
Resolution Trees with Lemmas:

Resolution Refinements that Characterize DLL

Algorithms with Clause Learning

Samuel R. Buss∗

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

sbuss@math.ucsd.edu

Jan Hoffmann†

Institut für Informatik

Ludwig-Maximilians Universität

D-80538 München, Germany

hoffmann@cip.ifi.lmu.de

Jan Johannsen
Institut für Informatik

Ludwig-Maximilians Universität

D-80538 München, Germany

jan.johannsen@ifi.lmu.de

October 31, 2008

Abstract

Resolution refinements called w-resolution trees with lemmas (WRTL)
and with input lemmas (WRTI) are introduced. Dag-like resolution is
equivalent to both WRTL and WRTI when there is no regularity con-
dition. For regular proofs, an exponential separation between regular
dag-like resolution and both regular WRTL and regular WRTI is given.

It is proved that DLL proof search algorithms that use clause learning
based on unit propagation can be polynomially simulated by regular
WRTI. More generally, non-greedy DLL algorithms with learning by unit
propagation are equivalent to regular WRTI. A general form of clause
learning, called DLL-Learn, is defined that is equivalent to regular WRTL.

A variable extension method is used to give simulations of resolution
by regular WRTI, using a simplified form of proof trace extensions. DLL-
Learn and non-greedy DLL algorithms with learning by unit propagation
can use variable extensions to simulate general resolution without doing
restarts.

Finally, an exponential lower bound for WRTL where the lemmas are
restricted to short clauses is shown.

∗Supported in part by NSF grants DMS-0400848 and DMS-0700533.
†Supported in part by the Studienstiftung des deutschen Volkes (German National Merit

Foundation).

1

1 Introduction

Although the satisfiability problem for propositional logic (SAT) is NP-
complete, there exist SAT solvers that can decide SAT on present-day computers
for many formulas that are relevant in practice [23, 21, 20, 4, 5, 6]. The
fastest SAT solvers for structured problems are based on the basic backtracking
procedures known as DLL algorithms [10], extended with additional techniques
such as clause learning.

DLL algorithms can be seen as a kind of proof search procedure since the
execution of a DLL algorithm on an unsatisfiable CNF formula yields a tree-like
resolution refutation of that formula. Conversely, given a tree-like resolution
refutation, an execution of a DLL algorithm on the refuted formula can be
constructed whose runtime is roughly the size of the refutation. By this exact
correspondence, upper and lower bounds on the size of tree-like resolution proofs
transfer to bounds on the runtime of DLL algorithms.

This paper generalizes this exact correspondence to extensions of DLL by
clause learning. To this end, we define natural, rule-based resolution proof
systems and then prove that they correspond to DLL algorithms that use various
forms of clause learning. The motivation for this is that the correspondence
between a clause learning DLL algorithm and a proof system helps explain the
power of the algorithm by giving a description of the space of proofs which is
searched by it. In addition, upper and lower bounds on proof complexity can be
transferred to upper and lower bounds on the possible runtimes of large classes
of DLL algorithms with clause learning.

We introduce, in Section 3, tree-like resolution refinements using the notions
of a resolution tree with lemmas (RTL) and a resolution tree with input lemmas
(RTI). An RTL is a tree-like resolution proof in which every clause needs only to
be derived once and can be copied to be used as a leaf in the tree (i.e., a lemma)
if it is used several times. As the reader might guess, RTL is polynomially
equivalent to general resolution.

Since DLL algorithms use learning based on unit propagation, and since
unit propagation is equivalent to input resolution (sometimes called “trivial
resolution” [3]), it is useful to restrict the lemmas that are used in a RTL to
those that appear as the root of input subproofs. This gives rise to proof systems
based on resolution trees with input lemmas (RTI). Somewhat surprisingly, we
show that RTI can also simulate general resolution.

A resolution proof is called regular if no variable is used as a resolution
variable twice along any path in the tree. Regular proofs occur naturally in
the present context, since a backtracking algorithm would never query the same
variable twice on one branch of its execution. It is known that regular resolution
is weaker than general resolution [15, 1], but it is unknown whether regular
resolution can simulate regular RTL or regular RTI. This is because, in regular
RTL/RTI proofs, variables that are used for resolution to derive a clause can
be reused on paths where this clause appears as a lemma.

For resolution and regular resolution, the use of a weakening rule does not
increase the power of the proof system (by the subsumption principle). However,

2

for RTI and regular RTL proofs, the weakening rule may increase the strength
of the proof system (this is an open question, in fact), since eliminating uses
of weak inferences may require pruning away parts of the proof that contain
lemmas needed later in the proof. Accordingly, Section 3 also defines proof
systems regWRTL and regWRTI that consist of regular RTL and regular RTI
(respectively), but with a modified form of resolution, called “w-resolution”,
that incorporates a restricted form of the weakening rule.

In Section 4 we propose a general framework for DLL algorithms with clause
learning, called DLL-L-UP. The schema DLL-L-UP is an attempt to give a
short and abstract definition of modern SAT solvers and it incorporates all
common learning strategies, including all the specific strategies discussed by
Beame et al. [3]. Section 5 proves that, for any of these learning strategies,
a proof search tree can be transformed into a regular WRTI proof with only
a polynomial increase in size. Conversely, any regular WRTI proof can be
simulated by a “non-greedy” DLL search tree with clause learning, where by
“non-greedy” is meant that the algorithm can continue decision branching even
after unit propagation could yield a contradiction.

In Section 6 we give another generalization of DLL with clause learning called
DLL-Learn. The algorithm DLL-Learn can simulate the clause learning
algorithm DLL-L-UP. More precisely, we prove that DLL-Learn p-simulates,
and is p-simulated by, regular WRTL. The DLL-Learn algorithm is very
similar to the “pool resolution” algorithm that has been introduced by Van
Gelder [25] but differs from pool resolution by using the “w-resolution” inference
in place of the “degenerate” inference used by Van Gelder (the terminology
“degenerate” is used by Hertel et al. [2]). Van Gelder has shown that pool
resolution can simulate not only regular resolution, but also any resolution
refutation which has a regular depth-first search tree. The latter proof system
is the same as the proof system regRTL in our framework, therefore the same
holds for DLL-Learn. It is unknown whether DLL-Learn or DLL-L-UP can
p-simulate pool resolution or vice versa.

Sections 4-6 prove the equivalence of clause learning algorithms with the two
proof systems regWRTI and regWRTL. Our really novel system is regWRTI:
this system has the advantage of using input lemmas in a manner that closely
matches the range of clause learning algorithms that can be used by practical
DLL algorithms. In particular, the regWRTI proof system’s use of input lemmas
corresponds directly to the clause learning strategies of Silva and Sakallah
[23], including first-UIP, relsat, and other clauses based on cuts, and including
learning multiple clauses at a time. Van Gelder [25] shows that pool resolution
can also simulate these kinds of clause learning (at least, for learning single
clauses), but the correspondence is much more natural for the system regWRTI
than for either pool resolution or DLL-Learn.

It is known that DLL algorithms with clause learning and restarts can
simulate full (non-regular, dag-like) resolution by learning every derived clause,
and doing a restart each time a clause is learned [3]. Our proof systems,
regWRTI and DLL-Learn, do not handle restarts; instead, they can be viewed
as capturing what can happen between restarts. Another approach to simu-

3

lating full resolution is via the use of “proof trace extensions” introduced by
Beame et al. [3]. Proof trace extensions allow resolution to be simulated by
clause learning DLL algorithms, and a related construction is used by Hertel et
al. [2] to show that pool resolution can “effectively” p-simulate full resolution.
These constructions require introducing new variables and clauses in a way
that does not affect satisfiability, but allow a clause learning DLL algorithm
or pool resolution to establish non-satisfiability. However, the constructions by
Beame et al. [3] and the initially circulated preprint of Hertel et al. [2] had the
drawback that the number of extra introduced variables depends on the size of
the (unknown) resolution refutation.

Section 7 introduces an improved form of proof trace extensions called
“variable extensions”. Theorem 19 shows that variable extensions can be used
to give a p-simulation of full resolution by regWRTI (at the cost of changing
the formula that is being refuted). Variable extensions are simpler and more
powerful than proof trace extensions. Their main advantage is that a variable
extension depends only on the number of variables, not on the size of the
(unknown) resolution proof. The results of Section 7 were first published in
the second author’s diploma thesis [17]; the subsequently published version of
the article of Hertel et al. [2] gives a similarly improved construction (for pool
resolution) that does not depend on the size of the resolution proof and, in
addition, does not use degenerate resolution inferences.

One consequence of Theorem 19 is that regWRTI can effectively p-simulate
full resolution. This improves on the results of Hertel et al. [2] since regWRTI is
not known to be as strong as pool resolution. It remains open whether regWRTI
or pool resolution can p-simulate general resolution without variable extensions.

Section 8 proves a lower bound that shows that for certain hard formulas, the
pigeonhole principle PHPn, learning only small clauses does not help a DLL-
algorithm. We show that resolution trees with lemmas require size exponential
in n log n to refute PHPn when the size of clauses used as lemmas is restricted
to be less than n/2. This bound is asymptotically the same as the lower bound
shown for tree-like resolution refutations of PHPn [18]. On the other hand,
there are regular resolution refutations of PHPn of size exponential in n [8],
and our results show that these can be simulated by DLL-L-UP. Hence the
ability of learning large clauses can give a DLL-algorithm a superpolynomial
speedup over one that learns only short clauses.

2 Preliminaries

Propositional logic. Propositional formulas are formed using Boolean con-
nectives ¬, ∧, and ∨. However, this paper works only with formulas in conjunc-
tive normal form, namely formulas that can be expressed as a set of clauses.
We write x for the negation of x, and x denotes x. A literal l is defined to be
either a variable x or a negated variable x. A clause C is a finite set of literals,
and is interpreted as being the disjunction of its members. The empty clause
is denoted 2. A unit clause is a clause containing a single literal. A set F of

4

clauses is interpreted as the conjunction of its clauses, i.e., a conjunctive normal
form formula (CNF).

An assignment α is a (partial) mapping from the set of variables to {0, 1},
where we identify 1 with True and 0 with False. The assignment α is implicitly
extended to assign values to literals by letting α(x) = 1−α(x), and the domain,
dom(α), of α is the set of literals assigned values by α. The restriction of a
clause C under α is the clause

C|α =

1 if there is a l ∈ C with α(l) = 1
0 if α(l) = 0 for every l ∈ C
{ l ∈ C | l 6∈ dom(α) } otherwise

The restriction of a set F of clauses under α is

F |α =

0 if there is a C ∈ F with C|α = 0
1 if C|α = 1 for every C ∈ F
{ C|α | C ∈ F } \ {1} otherwise

If F |α = 1, then we say α satisfies F .
An assignment is called total if it assigns values to all variables. We call two

CNFs F and F ′ equivalent and write F ≡ F ′ to indicate that F and F ′ are
satisfied by exactly the same total assignments. Note, however, that F ≡ F ′

does not always imply that they are satisfied by the same partial assignments.
If ε ∈ {0, 1} and x is a variable, we define xε by letting x0 be x and x1 be x.

Resolution. Suppose that C0 and C1 are clauses and x is a variable with
x ∈ C0 and x ∈ C1. Then the resolution rule can be used to derive the clause
C = (C0\{x})∪(C1\{x}). In this case we write C0, C1 `x C or just C0, C1 ` C.

A resolution proof of a clause C from a CNF F consists of repeated appli-
cations of the resolution rule to derive the clause C from the clauses of F . If
C = 2, then F is unsatisfiable and the proof is called a resolution refutation.

We represent resolution proofs either as graphs or as trees. A resolution
dag (RD) is a dag G = (V,E) with labeled edges and vertices satisfying the
following properties. Each node is labeled with a clause and a variable, and,
in addition, each edge is labeled with a literal. There must be a single node
of out-degree zero, labeled with the conclusion clause. Further, all nodes with
in-degree zero are labeled with clauses from the initial set F . All other nodes
must have in-degree two and are labeled with a variable x and a clause C such
that C0, C1 `x C where C0 and C1 are the labels on the the two immediate
predecessor nodes and x ∈ C0 and x ∈ C1. The edge from C0 to C is labeled x,
and the edge from C1 to C is labeled x. (The convention that that x ∈ C0

and x is on the edge from C0 might seem strange, but it allows a more natural
formulation of Theorem 4 below.)

A resolution dag G is x-regular iff every path in G contains at most one node
that is labeled with the variable x. G is regular (or a regRD) if G is x-regular
for every x.

We define the size of a resolution dag G = (V,E) to be the number |V | of
vertices in the dag. Var(G) is the set of variables used as resolution variables

5

in G. Note that if G is a resolution proof rather than a refutation, then Var(G)
may not include all the variables that appear in clause labels of G.

A resolution tree (RT) is a resolution dag which is tree-like, i.e., a dag in
which every vertex other then the conclusion clause has out-degree one. A
regular resolution tree is called a regRT for short.

The notion of (p-)simulation is an important tool for comparing the strength
of proof systems. If Q and R are refutation systems, we say that Q simulates R
provided there is a polynomial p(n) such that, for every R-refutation of a CNF F
of size n there is a Q-refutation of F of size ≤ p(n). If the Q-refutation can
be found by a polynomial time procedure, then this called a p-simulation. Two
systems that simulate (resp, p-simulate) each other are called equivalent (resp,
p-equivalent). Some basic prior results for simulations of resolution systems
include:

Theorem 1.

a. [24] Regular tree resolution (regRT) p-simulates tree resolution (RT).

b. [15, 1] Regular resolution (regRD) does not simulate resolution (RD).

c. [7] Tree resolution (RT) does not simulate regular resolution (regRD).

Weakening and w-resolution. The weakening rule allows the derivation of
any clause C ′ ⊇ C from a clause C. However, instead of using the weakening
rule, we introduce a w-resolution rule that essentially incorporates weakening
into the resolution rule. Given two clauses C0 and C1, and a variable x, the
w-resolution rule allows one to infer C = (C0 \ {x}) ∪ (C1 \ {x}). We denote
this condition C0, C1 `w

x C. Note that x ∈ C0 and x ∈ C1 are not required for
the w-resolution inference.

We use the notations WRD, regWRD, WRT, and regWRT for the proof
systems that correspond to RD, regRD, RT, and regRT (respectively) but with
the resolution rule replaced with the w-resolution rule. That is, given a node
labeled with C, an edge from C0 to C labeled with x̄ and an edge from C1 to
C labeled with x, we have C = (C0 \ {x}) ∪ (C1 \ {x}).

Similarly, we use the notations RDW and RTW for the proof systems that
correspond to RD and RT, but with the general weakening rule added. In an
application of the weakening rule, the edge connecting a clause C ′ ⊇ C with its
single predecessor C does not bear any label.

The resolution and weakening rules can certainly p-simulate the w-resolution
rule, since a use of the w-resolution rule can be replaced by weakening inferences
that derive C0 ∪ {x} from C0 and C1 ∪ {x} from C1, and then a resolution
inference that derives C. The converse is not true, since w-resolution cannot
completely simulate weakening; this is because w-resolution cannot introduce
completely new variables that do not occur in the input clauses. Accord-
ing to the well-known subsumption principle, weakening cannot increase the
strength of resolution though, and the same reasoning implies the same about
w-resolution; namely, we have:

6

Proposition 2. Let R be a WRD proof of C from F of size n. Then there is
an RD proof S of C ′ from F of size ≤ n for some C ′ ⊆ C. Furthermore, if R
is regular, so is S, and if R is a tree, so is S.

Proof. The proof of the theorem is straightforward. Writing R as a sequence
C0, C1, . . . , Cn = C, define clauses C ′

i ⊆ Ci by induction on i so that the new
clauses form the desired proof S. For Ci ∈ F , let C ′

i = Ci. Otherwise Ci is
inferred by w-resolution from Cj and Ck w.r.t. a variable x. If x ∈ Cj and
x ∈ Ck, let C ′

i be the resolvent of C ′
j and C ′

k as obtained by the usual resolution
rule; if not, then let C ′

i be C ′
j if x /∈ C ′

j , or C ′
k if x /∈ C ′

k. It is easy to check that
each C ′

i ⊆ Ci and that, after removing duplicate clauses, the clauses C ′
j form

a valid resolution proof S. If R is regular, then so is S, and if R is a tree so
is S. 2

Essentially the same proof shows the same property for the system with the
full weakening rule:

Proposition 3. Let R be a RDW proof of C from F of size s. Then there is
an RD proof S of C ′ from F of size ≤ s for some C ′ ⊆ C. Furthermore, if R
is regular, so is S, and if R is a tree, so is S.

There are several reasons why we prefer to work with w-resolution, rather
than with the weakening rule. First, we find it to be an elegant way to combine
weakening with resolution. Second, it works well for using resolution trees
(with input lemmas, see the next section) to simulate DLL search algorithms.
Third, since weakening and resolution together are stronger than w-resolution,
w-resolution is a more refined restriction on resolution. Fourth, for regular
resolution, using w-resolution instead of general weakening can be a quite
restrictive condition, since any w-resolution inference C0, C1 `w

x C “uses up”
the variable x, making it unavailable for other resolution inferences on the same
path, even if the variable does not occur at all in C0 and C1. The last two
reasons mean that w-resolution can be rather weak; this strengthens our results
below (Theorems 11 and 13) about the existence of regular proofs that use
w-resolution.

The following simple theorem gives some useful properties for regular w-
resolution.

Theorem 4. Let G be a regular w-resolution refutation. Let C be a clause in G.

a. Suppose that C is derived from C0 and C1 with the edge from C0 (resp. C1)
to C labeled with x (resp. x). Then x /∈ C0, and x /∈ C1.

b. Let α be an assignment such that for every literal l labeling an edge on the
path from C to the final clause, α(l) = True. Then C|α = 0.

Proof. The proof of part a. is based on the observation that if x ∈ C0, then also
x ∈ C. However, by the regularity of the resolution refutation, every clause on
the path from C to the final clause 2 must contain x. But clearly x /∈ 2.

7

Part b. is a well-known fact for regular resolution proofs. It holds for similar
reasons for regular w-resolution proofs: the proof proceeds by induction on
clauses in the proof, starting at the final clause 2 and moving up towards the
leaves. Part a. makes the induction step trivial. 2

Directed acyclic graphs We define some basic concepts that will be useful
for analyzing both resolution proofs and conflict graphs (which are defined below
in Section 4). Let G = (V,E) be a dag. The set of leaves (nodes in V of
in-degree 0) of G is denoted V 0

G. The depth of a node u in V is defined to equal
the maximum number of edges on any path from a leaf of G to the node u.
Hence leaves have depth 0. The subgraph rooted at u in G is denoted Gu; its
nodes are the nodes v for which there is a path from v to u in G, and its edges
are the induced edges of G.

3 w-resolution trees with lemmas

This section first gives an alternate characterization of resolution dags by using
resolution trees with lemmas. We then refine the notion of lemmas to allow only
input lemmas. For non-regular derivations, resolution trees with lemmas and
resolution trees with input lemmas are both proved below to be p-equivalent to
resolution. However, for regular proofs, the notions are apparently different. (In
fact we give an exponential separation between regular resolution and regular
w-resolution trees with input lemmas.) Later in the paper we will give a tight
correspondence between resolution trees with input lemmas and DLL search
algorithms.

The intuition for the definition of a resolution tree with lemmas is to allow
any clause proved earlier in the resolution tree to be reused as a leaf clause. More
formally, assume we are given a resolution proof tree T , and further assume T
is ordered in that each internal node has a left child and a right child. We define
<T to be the post-ordering of T , namely, the linear ordering of the nodes of T
such that if u is a node in T and v is in the subtree rooted at u’s left child, and
w is in the subtree rooted at u’s right child, then v <T w <T u. For F a set of
clauses, a resolution tree with lemmas (RTL) proof from F is an ordered binary
tree such that (1) each leaf node v is labeled with either a member of F or with
a clause that labels some node u <T v, and (2) each internal node v is labeled
with a variable x and a clause C, such that C is inferred by resolution w.r.t. x
from the clauses labeling the two children of v, and (3) the unique out-degree
zero node is labeled with the conclusion clause D. If D = 2, then the RTL
proof is a refutation.

w-resolution trees with lemmas (WRTL) are defined just like RTL’s, but
allowing w-resolution in place of resolution, and resolution trees with lemmas
and weakening (RTLW) are defined in the same way, but allowing the weakening
rule in addition to resolution.

An RTL or WRTL proof is regular provided that no path in the proof tree
contains more than one (w-)resolution using a given variable x. Note that paths

8

follow the tree edges only; any maximal path starts at a leaf node (possibly a
lemma) and ends at the conclusion.

It is not hard to see that resolution trees with lemmas (RTL) and resolution
dags (RD) p-simulate each other. Namely, an RD can be converted into an RTL
by doing a depth-first, leftmost traversal of the RD. In addition, it is clear that
regular RTL’s p-simulate regular RD’s. The converse is open, and it is false
for regular WRTL, as we prove in Section 5: intuitively, the problem is that
when one converts an RTL proof into an RD, new path connections are created
when leaf clauses are replaced with edges back to the node where the lemma
was derived.

We next define resolution trees with input lemma (RTI) proofs. These are
a restricted version of resolution trees with lemmas, where the lemmas are
required to have been derived earlier in the proof by input proofs. Input proofs
have also been called trivial proofs by Beame et al. [3], and they are useful for
characterizing the clause learning permissible for DLL algorithms.

Definition An input resolution tree is a resolution tree such that every internal
node has at least one child that is a leaf. Let v be a node in a tree T and let
Tv be the subtree of T with root v. The node v is called an input-derived node
if Tv is an input resolution tree.

Often the node v and its label C are identified. In this case, C is called
an input-derived clause. In RTI proofs, input-derived clauses may be reused as
lemmas. Thus, in an RTI proof, an input-derived clause is derived by an input
proof whose leaves either are initial clauses or are clauses that were already
input-derived.

Definition A resolution tree with input lemmas (RTI) proof T is an RTL proof
with the extra condition that every lemma in T must appear earlier in T as an
input-derived clause. That is to say, every leaf node u in T is labeled either
with an initial clause from F or with a clause that labels some input-derived
node v <T u.

The notions of w-resolution trees with input lemmas (WRTI), regular resolution
trees with input lemmas (regRTI), and regular w-resolution trees with input
lemmas (regWRTI) are defined similarly.1

It is clear that the resolution dags (RD) and resolution trees with lemmas
(RTL) p-simulate resolution trees with input lemmas (RTI). Somewhat surpris-
ingly, the next theorem shows that the converse p-simulation holds as well.

Theorem 5. Let G be a resolution dag of size s for the clause C from the set F
of clauses. Let d be the depth of C in G. Then there is an RTI proof T for C
from F of size < 2sd. If G is regular then T is also regular.

1A small, but important point is that w-resolution inferences are not allowed in input
proofs, even for input proofs that are part of WRTI proofs. We have chosen the definition of
input proofs so as to make the results in Section 5 hold that show the equivalence between
regWRTI proofs and DLL-L-UP search algorithms. Although similar results could be obtained
if the definition of input proof were changed to allow w-resolution inferences, it would require
also using a modified, and less natural, version of clause learning.

9

Proof. The dag proof G can be unfolded into a proof tree T ′, possibly exponen-
tially bigger. The proof idea is to prune clauses away from T ′ leaving a RTI
proof T of the desired size.

Without loss of generality, no clause appears more than once in G; hence,
for a given clause C in the tree T ′, every occurrence of C in T ′ is derived by the
same subproof T ′

C . Let dC be the depth of C in the proof, i.e., the height of the
tree T ′

C . Clauses at leaves have depth 0. We give the proof tree T ′ an arbitrary
left-to-right order, so that it makes sense to talk about the i-th occurrence of a
clause C in T ′.

We define the j-th occurrence of a clause C in T ′ to be leafable, provided
j > dC . The intuition is that the leafable clauses will have been proved as a
input clause earlier in T , and thus any leafable clause may be used as a lemma
in T .

To form T from T ′, remove from T ′ any clause D if it has a successor that
is leafable, so that every leafable occurrence of a clause either does not appear
in T or appears in T as a leaf. To prove that T is a valid RTI proof, it suffices
to prove, by induction on i, that if C has depth dC = i > 0, then the i-th
occurrence of C is input-derived in T . Note that the two children C0 and C1

of C must have depth < dC . Since every occurrence of C is derived from the
same two clauses, these occurrences of C0 and C1 must be at least their i-th
occurrences. Therefore, by the induction hypothesis, the children C0 and C1 are
leafable and appear in T as leaves. Thus, since it is derived by a single inference
from two leaves, the i-th occurrence of C is input-derived.

It follows that T is a valid RTI proof. If the proof G was regular, clearly
T is regular too.

To prove the size bound for T , note that G has at most s−1 internal nodes.
Each one occurs at most d times as an internal node in T , so T has at most
d(s − 1) internal nodes. Thus, T has at most 2d · (s − 1) + 1 < 2sd nodes in
all. 2

The following two theorems summarize the relationships between our various
proof systems. We write R ≡ Q to denote that R and Q are p-equivalent, and
Q ≤ R to denote that R p-simulates Q. The notation Q < R means that R
p-simulates Q but Q does not simulate R.

Theorem 6. RD ≡ WRD ≡ RTI ≡ WRTI ≡ RTL ≡ WRTL

Proof. The p-equivalences RD ≡ WRD and RTI ≡ WRTI and RTL ≡ WRTL
are shown by (the proof of) Proposition 2. The simulations RTI ≤ RTL ≡ RD
are straightforward. Finally, RD ≤ RTI is shown by Theorem 5. 2

For regular resolution, we have the following theorem.

Theorem 7. regRD ≡ regWRD ≤ regRTI ≤ regRTL ≤ regWRTL ≤ RD and
regRTI ≤ regWRTI ≤ regWRTL.

Proof. regRD ≡ regWRD and regWRTL ≤ RD follow from the definitions and
the proof of Proposition 2. The p-simulations regRTI ≤ regRTL ≤ regWRTL

10

and regRTI ≤ regWRTI ≤ regWRTL follow from the definitions. The p-
simulation regRD ≤ regRTI is shown by Theorem 5. 2

Below, we prove, as Theorem 14, that regRD < regWRTI. This is the only
separation in the hierarchy that is known. In particular, it is open whether
regRD < regRTI, regRTI < regRTL, regRTL < regWRTL, regWRTL < RD or
regWRTI < regWRTL hold. It is also open whether regWRTI and regRTL are
comparable.

4 DLL algorithms with clause learning

4.1 The basic DLL algorithm

The DLL proof search algorithm is named after the authors Davis, Logeman
and Loveland of the paper where it was introduced [10]. Since they built on the
work of Davis and Putnam [11], the algorithm is sometimes called the DPLL
algorithm. There are several variations on the DLL algorithm, but the basic
algorithm is shown in Figure 1. The input is a set F of clauses, and a partial
assignment α. The assignment α is a set of ordered pairs (x, ε), where ε ∈ {0, 1},
indicating that α(x) = ε. The DLL algorithm is implemented as a recursive
procedure and returns either UNSAT if F is unsatisfiable or otherwise a satisfying
assignment for F .

DLL(F, α)
1 if F |α = 0 then

2 return UNSAT

3 if F |α = 1 then

4 return α
5 choose x ∈ Var(F |α) and ε ∈ {0, 1}
6 β ←DLL(F, α ∪ {(x, ε)})
7 if β 6= UNSAT then

8 return β
9 else

10 return DLL(F, α ∪ {(x, 1 − ε)})

Figure 1: The basic DLL algorithm.

Note that the DLL algorithm is not fully specified, since line 5 does not
specify how to choose the branching variable x and its value ε. Rather one can
think of the algorithm either as being nondeterministic or as being an algorithm
schema. We prefer to think of the algorithm as an algorithm schema, so that it
incorporates a variety of possible algorithms. Indeed, there has been extensive
research into how to choose the branching variable and its value [13, 22].

There is a well-known close connection between regular resolution and DLL
algorithms. In particular, a run of DLL can be viewed as a regular resolution
tree, and vice-versa. This can be formalized by the following two propositions.

11

Proposition 8. Let F be an unsatisfiable set of clauses and α an assignment. If
there is an execution of DLL(F, α) that returns UNSAT and performs s recursive
calls, then there exists a clause C with C|α = 0 such that C has a regular
resolution tree T from F with |T | ≤ s + 1 and Var(T) ∩ dom(α) = ∅.

The converse simulation of Proposition 8 holds, too, that is, a regular
resolution tree can be transformed directly in a run of DLL.

Proposition 9. Let F be an unsatisfiable set of clauses. Suppose that C has a
regular resolution proof tree T of size s from F . Let α be an assignment with
C|α = 0 and Var(T) ∩ dom(α) = ∅. Then there is an execution of DLL(F, α),
that returns UNSAT after at most s − 1 recursive calls.

The two propositions are based on the following correspondence between
resolution trees and a DLL search tree: first, a leaf clause in a resolution
tree corresponds to a clause falsified by α (so that F |α = 0), and second, a
resolution inference with respect to a variable x corresponds to the use of x as
a branching variable in the DLL algorithm. Together the two propositions give
the following well-known exact correspondence between regular resolution trees
and DLL search.

Theorem 10. If F is unsatisfiable, then there is an execution of DLL(F, ∅) that
executes with < s recursive calls if and only if there exists a regular refutation
tree for F of size ≤ s.

4.2 Learning by unit propagation

Two of the most successful enhancements of DLL that are used by most modern
SAT solvers are unit propagation and clause learning. Unit clause propagation
(also called Boolean constraint propagation) was already part of the original
DLL algorithm and is based on the following observation: If α is a partial
assignment for a set of clauses F and if there is a clause C ∈ F with C|α = {l}
a unit clause, then any β ⊃ α that satisfies F must assign l the value True.

There are a couple of methods that the DLL algorithm can use to implement
unit propagation. One method is to just use unit propagation to guide the choice
of a branching variable by modifying line 5 so that, if there is a unit clause in F |α,
then x and ε are chosen to make the literal true. More commonly though, DLL
algorithms incorporate unit propagation as a separate phase during which the
assignment α is iteratively extended to make any unit clause true until there
are no unit clauses remaining. As the unit propagation is performed, the DLL
algorithm keeps track of which variables were set by unit propagation and which
clause was used as the basis for the unit propagation. This information is then
useful for clause learning.

Clause learning in DLL algorithms was first introduced by Silva and
Sakallah [23] and means that new clauses are effectively added to F . A learned
clause D must be implied by F , so that adding D to F does not change the
space of satisfying assignments. In theory, there are many potential methods

12

for clause learning; however, in practice, the only useful method for learning
clauses is based on unit propagation as in the original proposal [23]. In fact, all
deterministic state of the art SAT solvers for structured (non-random) instances
of SAT are based on clause learning via unit propagation. This includes solvers
such as Chaff [21], Zchaff [20] and MiniSAT [12].

These DLL algorithms apply clause learning when the set F is falsified by the
current assignment α. Intuitively, they analyze the reason some clause C in F
is falsified and use this reason to infer a clause D from F to be learned. There
are two ways in which a DLL algorithm assigns values to variables, namely,
by unit propagation and by setting a branching variable. However, if unit
propagation is fully carried out, then the first time a clause is falsified is during
unit propagation. In particular, this happens when there are two unit clauses
C1|α = {x} and C2|α = {x} requiring a variable x to be set both True and
False. This is called a conflict.

The reason for a conflict is analyzed by building a conflict graph. Generally,
this is done by maintaining an unit propagation graph that tracks, for each
variable which has been assigned a value, the reason that implies the setting
of the variable. The two possible reasons are that either (a) the variable was
set by unit propagation when a particular clause C became a unit clause, in
which case C is the reason, or (b) the variable was set arbitrarily as a branching
variable. The unit propagation graph G has literals as its nodes. The leaves
of G are literals that were set true as branching variables, and the internal nodes
are variables that were set true by unit propagation. If a literal l is an internal
node in G, then it was set true by unit propagation applied to some clause C. In
this case, for each literal l′ 6= l in C, l′ is a node in G and there is an edge from
l′ to l. If the unit propagation graph contains a conflict it is called a conflict
graph. More formally, a conflict graph is defined as follows.

Definition A conflict graph G for a set F of clauses under the assignment α
is a dag G = (V ∪ {2}, E) where V is a set of literals and where the following
hold:

a. For each l ∈ V , either (i) l has in-degree 0 and α(l) = 1, or (ii) there is
a clause C ∈ F such that C = {l} ∪ {l′ : (l′, l) ∈ E}. For a fixed conflict
graph G, we denote this clause as Cl.

b. There is a unique variable x such that V ⊇ {x, x}.
c. The node 2 has only the two incoming edges (x,2) and (x,2).

d. The node 2 is the only node with outdegree zero.

Let V 0
G denote the nodes in G of in-degree zero. Then, letting αG = {(x, ε) :

xε ∈ V 0
G}, the conflict graph G shows that every vertex l must be made true by

any satisfying assignment for F that extends α. Since for some x, both x and
x are nodes of G, this implies α cannot be extended to a satisfying assignment
for F . Therefore, the clause D = {l : l ∈ V 0

G} is implied by F , and D can be
taken as a learned clause. We call this clause D the conflict clause of G and
denote it CC(G).

13

There is a second type of clause that can be learned from the conflict graph G
in addition to the conflict clause CC(G). Namely, let l 6= 2 be any non-leaf
node in G. Further, let V 0

Gl
be the set of leaves l′ of G such that there is a path

from l′ to l. Then, the clauses in F imply that if all the leaves l′ ∈ V 0
Gl

are
assigned true, then l is assigned true. Thus, the clause D = {l} ∪ {l′ : l′ ∈ V 0

Gl
}

is implied by F and can be taken as a learned clause. This clause D is called
the induced clause of Gl and is denoted IC(l, G). In the degenerate case where
Gl consists of only the single literal l, this would make IC(l, G) equal to {l, l};
rather than permit this as a clause, we instead say that the induced clause does
not exist.

In practice, both conflict clauses CC(G) and induced clauses IC(l, G) are
used by SAT solvers. It appears that most SAT solvers learn the first-UIP
clauses [23], which equal CC(G) and IC(l, G′) for appropriately formulated G
and G′. Other conflict clauses that can be learned include all-UIP clauses [26],
rel-sat clauses [19], decision clauses [26], and first cut clauses [3]. All of these
are conflict clauses CC(G) for appropriate G. Less commonly, multiple clauses
are learned, including clauses based on the cuts advocated by the mentioned
works [23, 26], which are a type of induced clauses.

In order to prove the correspondence in Section 5 between DLL with clause
learning and regWRTI proofs, we must put some restrictions on the kinds of
clauses that can be (simultaneously) learned. In essence, the point is that for
DLL with clause learning to simulate regWRTI proofs it is necessary to learn
multiple clauses at once in order to learn all the clauses in a regular input
subproof. But on the other hand, for regWRTI to simulate DLL with clause
learning, regWRTI must be able to include regular input proofs that derive all
the learned clauses so as to have them available for subsequent use as input
lemmas. Thus, we define a notion of “compatible clauses” which is a set of
clauses that can be simultaneously learned. For this, we define the notion of a
series-parallel decomposition of a conflict graph G.

Definition A graph H = (W,E′) is a subconflict graph of the conflict graph G =
(V,E) provided that H is a conflict graph with W ⊆ V and E′ ⊆ E, and that
each non-leaf vertex of H (that is, each vertex in W \V 0

H) has the same in-degree
in H as in G.

H is a proper subconflict graph of G provided there is no path in G from
any non-leaf vertex of H to a vertex in V 0

H .

Note that if l is a non-leaf vertex in the subconflict graph H of G, then the
clause Cl is the same whether it is defined with respect to H or with respect
to G.

Definition Let G be a conflict graph. A decomposition of G is a sequence
H0 ⊂ H1 ⊂ · · · ⊂ Hk, k ≥ 1, of distinct proper subconflict graphs of G such
that Hk = G and H0 is the dag on the three nodes 2 and its two predecessors
x and x.

14

A decomposition of G will be used to describe sets of clauses that can be
simultaneously learned. For this, we put a structure on the decomposition that
describes the exact types of clauses that can be learned:

Definition A series-parallel decomposition H of G consists of a decomposition
H0, . . . , Hk plus, for each 0 ≤ i < k, a sequence Hi = Hi,0 ⊂ Hi,1 ⊂ · · · ⊂
Hi,mi

= Hi+1 of proper subconflict graphs of G. Note that the sequence

H0 = H0,0,H0,1,H0,2, . . . ,H0,m0 = H1 = H1,0,H1,1, . . . , Hk−1,mk−1 = Hk

is itself a decomposition of G. However, we prefer to view it as a two-level
decomposition. A series decomposition is a series-parallel decomposition with
trivial parallel part, i.e., with k = 1. A parallel decomposition is series-parallel
decomposition in which mi = 1 for all i. Note that we always have Hi 6= Hi+1

and Hi,j 6= Hi,j+1.

Figure 2 illustrates a series-parallel decomposition.

Definition For H a series-parallel decomposition, the set of learnable clauses,
CC(H), for H consists of the following induced clauses and conflict clauses:

• For each 1 ≤ j ≤ m0, the conflict clause CC(H0,j), and

• For each 0 < i < k and 0 < j ≤ mi and each l ∈ V 0
Hi

\ V 0
Hi,j

, the induced
clause IC(l,Hi,j).

It should be noted that the definition of the parallel decomposition incorpo-
rates the notion of “cut” used by Silva and Sakallah [23]. The DLL algorithm
shown in Figure 3 chooses a single series-parallel decomposition H and learns
some subset of the learnable clauses in CC(H). It is clear that this generalizes
all of the clause learning algorithms mentioned above.

The algorithm schema DLL-L-UP that is given in Figure 3 is a modification
of the schema DLL. In addition to returning a satisfying assignment or UNSAT,
it returns a modified formula that might include learned clauses. If F is a set
of clauses and α is an assignment then DLL-L-UP(F, α) returns (F ′, α′) such
that F ′ ⊇ F and F ′ is equivalent to F and such that α′ either is UNSAT or is a
satisfying assignment for F .2

The DLL-L-UP algorithm as shown in Figure 3 does not explicitly include
unit propagation. Rather, the use of unit propagation is hidden in the test on
line 2 of whether unit propagation can be used to find a conflict graph. In
practice, of course, most algorithms set variables by unit propagation as soon
as possible and update the implication graph each time a new unit variable is
set. The algorithm as formulated in Figure 3 is more general, and thus covers

2Our definition of DLL-L-UP is slightly different from the version of the algorithm as
originally defined in Hoffmann’s thesis [17]. The first main difference is that we use series-
parallel decompositions rather the compatible set of subconflict graphs of Hoffmann [17]. The
second difference is that our algorithm does not build the implication graph incrementally by
the use of explicit unit propagation; instead, it builds the implication graph once a conflict
has been found.

15

2

aa

c
b

d

e

f g

h i

j k

` m

H0 = H0,0

H0,1

H0,2

H1 = H0,3 = H1,0

H1,1

H1,2

H2 = H1,3 = H2,0

H3 = H2,1
Learnable clauses

{`, h}
{`,m, i}

{h, i, e}
{f, i, e}

{f, g, e}

{e}

{b, d}

{b, c}

Figure 2: A series-parallel decomposition. Solid lines define the sets Hi of the
parallel part of the decomposition, and dotted lines define the sets Hi,j in the
series part. Each line (solid or dotted) defines the set of nodes that lie below
the line. The learnable clauses associated with each set are shown in the right
column.

more possible implementations of DLL-L-UP, including algorithms that may
change the implication graph retroactively or may pick among several conflict
graphs depending on the details of how F can be falsified. There is at least one
implemented clause learning algorithm that does this [14].

As shown in Figure 3, if F |α is false, then the algorithm must return UNSAT
(lines 2-6). Sometimes, however, we use instead a “non-greedy” version of DLL-
L-UP. For the non-greedy version it is optional for the algorithm to immediately
return UNSAT once F has a conflict graph. Thus the non-greedy DLL-L-UP
algorithm can set a branching variable (lines 7-11) even if F has already been
falsified and even if there are unit clauses present. This non-greedy version of
DLL-L-UP will be used in the next section to simulate regWRTI proofs.

The constructions of Section 5 also imply that DLL-L-UP is p-equivalent to
the restriction of DLL-L-UP in which only series decompositions are allowed.
That is to say, DLL-L-UP with only series decompositions can simulate any
run of DLL-L-UP with at most polynomially many more recursive calls.

16

DLL-L-UP(F, α)
1 if F |α = 1 then return (F, α)
2 if there is a conflict graph for F under α then

3 choose a conflict graph G for F under α
4 and a series-parallel decomposition H of G
5 choose a subset S of CC(H) -- the learned clauses

6 return (F ∪ S, UNSAT)

7 choose x ∈ Var(F |α) and ε ∈ {0, 1}
8 (G, β)←DLL-L-UP(F, α ∪ {(x, ε)})
9 if β 6= UNSAT then

10 return (G, β)
11 return DLL-L-UP(G, α ∪ {(x, 1 − ε)})

Figure 3: DLL with Clause Learning.

5 Equivalence of regWRTI and DLL-L-UP

5.1 regWRTI simulates DLL-L-UP

We shall prove that regular WRTI proofs are equivalent to non-greedy
DLL-L-UP searches. We start by showing that every DLL-L-UP search can
be converted into a regWRTI proof. As a first step, we prove that, for a given
series-parallel decomposition H of a conflict graph, there is a single regWRTI
proof T such that every learnable clause of H appears as an input-derived clause
in T . Furthermore, T is polynomial size; in fact, T has size at most quadratic
in the number of distinct variables that appear in the conflict graph.

This theorem generalizes earlier, well-known results of Chang [9] and Beame
et al. [3] that any individual learned clause can be derived by input resolution
(or, more specifically, that unit resolution is equivalent to input resolution). The
theorem states a similar fact about proving an entire set of learnable clauses
simultaneously.

Theorem 11. Let G be a conflict graph of size n for F under the assignment α.
Let H be a series-parallel decomposition for G. Then there is a regWRTI proof T
of size ≤ n2 such that every learnable clause of H is an input-derived clause in T .
The final clause of T is equal to CC(G). Furthermore, T uses as resolution
variables, only variables that are used as nodes (possibly negated) in G \ V 0

G.

First we prove a lemma. Let the subconflict graphs H0 ⊂ H1 ⊂ · · · ⊂ Hk

and H0,0 ⊂ H0,1 ⊂ · · · ⊂ Hk−1,mk−1 be as in the definition of series-parallel
decomposition.

Lemma 12.

a. There is an input proof T0 from F which contains every conflict clause
CC(H0,j), for j = 1, . . . , m0. Every resolution variable in T0 is a non-leaf
node (possibly negated) in H1.

17

b. Suppose that 1 ≤ i < k and u is a literal in V 0
Hi

. Then there is an input
proof Tu

i which contains every (existing) induced clause IC(u,Hi,j) for
j = 1, . . . , mi. Every resolution variable in Tu

i is a non-leaf node (possibly
negated) in the subgraph (Hi+1)u of Hi+1 rooted at u.

Proof. We prove part a. of the lemma and then indicate the minor modifications
needed to prove part b. The construction of T0 proceeds by induction on j to
build proofs T0,j ; at the end, T0 is set equal to T0,m0 . Each proof T0,j ends
with the clause CC(H0,j) and contains the earlier proof T0,j−1 as a subproof.
In addition, the only variables used as resolution variables in T0,j are variables
that are non-leaf nodes (possibly negated) in H0,j .

To prove the base case j = 1, we must show that CC(H0,1) has an input
proof T0,1. Let the two immediate predecessors of 2 in G be the literals x and x.
Define a clause C as follows. If x is not a leaf in H0,1, then we let C = Cx; recall
that Cx is the clause that contains the literal x and the negations of literals
that are immediate predecessors of x in the conflict graph. Otherwise, since
H0,1 6= H0, x is not a leaf in H0,1, and we let C = Cx. By inspection, C has the
property that it contains only negations of literals that are in H0,1. For l ∈ C,
define the {0, 1}-depth of l as the maximum length of a path to l from a leaf
of H0,1. If all literals in C have {0, 1}-depth equal to zero, then C = CC(H0,1),
and C certainly has an input proof from F (in fact, since C = Cx or C = Cx,
we must have C ∈ F).

Suppose on the other hand, that C is a subset of the nodes of H0,1 with
some literals of non-zero {0, 1}-depth. Choose a literal l in C of maximum
{0, 1}-depth d and resolve C with the clause Cl ∈ F to obtain a new clause C ′.
Since Cl ∈ F , the resolution step introducing C ′ preserves the property of having
an input proof from F . Furthermore, the new literals in C ′\C have {0, 1}-depth
strictly less than d. Redefine C to be the just constructed clause C′. If this
new C is a subset of CC(H0,1) we are done constructing C. Otherwise, some
literal in C has non-zero {0, 1}-depth. In this latter case, we repeat the above
construction to obtain a new C, and continue iterating this process until we
obtain C ⊂ CC(H0,1).

When the above construction is finished, C is constructed as a clause with a
regular input proof T0,1 from F (the regularity follows by the fact that variables
introduced in C ′ have {0, 1} depth less than that of the resolved-upon variable).
Furthermore C ⊂ CC(H0,1). In fact, C = CC(H0,1) must hold, because there
is a path, in H0,1, from each leaf of H0,1 to 2. That completes the proof of the
j = 1 base case.

For the induction step, with j > 1, the induction hypothesis is that we have
constructed an input proof T0,j such that T0,j contains all the clauses CC(H0,p)
for 1 ≤ p ≤ j and such that the final clause in T0,j is the clause CC(H0,j).
We are seeking to extend this input proof to an input proof T0,j+1 that ends
with the clause CC(H0,j+1). The construction of T0,j+1 proceeds exactly like
the construction above of T0,1, but now we start with the clause C = CC(H0,j)
(instead of C = Cx or Cx), and we update C by choosing the literal l ∈ C of
maximum {0, j + 1}-depth and resolving with Cl to derive the next C. The

18

rest of the construction of T0,j+1 is similar to the previous argument. For the
regularity of the proof it is essential that H0,j is a proper subconflict graph of
H0,j+1. By inspection, any literal l used for resolution in the new part of T0,j+1

is a non-leaf node in H0,j+1 and has a path from l to some leaf node of H0,j .
Since H0,j is proper, it follows that l is not an inner node of H0,j and thus is
not used as a resolution literal in T0,j . Thus H0,j+1 is regular. This completes
the proof of part a.

The proof for part b. is very similar to the proof for part a. Fixing i > 0,
let u be any literal in V 0

Hi,0
. We need to prove, for 1 ≤ j ≤ mi, there is an

input proof Tu
i,j from F such that (a) Tu

i,j contains every existing induced clause
IC(u,Hi,k) for 1 ≤ k < j, and (b) Tu

i,j ends with the induced clause IC(u,Hi,j),
and (c) the resolution variables used in Tu

i,j are all non-leaf nodes (possibly
negated) of V(Hi,j)u

. The proof is by induction on j. One starts with the clause
C = Cu. The main step of the construction of Tu

i,j+1 from Tu
i,j is to find the

literal v 6= u in C of maximum {i, j}-depth, and resolve C with Cv to obtain
the next C. This process proceeds iteratively exactly like the construction used
for part a. This completes the proof of Lemma 12. 2

We now can prove Theorem 11. Lemma 12 constructed separate regular
input resolution proofs T0,m0 = T0 and Tu

i,mi
= Tu

i that included all the
learnable clauses of H. To complete the proof of Theorem 11, we combine
all these proofs into one single regWRTI proof. For this, we construct proofs
T ∗

i of the clause CC(Hi). T ∗
1 is just T0. The proof T ∗

i+1 is constructed from T ∗
i

by successively resolving the final clause of T ∗
i with the final clauses of the

proofs Tu
i , using each u ∈ V 0

Hi
\ V 0

Hi+1
as a resolution variable, taking the u’s in

order of increasing {i,mi}-depth to preserve regularity. Letting T = T ∗
k , it is

clear that T ∗
k contains all the clauses from CC(H), and, by construction, T ∗

k is
regular.

To bound the size of T , note that any regular input proof S has size 2r + 1
where r is the number of distinct variables used as resolution variables in S.
Since T is regular, and is formed by combining the regular input proofs T0, Tu

i

in a linear fashion, the total size of T is less than n +
∑n−1

k=0(2k + 1) = n2 + 1.
This completes the proof of Theorem 11. 2

Note that, since the final clause of T contains only literals from V 0
G, T does

not use any variable that occurs in its final clause as a resolution variable.

We can now prove the first main result of this section, namely, that regWRTI
proofs polynomially simulate DLL-L-UP search trees.

Theorem 13. Suppose that F is an unsatisfiable set of clauses and that there is
an execution of a (possibly non-greedy) DLL-L-UP search algorithm on input F
that outputs UNSAT with s recursive calls. Then there is a regWRTI refutation
of F of size at most s · n2 where n = |Var(F)|.
Proof. Let S be the search tree associated with the DLL-L-UP algorithm’s
execution. We order S so that the DLL-L-UP algorithm effectively traverses S
in a depth-first, left-to-right order. We transform S into a regWRTI proof tree T

19

as follows. The tree T contains a copy of S, but adds subproofs at the leaves
of S (these subproofs will be derivations of learned clauses). For each internal
node in S, if the corresponding branching variable was x and was first set to the
value xε, then the corresponding node in T is labeled with x as the resolution
variable, and its left incoming edge is labeled with xε and its right incoming
edge is labeled with x1−ε. For each node u in S, let αu be the assignment at
that node that is held by the DLL-L-UP algorithm upon reaching that node.
By construction, αu is equivalently defined as the assignment that has αu(l) = 1
for literal l that labels an edge on the path (in T) between u and the root of T .

For a node u that is a leaf of S, the DLL-L-UP algorithm chooses a conflict
graph Gu with a series-parallel decomposition Hu such that every leaf node l
of Gu is a literal set to true by αu. Also, let Fu be the set F of original clauses
augmented with all clauses learned by the DLL-L-UP algorithm before reaching
node u. By Theorem 11, there is a proof Tu from the clauses Fu such that every
learnable clause of Hu appears in Tu as in input-derived clause. Hence, of
course, every clause learned at u by the DLL-L-UP algorithm appears in Tu as
an input-derived clause. The leaf node u of S is then replaced by the proof Tu

in T . Note that by Theorem 11 and the definition of conflict graphs, the final
clause Cu of Tu is a clause that contains only literals falsified by αu.

So far, we have defined the clauses Cu that label nodes u in T only for leaf
nodes u. For internal nodes u, we define Cu inductively by letting v and w be
the immediate predecessors of u in T and defining Cu to be the clause obtained
by (w-)resolution from the clauses Cv and Cw with respect to the branching
variable x that was picked at node u by the DLL-L-UP algorithm. Clearly,
using induction from the leaves of S, the clause Cu contains only variables that
are falsified by the assignment αu. This makes T a regWRTI proof.

Let r be the root node of S. Since αr is the empty assignment, the clause Cr

must equal the empty clause 2. Thus T is a regWRTI refutation of F and
Theorem 13 is proved. 2

Since DLL clause learning based on first cuts has been shown to give expo-
nentially shorter proofs than regular resolution [3], and since Theorem 13 states
that regWRTI can simulate DLL search algorithms (including ones that learn
first cut clauses), we have proved that regRD does not simulate regWRTI:

Theorem 14. regRD < regWRTI.

Hoffmann [17] gave a direct proof of Theorem 14 based on the variable
extensions described below in Section 7.

5.2 DLL-L-UP simulates regWRTI

We next show that the non-greedy DLL-L-UP search procedure can simulate
any regWRTI proof T . The intuition is that we split T into two parts: the
input parts are the subtrees of T that contain only input-derived clauses. The
interior part of T is the rest of T . The interior part will be simulated by
a DLL-L-UP search procedure that traverses the tree T and at each node,

20

l4

l3

l2

l1

l4

l3

l2

l1

D4

D3

D2

D1

C4

C3

C2

C1

C5 = C

Figure 4: A regular input proof of C. Edges are labeled li or li. The Ci’s and
Di’s are clauses.

chooses the resolution variable as the branching variable and sets the branching
variable according to the label on the left incoming edge. In this way, the tree T
is traversed in a depth-first, left-to-right order. The input parts of T are not
traversed however. Once an input-derived clause is reached, the DLL-L-UP
search learns all the clauses in that input subproof and backtracks returning
UNSAT.

The heart of the procedure is how a conflict graph and corresponding series-
parallel decomposition can be picked so as to make all the clauses in a given
input subproof learnable. This is the content of the next lemma.

Lemma 15. Let T be a regular input proof of C from a set of clauses F . Suppose
that α falsifies C, that is, C|α = 0. Further suppose no variable in C is used
as a resolution variable in T . Then there is a conflict graph G for F under α
and a series decomposition H for G such that the set of learnable clauses of H
is equal to the set of input-derived clauses of T .

Recall that a series decomposition just means a series-parallel decomposi-
tion with a trivial parallel part, i.e, k = 1 in the definition of series-parallel
decompositions.

Proof. Without loss of generality, F is just the set of initial clauses of T . Let the
input proof T contain clauses Cm+1 = C,Cm, . . . , C1, Dm, . . . , D1 as illustrated
in Figure 4 with m = 4. Each Ci+1 is inferred from Ci and Di by resolution
on li, where li ∈ Ci and li ∈ Di. For each i, we have Di = {li} ∪ D′

i, where
D′

i ⊆ Ci+1. Likewise, Ci = {li} ∪ C ′
i, where C ′

i ⊆ Ci+1.
As illustrated in Figure 5, we construct conflict graphs H0,0 = {2, l1, l1} ⊂

H0,1 ⊂ · · · ⊂ H0,m = G which form a series decomposition of G. H0,i will be a
conflict graph from the set of clauses {C1, D1, . . . , Di} under αi where αi is the
assignment that falsifies all the literals in Ci+1. Indeed, the leaves of H0,i are
precisely the negations of literals in Ci+1. For i > 0, the non-leaf nodes of H0,i

are l1 and l1, . . . , li. The predecessors of l1 are defined to be the literals u with

21

2

l4

l3

l2

l1l1

D′′
1

D′′
2

D′′
3

D′′
4

C ′′
1

H0,0

H0,1

H0,2

H0,3

H0,4

Figure 5: A conflict graph and a series decomposition. The solid lines and arcs
indicate edges that may or may not be present. The notations C ′′

1 and D′′
i

indicate zero or more literals, and the double lines indicate an edge from each
literal in the set. The dashed lines indicate cuts, and thereby the sets H0,i in
the series decomposition. Namely, the set H0,i contains the nodes below the
corresponding dotted line.

u ∈ C ′
1, that is Cl1

= C1. Likewise, the predecessors of li are the literals u with
u ∈ D′

i so that Cli = Di.
To start with, we define H0,0 to equal {2, l1, l1}. Let H0,i be already

constructed. Then we have li+1 ∈ Ci+1 since Ci+2 is inferred by resolution
on li+1 from Ci+1. It follows that αi(li+1) = 1 and that li+1 is a leaf in H0,i.
We obtain H0,i+1 from H0,i by adding the predecessors of li+1 (i.e., the literals u
with u ∈ D′

i+1) to H0,i. The leaves of H0,i+1 are now exactly the negations of
the literals in the clause C ′

i+2. Finally the graph H0,m = G and the series
decomposition H defined by the graphs H0,i is as wanted. This completes the
proof of Lemma 15. 2

We can now finish the proof that DLL-L-UP simulates regWRTI.

22

Theorem 16. Suppose that F has a regWRTI proof of size s. Then there is
an execution of the non-greedy DLL-L-UP algorithm with the input (F, ∅) that
makes < s recursive calls.

Proof. Let T be a regWRTI refutation of F . The DLL-L-UP algorithm works
by traversing the proof tree T in a depth-first, left-to-right order. At each
non-input-derived node u of T , labeled with a clause C, the resolution variable
for that clause is chosen as the branching variable x, and the variable x is
assigned the value 1 or 0, corresponding to the label on the edges coming into u.
By part b. of Theorem 4, the clause C is falsified by the assignment α. At each
input-derived node of T , the DLL-L-UP algorithm learns the clauses in the
input subproof above u by using the conflict graph and series decomposition
given by Lemma 15. Since the DLL-L-UP search cannot find a satisfying
assignment, it must terminate after traversing the (non-input) nodes in the
regWRTI refutation tree. The number of recursive calls will equal twice the
number of non-input-derived nodes of T , which is less than s. 2

6 Generalized DLL with clause learning

6.1 The algorithm DLL-Learn

This section presents a new formulation of DLL with learning called DLL-
Learn. This algorithm differs from DLL-L-UP in two important ways. First,
unit propagation is no longer used explicitly (although it can be simulated).
Second, the DLL-Learn algorithm uses more information that arises during
the DLL search process, namely, it can infer clauses by resolution at each node
in the search tree. This makes it possible for DLL-Learn to simulate regular
resolution trees with full lemmas; more specifically, DLL-Learn is equivalent
to regWRTL.

The DLL-Learn algorithm is very similar to the pool resolution system
introduced by Van Gelder [25]. Furthermore, our Theorem 17 is similar to results
obtained by Van Gelder for pool resolution. Our constructions differ mostly in
that we use w-resolution in place of the degenerate resolution inference of Van
Gelder [25]. Loosely speaking, Van Gelder’s degenerate resolution inference is
a method of allowing resolution to operate on any two clauses without any
weakening. Conversely, our w-resolution is a method for allowing resolution
to operate on any two clauses, but with the maximum reasonable amount of
weakening.

The idea of DLL-Learn is to extend DLL so that it can learn a new clause C
at each node in the search tree. As usual, the new clause will satisfy F ≡ F∪{C}.
At leaves, DLL-Learn does not learn a new clause, but marks a preexisting
falsified clause as “new”. At internal nodes, after branching on a variable x and
making two recursive calls, the DLL-Learn algorithm can use w-resolution to
infer a new clause, CDLL(F,α), from the two identified new clauses, C0 and C1

returned by the recursive calls. Since x does not have to occur in Var(C0)
and Var(C1), C is obtained by a w-resolution instead of resolution.

23

The DLL-Learn algorithm shown in Figure 6 uses non-greedy detection
of contradictions. Namely, the “optionally do” on line 2 of Figure 6 allows
the algorithm to continue to branch on variables even if the formula is already
unsatisfied. This feature is needed for a direct proof of Theorem 17. In addition,
it could be helpful in an implementation of the algorithm: Think of a call of
DLL(F, α) such that F |α = 0 and suppose that all of the falsified clauses C ∈ F
are very large and thus undesirable to learn. It might, for example, be the case
that F |α contains two conflicting unit clauses C0|α = {x} and C1|α = {¬x},
where C0 and C1 are small. In that case, it could be better to branch on the
variable x and to learn the resolvent of C0 and C1.

There is one situation where it is not optional to execute lines 3-4; namely,
if α is a total assignment and has assigned values to all variables, then the
algorithm must do lines 3-4.

Note that it is possible to remove C0 and C1 from F in line 13 if they
were previously learned. Additionally, in an implementation of DLL-Learn it
could be helpful to tag Ci as the new clause in H in line 13 if Ci ⊆ C for an
i ∈ {0, 1} instead of learning C — this would be essentially equivalent to using
Van Gelder’s degenerate resolution instead of w-resolution.

DLL-Learn(F, α)
1 if F |α = 1 then return (F, α)
2 if F |α = 0 then optionally do

3 tag a C ∈ F with C|α = 0 as the new clause

4 return (F, UNSAT)
5 choose x ∈ Var(F) \ dom(α) and a value ε ∈ {0, 1}
6 (G, β)←DLL-Learn(F, α ∪ {(x, ε)})
7 if β 6= UNSAT then return (G, β)
8 (H, γ)←DLL-Learn(G, α ∪ {(x, 1 − ε)})
9 if γ 6= UNSAT then return (H, γ)
10 select the new C0 ∈ G and the new C1 ∈ H
11 C ← (C0 − {x1−ε}) ∪ (C1 − {xε})
12 H ← H ∪ {C} -- learn a clause
13 tag C as the new clause in H.

14 return (H, UNSAT)

Figure 6: DLL with a generalized learning.

It is easy to verify that, at any point in the DLL-Learn algorithm, when a
clause C is tagged as new, then C|α = 0.

There is a straightforward, and direct, translation between executions of the
DLL-Learn search algorithm on input (F, ∅) and regWRTL proofs of F . An
execution of DLL-Learn(F, ∅) can be viewed as traversing a tree in depth-first,
left-to-right order. If there are s−1 recursive calls to DLL-Learn, the tree has
s nodes. Each node of the search tree is labeled with the clause tagged in the
corresponding call to DLL-Learn. Thus, leaves of the tree are labeled with
clauses that either are from F or were learned earlier in the tree. The clause
on an internal node of the tree is inferred from the clauses on the two children

24

using w-resolution with respect to the branching variable. Finally, the clause C
labeling the root node, where α = ∅, must be the empty clause, since α must
falsify C. In this way the search algorithm describes precisely a regWRTL
proof tree. Conversely, any regWRTL refutation of F corresponds exactly to an
execution of the DLL-Learn(F, ∅).

This translation between DLL-Learn and regWRTI proof trees gives the
following theorem.

Theorem 17. Let F be a set of clauses. There exists a regWRTL refutation
of F of size s if and only if there is an execution of DLL-Learn(F, ∅) that
performs exactly s − 1 recursive calls.

It follows as a corollary of Theorems 7 and 17 that DLL-Learn can poly-
nomially simulate DLL-L-UP.

7 Variable Extensions

This section introduces the notion of a variable extension of a CNF formula. A
variable extension augments a set F of clauses with additional clauses such
that modified formula VEx (F) is satisfiable if and only if F is satisfiable.
Variable extensions will be used to prove that regWRTI proofs can simulate
resolution dags, in the sense that if there is an RD refutation of F , then there
is a polynomial size regWRTI refutation of VEx (F). Hence, DLL-Learn and
the non-greedy version of DLL-L-UP can simulate full (non-regular) resolution
in the same sense.

Our definition of variable extensions is inspired by the proof trace extensions
of Beame et al. [3] that were used to separate DLL with clause learning from
regular resolution dags. A similar construction was used by Hertel et al. [2] to
show that pool resolution can simulate full resolution. Our results strengthen
and extend the prior results by applying directly to regWRTI proofs. More
importantly, in contrast to proof trace extensions, variable extensions do not
depend on the size of a (possibly unknown) resolution proof but only on the
number of variables in the formula.

Definition Let F be a set of clauses and |Var(F)| = n. The set of extension
variables of F is EVar(F) = {q, p1, . . . , pn}, where q and pi are new variables.
The variable extension of F is the set of clauses

VEx (F) = F ∪ {{q, l̄} : l ∈ C ∈ F
} ∪ {{p1, p2, . . . , pn}

}
.

Obviously VEx (F) is satisfiable if and only if F is. Furthermore, |VEx (F)| =
O(|F |).

Suppose that G is a resolution dag (RD) proof from F . We can reexpress G as
a sequence of (derived) clauses C1, C2, . . . , Ct which has the following properties:
(a) Ct is the final clause of G, and (b) each Ci is inferred by resolution from two
clauses D and E, where each of D and E either are in F or appear earlier in
the sequence as Cj with j < i. Basically, the sequence is an ordinary resolution
refutation, but with the clauses from F omitted.

25

Lemma 18. Suppose that D,E `x C. Then, there is an input resolution proof
tree TC of the clause {q} from VEx (F)∪{D,E} such that C appears in TC and
such that |TC | = 2 · |C| + 3.

Proof. The proof TC starts by resolving D and E to yield C. It then resolves
successively with the clauses {q, l}, for l ∈ C, to derive {q}. 2

Theorem 19. Let F be a set of clauses, n = |Var(F)|, and let C be a clause.
Suppose that G is a resolution dag proof of C from F of size s. Then, there
is a regWRTI proof T of C from VEx (F) of size ≤ 2s · (d + 2) + 1 where
d = max{|D| : D ∈ G} ≤ n.

Proof. Let C1, . . . , Ct be a sequence of the derived clauses in G as above.
Without loss of generality, t < 2n since F also has a regular resolution tree
refutation, and this has depth at most n, and thus has < 2n internal nodes. Let
T ′ be a binary tree with t leaves and of height h = dlog2 te ≤ n. For each node u
in T ′, let l(u) be the level of u in T ′, namely, the number of edges between u
and the root. Label u with the variable pl(u). Also, label every node u in T ′

with the clause {q}. T ′ will form the middle part of a regWRTI proof: each
clause {q} at level i is inferred by w-resolution from its two children clauses
(also equal to {q}) with respect to the variable pi.

Now, we expand T ′ into a regWRTI proof tree T ′′. For this, for 1 ≤ i ≤ t, we
replace the i-th leaf of T ′ with a new subproof TCi

defined as follows. Letting
Ci be as above, let Di and Ei be the two clauses from which Ci is inferred
in G. Then replace i-th leaf of T ′ by the input proof TCi

from Lemma 18 which
contains Ci and ends with the clause {q}. Note that each of Di and Ei either is
in F or appeared as an input clause in a proof, TDi

or TEi
, inserted at an earlier

leaf of T ′. Therefore T ′′ is a valid regWRTI proof of {q} from VEx (F). Since
there are at most s− 1 internal nodes in T ′ and each TCi

has size ≤ 2d + 3, T ′′

has size at most (s − 1) + s · (2d + 3).
Finally, we form a regWRTI proof of C by modifying T ′′ by adding a new

root labeled with the clause C and the resolution variable q. Let the left child
of this new root be the root of T ′′, and let the right child be a new node labeled
also with C. (This is permissible since C is input-derived in T ′′.) Label the
left edge coming to the new root with the literal q, and the right edge with the
literal q. This makes C inferred from {q} and C by w-resolution with respect
to q. T is a valid regWRTI of size at most s+1+s ·(2d+3) = 2s ·(d+2)+1. 2

Since DLL-L-UP and DLL-Learn simulate regWRTI, Theorem 19 implies
that these two systems p-simulate full resolution by the use of variable exten-
sions:

Corollary 20. Suppose that F has a resolution dag refutation of size s. Then
both DLL-L-UP and DLL-Learn, when given VEx (F) as input, have execu-
tions that return UNSAT after at most p(s) recursive calls, for some polynomial p.

We now consider some issues about “naturalness” of proofs based on reso-
lution with lemmas. Beame et al. [3] defined a refutation system to be natural

26

provided that, whenever F has a refutation of size s, then F |α has a refutation
of size at most s. We need a somewhat relaxed version of this notion:

Definition Let R be a refutation system for sets of clauses. The system R is
p-natural provided, there is a polynomial p(s), such that, whenever a set F has
an R-refutation of size s, and α is a restriction, then F |α has an R-refutation
of size ≤ p(s).

The next proposition is well-known.

Proposition 21. Resolution dags (RD) and regular resolution dags (regRD)
are natural proof systems.

As a corollary to Theorem 19 we obtain the following theorem.

Theorem 22.

a. regWRTI is equivalent to RD if and only if regWRTI is p-natural.

b. regWRTL is equivalent to RD if and only if regWRTL is p-natural.

Proof. Suppose that regWRTI ≡ RD. Then, since RD is natural, we have
immediately that regWRTI is p-natural.

Conversely, suppose that regWRTI is p-natural. By Theorem 7, RD p-
simulates regWRTI. So it suffices to prove that regWRTI p-simulates RD. Let
F have an RD refutation of size s. By Theorem 19, VEx (F) has a regWRTI
proof of size 2s(s + 2) + 1. Let α be the assignment that assigns the value 1 to
each of the extension variables q and p1, . . . , pn. Since VEx (F)|α is F and since
regWRTI is p-natural, F has a regWRTI proof of size at most p(2s(s + 2) + 1).
This proves that regWRTI p-simulates RD, and completes the proof of a.

The proof of b. is similar. 2

Theorem 22 is stated for the equivalence of systems with RD. It could also
be stated for p-equivalent but then one needs an “effective” version of p-natural,
where the R-refutation of F |α is computable in polynomial time from α and a
R-refutation of F .

8 A Lower Bound for RTLW with short lemmas

In this section we prove a lower bound showing that learning only short clauses
does not help a DLL algorithm for certain hard formulas. The proof system
corresponding to DLL algorithms with learning restricted to clauses of length k
is, according to Section 5, regWRTI with the additional restriction that every
used lemma is a clause of length at most k. We prove a lower bound for a
stronger proof system that allows arbitrary lemmas instead of just input lemmas,
drops the regularity restriction, and uses the general weakening rule instead of
just w-resolution, i.e., RTLW as defined in Section 3. We define RTLW(k) to be
the restriction of RTLW in which every lemma used, i.e., every leaf label that
does not occur in the initial formula, is of size at most k.

27

The hard example formulas we prove the lower bound for are the well-known
Pigeonhole Principle formulas. This principle states that there can be no 1-to-1
mapping from a set of size n + 1 into a set of size n. In propositional logic, the
negation of this principle gives rise to an unsatisfiable set of clauses PHPn in
the variables xi,j for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n. The variable xi,j is intended
to state that i is mapped to j. The set PHPn consists of the following clauses:

• the pigeon clause Pi =
{
xi,j ; 1 ≤ j ≤ n

}
for every 1 ≤ i ≤ n + 1.

• the hole clause Hi,j,k = {x̄i,k, x̄j,k} for every 1 ≤ i < j ≤ n+1 and k ≤ n.

It is well-known that the pigeonhole principle requires exponential size dag-
like resolution proofs: Haken [16] shows that every RD refutation of PHPn is
of size 2Ω(n). Note that the number of variables is O(n2), so that this lower
bound is far from maximal. In fact, Iwama and Miyazaki [18] prove a larger
lower bound for tree-like refutations.

Theorem 23 (Iwama and Miyazaki [18]). Every resolution tree refutation
of PHPn is of size at least (n/4)n/4.

We will show that for k ≤ n/2, RTLW(k) refutations of PHPn are asymp-
totically of the same size 2Ω(n log n) as resolution trees. On the other hand,
it is known [8] that dag-like resolution proofs need not be much larger than
Haken’s lower bound: there exist RD refutations of PHPn of size 2n ·n2. These
refutations are even regular, and thus can be simulated by regWRTI. Hence
PHPn can be solved in time 2O(n) by some variant of DLL-L-UP when learning
arbitrary long clauses, whereas our lower bound shows that any DLL algorithm
that learns only clauses of size at most n/2 needs time 2Ω(n log n).

In fact, we will prove our lower bound for the weaker functional pigeonhole
principle FPHPn, which also includes the following clauses:

• The functional clause Fi,j,k = {x̄i,j , x̄i,k} for every 1 ≤ i ≤ n+1 and every
1 ≤ j < k ≤ n.

While the lower bound of Iwama and Miyazaki is only stated for the clauses
PHPn, it is easily verified that their proof works as well when the functional
clauses are added to the formula.

Our lower bound proof uses the fact that resolution trees with weakening
(RTW) are natural, i.e., preserved under restrictions in the following sense:

Proposition 24. Let R be a RTW proof of C from F of size s, and ρ a
restriction. There is an RTW proof R′ for C|ρ from F |ρ of size at most s.

We denote the resolution tree R′ by R|ρ. Since this proposition is well-known
a proof will not be given.

Next, we need to bring refutations in RTLW(k) to a certain normal form.
First, we show that it is unnecessary to use clauses as lemmas that are subsumed
by axioms in the refuted formula.

28

Lemma 25. If there is a RTLW(k) refutation of some formula F of size s,
then there is a RTLW(k) refutation of F of size at most 2s in which no clause
C with C ⊇ D for some clause D in F is used as a lemma.

Proof. If a clause C with C ⊇ D for some D ∈ F is used as a lemma, replace
every leaf labeled C by a weakening inference of C from D. 2

Secondly, we need the fact that an RTLW(k) refutation does not need to use
any tautological clauses, i.e., clauses of the form C ∪ {x, x̄} for a variable x.

Lemma 26. If there is a RTLW(k) refutation of some formula F of size s,
then there is a RTLW(k) refutation of F of size at most s that contains no
tautological clause.

Proof. Let P be an RTLW(k)-refutation of F of size s that contains t occurrences
of tautological clauses. We transform P into a refutation P ′ of size |P ′| ≤ s
such that P ′ contains fewer than t occurrences of tautological clauses. Finitely
many iterations of this process yields the claim.

We obtain P ′ as follows. Since the final clause of P is not tautological, if
t > 0, there must be a tautological clause C ∪ {x, x̄} which is resolved with a
clause D∪{x} to yield a non-tautological clause C ∪D∪{x}. The idea is to cut
out the subtree T0 that derives the clause C ∪ {x, x̄}, and derive C ∪ D ∪ {x}
by a weakening from D ∪ {x}. This gives a “proof” P0 with fewer tautological
clauses than P . However, P0 may not be a valid proof, since some of the clauses
in T0 might be used as lemmas in P0. To fix this, we shall extract parts of T0

and plant them onto P0 so that all lemmas used are derived. In order to make
this construction precise, we need the notion of trees in which some of the used
lemmas are not derived.

A partial RTLW from F is defined to be a tree T which satisfies all the
conditions of an RTLW, except that some leaves may be labeled by clauses that
occur neither in F nor earlier in T ; these are called the open leaves of T .

We construct P ′ in stages by defining, for i ≥ 0, a partial RTLW refutation Pi

of F and a partial RTLW derivation Ti of C ∪ {x, x̄} from F with the following
properties:

• All open leaves in Pi appear in Ti. The first open leaf in Pi is denoted Ci.

• All open leaves in Ti appear in Pi before Ci.

• |Pi| + |Ti| = |P | .

P0 and T0 were defined above and certainly satisfy the two properties. Given
Pi and Ti, we construct Pi+1 and Ti+1 as follows: We locate the first occurrence
of Ci in Ti and let T ∗

i be the subtree of Ti rooted at this occurrence. We form
Ti+1 by replacing in Ti the subtree T ∗

i by a leaf labeled Ci. And, we form Pi+1

by replacing the first open leaf, Ci, in Pi by the tree T ∗
i .

The invariants are easily seen to be preserved. Obviously, |Pi+1| + |Ti+1| =
|Pi| + |Ti| = |P |. The open leaves of T ∗

i appear in Pi before Ci, and therefore,
any open leaf in Pi+1, and in particular, Ci+1 if it exists, must occur after the

29

(formerly open leaf) clause Ci. New open leaves in Ti are Ci and possibly some
lemmas derived in T ∗

i , and these all occur in Pi+1 before Ci+1.
Since Pi+1 contains fewer open leaves than Pi for every i, there is an m such

that Pm contains no open leaves, and thus is an RTLW refutation. We then
discard Tm and set P ′ := Pm. Each lemma used in P ′ was a lemma in P , thus
P ′ is also an RTLW(k) refutation.

Note that the total number of occurrences of tautological clauses in Pi+1

and Ti+1 combined is the same as in Pi and Ti combined. This is also equal to
the number of tautological clauses in P . Furthermore, Tm must contain at least
one tautological clause, namely its root C ∪ {x, x̄}. It follows that P ′ has fewer
tautological clauses than P . 2

A matching ρ is a set of pairs
{
(i1, j1), . . . , (ik, jk)

} ⊂ {1, . . . , n + 1} ×
{1, . . . , n} such that all the iν as well as all the jν are pairwise distinct. The
size of ρ is |ρ| = k. A matching ρ induces a partial assignment to the variables
of PHPn as follows:

ρ(xi,j) =

1 if (i, j) ∈ ρ

0 if there is (i, j′) ∈ ρ with j 6= j′

or (i′, j) ∈ ρ with i 6= i′

undefined otherwise.

We will identify a matching and the assignment it induces. The crucial property
of such a matching restriction ρ is that FPHPn|ρ is – up to renaming of variables
– the same as FPHPn−|ρ|.

The next lemma states that a short clause occurring as a lemma in an RTLW
refutation can always be falsified by a small matching restriction.

Lemma 27. Let C be a clause of size k ≤ n/2 such that

• C is not tautological,

• C 6⊇ Hi,i′,j for any hole clause Hi,i′,j,

• C 6⊇ Fi,j,j′ for any functional clause Fi,j,j′ .

Then there is a matching ρ of size |ρ| ≤ k such that C|ρ = 2.

Proof. First, we let ρ1 consist of all those pairs (i, j) such that the negative
literal x̄i,j occurs in C. By the second and third assumption, these pairs form
a matching. All the negative literals in C are set to 0 by ρ1, and by the first
assumption, no positive literal in C is set to 1 by ρ1.

Now consider all pigeons i1, . . . , ir mentioned in positive literals in C that
are not already set to 0 by ρ1, i.e., that are not mentioned in any of the negative
literals in C. Pick j1, . . . , jr from the n/2 holes not mentioned in C, and set
ρ2 :=

{
(i1, j1), . . . , (ir, jr)

}
. This matching sets the remaining positive literals

to 0, thus for ρ := ρ1 ∪ ρ2, we have C|ρ = 2. Clearly the size of ρ is at most k
since we have picked at most one pair for each literal in C. 2

30

Finally, we are ready to put all ingredients together to prove our lower bound.

Theorem 28. For every k ≤ n/2, every RTLW(k)-refutation of FPHPn is of
size 2Ω(n log n).

Proof. Let R be an RTLW(k)-refutation of FPHPn of size s. By Lemmas 25
and 26, R can be transformed into R′ of size at most 2s in which no clause is
tautological and no clause used as a lemma is subsumed by a clause in FPHPn.
Let C be the first clause in R′ which is used as a lemma; C is of size at most k.
The subtree RC of R′ rooted at C is a resolution tree for C from FPHPn.

By Lemma 27, there is a matching restriction ρ of size |ρ| ≤ k such that
C|ρ = 2. Then RC |ρ is a resolution tree with weakening refutation of FPHPn|ρ,
which is the same as FPHPn−k. By Proposition 3, applications of the weakening
rule can be eliminated from RC |ρ without increasing the size. Therefore by
Theorem 23, RC is of size

(n − k

4

)n−k
4 ≥

(n

8

)n
8

and hence the size of R is at least

s ≥ 1
2
|RC | ≥ 2Ω(n log n).

2

References

[1] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair
Urquhart. An exponential separation between regular and general reso-
lution. Theory of Computing, 3:81–102, 2007.

[2] Fahim Bacchus, Philipp Hertel, Toniann Pitassi, and Allen Van Gelder.
Clause learning can effectively p-simlulate general propositional resolution.
Submitted for publication, 2008.

[3] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understand-
ing and harnessing the potential of clause learning. J. Artif. Intell. Res.
(JAIR), 22:319–351, 2004.

[4] Daniel Le Berre and Laurent Simon. The essentials of the SAT 2003 com-
petition. In Proc. 6th International Conference on Theory and Applications
of Satisfiability (SAT 2003), LNCS 2919, pages 452–467. Springer, 2003.

[5] Daniel Le Berre and Laurent Simon. Fifty-five solvers in Vancouver: The
SAT 2004 competition. In Theory and Applications of Satisfiability Test-
ing: 7th International Conference, SAT 2004, LNCS 3542, pages 321–344.
Springer, 2004.

31

[6] Daniel Le Berre and Laurent Simon. Preface to the special volume on the
SAT 2005 competitions and evaluations. Journal on Satisfiability, Boolean
Modeling and Computation, 2:i–xiv, 2005.

[7] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen.
On the relative complexity of resolution restrictions and cutting planes
proof systems. SIAM Journal on Computing, 30:1462–1484, 2000.

[8] Samuel R. Buss and Toniann Pitassi. Resolution and the weak pigeonhole
principle. In Mogens Nielsen and Wolfgang Thomas, editors, Computer Sci-
ence Logic, 11th International Workshop CSL ’97, pages 149–156. Springer
LNCS 1414, 1998.

[9] C. L. Chang. The unit proof and the input proof in theorem proving. J.
ACM, 17(4):698–707, 1970.

[10] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[11] Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. J. ACM, 7(3):201–215, 1960.

[12] Niklas Eén and Armin Biere. Effective preprocessing in SAT through
variable and clause elimination. In Proc. 8th International Conference on
Theory and Applications of Satisfiability Testing (SAT’05), LNCS 3569,
pages 61–75. Springer, 2005.

[13] Jon W. Freeman. Improvements to Propositional Satisfiability Search Al-
gorithms. PhD thesis, University of Pennsylvania, Philadelphia, PA, USA,
1995.

[14] Zhaohui Fu, Yogesh Mahajan, and Sharad Malik. New features of the
SAT’04 version of zChaff. SAT Competition 2004 – Solver Description,
http://www.princeton.edu/ chaff/zchaff/sat04.pdf, 2004.

[15] Andreas Goerdt. Regular resolution versus unrestricted resolution. SIAM
J. Comput., 22(4):661–683, 1993.

[16] Armin Haken. The intractability of resolution. Theor. Comput. Sci.,
39:297–308, 1985.

[17] Jan Hoffmann. Resolution proofs and DLL-algorithms with clause learning.
Diploma Thesis, LMU München, 2007. http://www.tcs.ifi.lmu.de/
~hoffmann .

[18] Kazuo Iwama and Shuichi Miyazaki. Tree-like resolution is superpolynomi-
ally slower than dag-like resolution for the pigeonhole principle. In Proceed-
ings of the 10th International Symposium on Algorithms and Computation
(ISAAC), pages 133–142, 1999.

32

[19] Roberto J. Bayardo Jr. and Robert C. Schrag. Using CSP look-back tech-
niques to solver real-world SAT instances. In Proc. 14th Natl. Conference
on Artificial Intelligence, pages 203–208, 1997.

[20] Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. Zchaff2004: An effi-
cient SAT solver. In Theory and Applications of Satisfiability Testing: 7th
International Conference, SAT 2004, LNCS 3542, pages 360–375. Springer,
2004.

[21] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proc. 38th
Design Automation Conference (DAC’01), pages 530–535, 2001.

[22] Alexander Nadel. Backtrack search algorithms for propositional logic sat-
isfiability: Review and innovations. Master’s thesis, Hebrew University of
Jerusalem, Israel, 2002.

[23] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In Proc. IEEE/ACM International Conference
on Computer Aided Design (ICCAD), pages 220–227, 1996.

[24] G.S. Tseitin. On the complexity of derivation in propositional calculus.
Studies in Constructive Mathematics and Mathematical Logic, Part 2,
pages 115–125, 1968.

[25] Allen Van Gelder. Pool resolution and its relation to regular resolution
and DPLL with clause learning. In Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), LNAI 3835, pages 580–594, Montego
Bay, Jamaica, 2005. Springer-Verlag.

[26] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad
Malik. Efficient conflict driven learning in a Boolean satisfiability solver.
In Proc. IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pages 279–285, 2001.

33

