a disjoint
union of solution spaces for instances of L . We define

cL′(〈m0, z, s〉, 〈~m, v〉) = m0 · M + cL(s, 〈m0, ~m, z〉)

where M is a function of 〈m,~z〉 and is large enough to dominate ML(s)
whenever m0 < t(~m) and s ∈ FL(〈m0,m, z〉). The neighbourhood function
is defined so that

NL′(〈m0, z, s〉, 〈~m, v〉) = 〈m0, z, NL(s, 〈m0, ~m, z〉)〉

except when s = NL(s, 〈m0, ~m, z〉), in which case, for m0 < t(~m) − 1, we set

NL′(〈m0, z, s〉, 〈~m, v〉) = 〈m0 + 1, z′, 〈m0 + 1, ~m, z′〉〉

where z′ is the last component of s , i.e., the witness for A(m0 + 1, ~m). When
m0 = t(~m) − 1, then

NL′(〈m0, z, s〉, 〈~m, v〉) = 〈~m, v, z′〉.

This last case gives a local optimum for L′ . It is easy to check (and we leave
it to the reader) that L′ gives a PLS problem that solves the lower sequent of
the induction inference.
Q.E.D. Theorem 5.3

∗This is because we may conjoin and disjoin any side formulas, which must be
Σb

1
-formulas, into the induction formula. This modification uses only propositional

inferences.

27

(5.4) There are two open problems concerning PLS problems and T 1
2 that

are interrelated by Theorems 5.2 and 5.3. First, can any PLS problem L
be PLS reduced in the sense of [7] to a PLS-problem which has, for all
inputs, a unique local optimum? And second, is it true that whenever T 1

2

proves (∃x ≤ t)A with A ∈ Σb
1 then there exists a Σb

1 -formula B such that
T 1

2 proves (∃!x ≤ t)B and B → A? These questions are not apparently
equivalent since even if local optima are unique, they may not be provably
unique in T 1

2 .
Papadimitriou [13] has introduced two classes PLF and PLDF of search

problems and showed that PLDF ⊆ PLF .† A PLDF search problem L
has, for every input x a directed graph Nx(c, c

′) on nodes c, c′ < t(x) for some
term of Bounded Arithmetic, such that every node has indegree and outdegree
≤ 1. In addition, it is assumed that Nx(c, c

′) is a polynomial time predicate
of x , c , and c′ and that if there exists a value c′ (resp., c) such that Nx(c, c

′)
holds, then it can be computed in polynomial time from x and c (resp., from
x and c′). On input a pair 〈x, c0〉 such that c0 has indegree 0 in Nx , the
problem is to find a node that has outdegree 0: such a node must exist since
the directed graph is finite. However, it is unlikely that T 1

2 can prove that
PLDF problems must have solutions since the pigeon-hole principle can be
reduced to the statement that a PLDF problem has a solution. For instance,
if f and g are new function symbols, we can define a graph N(c, c′) by the
condition f(c) = c′ and g(c′) = c . Now if g is further presumed to be the
inverse of f then the pigeonhole principle for f is equivalent to the statement
that if N has a node of indegree 0 then N must have a node of outdegree 0.
However, by [16, 11, 1], the pigeonhole principle for f is not provable even in
T2(f). Thus T2(f, g) does not prove the existence of solutions for this PDLF
problem.

Acknowledgement. We thank Mario Chiari for noticing an inaccuracy in
the original version of the paper.

References

[1] P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, P. Pudlák

and A. Woods, Exponential lower bounds for the pigeonhole principle,

†In a later paper [14], the classes PLF and PLDF are renamed to PPA and PPAD ,
respectively.

28

to appear in Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, 1992.

[2] S. R. Buss, Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985
Princeton University Ph.D. thesis.

[3] , Axiomatizations and conservation results for fragments of bounded
arithmetic, in Logic and Computation, proceedings of a Workshop held
Carnegie-Mellon University, 1987, vol. 106 of Contemporary Mathemat-
ics, American Mathematical Society, 1990, pp. 57–84.

[4] M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits and the
polynomial-time hierarchy, Math. Systems Theory, 17 (1984), pp. 13–27.

[5] P. Hájek and P. Pudlák, Metamathematics of First-order Arithmetic,
Springer-Verlag. To appear.

[6] J. Hastad, Almost Optimal Lower Bounds for Small Depth Circuits, in:
Randomness and Computation, ed. S.Micali, Ser.Adv.Comp.Res., vol. 5,
JAI Press, 1989, pp. 143–170.

[7] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, How
easy is local search?, J. Comput. System Sci., 37 (1988), pp. 79–100.

[8] J. Kraj́ıček, Fragments of bounded arithmetic and bounded query
classes. To appear in Transactions of the A.M.S.

[9] , No counter-example interpretation and interactive computation,
in Logic From Computer Science: Proceedings of a Workshop held
November 13-17, 1989, ed. Y.N.Moschovakis, Mathematical Sciences
Research Institute Publication #21, Springer-Verlag, 1992, pp. 287–293.

[10] J. Kraj́ıček, P. Pudlák, and G. Takeuti, Bounded arithmetic and
the polynomial hierarchy, Annals of Pure and Applied Logic, 52 (1991),
pp. 143–153.

[11] J. Kraj́ıček, P. Pudlák, and A. Woods, Exponential lower bound
to the size of bounded depth Frege proofs of the pigeonhole principle,
submitted, (1991).

[12] J. Kraj́ıček and G. Takeuti, On induction-free provability, Annals
of Mathematics and Artificial Inteligence,6, (1992), pp.107-126.

29

[13] C. H. Papadimitriou, On graph-theoretic lemmata and complexity
classes (extended abstract), in Proceedings of the 31st IEEE Symposium
on Foundations of Computer Science (Volume II), IEEE Computer
Society, 1990, pp. 794–801.

[14] C. H. Papadimitriou, On the complexity of the parity argument and
other inefficient proofs of existence, to appear in J. Comput. System Sci.

[15] J. B. Paris, A. J. Wilkie, and A. R. Woods, Provability of the
pigeonhole principle and the existence of infinitely many primes, Journal
of Symbolic Logic, 53 (1988), pp. 1235–1244.

[16] T.Pitassi, P. Beame, andR. Impagliazzo, Exponential lower bounds
for the pigeonhole principle, preprint, (1991).

[17] P. Pudlák, Some relations between subsystems of arithmetic and the
complexity of computations, in Logic From Computer Science: Proceed-
ings of a Workshop held November 13-17, 1989, ed.Y.N.Moschovakis,
Mathematical Sciences Research Institute Publication #21, Springer-
Verlag, 1992, pp. 499–519.

30

