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Abstract

Cook and Reckhow proved in 1979 that the propositional pigeon-
hole principle has polynomial size extended Frege proofs. Buss proved
in 1987 that it also has polynomial size Frege proofs; these Frege proofs
used a completely different proof method based on counting. This pa-
per shows that the original Cook and Reckhow extended Frege proofs
can be formulated as quasipolynomial size Frege proofs. The key point
is that st-connectivity can be used to define the Cook-Reckhow con-
struction.

1 Introduction

One of the central questions in proof complexity is whether Frege proofs
can polynomially simulate extended Frege (eF) proofs. Frege proofs are
the usual “textbook” propositional proof system with modus ponens as the
only rule of inference. Extended Frege systems are Frege systems augmented
with an extension rule that allows introducing new variables which abbre-
viate more complex formulas. Frege proofs can be viewed as proofs that
reason about polynomial size Boolean formulas, and extended Frege proofs
as proofs that reason about polynomial size Boolean circuits. For this rea-
son, questions about the complexity of Frege and extended Frege proofs are
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generally thought to be closely related to questions about Boolean compu-
tational complexity.

The propositional pigeonhole principle (PHP) has played a central role
as an example in proof complexity. Cook and Reckhow [8] showed that the
“n+1 into n” versions of the pigeonhole principle, PHPn+1

n , have polynomial
size extended Frege proofs. These extended Frege proofs work by formalizing
a proof by induction on n, reducing PHPn+1

n to an instance of PHPn
n−1.

The corresponding Frege proofs, obtained by unwinding the uses of the
extension rule, are exponential size: thus this left open the question of
whether PHPn+1

n requires exponential size Frege proofs.
Buss [5] subsequently gave polynomial size Frege proofs of PHPn+1

n .
These Frege proofs used a very different proof method based on the for-
malization of counting with polynomial size formulas. This left still open
the question of whether the Cook-Reckhow extended Frege proofs could be
naturally translated into sub-exponential size Frege proofs. Indeed, the ap-
parent difficulty of finding such a translation has been taken as evidence
that there may be an exponential speedup of extended Frege proofs over
Frege proofs.

Theorem 1 of the present paper, however, shows there are quasipoly-
nomial size Frege proofs of PHPn+1

n which are essentially direct transla-
tions of Cook and Reckhow’s extended Frege proofs. We give two different
constructions of quasipolynomial size Frege proofs. Both are based on st-
connectivity. The first one uses the weak n2 to n pigeonhole principle,
PHPn2

n , which is well-known to have constant depth, polynomial size Frege
proofs [15]. In essence, this proof is giving a quasipolynomial reduction from
the pigeonhole principle to PPADS (the “sink” version of the parity princi-

ple for directed graphs, see Papadimitriou [14]), and then applies the PHPn2

n

principle to the PPADS problem. It may seem a bit of cheat to reduce the
PHPn+1

n principle to the PHPn2

n : this is partially true, but the existence of

constant depth, polynomial size Frege proofs for PHPn2

n was known before
the proof [5] that PHPn+1

n has polynomial size Frege proofs. At any rate, our
second construction of quasipolynomial size Frege proofs avoids this “cheat”
since it uses neither PHPn2

n nor counting.
Bonet, Buss and Pitassi [4] investigated candidates for tautologies that

might provide exponential separations for Frege and extended Frege sys-
tems. They did not find very many other than tautologies which are com-
plete for extended Frege proofs such as partial consistency statements. A
number of these were based on linear algebra, including the Oddtown The-
orem, the Graham-Pollack Theorem, the Fisher Inequality and the Ray-
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Chaudhuri-Wilson Theorem; another linear-algebra-based tautology stating
that AB = I ⇒ BA = I for Boolean matrices was subsequently proposed
by Cook. These all have polynomial size extended Frege proofs using simple
facts from linear algebra. Recently, Hrubeš and Tzameret [9] showed that
many identities about the determinant, including the AB = I ⇒ BA = I
tautologies, have quasipolynomial size Frege proofs (as was already conjec-
tured by [4]).

Several combinatorial principles have been suggested as possibilities for
separating Frege and extended Frege proofs; these include Frankl’s theo-
rem, local improvement principles, and the Kneser-Lovász coloring princi-
ple. Bonet, Buss, and Pitassi [4] suggested Frankl’s theorem on the trace
of sets, and showed these tautologies have polynomial size extended Frege
proofs. But, subsequently to the results of the present paper, Aisenberg,
Bonet, and Buss [1] gave quasipolynomial size Frege proofs of the tautolo-
gies expressing Frankl’s theorem. They also showed that Frankl’s Theorem
with constant parameter t has polynomial size Frege proofs; this was earlier
shown for t = 1, 2 by [4, 13]. Ko lodziejczyk, Nguyen, and Thapen [11] sug-
gested the propositional translations of various local improvement principles
LI, LIlog and LLI as candidates, motivated by results on their provability in
the bounded arithmetic theory V 1

2 . They proved the LI principle is equiv-
alent to partial consistency statements for extended Frege systems, but the
other two remained as candidates. However, Beckmann and Buss [3] showed
that the LLI principles are provable in the bounded arithmetic theory U1

2 ;
thus they also have quasipolynomial size Frege proofs. They also showed
LIlog to be equivalent to LI. Finally, Aisenberg, Bonet, Buss, Crãciun, and
Istrate [in preparation] have given quasipolynomial size Frege proofs for the
Kneser-Lovász coloring principle; Istrate and Crãciun [10] earlier gave poly-
nomial size extended Frege proofs for a special case of these tautologies.

As mentioned, our new Frege proofs constructed for Theorem 1 use the
same underlying construction as Cook and Reckhow’s extended Frege proofs.
Likewise, all of the above-mentioned quasipolynomial size Frege proofs use
the same underlying constructions as the prior extended Frege proofs; al-
though the details become substantially more difficult in most cases (in-
cluding in the case of the Frege proofs constructed in the present paper).
This raises the possibility that Frege systems actually do quasipolynomially
simulate extended Frege systems. This seems quite unlikely, however, as the
techniques do not seem to apply to general extended Frege proofs.

We presume the reader has basic familiarity with Frege and extended
Frege proofs, and with the kinds of arguments that can be formalized with
Frege proofs. The reader unfamiliar with proof complexity should consult
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the papers cited above. In addition, [6, 7, 2, 16] give surveys of propositional
proof complexity.

A Frege proof system is an implicationally sound and complete propo-
sitional proof system, axiomatized by a finite set of schematic axioms and
inference rules [8]. An example of a schematic axiom is the set of formulas
A → (B → A). An example of a schematic inference rule is modus ponens:
from A and A → B, infer B. We assume w.l.o.g. that Frege systems use
the connectives ¬, ∧, ∨, →, ↔, ⊤, and ⊥. The length of a Frege proof P ,
denoted |P |, is the number of symbols occurring in P .

Let n ≥ 1. We write [n] for {0, 1, . . . , n−1}. We use propositional
variables pi,j to denote the condition that f(i) = j. For i ∈ [n + 1], define

Totni :=
∨

j∈[n]

pi,j

stating that f(i) is defined. For j ∈ [n], define

Injnj :=
∧

0≤i1<i2≤n

¬(pi1,j ∧ pi2,j)

stating that f is injective at j. Then PHPn+1
n is the formula

¬
(

∧

i∈[n+1]

Totni ∧
∧

j∈[n]

Injnj

)

stating that there is no total injective f : [n+1] → [n].
Big conjunctions (

∧

) and disjunctions (
∨

) always denote (nearly) bal-
anced trees of two input ∧- and ∨-gates, respectively. Thus, these formulas
have logarithmic depth.

A function s : N → N is quasipolynomial if s(n) = 2log
O(1)(n).

2 Quasipolynomial Frege proofs of PHPn+1
n

Theorem 1. There are quasipolynomial size proofs of the tautologies PHPn+1
n .

Of course, Theorem 1 is weaker than what is already known, namely
PHPn+1

n has polynomial size proofs [5]. As discussed already, the point is
that the quasipolynomial size Frege proofs are based on the same construc-
tion as Cook and Reckhow’s extended Frege (eF) proofs.

The rest of the paper is dedicated to sketching the new proof of Theo-
rem 1.
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2.1 Polynomial size extended Frege proofs.

We recall Cook and Reckhow’s eF proofs of PHPn+1
n . These eF proofs start

with the assumptions that Totni holds for all i ∈ [n+1] and that Injnj holds for

all j ∈ [n], and obtain a contradiction. The eF proof of PHPn+1
n introduces

new variables qki,j by the extension rule, for k = 1, . . . , n and i ∈ [k+1] and

j ∈ [k]. It then proves, for each value of k, that the variables qki,j satisfy the

Totki formulas and the Injkj formulas. Once this is established for k = 1, a

contradiction is readily obtained, since Tot10 is p10,0, Tot11 is p11,0, and Inj10 is

¬(p10,0 ∨ p11,0).

The variables qki,j are defined as follows. First,

qni,j ↔ pi,j.

(Alternately, qni,j is just another name for pi,j.) Then, successively for k =

n−1, . . . , 2, 1, define qki,j by

qki,j ↔ qk+1
i,j ∨ (qk+1

i,k ∧ qk+1
k+1,j) (1)

for i ∈ [k+1] and j ∈ [k]. The intuitive idea for the definitions (1) of qki,j is
shown in Figure 1.

It is clear by inspection that, under the assumption that the variables
~qk+1 violate the PHPk+2

k+1 pigeonhole principle, the new variables ~qk violate

the PHPk+1
k pigeonhole principle. More formally, write Totki,j(~q

k) for the

result of substituting the variables qki,j for the variables pi,j in Totki,j. Then
given the hypotheses (1), it is straightforward to prove

Totk+1
i (~qk+1) ∧ Totk+1

k+1(~q
k+1) → Totki (~qk)

for each i ∈ [k], and

Injk+1
j (~qk+1) ∧ Injk+1

k (~qk+1) → Injkj (~qk)

for each j ∈ [k − 1]. These proofs can be carried out with polynomial size
Frege proofs given the equivalences (1) as hypotheses. Therefore, there are
polynomial size Frege proofs of PHPk+2

k+1(~q
k+1) → PHPk+1

k (~qk) given the
hypotheses (1). Putting these together gives Cook and Reckhow’s proof of
PHPn+1

n .
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Figure 1: Discarding pigeon k+1 and hole k, using extension to define qki,j
to equal qk+1

i,j ∨ (qk+1
i,k ∧ qk+1

k+1,j).

2.2 Preliminaries for quasipolynomial size Frege proofs.

The problem with directly translating the eF proof into a Frege proof is
that unwinding the definitions (1) into formulas defining qki,j yields expo-
nential size formulas in the original variables pi,j. We shall give an alternate
definition of the values qki,j using formulas ϕk

i,j of quasipolynomial size. The

trick is to define the variables ~ϕk independently for each k, rather than in-
ductively for successive values of k. This will be done by defining suitable
directed acyclic graphs (dags) Gn,k with out-degree at most 1, and using an
st-connectivity property.

Fix a value for n. The n+1 pigeon nodes are the pairs 〈0, i〉 for i ∈ [n+1],
and the n hole nodes are the pairs 〈1, j〉, for j ∈ [n]. Now fix k ≤ n. The
nodes of Gn,k consist of all n+ 1 pigeon nodes and n hole nodes. The edges
of Gn,k are the edges as given by the presumed violation of the pigeonhole
principle, plus the “back edges” from each hole node 〈1, ℓ〉 to pigeon node
〈0, ℓ+1〉 for k ≤ ℓ < n. This is pictured in Figure 2. More formally, we
use variables α and β to denote nodes of Gn,k, and define formulas γkα,β
indicating which edges are present in Gn,k. For α = 〈0, i〉 and β = 〈1, j〉
with i ∈ [n+1] and j ∈ [n], the formula γkα,β is

pi,j ∧
∧

j′<j

¬pi,j′.
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〈0, 0〉

〈0, 1〉

〈0, i〉

〈1, 0〉

〈1, 1〉

〈1, j〉

〈1, k〉

〈1, n−1〉

〈0, k+1〉

〈0, n〉

ϕk
i,j

Figure 2: The graph Gn,k has as nodes the pigeon nodes 〈0, i〉, i ∈ [n+1],
and the hole nodes 〈1, j〉, j ∈ [n]. The edges of Gn,k are the solid lines from
left-to-right as indicated by the variables pi,j, and the dotted lines from 〈1, j〉
to 〈0, j+1〉 for k ≤ j < n. The dashed line indicates an edge from 〈0, i〉 to
〈1, j〉, as defined by ϕk

i,j for i ∈ [k+1] and j ∈ [k]: this is in the transitive
closure of Gn,k, but not necessarily in Gn,k.

With the totality hypothesis Totni , this ensures that for each i, γki,j is true
for exactly one value j. For α = 〈1, j〉 and β = 〈0, j + 1〉 with k ≤ j < n,
the formula γkα,β is the constant true (⊤). For all other α and β, γkα,β is the
constant false (⊥).

From Gn,k we further define formulas ϕk
i,j which define an instance of

the PHPk+1
k pigeonhole principle. The idea is simple: We trace out maximal

length paths in Gn,k starting at a pigeon node 〈0, i〉 and terminating at a
hole node 〈1, j〉. The formula ϕk

i,j is true if and only if this path exists.
Then, we prove by “brute-force” induction on k = n, n−1, . . . , 1 that the
formulas ~ϕk falsify PHPk+1

k . At k = 1, this yields a contradiction.
The formulas ϕk

i,j are defined in terms of formulas Pathk[ℓ, α, β] which
express the property that there is a path of length ℓ from α to β in Gn,k.
Note that there is a different formula Pathk[ℓ, α, β] for each choice of values
for n, k, ℓ, α, β. (The dependency on n is suppressed in the notation.) For
ℓ = 0, Pathk[0, α, α] is the constant ⊤, and for α 6= β, Pathk[0, α, β] is
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the constant ⊥. For ℓ = 1, Pathk[1, α, β] is the formula γkα,β. For ℓ > 1,

Pathk[ℓ, α, β] is defined to equal

∨

α′∈Gn,k

(

Pathk[⌊ ℓ
2
⌋, α, α′] ∧ Pathk[⌈ ℓ

2
⌉, α′, β]

)

.

Let N = 2n + 1. Define ϕk
i,j , for i ∈ [k+1] and j ∈ [k], to be

∨

ℓ≤N

Pathk[ℓ, 〈0, i〉, 〈1, j〉]. (2)

By inspection, ϕk
i,j has size 2O(log2 n) and depth O(log2 n), i.e., quasipolyno-

mial size and polylogarithmic depth.
The definition of ϕk

i,j is illustrated in Figure 2, and it not hard to convince

oneself that, if the pi,j’s define a violation of PHPn+1
n , then the ϕk

i,j’s define a

violation of PHPk+1
k . Our second construction of quasipolynomial size Frege

proofs will give formal proofs of this fact.

Lemma 2. The following formulas have quasipolynomial size Frege proofs
from the hypothesis ¬PHPn+1

n , for all appropriate k, α, β and β′, and all
ℓ′ ≤ ℓ. Quasipolynomial size means quasipolynomial in n and ℓ.

(a) Pathk[ℓ, α, β] →
∨

α′ Pathk[ℓ′, α, α′] ∧ Pathk[ℓ−ℓ′, α′, β].

(b) Pathk[ℓ′, α, α′] ∧ Pathk[ℓ−ℓ′, α′, β] → Pathk[ℓ, α, β].

(c) Pathk[ℓ, α, β] → (Pathk[ℓ′, α, α′] ↔ Pathk[ℓ−ℓ′, α′, β]).

(d) For β′ 6= β,
¬
(

Pathk[ℓ, α, β] ∧ Pathk[ℓ, α, β′]
)

,

and
¬
(

Pathk[ℓ, β, α] ∧ Pathk[ℓ, β′, α]
)

.

Proof. The proof is a standard “brute-force” induction. Fix a value for k.
The statements (a), (b) and (c) for all α and β, and all ℓ′ ≤ ℓ, are proved
simultaneously, first for ℓ = 0, then for ℓ = 1, then for ℓ = 2, etc. The base
cases for (c) depend on the fact that every node has in- and out-degrees ≤ 1.

Part (d) follows from the ℓ′ = 0 and ℓ′ = ℓ cases of (c).

Define Srcn,k to be the set of source nodes in Gn,k, namely the nodes
〈0, i〉 for i ∈ [k+1]. Likewise, the set Snkn,k of sink nodes of Gn,k contains
the nodes 〈1, j〉 for j ∈ [k].
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Lemma 3. The following have quasipolynomial size (in n and ℓ) Frege
proofs from the hypothesis that ¬PHPn+1

n , for all k ≤ n, all nodes α and β,
and all ℓ′ < ℓ.

(a) For α ∈ Srcn,k,

¬
(

Pathk[ℓ′, α, β] ∧ Pathk[ℓ, α, β]
)

.

(b) For β ∈ Snkn,k,

¬
(

Pathk[ℓ′, α, β] ∧ Pathk[ℓ, α, β]
)

.

Note that the lemma can fail for general α and β since Gn,k can have a
cycle in the nodes above 〈0, k〉 and 〈1, k−1〉.

Proof. (Sketch) We assume for sake of a contradiction that Pathk[ℓ′, α, β]
and Pathk[ℓ, α, β] both hold, and argue as can be formalized with quasipoly-
nomial size Frege proofs.

First suppose ℓ′ = 0 < ℓ. Since Pathk[0, α, β] is a hypothesis, if α 6= β,
we immediately obtain a contradiction. For α = β, we have Pathk[ℓ, α, α] as
a hypothesis. By Lemma 2(a), there is an α′ such that Pathk[1, α′, α] holds.
But this is impossible since α ∈ Srcn,k, so we again obtain a contradiction.

The ℓ′ > 0 cases are argued as follows. By Lemma 2(c), Pathk[ℓ−ℓ′, α, α].
Since also Pathk[0, α, α], this contradicts the second case handled in the
previous paragraph.

Part (b) is proved similarly to (a).

It is interesting to note that the Frege proofs of Lemmas 2 and 3 have
only polynomially many formulas; in fact, the sizes of the Frege proofs are
polynomially bounded by the size of the tautologies being proved.

2.3 The first quasipolynomial size Frege proofs.

We describe a family of quasipolynomial size Frege proofs for PHPn+1
n , giv-

ing a first proof of Theorem 1. We will informally prove PHPn+1
n , using

arguments that can be formalized as quasipolynomial size Frege proofs. As
before, we start with the assumptions that Totni holds for all i ∈ [n+1] and
that Injnj holds for all j ∈ [n].

Consider the graph Gn,0. Referring to Figure 2, every node in Gn,0 has
out-degree 1. In addition, α0 = 〈0, 0〉 has in-degree 0. (Some hole nodes
〈1, j〉 may also have in-degree 0 since we did not assume f is onto.) Consider
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paths in Gn,0 starting at α0. We let PathExists[ℓ] be the formula stating
there is a path of length ℓ starting at α0:

PathExists[ℓ] :=
∨

β

Path0[ℓ, α0, β].

We have PathExists[0]. And, since every node has out-degree 1, Lemma 2(b)
gives

PathExists[ℓ] → PathExists[ℓ+1].

Let m = 2n + 1 and M = m2. By induction on ℓ from 0 to M , we obtain
PathExists[M ]. The ℓ-th node αℓ on this path of length M is definable
by Path0[ℓ, α0, αℓ]. The node αℓ exists by Lemma 2(a) and is unique by
Lemma 3(a). Therefore the mapping ℓ 7→ αℓ defines a total injective map

from M = m2 to the m many nodes of Gn,0. This violates the PHPm2

m

pigeonhole principle, and thereby gives a contradiction. Hence, PHPn+1
n is

proved.
It follows immediately by standard techniques that this argument can

be formalized with a quasipolynomial size Frege proof. As remarked be-
fore, [15] showed there are constant depth, polynomial size Frege proofs of

PHPm2

m . In our setting, the proofs are quasipolynomial size, since the for-
mulas defining the nodes αℓ as a function of ℓ are quasipolynomial size, not
polynomial size. (In fact, [15] showed there are constant depth, polynomial
size Frege proofs of PHP2m

m ; the lowest possible depth polynomial size Frege
proofs of PHP2m

m have been given by Maciel, Pitassi, and Woods [12].)

2.4 The second quasipolynomial size Frege proofs.

We now construct quasipolynomial size Frege proofs of PHPn+1
n that avoid

any use of a weak pigeonhole principle. The difficulty is that, without any
pigeonhole principle, it is hard to see how to show that a path starting at
(say) 〈0, 0〉 cannot go forever. Ideally, we would like to prove that since Gn,k

has 2n + 1 nodes, paths in Gn,k cannot have length > 2n.
Let ℓi equal the length of the path from the i-th source node to a

sink node, we would like to prove that
∑

i ℓi ≤ 2n, even that
∑

i ℓi ≤
(n + 1) + (n − k). However, it requires counting to even state these in-
equalities, and this would take us back to essentially the counting-based
polynomial size Frege proofs of [5]. So instead, we define another kind of
path (called a “δ-path”) which concatenates all the paths in Gn,k from source
to sink nodes into a single path. This will allow us to replace the inequality
∑

i ℓi ≤ (n+1)+(n−k) with an explicit 1-1 correspondence that is definable
by quasipolynomial size formulas.
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Definition 4. Fix n, and let k ≤ n. The formulas δkα,β are defined as

follows. If α /∈ Snkn,k or β /∈ Srcn,k, then δkα,β is the formula γkα,β. If

α = 〈1, j〉 ∈ Snkn,k and β = 〈0, i+1〉 ∈ Srcn,k, then δkα,β is the formula

∨

ℓ≤2n

Pathk[ℓ, 〈0, i〉, α] (3)

stating that α is reachable from 〈0, i〉 by a path of length ≤ 2n. If β is 〈0, 0〉,
δkα,β is false for all α.

Define the formulas δ-Pathk[ℓ, α, β] exactly like Pathk[ℓ, α, β], except re-
placing the formulas γkα,β with δkα,β. Clearly, δ-Pathk[ℓ, α, β] is quasipolyno-
mial size in n and ℓ. The intent is that the δ-path starting at 〈0, 0〉 in Gn,k is
the concatenation of the k+1 many paths starting at 〈0, i〉 for i = 0, 1, . . . , k.
The definition (3) ensures this by joining the end α of the path starting at
〈0, i〉 to the node β = 〈0, i+1〉.

Let δ-Reachk[ℓ, β] be δ-Pathk[ℓ, 〈0, 0〉, β], indicating that β is reachable
from 〈0, 0〉 by a δ-path of length ℓ. The assertions in the next lemma
will be proved with quasipolynomial size Frege proofs from the hypothe-
sis ¬PHPn+1

n .

Lemma 5. Let n be fixed and suppose ¬PHPn+1
n . Suppose 0 ≤ k ≤ n, and

consider the δ-path in Gn,k starting from 〈0, 0〉. For each i ≤ k, there are
values ℓ1 = ℓ1(i, k) and ℓ2 = ℓ2(i, k) such that

• The ℓ1-th node on the δ-path is the source node 〈0, i〉.

• The ℓ2-th node on the path is a sink node β.

• There is a path in Gn,k of length ℓ2 − ℓ1 from 〈0, i〉 to β.

• There are no other source or sink nodes on the δ-path between positions
ℓ1 and ℓ2.

The length of the δ-path is ≤ 2n + 1.

The δ-path has total length ℓ2(k, k) since, by definition, the sink node
reachable in Gn,k from 〈0, k〉 has out-degree 0 according to ~δk.

Let nSnSn,k (“neither source nor sink”) be the set of nodes in Gn,k other
than the k+1 source nodes and k sink nodes. The itemized assertions in
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Lemma 5 are expressed by a quasipolynomial size propositional formula as:
∨

ℓ2≤2n+1

∨

ℓ1<ℓ2

[

δ-Reachk[ℓ1, 〈0, i〉]

∧
∨

β∈Snkk,n

(

δ-Reachk[ℓ2, β] ∧ Pathk[ℓ2−ℓ1, 〈0, i〉, β]
)

∧
∧

ℓ1<ℓ<ℓ2

∨

α∈nSnSn,k

δ-Reachk[ℓ, α]
]

.

We prove Lemma 5 informally, using arguments that can be formalized with
quasipolynomial size Frege proofs. The proof is by reverse induction on k.
For the base case, k = n, Lemma 5 is trivial, the node 〈0, i〉 is the (2i)-th
node on the δ-path in Gn,k. The (2i + 1)-st node is the sink node joined by
an edge to 〈0, i〉.

Now suppose Lemma 5 holds for k+1; we must prove it for k. The
induction hypothesis gives the existence of the δ-path πk+1 in Gn,k+1; we
must define a δ-path πk in Gn,k and prove it enjoys the needed properties.

Suppose i ≤ k+1. The induction hypothesis gives indices ℓ1(i, k+1) and
ℓ2(i, k+1) such that the ℓ1(i, k+1)-th node of πk+1 is 〈0, i〉, and such that
the ℓ2(i, k)-th node of πk+1 is the sink node reachable from 〈1, i〉 in Gn,k+1.
We henceforth denote this sink node by βi,k+1. Let ℓ′1 = ℓ1(k+1, k+1) and
ℓ′2 = ℓ2(k+1, k+1). The ℓ′1-th and ℓ′2-th nodes on the δ-path πk+1 in Gn,k+1

are 〈0, k+1〉 and βn,k+1, respectively. The length of πk+1 is ℓ′2.
The argument now splits into two cases. First, suppose there is no

〈0, i〉 ∈ Srcn,k (that is, no i ≤ k) such that βi,k+1 equals 〈1, k〉. In this
case, since the only change between Gn,k+1 and Gn,k is the addition of the
edge from 〈1, k〉 to 〈0, k+1〉, we have that the first ℓ2(k, k+1) nodes of πk+1

already form the desired δ-path in Gn,k. The desired properties of πk follow
immediately from the properties of πk+1. In this case, the δ-path πk is
shorter than the δ-path πk+1.

Second, suppose that 〈1, k〉 is equal to βi,k+1 for some i ≤ k. Let ℓ′′1 =
ℓ1(i, k+1) and ℓ′′2 = ℓ2(i, k+1), so that the ℓ′′1-th and ℓ′′2-th nodes on πk+1

are 〈0, i〉 and βi,k+1 = 〈1, k〉, respectively. The desired δ-path πk consists
of the following: the first ℓ′′2 many nodes of πk+1, followed by the nodes in
positions ℓ′1 through ℓ′2 of πk+1, and then followed by the nodes in positions
ℓ′′2+1 through ℓ′1−1 of πk+1. It is straightforward to verify that the desired
properties of πk hold, given the properties of πk+1. (When formalizing this
argument as a Frege proof, the argument splits into separate cases for each
of the polynomially many possible values for ℓ′1, ℓ

′
2, ℓ′′1 , and ℓ′′2.)

That completes the proof of Lemma 5.
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The proof of Theorem 1 is now easy. It is trivial to see that when k = 0,
there can be no such δ-path π0, since Gn,0 has no sink nodes. Alternately,
the argument can stop at the case k = 1, and argue as in the earlier-
sketched argument by Cook and Reckhow for extended Frege proofs. So
this completes the proof of Theorem 1.

We claim that these quasipolynomial size Frege proofs really do inten-
sionally simulate the extended Frege proofs of Cook and Reckhow. To prove
this, it will suffice to show that there are quasipolynomial size proofs of the
formulas

ϕk
i,j ↔ ϕk+1

i,j ∨ (ϕk+1
i,k ∧ ϕk+1

k+1,j) (4)

corresponding to the introduction of the variables qki,j in the eF proofs
by the extension rule (1). The formulas (4) are shown successively for
k = n, . . . , 2, 1, 0: indeed they were essentially proved above as part of the
proof of Lemma 5. The only subtle point is that the formulas ϕk

i,j were de-
fined by (2) in terms of the existence of a path of length at most N = 2n+1
whereas Lemma 5 was proved with δ-paths. It is easy to prove the equiv-
alence of these two approaches. From Lemma 5, we know there is some
path from 〈0, i〉 to a sink node, and its length is at most 2n + 1. And from
Lemma 2, there is only one sink node reachable by a path from 〈0, i〉.

Acknowledgements. We thank James Aisenberg and an anonymous ref-
eree for comments.
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