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Abstract

The paper describes the use of dual-rail MaxSAT systems to solve Boolean
satisfiability (SAT), namely to determine if a set of clauses is satisfiable. The
MaxSAT problem is the problem of satisfying the maximum number of clauses in
an instance of SAT. The dual-rail encoding adds extra variables for the comple-
ments of variables, and allows encoding an instance of SAT as a Horn MaxSAT
problem. We discuss three implementations of dual-rail MaxSAT: core-guided
systems, minimal hitting set (MaxHS) systems, and MaxSAT resolution in-
ference systems. All three of these can be more efficient than resolution and
thus than conflict-driven clause learning (CDCL). All three systems can give
polynomial size refutations for the pigeonhole principle, the doubled pigeon-
hole principle and the mutilated chessboard principles. The dual-rail MaxHS
MaxSat system can give polynomial size proofs of the parity principle. However,
dual-rail MaxSAT resolution requires exponential size proofs for the parity prin-
ciple; this is proved by showing that constant depth Frege augmented with the
pigeonhole principle can polynomially simulate dual-rail MaxSAT resolution.
Consequently, dual-rail MaxSAT resolution does not simulate cutting planes.
We further show that core-guided dual-rail MaxSAT and weighted dual-rail
MaxSAT resolution polynomially simulate resolution. Finally, we report the
results of experiments with core-guided dual-rail MaxSAT and MaxHS dual-rail
MaxSAT showing strong performance by these systems.
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1. Introduction1

The decision problem for propositional logic, i.e., the propositional satisfia-2

bility (SAT) problem, is a well-known NP-complete problem [24]. As a result, to3

the best of our knowledge, any complete algorithm for the SAT problem prob-4

lem may require exponential time in the worst-case. Nevertheless, in the case of5

SAT, practice defies theory, and implementations of SAT algorithms (i.e., SAT6

solvers) have made remarkable progress over the last two and a half decades [46].7

Capable of solving formulas with a few hundred variables in the early 1990s, and8

so widely perceived as an academic curiosity, SAT solvers now routinely solve9

formulas with millions of variables. The reason for this success is almost exclu-10

sively explained by the development of Conflict-Driven Clause Learning (CDCL)11

SAT solvers starting in the mid 1990s [48, 49, 46]. Along with the practical de-12

ployment of CDCL and its widespread industry adoption, there has been work13

on understanding the theoretical power of the underlying clause learning proof14

system associated with CDCL. Over the last decade and a half, a sequence of15

results eventually proved that CDCL with restarts polynomially simulates the16

general resolution proof system, and vice-versa [10, 34, 60, 6, 12]. (It is still an17

open problem with CDCL without restarts polynomially simulates resolution;18

however, a result of [12] proves that CDCL without restarts simulates resolu-19

tion if you allow first modifying the input formula). The progress made has also20

motivated a number of additional challenges; a concrete example being whether21

it is possible to devise practically efficient implementations of proof systems22

that are more powerful than resolution, and hence more powerful than CDCL.23

Recent years have witnessed a growing number of attempts at implementing24

proof systems stronger than resolution [36, 7, 31, 73, 35], aiming at eventually25

replacing present-day CDCL SAT solvers.26

This paper reports one concrete effort on developing SAT solving tools us-27

ing propositional proof systems stronger than CDCL. The proposed approach28

first transforms a problem with the dual-rail encoding to an instance of Horn29

Maximum Satisfiability (Horn MaxSAT), and then using a MaxSAT solver. We30

refer to this approach as dual-rail MaxSAT [38, 17, 55]. The dual-rail MaxSAT31

problem reduction allows a wide range of decision and optimization problems32

to be reduced to Horn MaxSAT [45], a special case of MaxSAT (which is also33

NP-hard [41]). In the case of decision problems, a MaxSAT problem formu-34

lation can be obtained by checking whether the optimum cost corresponds to35

satisfying (or not satisfying) the original formula. Currently, the most efficient36

MaxSAT solvers are based on sequences of calls to a SAT solver (or oracle).37

This suggests that a proof system stronger than CDCL could be obtained by38

building on highly optimized SAT solvers.39

Since the dual-rail encodings can be solved using different MaxSAT solv-40

ing algorithms, dual-rail MaxSAT is not a single proof system; instead, it is41

a framework for multiple possible proof systems, depending on what MaxSAT42

algorithm is used. Concretely, the present paper considers three possible instan-43

tiations of the dual-rail MaxSAT proof system: dual-rail MaxSAT resolution (an44

inference system), core-guided dual-rail MaxSAT algorithms, and minimum hit-45
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ting set (MaxHS-like) dual-rail MaxSAT algorithms. These systems all use the46

dual-rail encoding, but then solve the resulting Horn MaxSAT instance using47

MaxSAT resolution, a core-guided MaxSAT solver, or a MaxHS-like MaxSAT48

solver (respectively).49

Dual-rail MaxSAT resolution is a propositional proof system in the tradi-50

tional sense of having derivations formed with inference rules. Core-guided51

MaxSAT and MaxHS-like MaxSAT do not correspond to traditional proof sys-52

tems with inferences; instead, they are algorithms for solving MaxSAT. They53

depend on calls to a SAT solver and, in the case of MaxHS-like algorithms, calls54

to a minimum hitting set algorithm. Nonetheless, they can be viewed as ab-55

stract proof systems in the sense of Cook-Reckhow [25], provided that the calls56

to the SAT solvers and the minimum hitting set algorithm return certificates of57

correctness. When we talk about the existence of polynomial size proofs (see58

Figure 1) in these theories, we mean that the algorithms can run in polynomial59

time for suitably chosen versions of SAT solvers and minimum hitting set algo-60

rithms with the appropriate (non-deterministic) choices for unsatisfiable cores61

and minimum size hitting sets. It is permitted that the “suitably chosen” al-62

gorithms are tailored to the specific principles being proved. The experimental63

results in Section 7, however, use generic SAT solvers and generic minimum64

hitting set algorithms. The dual-rail MaxSAT algorithms in our experiments65

improve on the usual CDCL-based methods, but they are still exponential time,66

not polynomial time, even though our theorems give the possibility of polyno-67

mial time.68

The fact that the dual-rail MaxSAT proof system can be configured with69

different MaxSAT algorithms enables studying related proof systems of possibly70

different powers. In fact, as shown in Figure 1, MaxHS-like dual-rail MaxSAT71

and dual-rail MaxSAT resolution have an exponential separation for the parity72

principle.73

The outline of the paper is as follows. Section 2 first defines MaxSAT and74

weighted MaxSAT; then describes MaxSAT resolution, core-guided MaxSAT75

and MaxHS-like MaxSAT; and finally defines the pigeonhole principle, the dou-76

bled pigeonhole principle, mutilated chessboard principle, and the parity prin-77

ciple. Section 3 defines the dual-rail encoding in general, and explicitly gives78

the dual-rail encodings for the four combinatorial principles. Section 4 gives79

explicit polynomial size proofs for the four combinatorial principles in the three80

dual-rail MaxSAT proof sytems, except that the parity principle is only shown81

to have polynomial size MaxHS-like dual-rail MaxSAT proofs. Section 5 proves82

that core-guided dual-rail MaxSAT and weighted dual-rail MaxSAT resolution83

both polynomially simulate general resolution.84

Section 6 proves that constant depth Frege proofs augmented with instances85

of the pigeonhole principle can polynomially simulate dual-rail MaxSAT res-86

olution. This gives a nearly tight characterization of the power of dual-rail87

MaxSAT resolution. As corollaries, we obtain that dual-rail MaxSAT resolu-88

tion does not have polynomial size proofs of the parity principle, and does not89

polynomially simulate cutting planes. Section 7 provides experimental results,90

providing empirical evidence supporting the results in earlier sections.91
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Core-guided MaxHS-like MaxSAT
MaxSAT MaxSAT resolution

PHP Poly, Theorem 11 Poly, Theorem 18 Poly, Theorem 8

2PHP Poly, Theorem 13 Poly, Theorem 23 Poly, Theorem 10

Parity ? Poly, Theorem 26 Exp, Corollary 34

Mutilated
chessboard

Poly, Theorem 12 Poly, Theorem 19 Poly, Theorem 9

Figure 1: The strengths of the three systems for the combinatorial principles. “Poly” means
there are polynomial size proofs. “Exp” means that exponential size proofs are required.

Figure 1 shows which of the four combinatorial principles have polynomial92

size proofs in which of the three dual-rail MaxSAT systems.93

This paper builds on earlier work [38, 17, 55], but extends this earlier work94

in several new directions. Concretely, Sections 4.1.1, 4.2.1, 7.2 and 7.6 provide95

a more detailed account of the work in [38]. Sections 4.1.3, 5.1, 5.2, 5.3, 6 and96

7.3 provide a more detailed account of the work in [17]. Sections 4.3.1 and 4.3.297

provide a more detailed account of the work in [55]. Finally, Sections 4.1.2,98

4.2.2, 4.3.3, 7.4 and 7.5 contain novel results.99

2. Preliminaries100

2.1. MaxSAT and Weighted MaxSAT101

MaxSAT is the problem of finding a truth assignment that minimizes the102

number of falsified clauses of a CNF formula. MaxSAT has several general-103

izations. To define them, we need to give weights to clauses, with the weight104

indicating the “cost” of falsifying the clause. A weighted clause is written (A,w)105

where A is a clause and w ∈ {1, 2, 3, . . .}∪{>}. The value > is viewed as equal-106

ing infinity, but we write “>” instead of “∞”. A typical use of weighted clauses107

is for Partial MaxSAT, where the clauses of Γ are partitioned into soft clauses108

and hard clauses. Soft clauses may be falsified and have weight 1; hard clauses109

may not be falsified and have weight >. So Partial MaxSAT is the problem of110

finding an assignment that satisfies all the hard clauses and minimizes the num-111

ber of falsified soft clauses. In Weighted Partial MaxSAT, the soft clauses may112

have any (finite integer) weight ≥ 1. Weighted Partial MaxSAT is the problem113

of finding an assignment that satisfies all the hard clauses and minimizes the114

sum of the weights of falsified soft clauses.115

2.2. Weighted MaxSAT: Inference Systems and Algorithms116

This section describes three systems for solving (partial) MaxSAT: first117

MaxSAT Resolution, then Core-guided MaxSAT algorithms, and finally Mini-118

mum Hitting Set based MaxSAT algorithms (MaxHS-like algorithms). These119

will be used for three different instantiations of dual-rail MaxSAT.120
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2.2.1. MaxSAT Resolution121

The MaxSAT resolution calculus is a sound and complete calculus for MaxSAT122

based on resolution. This system was first defined by [43], and proven complete123

by [18]. A similar calculus can also be defined for Partial MaxSAT and Weighted124

Partial MaxSAT. (Weighted) (Partial) MaxSAT resolution is based on inference125

rules. In classical resolution, every application of the resolution rule adds a126

new clause to the system. The inference rule for (Weighted) (Partial) MaxSAT,127

however, replaces its hypothesis clauses by a different set of clauses. In other128

words, a clause may be used only once as a hypothesis of a (Weighted) (Partial)129

MaxSAT resolution inference.130

Considering the case of two clauses with weight one, the MaxSAT resolution
rule is:

(x ∨A, 1)
(x ∨B, 1)
(A ∨B, 1)

(x ∨A ∨B, 1)
(x ∨A ∨B, 1)

(1)

The notation x∨A∨B, where A = a1 ∨ · · · ∨ as and B = b1 ∨ · · · ∨ bt, is the
abbreviation of the set of clauses (which depends on the ordering of the literals
in clause B)

x ∨ a1 ∨ · · · ∨ as ∨ b1
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2

...

x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

(2)

When t = 0, B is the constant true, so x ∨ A ∨ B denotes the empty set of131

clauses. x ∨A ∨B is defined similarly.132

Observe that in the MaxSAT rule in Equation (1) at most one of the premises133

is false, and similarly at most one of the conclusions is false. Thus by construc-134

tion, the rule maintains the total weight of falsified clauses.135

In the general case of clauses with finite weights w1 and w2, the inference
rule is:

(x ∨A,w1)
(x ∨B,w2)
(A ∨B, k)

(x ∨A,w1 − k)
(x ∨B,w2 − k)
(x ∨A ∨B, k)
(x ∨A ∨B, k)

(3)

where 1 ≤ k ≤ min(w1, w2). In the rule, conclusion clauses with weight 0 are136

omitted; e.g., at least one of the second or third conclusions is omitted when137

k = min(w1, w2); both are omitted if k = w1 = w2.138
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If one or both weights are > and 1 ≤ k ≤ w, the following rules apply

(x ∨A,w)
(x ∨B,>)
(A ∨B, k)

(x ∨A,w − k)
(x ∨A ∨B, k)

(x ∨B,>)

and

(x ∨A,>)
(x ∨B,>)
(A ∨B,>)
(x ∨A,>)
(x ∨B,>)

(4)

for finite w. The second rule is just the ordinary resolution inference, as the139

premises are still available as conclusions.140

After applying the rule, we remove tautologies, and collapse repeated occur-141

rences of variables in clauses. As noted, for MaxSAT inferences the premises142

are replaced with the conclusions. Note that these inferences depend on the or-143

dering of the literals b1, . . . , bt. This means that, in general, there are multiple144

ways to apply the rule to a given pair of clauses.145

It is easy to check that if a truth assignment τ falsifies the formula x∨A∨B,146

then it falsifies exactly one of the clauses in (2), and similarly for x ∨ A ∨ B.147

Also, if τ makes one of the premises of (3) with weight w false, then the sum of148

the weights of the falsified conclusions is w. Likewise, if τ satisfies both premises149

of (3), then it satisfies all the conclusions. Thus we have shown that for any150

fixed truth assignment, the total weight of the falsified clauses (at most one)151

in the premises of (3) is equal to the total weight of the falsified clauses in the152

conclusion of (3). Similar considerations apply to inferences shown in (4). The153

soundness of the Weighted MaxSAT rules (3) and (4) follows immediately.154

A (Weighted) (Partial) MaxSAT refutation starts with a multiset Γ of clauses.155

After each inference, the multiset of clauses is updated by removing the rule’s156

premises and adding its conclusions. The MaxSAT refutation ends with a mul-157

tiset containing k > 0 occurrences of the empty clause ⊥, possibly with weights.158

The rules give a sound and complete system for Weighted Partial MaxSAT159

[18]. Given a set Γ of weighted clauses and a truth assignment τ , the cost of τ is160

the sum of weights of the clauses that τ falsifies; the cost is infinite if some hard161

clause is falsified. The following are the soundness and completeness theorem162

statements for Weighted Partial MaxSAT.163

Theorem 1. Soundness: if there is a derivation from Γ of a set of empty164

clauses with weights summing up to w, then there is no assignment of cost165

< w.166

Theorem 2. Completeness: if w is the minimum cost of an assignment for Γ,167

then there is a derivation from Γ of empty clauses with weights adding up to w.168

It is useful to also have the following two rules when dealing with soft clauses
with weights bigger than 1.

(A,w1+w2)
Extraction:

(A,w1) (A,w2)
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(A,w1) (A,w2)
Contraction:

(A,w1+w2)

The contraction and extraction rules allow w1 and w2 to be finite or >, under169

the convention that >+ w = w +> = >.170

Our convention thus is that dual-rail MaxSAT resolution has all of the in-
ference rules resolution, extraction and contraction. With the presence of ex-
traction and contraction, the resolution inference for finite w can be formulated
simply as

(x ∨A,w)
(x ∨B,w)
(A ∨B,w)

(x ∨A ∨B,w)
(x ∨A ∨B,w)

(5)

The MaxSAT resolution system is unusual in that its rules have multiple171

conclusions. This can have unexpected consequences. For example, one might172

expect that since soft clauses cannot be reused, this means that the portion of a173

MaxSAT refutation that uses soft clauses is tree-like. This is not true however,174

because an inference may have multiple soft clauses among its conclusions, which175

can be used at different points in the refutation.176

2.2.2. Core-Guided MaxSAT Algorithms177

This section describes core-guided MaxSAT algorithms [32, 47, 33, 54, 4, 57,178

53, 50]. These algorithms are used as refutation systems for Partial MaxSAT.179

Our constructions will use the MSU3 [47] algorithm, shown in Algorithm 1,180

which is a core-guided MaxSAT algorithm used in many state-of-the-art MaxSAT181

solvers. Other core-guided algorithms could be considered and are present in182

the experimental section. The idea of MSU3 [47] is to iteratively call a SAT183

solver on a working formula, and to refine a lower bound on the number of soft184

clauses that must be falsified in order to achieve satisfiability. The pseudo-code185

of MSU3 is shown in Algorithm 1. Initially the lower bound λ is set to 0 (no soft186

clauses need to be falsified), and the working formula FW is set to the original187

formula (line 2). In each iteration, the satisfiability of the working formula FW188

is decided with a SAT solver2 (by the call to SAT(.) in line 4). In case the189

formula is satisfiable, the algorithm stops. The minimum number of falsified190

clauses corresponds to the lower bound λ, which is returned together with the191

assignment A provided by the SAT solver (line 5).192

In case the formula is unsatisfiable, the SAT solver produces a set of unsat-193

isfiable clauses, referred to as an unsatisfiable core (C in line 4).3 At this point194

2Note that any SAT solver can be used in MSU3, as long as the SAT solver provides a
satisfying truth assignment if the input formula is satisfiable, and an unsatisfiable core if the
input formula is unsatisfiable.

3An unsatisfiable core is a subset of the input formula that is unsatisfiable. Note that the
MSU3 algorithm does not require the unsatisfiable core to be minimal. The same observation
applies to any core-guided algorithm, as argued in earlier work [32, 47, 33, 54].
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Algorithm 1: The MSU3 core-guided MaxSAT algorithm [47]

1 Input: F = S ∪H, MaxSAT formula with soft clauses S and hard clauses H
2 (R,FW , λ)← (∅,S ∪H, 0)
3 while true do
4 (st, C,A)← SAT(FW )

5 if st then return λ,A
6 λ← λ+ 1
7 for c ∈ C ∩ S do
8 R← R ∪ {rc} // rc is a fresh variable

9 S ← S \ {c}
10 H ← H∪ {c ∪ {rc}}
11 FW ← S ∪H ∪ CNF(

∑
r∈R r ≤ λ)

the algorithm will increase the lower bound by one (line 6), and for each soft195

clause in the core, a new literal is added to the soft clause. The new fresh literal196

is referred to as a relaxation variable and the resulting relaxed clause is marked197

as hard (lines 7 to 10). Note that each soft clause can be relaxed at most once198

(that is, it will contain at most one relaxation variable), as it is marked as hard199

after being relaxed.200

The new working formula consists of the reduced set of soft clauses, the201

augmented set of hard clauses, and additionally the CNF encoding a cardinality202

constraint (line 11), represented with hard clauses. This cardinality constraint203

contains all the relaxation variables added so far (including from previous iter-204

ations), and encodes that the sum of the relaxation variables assigned to true205

has to be smaller or equal to the current lower bound. Limiting the number of206

relaxation variables assigned to true to be at most equal to the lower bound,207

implies that the number of (original) soft clauses falsified is at most equal to208

the lower bound. The cardinality constraint is encoded as a set of hard clauses209

before adding it to the working formula (through the function CNF(.) in line 11210

using an existing cardinality constraint encoding [16]). Note that in the next211

iteration, the SAT solver will be called with the new working formula (created212

fresh in line 11), as such considering the new set of reduced soft clauses, the new213

set of augmented hard clauses, and the new cardinality constraint, disregarding214

all the previous ones.215

It is worth discussing more the cardinality constraints CNF(
∑
r∈R r ≤ λ).216

We always assume a constraint is expressed as a CNF formula, so it can be217

used by a SAT solver. The simplest is to let the cardinality constraint be the218

straightforward translation of the condition
∑
r∈R r ≤ λ to a CNF formula. In219

all the applications in the present paper (see Section 4.2), this turns the cardi-220

nality constraints into polynomial size CNF formulas. In more general settings,221

one could introduce additional variables to express a cardinality constraint in222

order to avoid exponentially large CNF formulas. The main property needed is223

that if more than λ many variables r ∈ R are set true, then unit propagation224

from the clauses in CNF(
∑
r∈R r ≤ λ) yields a contradiction.225
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As discussed earlier, the MSU3 core-guided algorithm is not a traditional226

proof system with inferences, but nonetheless can be viewed as an abstract227

proof system. Theorems 11, 12 and 13 give upper bounds on the run time of228

MSU3 by stating it “is able to conclude in polynomial time” that the input is229

unsatisfiable. What this means is that there is a choice of actions for the the230

SAT solver when lead the MSU3 to halt within polynomial time. For the proofs231

of our theorems it is permitted that the SAT solver is customized to the specific232

family of combinatorial principles under consideration. Of course, for practical233

applications, we are much more interested in the behavior of MSU3 with coupled234

with a generic SAT solver; for this, see the experiments in Section 5.235

2.2.3. Minimum Hitting Sets MaxSAT Algorithms236

The third system for MaxSAT is based on MaxHS-like MaxSAT algorithms.237

Similar to the core-guided MaxSAT algorithms, MaxHS-like MaxSAT algo-238

rithms can be viewed as refutation systems for (Weighted) Partial MaxSAT.239

MaxHS-like MaxSAT algorithms are based on Minimum Hitting Sets. Let F240

be an unsatisfiable CNF formula. A formula M ⊆ F is a Minimal Unsatisfiable241

Subformula (MUS) of F if:242

(i) M is unsatisfiable,243

(ii) ∀C ∈M , M \ {C} is satisfiable244

The set of MUS’s of F is denoted by MUS(F). Dually, a formula S ⊆ F is a245

Maximal Satisfiable Subformula (MSS) of F if:246

(i) S is satisfiable,247

(ii) ∀C ∈ F \ S, S ∪ {C} is unsatisfiable248

The set of MSS’s of F is denoted by MSS(F). Finally, a formula R ⊆ F is a249

Minimal Correction Subset (MCS), or, co-MSS of F , if F \ R ∈ MSS(F), or,250

explicitly, if:251

(i) F \R is satisfiable,252

(ii) ∀C ∈ R, (F \R) ∪ {C} is unsatisfiable253

The set of MCS’s of F is denoted by MCS(F).254

The MUS’s, MSS’s and MCS’s of a given unsatisfiable formula F are con-255

nected via the so-called Hitting Sets Duality theorem, first proved in [64]. The256

theorem states that M is an MUS of F if and only if M is an irreducible hitting257

set4 of MCS(F), and vice versa: R ∈ MCS(F) iff R is an irreducible hitting set258

of MUS(F).259

The idea of the minimum hitting set MaxSAT algorithm is to guess an MCS260

C of the given MaxSAT formula F = S ∪ H. The guesses C are made in261

increasing size using a Minimum Hitting Set solver, and then a SAT solver is262

used for testing if C is indeed a MCS of F . If the SAT solver says true then a263

solution has been found, otherwise a new unsatisfiable core has been discovered.264

The unsatisfiable cores are used by the Minimum Hitting Set solver for making265

4For a given collection S of arbitrary sets, a set H is called a hitting set of S if for all
S ∈ S, H ∩ S 6= ∅. A hitting set H is irreducible, if no H′ ⊂ H is a hitting set of S.
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Algorithm 2: Pseudo-code of the basic MaxHS algorithm [27]

1 Input: F = S ∪H, MaxSAT formula with soft clauses S and hard
clauses H

2 K ← ∅
3 while true do
4 h← MinimumHS(K)
5 (st, C,A)← SAT(H ∪ (S \ h))
6 if st then return |h|,A
7 else K ← K ∪ {C ∩ S}

new guesses hitting all the unsatisfiable cores thus discovered (based on the266

Hitting Sets Duality theorem [64]).267

The minimum hitting set MaxSAT algorithm used in this work is referred268

to as basic MaxHS [27]. Its setup is shown in Algorithm 2. The algorithm269

maintains a set K containing the “soft parts” of the unsatisfiable cores found270

so far; more precisely, each unsatisfiable core is intersected with the set of soft271

clauses and added to K. In each iteration, a minimum size hitting set (MHS) h272

of the set K is computed (line 4). Note that h, like the members of K, is a set273

of soft clauses. The algorithm then checks if h is an MCS of the formula F by274

testing whether H ∪ (S \ h) is satisfiable. (This is done by the the SAT solver5275

call in line 5). If h is an MCS of the formula F , then the algorithm (in line 6)276

returns as a MaxSAT solution, the size |h| of the hitting set, together with the277

truth assignment A provided by the SAT solver. Otherwise, a new unsatisfiable278

core C is returned by the SAT solver. In this case, C is intersected with the set279

of soft clauses and added to K (line 7), and the algorithm proceeds.280

Similarly to the core-guided MaxSAT algorithm, the basic MaxHS is not a281

traditional proof system with inferences, but nonetheless can be viewed as an282

abstract proof system. Theorems 18, 19, 23 and 26 give upper bounds on the283

run time of basic MaxHS by stating it “is able to conclude in polynomial time”284

that the input is unsatisfiable. What this means is that there is a choice of285

actions for the the SAT solver and the minimum hitting set algorithm which286

which lead basic MaxHS to halt within polynomial time. For the proofs of287

our theorems it is permitted that the SAT solver and minimum hitting set288

algorithm are customized to the specific family of combinatorial principles under289

consideration. Of course, for practical applications, we are much more interested290

in the behavior of basic MaxHS with coupled with a generic SAT solver and291

minimum hitting set solver; for this, again see the experiments in Section 5.292

5As before, any SAT solver can be considered, as long as the SAT solver provides a satisfying
truth assignment if the input formula is satisfiable, and an unsatisfiable core if the input
formula is unsatisfiable.

10



2.3. Combinatorial Principles293

The present paper uses (unweighted) dual-rail encodings of several combi-294

natorial principles.295

2.3.1. Pigeonhole Principle and Doubled Pigeonhole Principle296

The Pigeonhole Principle states that if m+1 pigeons are mapped to m holes297

then some hole contains at least two pigeons. This is encoded with the following298

clauses PHPm+1
m :299 ∨m

j=1 xi,j for i ∈ [m+1]

xi,j ∨ xk,j for distinct i, k ∈ [m+1] and j ∈ [m].

The variable xi,j means that pigeon i goes to hole j.300

The second combinatorial principle is the Doubled Pigeonhole Principle, also301

called the “Two Pigeons Per Hole Principle”, which states that if 2m+1 pigeons302

are mapped to m holes then some hole contains at least three pigeons [14]. This303

is encoded with the following clauses 2PHP2m+1
m :304 ∨m

j=1 xi,j for i ∈ [2m+1]

xi,j ∨ xk,j ∨ x`,j for distinct i, k, ` ∈ [2m+1] and j ∈ [m].

Note that the pigeonhole principle can can be viewed as a special case of305

the doubled pigeonhole principle; namely, if the first m pigeons are restricted to306

map sequentially to the first m holes (by setting xi,i to true for i ∈ [m]), then307

the remaining pigeons provide an instance of the pigeonhole principle. The308

pigeonhole principle and the doubled pigeonhole principle can be generalized to309

any number `m + 1 of pigeons. Such principle would express the fact that if310

`m+1 pigeons are mapped to m holes then some hole contains at least ` + 1311

pigeons.312

2.3.2. Mutilated Chessboard Principle313

Given an even number n, consider an n× n chessboard where two diagonal314

positions (1, 1) and (n, n) are removed (i.e. of the same color). The principle says315

that one cannot cover the mutilated chessboard by domino tiles. We can define316

a graph Gn from the chessboard, by considering the positions of the board to be317

the nodes of the graph; and for two positions u and v of the chessboard, (u, v)318

(or equivalently (v, u)) is an edge of E(Gn), if u and v are adjacent (vertically319

or horizontally) on the board. The boolean encoding considers variables xu,v320

for edges (u, v) of Gn. xu,v has value true if and only if a domino tile is placed321

on top of positions u and v. We will identify xu,v with xv,u. The following is322

the set of clauses:323 ∨
v,(u,v)∈E(Gn)

xu,v for u ∈ Gn

xu,v ∨ xu,w for u, v, w ∈ Gn s.t. (u, v), (u,w) ∈ E(Gn), v 6= w.
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The number of domino pieces that can be placed on the board horizontally324

is 2(n − 2) + (n − 1)(n − 2) = (n − 2)(n + 1). The number of domino pieces325

that can be placed vertically is the same, so the total number of variables is326

2(n− 2)(n+ 1) = 2n2 − 2n− 4.327

Resolution lower bounds for the chessboard principle were proven in [2].328

2.3.3. Parity Principle329

The Parity Principle, expresses a kind of mod 2 counting, which states that330

no graph on m odd nodes consists of a complete perfect matching [1, 9, 11].331

The propositional version of the parity principle, uses
(
m
2

)
variables xi,j ,332

where i 6= j and xi,j is identified with xj,i. The intuitive meaning of xi,j is that333

there is an edge between vertex i and vertex j. The parity principle has the334

following sets of clauses:335 ∨
j 6=i xi,j for i ∈ [m]

xi,j ∨ xk,j for i, j, k distinct members of [m].

These clauses state that each vertex has degree one.336

2.4. AC0-Frege and Cutting Planes Proof Systems337

To be able to compare dual-rail MaxSAT with resolution, AC0-Frege and338

Cutting Planes, we need the following terminology. Proof length is measured in339

terms of the total number of symbols appearing in the proof. A proof system P is340

said to simulate another proof systemQ provided that there is a polynomial p(n)341

so that any Q-proof of a formula of size N can be transformed (by a polynomial342

time construction) into a P-proof of the same formula of size ≤ p(N). For more343

information on proof complexity, see e.g. the surveys [20, 63].344

A Frege system is a textbook-style proof system, usually defined to have345

modus ponens as its only rule of inference [26]. For convenience in defining the346

depth of formulas, we can treat an implication A → B as being an abbrevia-347

tion for ¬A ∨ B. The depth of propositional formula is measured in terms of348

alternations: assume a formula ϕ uses only the connectives ∨, ∧ and ¬. Using349

deMorgan’s rules, there is a canonical transformation of ϕ into a formula ϕ′ in350

“negation normal form”, i.e., with negations applied only to variables. Viewing351

ϕ′ as a tree, the depth of ϕ is the maximum number of blocks of adjacent ∨’s352

and adjacent ∧’s along any branch in the tree ϕ′. Notice that this definition is353

not the standard definition of the depth of a tree. A depth d Frege proof is a354

Frege proof in which every formula has depth ≤ d. An AC0-Frege proof is a355

proof with a constant upper bound on the depth of formulas appearing in the356

proof.357

The cutting planes system is a pseudo-Boolean propositional proof system.
It uses variables xi which take on 0/1 values, indicating Boolean values False
and True. The lines of a cutting planes proof are inequalities of the form

a1x1 + a2x2 + · · ·+ anxn ≥ an+1,
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where the ai’s are integers. Logical axioms include xi ≥ 0 and −xi ≥ −1;358

inference rules include addition, multiplication by a integer, and a division rule.359

A cutting planes proof refuting a set Γ of clauses has axioms expressing the truth360

of the clauses in Γ, and has 0 ≥ 1 as its last line. The cutting planes system361

CP uses integers ai written in binary; the system CP∗ uses the integers ai362

written in unary notation. The size of a CP or CP∗ proof is the total number363

of symbols in the proof, including the bits used for representing the values of364

the coefficients ai. For more on cutting planes, see e.g. [62, 21].365

3. Dual-Rail Encoding and New Proof Systems for Satisfiability366

3.1. Dual-rail MaxSAT.367

We now define the dual-rail MaxSAT system [38] for refuting a set of clauses Γ.368

The dual-rail MaxSAT system is based on MaxSAT solving, but as already men-369

tioned is strictly stronger than resolution.370

Let Γ be a set of clauses (viewed as hard clauses) over the variables {x1, . . . , xs}.371

The dual-rail encoding Γdr of Γ, uses 2s variables n1, . . . , ns and p1, . . . , ps in372

place of the s variables xi. The intent is that pi is true if xi is true, and that ni373

is true if xi is false. The dual-rail encoding Cdr of a clause C is defined by re-374

placing each (unnegated) variable xi in C with ni, and replacing each (negated)375

literal xi in C with pi. For example, if C is {x1, x3, x4}, then Cdr is {n1, p3, n4}.376

Note that every literal in Cdr is negated.377

The dual-rail encoding Γdr of Γ contains the following clauses: (1) the hard
clause Cdr for each C ∈ Γ; (2) the hard clauses (pi ∨ ni) for 1 ≤ i ≤ s; and
(3) the soft clauses (pi) and (ni) for 1 ≤ i ≤ s. Γdr is equivalently represented
as a set of weighted clauses:

(Cdr,>) for C ∈ Γ
(pi ∨ ni,>) for 1 ≤ i ≤ s

(pi, 1) for 1 ≤ i ≤ s
(ni, 1) for 1 ≤ i ≤ s.

Following [38], the clauses pi ∨ ni are called the P clauses.378

Note that all clauses of Γdr are Horn: the hard clauses contain only negated379

literals and the soft clauses are unit clauses. The transformation proposed can380

be related to the well-known dual-rail encoding, used in different settings [19,381

44, 66, 40, 61].382

A dual-rail MaxSAT refutation of Γ is defined as a MaxSAT derivation of383

a multiset of clauses containing ≥ s+1 many copies of the empty clause ⊥384

from Γdr. This is based on the fact that Γ is satisfiable if and only if there is a385

truth assignment τ which makes all the hard clauses of Γdr true, and only s of386

the soft clauses false [38]. Let us justify this.387

Lemma 3. Given Γ and the corresponding dual-rail encoding Γdr, there can388

be no more than s satisfied soft clauses.389
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Proof. There is no assignment that satisfies all hard clauses pi∨ni with ni = 1390

and pi = 1 for some i. 2391

392

Lemma 4. If Γ is satisfiable, then there exists an assignment that satisfies the393

hard clauses and s soft clauses of Γdr.394

Proof. Suppose ν satisfies Γ. Create an assignment ν′ to the ni and pi vari-395

ables the following way: For each xi, if ν(xi) = 1, then set pi = 1 and ni = 0;396

otherwise set ni = 1 and pi = 0. Thus, there will be s soft clauses satisfied.397

Also, it is clear that all the hard clauses pi ∨ ni are satisfied. For each clause398

C ∈ Γ, pick a literal lk assigned value 1 by ν. If lk = xk, then Cdr contains399

literal nk, and it is satisfied by ν′. If lk = xk, then Cdr contains literal pk, and400

so it is satisfied by ν′. 2401

402

Lemma 5. Let ν′ be an assignment that satisfies all the hard clauses in Γdr
403

and s soft clauses. Then there exists an assignment ν that satisfies Γ.404

Proof. Because ν′ satisfies the hard clauses pi∨ni, and it satisfies s many soft405

clauses, for each i, either ni is assigned value 1, or pi is assigned value 1, but406

not both. Let ν(xi) = 1 if ν′(pi) = 1 and ν(xi) = 0 if ν′(ni) = 1. All variables407

xi are either assigned value 0 or 1. For clause C ′ ∈ Γdr, let lk be a literal in C ′408

assigned value 1. If lk = nk, then xk is a literal in C ∈ Γ and since ν(xi) = 1,409

then the clause C is satisfied. Otherwise, if lk = pk, then xk is a literal in C410

and since ν(xi) = 0, then the clause C is satisfied. 2411

412

Lemmas 3, 4 and 5 yield the following.413

Theorem 6. ([38]) Γ is satisfiable if and only if there exists an assignment that414

satisfies all the hard clauses of Γdr and s soft clauses.415

As a consequence of Theorems 1, 2 and 6, the propositional proof systems416

for satisfiability of CNF formulas consisting of translating them to the dual-rail417

encoding and then using either the MaxSAT resolution rule, or a core-guided418

algorithm, or a minimum hitting set algorithm, are sound and complete proof419

systems.420

Theorem 7. Let Γ be a CNF formula with s variables.421

Soundness: if there is a MaxSAT derivation of a set of s+ 1 empty clauses422

from Γdr , Γ is unsatisfiable.423

Completeness: if Γ is unsatisfiable, then there is a MaxSAT derivation of424

s+ 1 empty clauses from Γdr.425

An example. We present a very simple example of a dual-rail MaxSAT reso-
lution refutation which refutes the three clauses x1 ∨ x2, x1 and x2. This is
almost the simplest possible example, but still reveals interesting aspects. The
dual-rail encoding has the five hard clauses

p1 ∨ n2 n1 p2 p1 ∨ n1 p2 ∨ n2,
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plus the four soft unit clauses

p1 n1 p2 n2.

Since there are two variables, a dual-rail MaxSAT refutation must derive a426

multiset containing three copies of the empty clause ⊥. The following four427

inferences will be used to form the refutation (the weights 1 and > are used for428

soft and hard clauses, respectively):429

(n1,>)
(n1, 1)
(⊥, 1)
(n1,>)

(p2,>)
(p2, 1)
(⊥, 1)
(p2,>)

(p1, 1)
(p1 ∨ n2,>)

(n2, 1)
(p1 ∨ n2, 1)
(p1 ∨ n2,>)

(n2, 1)
(n2, 1)
(⊥, 1)

430

We describe a dual-rail MaxSAT refutation using these four inferences; its431

“lines” consist of five multisets of clauses Γ0,Γ1,Γ2,Γ3,Γ4. The initial mul-432

tiset Γ0 contains the nine clauses given above. Since the set of hard clauses433

never changes, each Γi has the form Γi = Si ∪H where H is the set of five hard434

clauses above, and Si is a multiset of soft (weight 1) clauses. Namely,435

S0 = {p1, n1, p2, n2}
S1 = {p1, ⊥, p2, n2}
S2 = {p1, ⊥, ⊥, n2}
S3 = {n2, p1 ∨ n2, ⊥, ⊥, n2}
S4 = {⊥, p1 ∨ n2, ⊥, ⊥}.

Here S0 is the four initial soft clauses; and S4 contains three copies of ⊥ as436

needed for a valid dual-rail MaxSAT refutation.437

There is a couple interesting observations about even such a simple deriva-438

tion. First, it splits neatly into three independent parts: one that uses n1 and439

n1 to derive ⊥, one that uses p2 and p2 to derive ⊥, and one that uses the440

other clauses to derive a third copy of ⊥. This splitting is part of the reason441

that dual-rail MaxSAT can give simpler proofs than ordinary resolution, say for442

PHP. Second, there is an extra soft clause p1 ∨ n2 that is derived but not used;443

this is a common feature of dual-rail MaxSAT refutations.444

We can also define a weighted version of the dual-rail encoding. Given a set
of finite positive weights w1, . . . , ws, the weighted dual-rail encoding Γwdr of Γ
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is defined as the set of clauses

(Cdr,>) for C ∈ Γ
(pi ∨ ni,>) for 1 ≤ i ≤ s

(pi, wi) for 1 ≤ i ≤ s
(ni, wi) for 1 ≤ i ≤ s.

Let k =
∑
i wi, a weighted dual-rail MaxSAT refutation is a MaxSAT derivation445

of a set of empty clauses with total weight at least k+1, from Γwdr.446

When the weights wi are all small (i.e., polynomially bounded), then it is447

convenient to work with the multiple dual-rail MaxSAT system. In this system,448

instead of including the clauses (pi, wi) and (ni, wi) with weights wi possibly449

larger than 1, we introduce wi many copies of the soft clauses pi and ni, each450

of weight 1. The resulting set of clauses is denoted by Γmdr. Any MaxSAT451

derivation from Γmdr is readily converted into a MaxSAT derivation from Γwdr.452

Conversely, if there is polynomial upper bound on the values wi, then the size453

of a MaxSAT derivation from Γwdr can be converted into a MaxSAT derivation454

from Γmdr with size only polynomially bigger. This means that the weighted455

dual-rail MaxSAT system is a strengthening of the multiple dual-rail MaxSAT456

system. For the present paper, the main advantage of working with the multi-457

ple dual-rail MaxSAT system, instead of with the weighted dual-rail MaxSAT458

system is that it simplifies notation for the proof of Theorem 29 by letting us459

discuss soft and hard clauses without explicitly writing their weights.460

3.2. Dual-Rail Encodings of Various Principles.461

The present paper uses (unweighted) dual-rail encodings of several combi-462

natorial principles already defined in Section 2.3. These are defined following463

the definition of Γdr above.464

The dual-rail encoding, (PHPm+1
m )dr, of PHPm+1

m contains the hard clauses465 ∨m
j=1 ni,j for i ∈ [m+1]

pi,j ∨ pk,j for j ∈ [m] and distinct i, k ∈ [m+1].

It also contains the hard P clauses pi,j∨ni,j . The soft clauses are the unit clauses466

ni,j and pi,j for all i∈[m+1] and j∈[m]. There are (m+1)m positive variables pi,j467

and likewise (m+1)m negative variables ni,j , for a total of 2(m+1)m many soft468

clauses. A dual-rail MaxSAT refutation for PHPm+1
m must produce (m+1)m+1469

many empty clauses (⊥’s) from (PHPm+1
m )dr. This is because by Theorem 6,470

PHPm+1
m is satisfiable if and only if there exists an assignment that satisfies all471

the hard clauses of (PHPm+1
m )dr and m(m+ 1) soft clauses from (PHPm+1

m )dr.472

The second combinatorial principle for which we will need the dual-rail en-473

coding, is the Doubled Pigeonhole Principle, The dual-rail encoding, (2PHP2m+1
m )dr,474

of 2PHP2m+1
m contains the hard clauses475 ∨m

j=1 ni,j for i ∈ [2m+1]

pi,j ∨ pk,j ∨ p`,j for j ∈ [m] and distinct i, k, ` ∈ [2m+1].
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It also contains the hard P clauses pi,j∨ni,j . The soft clauses are the unit clauses476

ni,j and pi,j for all i∈[2m+1] and j∈[m]. There are (2m+1)m positive variables477

pi,j and likewise (2m+1)m negative variables ni,j , for a total of 2(2m+1)m478

many soft clauses. A dual-rail MaxSAT refutation for 2PHP2m+1
m must produce479

(2m+1)m+ 1 many empty clauses (⊥’s) from (2PHP2m+1
m )dr.480

The third combinatorial principle for which we will need the dual-rail en-481

coding, is the Mutilated Chessboard Principle The dual-rail encoding contains482

the hard clauses483 ∨
v,(u,v)∈E(Gn)

nu,v for u ∈ Gn

pu,v ∨ pu,w for u, v, w ∈ Gn s.t. (u, v), (u,w) ∈ E(Gn), v 6= w.

It also contains the hard P clauses pu,v∨nu,v. As before the soft clauses are the484

unit clauses ni,j and pi,j for any i and j adjacent positions. There are 2n2−2n−4485

positive variables pi,j and likewise 2n2 − 2n − 4 negative variables ni,j , for a486

total of 2(2n2 − 2n− 4) many soft clauses. A dual-rail MaxSAT refutation for487

the mutilated chessboard principle must produce at least 2n2 − 2n − 3 many488

empty clauses (⊥’s).489

We will also consider the Parity Principle. The variables of the dual-rail en-490

coding of the parity principle are {ni,j : 1 ≤ i < j ≤ m} and {pi,j : 1 ≤ i < j ≤ m}.491

The soft clauses of the dual-rail encoding are the unit clauses ni,j and pi,j for492

any 1 ≤ i < j ≤ m}. The hard clauses are:493 ∨
j 6=i ni,j for i ∈ [m]

pi,j ∨ pk,j for i, j, k distinct members of [m],

and the P clauses pi,j ∨ ni,j .494

The dual-railing encodings above include P clauses, in keeping with the ear-495

lier definition of Γdr. However, it is sometimes convenient to omit the P clauses;496

indeed the results shown in Figure 1 all still hold if the P clauses are omitted.497

Furthermore, as reported in Section 8, some solvers obtain better results when498

the P clauses are omitted.499

4. Upper Bounds500

This section shows that the dual-rail encoding enables MaxSAT resolution,501

core-guided MaxSAT algorithms, and MaxHS-like algorithms to prove in poly-502

nomial time the unsatisfiability of the CNF encodings of both the pigeonhole503

principle and the doubled pigeonhole principle. The results in this section should504

be contrasted with the resolution exponential lower bounds for the pigeonhole505

principle, and earlier work [18], which proves that MaxSAT resolution requires506

an exponentially large proof to produce an empty clause, this assuming the507

original propositional encoding for PHPm+1
m (not dual-rail). Additionally, we508

present upper bound results for dual-rail MaxSAT resolution refutations of the509

mutilated chessboard principle.510
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Finally, we prove an upper bound result for the dual-rail encoding of the par-511

ity principle using MaxHS-like algorithms. This is an interesting upper bound,512

since Section 6 will prove exponential size lower bounds for the dual-rail en-513

coding of the parity principle using MaxSAT resolution. As a consequence,514

this principle shows that dual-rail MaxSAT resolution cannot simulate dual-rail515

MaxHS-like algorithms. Whether the dual-rail encoding of the parity principle516

has polynomial size proofs using core-guided MaxSAT algorithms remains an517

open problem.518

Let us remark that none of the upper bounds that we prove in this sec-519

tion need to use the P clauses to show their unsatisfiability. Therefore, unless520

otherwise stated, P clauses will be disregarded.521

4.1. Polynomial Bounds with MaxSAT Resolution522

This section develops upper bounds for the propositional encodings of the523

pigeonhole principle, the doubled pigeonhole principle, and the mutilated chess-524

board problem when using MaxSAT resolution with the dual-rail encoding. All525

these upper bounds benefit from the fact that the dual-rail initial clauses do not526

mix ni,j and pi,j variables. This allows the MaxSAT refutations to split into527

two independent parts: one part derives a number of ⊥’s from the literals ni,j ;528

the other part derives the remaining needed ⊥’s from the clauses that use pi,j .529

4.1.1. Pigeonhole Principle530

Theorem 8. There are polynomial size MaxSAT resolution refutations of the531

dual-rail encoding of the PHPm+1
m clauses.532

Proof. To show unsatisfiability of the pigeonhole principle under the dual-rail533

encoding, we need to produce m(m+1)+1 empty clauses, thereby proving that534

any assignment that satisfies the hard clauses must falsify at least m(m+1)+1535

soft clauses, and therefore proving that the propositional encoding of the pi-536

geonhole principle is unsatisfiable.537

The MaxSAT refutation first derives m+1 empty clauses ⊥, one for each
pigeon i ∈ [m+1], by resolving the hard clause

∨m
j=1 ni,j against the soft unit

clauses {ni,j} to obtain the clause ⊥. These inferences derive other clauses as
well, but they are not needed for the refutation, so we just ignore them in what
follows. For a fixed pigeon i, consider the hard clause

∨m
j=1 ni,j and the soft

clause {ni,1}. Resolving these two clauses results in two soft clauses
∨m
j=2 ni,j

and ni,1∨
∨m
j=2 ni,j , together with the (original) hard clause

∨m
j=1 ni,j . Now the

obtained soft clause
∨m
j=2 ni,j can be resolved with the soft clause {ni,2}, and

ignoring the other clauses (obtained in the first resolution step). The new clauses

from the second resolution step are the soft clauses
∨m
j=3 ni,j and ni,2∨

∨m
j=3 ni,j .

The last resolution step is repeated in a similar way with the soft unit clauses
{ni,3}, . . . , {ni,m}, until the empty clause ⊥ is obtained. The following shows
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the MaxSAT resolution steps described.

(
∨m

j=1 ni,j ,>) (ni,1, 1)

(
∨m

j=2 ni,j , 1) (ni,1 ∨
∨m

j=2 ni,j , 1) (ni,2, 1)

(
∨m

j=3 ni,j , 1) (ni,2 ∨
∨m

j=3 ni,j , 1) (ni,1 ∨
∨m

j=2 ni,j , 1) (ni,3, 1)

... (ni,m, 1)

(⊥, 1) · · ·

Now to derive empty clauses from the hole clauses, we fix a hole j. We538

inductively describe the construction of the MaxSAT derivation of m empty539

clauses from the clauses involving literals pi,j . The construction will be repeated540

(independently) for each j ∈ [m]. The general idea is to derive I − 1 many ⊥’s541

from the first I pigeons, namely using only the literals pi,j for i ≤ I. The542

construction proceeds in stages, one for each value I = 2, 3, . . . ,m+1.543

The base case is stage I = 2. We start by resolving the soft unit clause p1,j
against the hard clause p1,j ∨ p2,j to obtain the soft clauses p2,j and p1,j ∨ p2,j .
Next we resolve p2,j against the soft clause p2,j , obtaining ⊥. Again, other
clauses are obtained, but we can ignore them. What is important for us at
this point is that we have obtained p1,j ∨ p2,j and ⊥. The following shows the
previous MaxSAT resolution steps.

(p1,j ∨ p2,j ,>) (pi,1, 1)

(p2,j , 1) (p1,j ∨ p2,j , 1) (p1,j ∨ p2,j ,>) (p2,j , 1)

(⊥, 1) (p1,j ∨ p2,j , 1) (p1,j ∨ p2,j ,>)

We now present the construction for stage I > 2. The induction hypothesis544

is that the previous stage has derived the soft clause p1,j ∨ · · · ∨pI−1,j and I−2545

clauses ⊥. Stage I will use the hard clauses {p1,j ∨ pI,j , . . . , pI−1,j ∨ pI,j}, the546

soft clause pI,j and the soft clause p1,j ∨ · · · ∨ pI−1,j derived in the previous547

step. To start Stage I, we resolve p1,j ∨ · · ·∨pI−1,j against p1,j ∨pI,j , obtaining548

among other soft clauses pI,j ∨ p2,j ∨ · · · ∨ pI−1,j and p1,j ∨ · · · ∨ pI,j . The latter549

clause is saved for use in Stage I+1. Stage I then iteratively resolves pI,j∨ps,j∨550

· · · ∨ pI−1,j with the hard clause ps,j ∨ pI,j , obtaining pI,j ∨ ps+1,j ∨ · · · ∨ pI−1,j ,551

for s = 3, . . . , I−1. Eventually we are left with pI,j , that we resolve against552

pI,j , obtaining ⊥. Thus, after finishing Stage I = m + 1, we have obtained m553

clauses ⊥.554

(
∨I−1

i=1 pi,j , 1) (p1,j ∨ pI,j ,>)

(
∨I−1

i=2 pi,j ∨ pI,j , 1) (
∨I

i=1 pi,j , 1) (p1,j ∨ pI,j ,>) (p2,j ∨ pI,j ,>)

(
∨I−1

i=3 pi,j ∨ pI,j , 1) (
∨I

i=1 pi,j , 1) (p1,j ∨ pI,j ,>) (p2,j ∨ pI,j ,>) (p3,j ∨ pI,j ,>)

...

(pI,j , 1)(
∨I

i=1 pi,j , 1) · · · (pI,j , 1)

(⊥, 1)(
∨I

i=1 pi,j , 1) · · ·

In summary, working with the ni,j soft clauses we have obtained one ⊥ per555

pigeon clause
∨m
j=1 ni,j , making a total of m+ 1 clauses ⊥. On the other hand,556
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for every pigeon j, we obtain m clauses ⊥, making a total of m ·m. Adding up557

these numbers we have m + 1 + m ·m = m(m + 1) + 1, and by Theorem 6 we558

have proved that the pigeonhole principle is unsatisfiable. By inspection we can559

see that the proof is linear in the size of the dual-rail encoded principle. 2560

561

4.1.2. Mutilated Chessboard562

The upper bound for the dual-rail encoding of the mutilated chessboard563

problem using MaxSAT resolution follows the argument given for the pigeon-564

hole principle. For the sake of clarity in the explanation, we will consider a565

chessboard with n × n positions, where two opposite positions will be taken566

away, the (1, 1) and the (n, n). First we will number all the positions, zigzag-567

ging through the board. We start with position (1, 1) and we number all of568

them going rightward until reaching position (1, n). After the position (1, n) we569

have the position (2, n), and decrease until the position (2, 1). Then we continue570

with (3, 1) in ascending order for the third row. Following this ordering, we can571

number the positions from 1 to n2, and the skipped positions correspond to572

numbers 1 and n2 − n + 1. This way of numbering the positions of the board573

has the explanatory advantage of having every even position being surrounded574

by odd positions, and vice versa. At this point we can consider the mutilated575

chessboard problem as a restricted pigeonhole principle, where the pigeons are576

the even numbered positions (n
2

2 many of them), and the holes are the odd577

number positions (n
2

2 −2 many). In this restricted pigeonhole, every pigeon can578

go to 2 or 3 or 4 holes, and every hole can receive either 3 or 4 pigeons. Using579

this intuition, we can proceed with the proof.580

Theorem 9. There are polynomial size MaxSAT resolution refutations of the581

dual-rail encoding of the mutilated chessboard clauses.582

Proof. The MaxSAT refutation first derives n2

2 clauses ⊥, one for each clause583

on the variables ni,j focused on the even positions. This is done by resolving584

the hard clause
∨
j,(i,j)∈E(Gn)

ni,j for i in an even position, against the soft unit585

clauses {ni,j}, to obtain the clause ⊥. Notice that these clauses do not have586

variables in common, and we can ignore the clauses on the variables ni,j focused587

on the odd positions. These inferences derive other clauses as well, but we just588

ignore them.589

In the case of the pi,j clauses, we will ignore the clauses focused on the even590

numbered positions of the board. Every odd position will generate 2 ⊥’s if it591

belongs to the boundary, or it will generate 3 ⊥’s if it belongs to the interior592

of the board. The argument is identical to the one used for the pi,j variables593

in the pigeonhole principle, given that the pi,j clauses on the odd positions594

do not share any variables. There are 4(n2 − 1) = 2n − 4 odd positions on595

the boundaries, and (n−2)(n−2)
2 = n2

2 − 2n + 2 odd positions in the interior of596

the board. Therefore the number of ⊥’s that you get from the pi,j clauses is597

2(2n− 4) + 3(n
2

2 − 2n+ 2) = 3
2n

2 − 2n− 2.598
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Summing up the ⊥ from the two types of variables and clauses we get599

n2

2 + 3
2n

2 − 2n − 2 = 2n2 − 2n − 2, which is two more than the number of600

variables 2n2 − 2n− 4, and therefore we prove that the mutilated chessboard is601

unsatisfiable. 2602

603

4.1.3. Doubled Pigeonhole Principle604

This section discusses the “doubled” pigeonhole principle which states that605

if 2m+ 1 pigeons are mapped to m holes then some hole contains at least three606

pigeons [14]. These principles were defined in Section 2.607

Theorem 10. There are polynomial size MaxSAT resolution refutations of the608

dual-rail encoding of the 2PHP2m+1
m clauses.609

Proof. The MaxSAT refutation first derives 2m+1 clauses ⊥, one for each610

pigeon i ∈ [2m+1], by resolving the hard clause
∨m
j=1 ni,j against the soft unit611

clauses {ni,j} to obtain the clause ⊥. These inferences derive other clauses as612

well, but they are not needed for the refutation, so we just ignore them. The613

remainder of the MaxSAT refutation is more complex and derives 2m−1 empty614

clauses for each hole j ∈ [m]. This gives a total of (2m−1)m additional ⊥’s615

and, since 2m+1+(2m−1)m is equal to (2m+1)m+1, suffices to complete the616

MaxSAT refutation.617

Fix a hole j. We describe the construction of the MaxSAT derivation of618

2m− 1 empty clauses from the clauses involving literals pi,j . The construction619

will be repeated (independently) for each j ∈ [m]. The general idea is to in-620

ductively derive I − 2 many ⊥’s from the first I pigeons, namely using only the621

literals pi,j for i ≤ I.622

The construction (for fixed j) proceeds in 2m− 1 stages, one for each value623

I = 3, 4, . . . , 2m+1. As described below, each stage will have two phases. The624

first phase of stage I will start with the hard clause p1,j ∨ pI−1,j ∨ pI,j , and a625

set of soft clauses (denoted CI−1i for 1 ≤ i < I) carried over from the previous626

stage, and will generate soft clauses DI
i (for 1 ≤ i ≤ I) to be used in the second627

phase, and clauses CIi (for 1 ≤ i ≤ I) to be carried over to the next stage. The628

second phase of stage I will use the clauses DI
i obtained in the first phase, the629

other hard clauses pi,j ∨ pk,j ∨ pI,j and the soft unit clause pI,j to derive an630

empty clause ⊥.631

As a visual aid, the clauses CIi will be typeset in a solid box to indicate they632

are used in the next stage, and the clauses DI
i will be typeset in a dotted box633

to indicate they are derived in the first phase and used in the second phase.634

The base case is stage I = 3. The first phase starts by resolving the soft unit
clause p1,j against the hard clause p1,j ∨ p2,j ∨ p3,j to obtain the soft clauses

p2,j ∨ p3,j p1,j ∨ p2,j p1,j ∨ p2,j ∨ p3,j

Recall that the dashed box around the first clause (D3
2) indicates that it will

be used in the second phase of this stage, and the solid box around the second
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clause (C3
3 ) indicates it will be carried forward to the next stage, when I = 4.

The first phase then resolves the soft unit clause p2,j against the third clause
p1,j ∨ p2,j ∨ p3,j to derive the soft clauses C3

2 , D3
1 and C3

1 :

p1,j ∨ p3,j p2,j ∨ p3,j p1,j ∨ p2,j ∨ p3,j

The second phase of stage I = 3 resolves p2,j ∨ p3,j against p2,j ∨ p3,j to635

obtain the unit clause p3,j . This is resolved against the soft initial unit clause636

p3,j to obtain the desired empty clause ⊥.637

The clauses formed during stage I = 3 were:638

Clause Literals
C3

1 p1,j p2,j p3,j
C3

2 p1,j p3,j
C3

3 p1,j p2,j

Clause Literals
D3

1 p2,j p3,j
D3

2 p2,j p3,j

639

The end result of stage I = 3 is the derivation of one ⊥ and C3
1 , C

3
2 , C

3
3 .640

We now sketch the construction for stage I > 3. The induction hypothesis641

is that the previous stage has derived the following soft clauses:642

Clause Literals

CI−11 : p1,j p2,j · · · pI−3,j pI−2,j pI−1,j

CI−12 : p1,j p2,j · · · pI−3,j pI−2,j pI−1,j
...

...

CI−1I−3 : p1,j p2,j · · · pI−3,j pI−2,j pI−1,j

CI−1I−2 : p1,j p2,j · · · pI−3,j pI−1,j

CI−1I−1 : p1,j p2,j · · · pI−3,j pI−2,j

643

Notice that the clauses only differ in the diagonal, where the literals are negated644

except in the last two clauses where the literal is missing. The pattern is that645

CI−1i contains the literals pi′,j for i′ < I, except that pi,j is negated if i < I−2646

and is missing otherwise.647

As we describe below, the first phase of stage I uses only these clauses CI−1i648

and the hard clause p1,j ∨pI−1,j ∨pI,j . The clauses CI−1i are used in the reverse649

order as listed above, with i = I−1, . . . , 1. The first phase produces the soft650

clauses CIi (again, in the order i = I down to i = 1) to be used in the next651

stage. It also produces clauses DI
i to be used in the second phase (see Figure 2).652

It is interesting to note that the overall structure of the first phase is a “linear”653

proof.654

The first phase starts by resolving CI−1I−1 against the hard clause p1,j∨pI−1,j∨655

pI,j , to obtain the soft clauses656

p2,j ∨ · · · ∨ pI−2,j ∨ pI−1,j ∨ pI,j
p1,j ∨ · · · ∨ pI−2,j ∨ pI−1,j

p1,j ∨ · · · ∨ pI−2,j ∨ pI−1,j ∨ pI,j
· · ·

657
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The first clause is DI
I−1 and will be used in the second phase. The second658

clause is CII and will be carried forward to the next stage. The third clause659

will be used immediately. The “· · · ” indicates other conclusions of the MaxSAT660

inference which are not used in the refutation. The third clause is resolved661

against CI−1I−2 , which is p1,j ∨ p2,j ∨ · · · ∨ pI−3,j ∨ pI−1,j , yielding soft clauses662

p1,j ∨ · · · ∨ pI−3,j ∨ pI−2,j ∨ pI,j
p1,j ∨ · · · ∨ pI−3,j ∨ pI−1,j ∨ pI,j

p1,j ∨ · · · ∨ pI−3,j ∨ pI−2,j ∨ pI−1,j ∨ pI,j
· · ·

663

The first and third clauses are CII−1 and CII−2 and are carried forward to the664

next stage. The middle clause will be used immediately by resolving it against665

CI−1I−3 .666

The next steps all follow the same pattern: namely, with 2 ≤ i ≤ I−2, the
clause

p1,j ∨ · · · ∨ pi−1,j ∨ pi+1,j ∨ · · · ∨ pI−1,j ∨ pI,j
has just been derived, and it is resolved against CI−1i−1 , which is the clause

p1,j ∨ · · · ∨ pi−2,j ∨ pi−1,j ∨ pi,j ∨ · · · ∨ pI−1,j ,

to obtain the soft clauses667

p1,j ∨ · · · ∨ pi−2,j ∨ pi,j ∨ · · · ∨ pI−1,j ∨ pI,j
p1,j ∨ · · · ∨ pi−2,j ∨ pi−1,j ∨ pi,j ∨ · · · ∨ pI−1,j ∨ pI,j
p1,j ∨ · · · ∨ pi−1,j ∨ pi,j ∨ pi+1,j ∨ · · · ∨ pI−1,j ∨ pI,j

· · ·

668

The third clause is DI
i and will be used in phase two; the second clause is669

CIi−1 and will be carried forward to the next stage. The first clause is used670

immediately in the next step of the first phase. The only exception is in the671

final step of the first phase, where i = 2: in this case, the first clause is DI
1 and672

will be carried forward to the next stage.673

The second phase of stage I combines the set of clauses DI
i (see Figure 2),674

with the hard initial clauses pi,j ∨ pk,j ∨ pI,j in a tree-like fashion to eventually675

obtain the unit clause pIj . A final resolution with the initial unit clause pI,j676

gives the desired empty clause ⊥ to complete stage I.677

Phase two obtains the intermediate clauses DI
k,i defined in Figure 3 for 1 ≤678

k ≤ i < I. The clauses DI
1,i for i < I−1 are the same as the clauses DI

i679

derived in first phase. Likewise, the clause DI
2,I−1 is the same as DI

I−1 derived680

in the first phase. (Since we have DI
2,I−1, we do not need DI

1,I−1.) All other681

clauses DI
k,i with i > k are derived by resolving DI

k−1,i against the initial clause682

pk−1,j∨pi,j∨pI,j . And, the clausesDI
k,k are obtained by resolvingDI

k−1,k against683

pk−1,j ∨ pi,j ∨ pI,j and then against DI
k−1,k−1. At the end, the clause DI

I−1,I−1684
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Clause Literals
DI

1 p2,j p3,j · · · pI−2,j pI−1,j pI,j

DI
2 p1,j p2,j p3,j · · · pI−2,j pI−1,j pI,j

DI
3 p1,j p2,j p3,j · · · pI−2,j pI−1,j pI,j

...
...

DI
I−2 p1,j p2,j p3,j · · · pI−2,j pI−1,j pI,j

DI
I−1 p2,j p3,j · · · pI−2,j pI−1,j pI,j

Figure 2: The clauses DI
i derived in the first phase and used in the second phase.

Notice that this set of clauses also follows a pattern. The last column always contains
pI,j . For the rest of the literals, the only differences are the diagonal, and the last
position on the left (where the corresponding literal is missing). The diagonal has the
literals negated except in the first clause where it is missing.

Clause Literals
DI
k,k pk+1,j pk+2,j · · · pI−2,j pI−1,j pI,j

DI
k,k+1 pk,j pk+1,j pk+2,j · · · pI−2,j pI−1,j pI,j

DI
k,k+2 pk,j pk+1,j pk+2,j · · · pI−2,j pI−1,j pI,j
...

...
DI
k,I−2 pk,j pk+1,j pk+2,j · · · pI−2,j pI−1,j pI,j

DI
k,I−1 pk,j pk+1,j pk+2,j · · · pI−2,j pI−1,j pI,j

Figure 3: The clauses DI
k,i as for the second phase.

is obtained, and this is the same as the unit clause pI,j . As mentioned, this is685

resolved against the initial unit clause pI,j to obtain ⊥ and complete stage I.686

This completes the proof of Theorem 10. 2687

688

It is interesting to note that none of the MaxSAT refutations for Theorems689

8-10 use the P clauses. The next sections describe core-guided MaxSAT and690

MaxHS-like algorithms for these principles: they also do not use any P clauses.691

4.2. Polynomial Bounds with Core-Guided MaxSAT Algorithms692

This section develops upper bounds for the propositional encodings of the pi-693

geonhole principle and the doubled pigeonhole principle when using core-guided694

MaxSAT algorithms. The upper bound for the Mutilated Chessboard problem695

follows from the one of the pigeonhole principle.696

Note that even though we are using a SAT solver inside the core-guided697

MaxSAT algorithm, we show that there are possible executions of the algorithm698

that run in polynomial time. Additionally, the results obtained in this section699

consider inside the Core-Guided MaxSAT Algorithms the SAT solver to be a700

CDCL SAT solver.701
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4.2.1. Pigeonhole Principle702

This section shows that a core-guided MaxSAT algorithm can conclude in703

polynomial time that for the dual-rail encoding of the pigeonhole principle704

(PHPm+1
m ), more than m(m + 1) soft clauses must be falsified, when the hard705

clauses are satisfied, thus proving that the original PHPm+1
m is unsatisfiable.706

The following observations about the dual-rail encoding of the pigeonhole707

principle Section 3.2 are essential to prove the bound on the run time. First,708

the clauses of type
∨m
j=1 ni,j do not share variables in common with the clauses709

of type pi,j ∨ pk,j . Second, each clause
∨m
j=1 ni,j has its variables completely710

disjoint from any other clause
∨m
j=1 nk,j , for any distinct values i and k. Third,711

for any distinct j and j′, the variables of pi,j ∨ pk,j are completely disjoint712

from the variables of pi,j′ ∨ pk,j′ . Since these groups of clauses use different713

variables, we will be able to obtain disjoint unsatisfiable cores. We can exploit714

this partition of the clauses, and compute the MaxSAT solution for each group.715

A MaxSAT solution can be obtained for the formula based on the MaxSAT716

solutions for each of the groups. This is completely analogous to the way that the717

MaxSAT resolution refutations split into independent parts handling positive718

and negative variables separately. Note that the P clauses will not be used.719

Theorem 11. The core-guided MSU3 algorithm (Algorithm 1) is able to con-720

clude in polynomial time that the dual-rail encoding of the pigeonhole principle721

(PHPm+1
m ) must falsify more than m(m+ 1) soft clauses, thus proving that the722

original PHPm+1
m to be unsatisfiable.723

Proof. In this proof we show that there is a possible sequence of steps for the724

core-guided MSU3 algorithm that in polynomial time falsifies m(m+ 1) + 1 soft725

clauses.726

The first stages of the core-guided MSU3 algorithm identifies m+ 1 disjoint727

sets of unsatisfiable clauses involving the variables ni,j . These m+1 unsatisfiable728

cores are {∨mj=1 ni,j , ni,1, . . . , ni,m}, for each i with 1 ≤ i ≤ m + 1. The i-th729

unsatisfiable core includes the m soft unit clauses ni,1, . . . , ni,m. Notice that730

these cores are disjoint; they produce a modification of their soft clauses; namely,731

the unit clauses ni,j are substituted by ni,j ∨ ri,j along with the the cardinality732

constraints
∑m
l=1 ri,l ≤ 1. These clauses, however, will not be used in the next733

part of the core-guided MSU3 algorithm.734

The next stage will find m unsatisfiable cores for each fixed hole j. For735

a fixed j, the m unsatisfiable cores will be found by using the set of clauses736

{pi,j ∨ pk,j : for all i 6= k} ∪ {p1,j , . . . , pm,j}. Let us fix j and see how to obtain737

the m unsatisfiable cores. In this case the steps cannot be done in parallel; we738

instead take into account one new pigeon at a time. (Refer to Table 1.)739

In the base step, we work only with pigeons 1 and 2, and fixed hole j. The un-740

satisfiable core is {p1,j ∨p2,j , p1,j , p2,j}. By the algorithm MSU3 (Algorithm 1),741

we introduce two new variables, r1,j and r2,j , we eliminate the soft clauses p1,j742

and p2,j , and introduce the hard clauses p1,j ∨ r1,j , p2,j ∨ r2,j and r1,j ∨ r1,j .743

(The last is the boolean translation of the cardinality constraint r1,j +r2,j ≤ 1.)744
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Table 1: Steps to obtain m unsatisfiable cores for each hole j

Pigeons Hard Clauses Soft Clauses Clause Substitution Count of ⊥
r1,j ∨ p1,j

1 and 2 p1,j ∨ p2,j p1,j and p2,j r2,j ∨ p2,j 1∑2
l=1 rl,j ≤ 1

p1j ∨ p3j
p2j ∨ p3j r3j ∨ p3j

3 r1j ∨ p1j p3j
∑3
l=1 rlj ≤ 2 2

r2j ∨ p2j∑2
l=1 rlj ≤ 1

· · · · · · · · · · · · · · ·
p1j ∨ pij , . . .,
pi−1,j ∨ pij rij ∨ pij

i r1j ∨ p1j , . . ., pij
∑i
l=1 rlj ≤ i− 1 i− 1

ri−1j ∨ pi−1j∑i−1
l=1 rlj ≤ i− 2

· · · · · · · · · · · · · · ·
p1j ∨ pm+1j , . . .,
pmj ∨ pm+1j rm+1j ∨ pm+1j

m+ 1 r1j ∨ p1j , . . ., pm+1j

∑m+1
l=1 rlj ≤ m m

rmj ∨ pmj∑m
l=1 rlj ≤ m− 1

Suppose that by the (i− 1)st step, i− 2 many unsatisfiable cores have been745

found, and we have eliminated the soft unit clauses p1,j , . . . , pi−1,j and intro-746

duced the clauses p1,j ∨r1,j , . . . , pi−1,j ∨ri−1,j . Suppose also that we introduced747 ∑i−1
l=1 rl,j ≤ i − 2 in the previous step. We also have the set of hard clauses748

{p1,j ∨ pi,j , . . . , pi−1,j ∨ pi,j}, and the soft clause pi,j . All of these clauses form749

an unsatisfiable core. Therefore, by Algorithm 1, the unsatisfiable count due to750

hole j is now i− 1, the clause pi,j is substituted by pi,j ∨ ri,j , and we introduce751 ∑i
l=1 rl,j ≤ i − 1. Note this cardinality constraint is expressed by a CNF of752

total size O(i2) and thus is polynomial size. At the end of the (m + 1)st step,753

m unsatisfiable cores have been introduced. See Table 1 for the details of this754

proof.755

So, for every hole j, we produce m unsatisfiable cores. This makes a total756

of m + 1 + m ·m = m(m + 1) + 1 iterations of the core-guided procedure. We757

can conclude that the original pigeonhole formula is unsatisfiable. 2758

759

Using the intuition given in Section 4.1.2 and the ideas of the proof of The-760

orem 11, we also obtain the following.761

Theorem 12. The core-guided MSU3 algorithm (Algorithm 1) is able to con-762

clude in polynomial time that the dual-rail encoding of the mutilated chessboard763

principle must falsify more than 2n2− 2n− 2 soft clauses, thus proving that the764
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original mutilated chessboard principle is unsatisfiable.765

4.2.2. Doubled Pigeonhole Principle766

This section shows that the MaxSAT core-guided MSU3 Algorithm 1 can767

conclude that for the dual-rail encoding of the doubled pigeonhole principle768

(2PHP2m+1
m , presented in Section 2), more than (2m + 1)m soft clauses must769

be falsified, when the hard clauses are satisfied, thus proving that the original770

2PHP2m+1
m is unsatisfiable. The proof follows the same structure as the proof771

of the PHPm+1
m above.772

Theorem 13. The core-guided MSU3 algorithm (Algorithm 1) is able to con-773

clude in polynomial time that the dual-rail encoding of double pigeonhole prin-774

ciple (2PHP2m+1
m ) must falsify more than m(2m+ 1) soft clauses, thus proving775

that the original 2PHP2m+1
m is unsatisfiable.776

Proof. As before we divide the clauses of the dual-rail encoding of 2PHP2m+1
m777

in two. First we consider the clauses containing the ni,j variables. Then we778

consider the clauses containing the pi,j variables. In both cases, we disregard779

the P clauses of the encoding.780

Observe that the clauses (
∨m
j=1 ni,j) with i ∈ [2m + 1], share no variables781

between them (due to the different index i), and as such they can be considered782

separately, in turn. The MaxSAT core-guided MSU3 Algorithm 1 receives the783

hard clause (
∨m
j=1 ni,j) together with the unit clauses (ni,j), j ∈ [m], and sends784

all the clauses to the SAT solver which returns unsatisfiable. The unsatisfiable785

core corresponds to all the clauses sent to the SAT solver. Then the algorithm786

relaxes the m soft clauses (the unit clauses ni,j for j ∈ [m]), and adds the787

cardinality constraint stating the sum of the new relaxation variables is smaller788

or equal to one. The lower bound is increased in one. The new formula is sent to789

the SAT solver which returns satisfiable. Thus the MaxSAT core-guided MSU3790

Algorithm 1 proves that for each i ∈ [2m + 1], the optimum cost of the hard791

clause
∨m
j=1 ni,j together with the unit soft clauses ni,j with j ∈ [m], is 1. Since792

i ∈ [2m+ 1], the overall cost of the first part of the formula is 2m+ 1, and thus793

we obtain 2m+1 disjoint unsatisfiable cores for the original 2PHP2m+1
m formula.794

Next, we consider the clauses using the pi,j variables. For each hole j a795

cost of 2m+ 1 is obtained, giving a cost of (2m+ 1)m for all clauses using the796

pi,j variables (and only these variables). Similar to Section 4.2.1, for a given797

hole j ∈ [m], we present the iterations performed by the MaxSAT core-guided798

MSU3 Algorithm 1 on the formula with the hard clauses (pi,j ∨ pk,j ∨ pl,j),799

1 ≤ i < k < l ≤ 2m + 1, and the unit soft clauses (pi,j), i ∈ [2m + 1]. The800

details of each iteration are shown in Table 2.801

In the base case corresponding to the first row of Table 2, we work with802

pigeons 1, 2 and 3 (for the fixed hole j). The MaxSAT core-guided MSU3803

Algorithm 1, will send all the clauses to the SAT solver which will determine804

the soft clauses (column 3) together with the hard clause in column 2 to be an805

unsatisfiable core. The soft clauses are relaxed and a new cardinality constraint806

is created, as in column 4 (Clause Substitution). The cost of the formula is807

increased to one.808
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Table 2: Steps to obtain 2m− 1 contradictions for every hole j

Pigeons Hard Clauses Soft Clauses Clause Substitution Cost

1
2
3

p1,j ∨ p2,j ∨ p3,j
p1,j
p2,j
p3,j

r1,j ∨ p1,j
r2,j ∨ p2,j
r3,j ∨ p3,j

r1,j + r2,j + r3,j ≤ 1

1

4

p1,j ∨ p2,j ∨ p4,j
p1,j ∨ p3,j ∨ p4,j
p2,j ∨ p3,j ∨ p4,j

r1,j ∨ p1,j
r2,j ∨ p2,j
r3,j ∨ p3,j

r1,j + r2,j + r3,j ≤ 1

p4,j

r4,j ∨ p4,j∑4
l=1 rl,j ≤ 2

2

· · · · · · · · · · · · · · ·

i

p1,j ∨ p2,j ∨ pi,j
· · ·

pi−2,j ∨ pi−1,j ∨ pi,j
r1,j ∨ p1,j
· · ·

ri−1,j ∨ pi−1,j∑i−1
l=1 rl,j ≤ i− 3

pi,j

ri,j ∨ pi,j∑i
l=1 rl,j ≤ i− 2

i− 2

· · · · · · · · · · · · · · ·

2m+ 1

p1,j ∨ p2,j ∨ p2m+1,j

· · ·
p2m−1,j ∨ p2m,j ∨ p2m+1,j

r1,j ∨ p1,j
· · ·

r2m,j ∨ p2m,j∑2m
l=1 rl,j ≤ 2m− 2

p2m+1,j

r2m+1,j ∨ p2m+1,j∑2m+1
l=1 rl,j ≤ 2m− 1

2m− 1

The remaining steps run in a similar way. The MaxSAT core-guided MSU3809

Algorithm 1 sends all the hard clauses to the SAT solver, including the so-far re-810

laxed clauses and the current cardinality constraint on the relaxation variables,811

together with the soft clauses (which have not been relaxed yet). A new pigeon812

is considered in the current iteration. Assume it to be pigeon i (as in row 3 of813

Table 2). Then the SAT solver determines a new unsatisfiable core correspond-814

ing to the soft clause pi,j (column 3) and the hard clauses in column 2 . The soft815

clause is relaxed and replaced by the hard clause (ri,j ∨ pi,j) (column 4, row 3).816

The cardinality constraint is updated to include the new relaxation variable and817

increases its right and side in one to i − 2 (column 4, row 3). Finally the cost818

of the formula is updated to i− 2 (column 5, row 3).819

After performing the last iteration dealing with pigeon 2m+ 1 (as in row 4),820

the MaxSAT core-guided MSU3 Algorithm 1 will obtain a satisfiable formula821
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(for a fixed j). We thus obtain 2m− 1 unsatisfiable cores for each hole j. Since822

there are m many holes j, the cost of the sub-formula considering the clauses823

containing the pi,j variables (disregarding P clauses) is (2m − 1)m. Thus the824

total cost of the 2PHP2m+1
m formula with the dual-rail encoding is computed as825

2m + 1 + (2m − 1)m = (2m + 1)m + 1, thereby proving the unsatisfiability of826

the original 2PHP2m+1
m formula.827

Given the above, we are guaranteed to find the required number of unsat-828

isfiable cores to determine the original 2PHP2m+1
m formula to be unsatisfiable.829

Additionally, we can also guarantee that the calls to the SAT solver made by830

the MaxSAT core-guided MSU3 Algorithm 1 can be made in polynomial time.831

Namely, for the first part of the formula using the ni,j variables, the unsatisfiable832

call corresponds to propagating the unit soft clauses to obtain the unsatisfiabil-833

ity of the formula.834

For the second part of the formula, we describe a possible sequence of itera-835

tions of a SAT solver running in polynomial time. As mentioned earlier, any SAT836

solver that acts by returning either a satisfying assignment or an unsatisfiable837

core would be acceptable for proving Theorem 10. However, for concreteness,838

we describe how a CDCL SAT solver can be used. Consider that we are given839

the unsatisfiable formula corresponding to pigeon i for hole j as in row 3 of840

Table 2. The CDCL SAT solver will receive the (hard) clauses of column 2 and841

the (soft) clause in column 3 (of row 3 in Table 2). Table 3 shows the sequence842

of iterations made by the SAT solver. The first column and second columns843

labeled “Dec. Level” and “Decisions” respectively, show the current decision844

level and the current decision of the SAT solver. The third column (“Clauses”)845

presents the clauses used in the propagation of the assignments of column four846

(“Propagations”). When a conflict is reached, column four contains the sym-847

bol ⊥ and in column five (“Learn”) we present the clause that is learned from848

that conflict (except at decision level 0, in which case the formula is declared849

unsatisfiable).850

Initially at row 1, the unit clause pi,j is propagated, assigning pi,j = 1 at851

decision level 0. In rows 2 to 6, we deal with pigeon 1, starting by assigning852

it to hole j, that is, deciding p1,j = 1 at decision level 1. This causes the853

clauses p1,j ∨ px,j ∨ pi,j , to propagate the assignments px,j = 0, with x ∈854

[2, i − 1], in row 3 and in turn, in row 4 the clauses rx,j ∨ px,j propagate the855

assignments rx,j = 1. Due to the clauses of the constraint
∑i−1
l=1 rl,j ≤ i − 3,856

then a conflict is reached and the learned clause corresponds to the only decision857

literal negated, that is p1,j . Rows 5 and 6, propagate the assignments p1,j = 0858

and r1,j = 1 (respectively), using the learned clause and the clause r1,j ∨ p1,j at859

the backtracked decision level 0.860

The following rows of the Table 3 follow a similar structure taking in account861

each of the pigeons 2 to i−3 in turn, until row 16. That is, the SAT solver decides862

to assign a pigeon s to hole j and then after propagation finds a conflict, learns863

a clause corresponding to the negation of assigning s to hole j and backtracks to864

decision level 0. The associated relaxation variable rs,j is assigned 1 at decision865

level 0.866
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Table 3: Analysis of SAT solver call for iteration with pigeon i and hole j

Dec. Level Decisions Clauses Propagations Learned

0 pi,j pi,j = 1

1 p1,j = 1
p1,j ∨ p2,j ∨ pi,j

. . .
p1,j ∨ pi−1,j ∨ pi,j

p2,j = 0
. . .

pi−1,j = 0

1
r2,j ∨ p2,j

. . .
ri−1,j ∨ pi−1,j

r2,j = 1
. . .

ri−1,j = 1

1
∑i−1
l=1 rl,j ≤ i− 3 (

∑i−1
l=1 rl,j ≤ i− 3) `⊥ p1,j

0 p1,j p1,j = 0
0 r1,j ∨ p1,j r1,j = 1

. . .

1 ps,j = 1
ps,j ∨ ps+1,j ∨ pi,j

. . .
ps,j ∨ pi−1,j ∨ pi,j

ps+1,j = 0
. . .

pi−1,j = 0

1
rs+1,j ∨ ps+1,j

. . .
ri−1,j ∨ pi−1,j

rs+1,j = 1
. . .

ri−1,j = 1

1
∑i−1
l=1 rl,j ≤ i− 3 (

∑i−1
l=1 rl,j ≤ i− 3) `⊥ ps,j

0 ps,j ps,j = 0
0 rs,j ∨ ps,j rs,j = 1

. . .

1 pi−3,j = 1
pi−3,j ∨ pi−2,j ∨ pi,j
pi−3,j ∨ pi−1,j ∨ pi,j

pi−2,j = 0
pi−1,j = 0

1
ri−2,j ∨ pi−2,j
ri−1,j ∨ pi−1,j

ri−2,j = 1
ri−1,j = 1

1
∑i−1
l=1 rl,j ≤ i− 3 (

∑i−1
l=1 rl,j ≤ i− 3) `⊥ pi−3,j

0 pi−3,j pi−3,j = 0
0 ri−3,j ∨ pi−3,j ri−3,j = 1

0
∑i−1
l=1 rl,j ≤ i− 3

ri−2,j = 0
ri−1,j = 0

0
ri−2,j ∨ pi−2,j
ri−1,j ∨ pi−1,j

pi−2,j = 1
pi−1,j = 1

0 pi−2,j ∨ pi−1,j ∨ pi,j (pi−2,j ∨ pi−1,j ∨ pi,j) `⊥

At row 17, because of the constraint
∑i−1
l=1 rl,j ≤ i−3, and because previously867

the i−3 variables rx,j (x ∈ [i−3]) were assigned value 1, then the two remaining868

variables are assigned value 0, that is, ri−2,j = 0 and ri−1,j = 0 at decision level869

0. This causes the assignments pi−2,j = 1 and pi−1,j = 1 in row 18, and a870

conflict is reached in row 19 at decision level 0, which determines the formula871

to be unsatisfiable.872

An important observation about the iterations described in Table 3, is that873
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in spite of the fact that there are decisions being made, these are all made at874

decision level 1, propagating into a conflict, and then backtracking to decision875

level 0, that is, the search is bounded to at most 1 decision level. The total876

number of propagations is 4 +
∑i−3
s=1[2(i− s− 1) + 2] = i2− i− 2, that is, O(i2).877

Since i ∈ [4, 2m+ 1] we obtain O(m3) propagations which is polynomial in m.6878

2879

880

4.3. Polynomial Bounds with MaxHS-Like Algorithms881

This section develops upper bounds for the dual-rail propositional encodings882

of the pigeonhole principle, the doubled pigeonhole principle and the parity prin-883

ciple when using MaxHS-like algorithms. The upper bound for the mutilated884

chessboard problem follows also in the case from the one for the pigeon-hole885

principle.886

Analogously to Section 4.2, note that even though we are using a SAT solver887

and a minimum hitting set solver inside the MaxHS-like algorithm, we show888

that there are possible executions of the algorithm that run in polynomial time.889

Similarly to Section 4.2, the SAT solvers used inside the MaxHS-like algorithm890

is considered to be a CDCL SAT solver.891

4.3.1. Pigeonhole Principle892

From Section 3.2, the unsatisfiability of the pigeonhole principle using the893

dual-rail MaxSAT encoding (PHPm+1
m ) implies that (PHPm+1

m )dr has a MaxSAT894

cost of at least m(m+1)+1. The following shows that a possible execution of the895

basic MaxHS algorithm can derive this MaxSAT cost for (PHPm+1
m )dr in polyno-896

mial time. Observe that if the P clauses pij ∨nij from (PHPm+1
m )dr are ignored,897

then the formula can be partitioned into disjoint formulas, namely into the for-898

mulas Li, i ∈ [m + 1], representing the encoding of each AtLeast1 constraint,899

Li = (¬ni1∨· · ·∨¬nim); and into the formulasMj , j ∈ [m], representing the en-900

coding of each AtMost1 constraint,Mj =
∧m
i1=1

∧m+1
i2=i1+1(¬pi1j ∨¬pi2j). Thus,901

one can compute a solution for each of these formulas separately and obtain a902

lower bound on the MaxSAT solution for the complete formula (PHPm+1
m )dr.903

We show that the contribution of each Li to the total cost is 1. Since there are904

m + 1 such formulas, the contribution of all Li formulas is m + 1. Then, we905

show that each Mj contributes with a cost of m, and since there are m such906

formulas, the contribution of allMj formulas is m2. Therefore, we have a lower907

bound on the total cost of m(m + 1) + 1, proving the original formula to be908

unsatisfiable. In the remainder of this section we consider S to be the set of all909

the soft clauses obtained from the dual-rail encoding (PHPm+1
m )dr.910

Theorem 14. Given a formula Li ∪S, where the “at least” clauses Li and the911

soft clauses S are obtained from (PHPm+1
m )dr, there is an execution of the basic912

MaxHS algorithm that computes a MaxSAT solution of cost 1 in polynomial913

time.914

6The case of the first 3 pigeons can be disregarded since it corresponds to 3 propagations.
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Proof. Consider Algorithm 2. In the first iteration, an empty MHS is com-915

puted in line 4. The SAT solver (line 5) tests the satisfiability of the hard clause916

(¬ni1 ∨ . . .∨¬nim) together with the m soft unit clauses ni1, . . . , nim. Observe917

that the SAT solver proves the formula to be unsatisfiable by unit propagation.918

From this unsatisfiable formula a new set to hit is added to K. The new set is the919

set of unit soft clauses in the unsatisfiable core just obtained, i.e. {ni1, . . . , nim}920

(line 7).921

In the second iteration, K contains only 1 set to hit, and any of its elements922

can be selected as a minimum hitting set. W.l.o.g. suppose that nij is selected,923

and eliminated from the set of soft clauses to use. Then the SAT solver tests for924

the satisfiability of ¬ni1 ∨ · · · ∨ ¬nim with the set of soft clauses {nil : l 6= j},925

reporting the formula to be satisfiable. The cost of the solution is 1. 2926

927

Before presenting the result for the Mj formulas, we make a few observa-928

tions.929

Observation 15. Consider a complete graph G, i.e. a clique, of m+1 vertices.930

A vertex cover of a G can be computed in polynomial time and has size m.931

Simply arbitrarily pick one of the vertices to be out of the cover.932

Observation 16. Let graph G be composed of a clique of size m − 1 plus one933

extra vertex that is connected to at least one of the vertices of the clique. Then934

a vertex cover of G has size m− 2, and can be computed in polynomial time by935

including all vertices, except for two of them that have the smallest degree, i.e.936

the smallest number of neighbors.937

The hitting set algorithm used below will need to distinguish between the two938

cases of Observations 15 and 16; clearly this can be done in polynomial time.939

Theorem 17. Given a formula 〈Mj ,S〉 s.t. Mj and S are from (PHPm+1
m )dr,940

there is an execution of the basic MaxHS algorithm that computes a MaxSAT941

solution of cost m in polynomial time.942

Proof. The idea of the proof is to show that there is a possible ordering of the943

set of cores returned by the SAT solver that will cause, at each step, the sets944

in K to induce a graph that is either a clique or composed of a clique plus one945

extra vertex connected to some of the other vertices. Then from the previous946

observations a MHS can be computed in polynomial time. In the final iteration,947

the graph induced by the sets in K will correspond to a clique of size m + 1,948

and therefore the final minimum hitting set will have size m, thus reporting a949

solution with cost m.950

Consider an order of the clauses to consider in Mj , induced by the fol-951

lowing choice of variables. First, consider the clauses that involve only p1j952

and p2j (one hard clause and two soft clauses); then the clauses that involve953

only p1j , p2j , p3j (three hard clauses and three soft clauses); then clauses that954

involve only p1j , p2j , p3j , p4j (six hard clauses and four soft clauses); and so on955

until all variables pi,j are considered. Observe that due to the structure ofMj ,956
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every unsatisfiable core returned by the SAT solver has two soft unit clauses.957

The SAT solver can easily find the unsatisfiable cores by unit propagation. Con-958

sequently, the chosen order of variables implies that all pairs of the current set959

of variables are added to K before considering a new variable. The first set960

added to K using this order is {p1j , p2j}, followed by {p1j , p3j}, {p2j , p3j}, etc.961

Since sets in K are pairs, each set can be regarded as an edge of the induced962

graph. Given the previous ordering of the variables (and consequently of the963

sets in K), the induced graph forms a “growing” clique, that is, it is either a964

clique with all the variables considered so far, or it is a clique with the previous965

variables plus a new variable connected to some of the previous variables.966

Finally, since each clause in Mj produces an unsatisfiable core returned967

by the SAT solver (corresponding to a new set to hit in K), the total num-968

ber of iterations is equal to the number of clauses in Mj plus 1, which is969

Cm+1
2 + 1 = (m+1)m

2 + 1. On the other hand, the size of the minimum hit-970

ting set is m by Observation 15. 2971

972

Theorem 18. The basic MaxHS algorithm algorithm (Algorithm 2) is able to973

conclude in polynomial time that the dual-rail encoding of the pigeonhole prin-974

ciple (PHPm+1
m ) must falsify more than m(m+ 1) soft clauses, thus proving the975

original PHPm+1
m to be unsatisfiable.976

Proof. Follows from Theorem 14 and Theorem 17. 2977

978

Using the intuition given in Section 4.1.2 and the ideas of the proofs of979

Theorems 14, 17 and 18, we obtain also the following.980

Theorem 19. The basic MaxHS algorithm algorithm (Algorithm 2) is able to981

conclude in polynomial time that the dual-rail encoding of the mutilated chess-982

board principle must falsify at least 2n2 − 2n− 2 soft clauses, thus proving that983

the original mutilated chessboard principle is unsatisfiable.984

4.3.2. Doubled Pigeonhole Principle985

Similar to the pigeonhole principle case, 2PHP2m+1
m is unsatisfiable if and

only if the cost of (2PHP2m+1
m )dr is at least m(2m+ 1) + 1 (see Section 3.2). If

the P clauses from (2PHP2m+1
m )dr are ignored, then the resulting formula can be

partitioned into the disjoint formulas Li (i ∈ [2m+1]), Li = (¬ni1∨· · ·∨¬nim),
and the disjoint formulas Mj (for j ∈ [m]):

Mj =

2m−1∧
i1=1

2m∧
i2=i1+1

2m+1∧
i3=i2+1

(¬pi1j ∨ ¬pi2j ∨ ¬pi3j).

One can compute a MaxSAT solution for each of Li and Mj separately and986

obtain a lower bound on the cost of the MaxSAT solution for the complete987

formula (2PHP2m+1
m )dr. Processing each formula Li can be done as in the PHP988

case (see Theorem 14); each Li contributes 1 to the size of the minimum hitting989

set.990
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As shown below, the contribution of eachMj to the MaxSAT cost is 2m−1,991

and since there are m such formulas, the contribution from all Mj formulas is992

m(2m− 1). As a result, the lower bound on the total cost for (2PHP2m+1
m )dr is993

m(2m − 1) + 2m + 1 = m(2m + 1) + 1, thus, proving the formula 2PHP2m+1
m994

to be unsatisfiable. We also show that the basic MaxHS algorithm is able to995

derive the MaxSAT cost for each Mj in polynomial time. To proceed, we first996

make a couple observations.997

Observation 20. Let X be a set of elements of size |X| = s+ 2. Let K be the998

set of all possible triples {xi, xj , xr} of elements of X, 1 ≤ i < j < r ≤ s + 2.999

Then any set of s different elements from X is a minimum hitting set for K.1000

Observation 20 is immediately clear by inspection.1001

Observation 21. Let X be a set of elements of size |X| = s + 2, and an1002

additional element p not in X. Let K be the set of all possible triples {xi, xj , xr}1003

of elements of X, 1 ≤ i < j < r ≤ s + 2, together with a strict subset of the1004

triples {xi, xj , p}, xi, xj ∈ X, 1 ≤ i < j ≤ s + 2. A minimum hitting set of K1005

has size s and does not contain p.1006

To prove Observation 21, note that any hitting set must contain at least s1007

of the members of X by Observation 20. On the other hand, if, say, the triple1008

{xs+1, xs+2, p} is missing from K, then {x1, . . . , xs} is a hitting set of size s.1009

Theorem 22. Given a formula Mj ,Se such that the “at most” clauses Mj1010

and the soft clauses S are from (2PHP2m+1
m )dr, there is an execution of the1011

basic MaxHS algorithm that computes a MaxSAT solution of cost 2m − 1 in1012

polynomial time.1013

Proof. The proof illustrates a possible setup of the MHS-algorithm that does1014

a polynomial number of iterations s.t. each minimum hitting set is computed1015

in polynomial time. This setup is achieved by ordering the cores computed by1016

the SAT solver (line 5 of Algorithm 2). Similarly to the PHP case, we order the1017

clauses in the SAT solver, by considering an order on the variables. We consider1018

the clauses that involve only p1j , p2j , p3j (only one hard clause and three soft1019

clauses), then the clauses that involving only p1j , p2j , p3j , p4j (the three hard1020

clauses ¬p1j ∨¬p2j ∨¬p4j , ¬p1j ∨¬p3j ∨¬p4j and ¬p2j ∨¬p3j ∨¬p4j and four1021

soft clauses), and so on until all variables/clauses are considered. In contrast1022

to the PHP case, when considering the clauses with a new element, we need to1023

take the clauses in a particular order. For example, after considering all clauses1024

involving only p1j , p2j , p3j , p4j , we will consider the clauses that involve p5j . We1025

order these clauses by first considering the clauses that involve only p1j , p2j , p5j1026

(one hard clause), then the clauses that contain p1j , p2j , p3j , p5j (two more hard1027

clauses), and finally the clauses that involve only p1j , p2j , p3j , p4j , p5j (three1028

more hard clauses). Note that, the new sets to hit include the new element1029

being added (in the example above, the element p5j). On the other hand, by1030

Observation 21, the minimum hitting set solution does not include the element1031
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being added. As such, if we disregard the new element being added in the new1032

sets to hit, then we have pairs which can be regarded as edges of a graph. The1033

graph induced by the pairs in the hitting sets will be a growing clique, as in1034

the PHP case (Theorem 17). The orderings of the variables guarantee that the1035

sets to hit in K either contain all the possible combinations of size 3 of the1036

variables we are considering, or they induce a “growing” clique. In the first case1037

a minimum hitting set is obtained in polynomial time using the result of Obser-1038

vation 20. For the second case, we obtain a minimum hitting set in polynomial1039

time similarly to Theorem 17, using Observation 21. The process of creating1040

a core (and the corresponding set to hit in K) is repeated for each clause in1041

Mj , thus the total number of iterations is equal to the number of clauses plus1042

1, which is
(
2m+1

3

)
+ 1 = (2m+1)(2m)(2m−1)

6 + 1. Additionally, the reported cost1043

corresponds to the size of the MHS found in the last iteration, i.e., when all1044

variables are considered. Thus, by Observation 20, the reported cost is 2m− 1.1045

21046

1047

Theorem 23. The basic MaxHS algorithm algorithm (Algorithm 2) is able to1048

conclude in polynomial time that the dual-rail encoding of the doubled pigeon-1049

hole principle (2PHP2m+1
m ) must falsify more than m(2m+ 1) soft clauses, thus1050

proving the original 2PHP2m+1
m to be unsatisfiable.1051

Proof. Follows from Theorem 14 and Theorem 22. 21052

1053

4.3.3. Parity Principle1054

This section presents an upper bound for the parity principle using MaxHS-1055

like algorithms and the dual-rail encoding. In Section 6 we will see that the same1056

principle requires exponential size proofs when using MaxSAT resolution (and1057

the dual-rail encoding). It is open whether core-guided MaxSAT has polynomial1058

size refutations of the parity principle.1059

Recall the definition of the parity principle in Section 2.3.3, and its dual-rail1060

encoding in Section 3.2. The variables of the dual-rail encoding of the parity1061

principle are {ni,j : 1 ≤ i < j ≤ m} and {pi,j : 1 ≤ i < j ≤ m}.1062

As in the case of the pigeonhole principles, we can ignore the P clauses mix-1063

ing ni,j and pi,j variables. As before we partition the principle into two disjoint1064

formulas, the one using only ni,j variables, and the one using pi,j variables.1065

Let Li, i ∈ [m], represent the encoding of each AtLeast1 constraint, Li =1066

(¬ni1∨· · ·∨¬nim); and the formulasMj , j ∈ [m], represent the encoding of each1067

AtMost1 constraint,Mj =
∧m
i=1,i6=j

∧m
k=i+1,k 6=j(¬pij ∨¬pkj). We show that the1068

contribution of all the Li formulas is m+1
2 . Then, we show that the contributions1069

of all the Mj formulas to the minimum hitting set size is (m−2)(m−1)
2 + m−1

2 .1070

Summing up the contribution of each formula, we obtain m+1
2 + (m−2)(m−1)

2 +1071

m−1
2 = m(m−1)

2 + 1. Since the number of variables of the normal encoding of1072

the parity principle is m(m−1)
2 , we get a basic maxHS refutation of the principle,1073

using the dual-rail encoding and the minimum hitting set algorithm.1074
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Theorem 24. Given the formula Li ∪S, where Li and S are the hard and soft1075

dual-rail clauses encoding the “at least” part of the Parity principle, there is an1076

execution of the basic MaxHS algorithm that computes a MaxSAT solution of1077

cost m+1
2 in polynomial time.1078

Proof. First we will show by induction, how from the soft and hard clauses1079

using variables ni,j (for all i ≤ s and all j such that i < j ≤ m), we obtain a1080

minimum hitting set of size s+1
2 if s is odd, and of size s

2 if s is even.1081

Base case, s = 1: We assume the SAT algorithm returns the unsatisfiable
core:

{n1,2 ∨ · · · ∨ n1,m, n1,2, . . . , n1,m}
At this point, the set K of sets to hit is {{n1,2, . . . , n1,m}}. Therefore, the mini-1082

mum hitting set hs could contain any of the elements of the set {n1,2, . . . , n1,m}.1083

W.l.o.g. hs = {n1,m}, and n1,m is eliminated from the set of soft clauses.1084

Induction step: Suppose now that the algorithm has dealt with s unsat-
isfiable sets, and suppose s is even. The induction hypothesis is that the
minimum size of a hitting set is s/2 and that we have the hitting set hs =
{n1,2, n3,4, . . . , ns−1,s}, and the soft clauses of hs have been eliminated from the
set of clauses to work with. At this point that CDCL algorithm (nondetermin-
istically) returns the unsatisfiable core:

{n1,s+1 ∨ · · · ∨ ns,s+1 ∨ · · · ∨ ns+1,m, n1,s+1, . . . , ns,s+1, ns+1,s+2, . . . , ns+1,m}

The set K of sets to hit is now

K = {{n1,2, . . . , n1,m}, {n1,2, n2,3, . . . , n2,m}, . . . , {n1,s+1, . . . , ns,s+1, ns+1,s+2, . . . , ns+1,m}}.

We can take hs = {n1,2, . . . , ns−1,s, ns+1,i}, where i is any element smaller than1085

s+ 1. In this case, the size of hs is s
2 + 1, and we are finished.1086

Suppose now s is an odd number. By the induction hypothesis, the minimum
hitting set at this point has size s+1

2 , and is the set hs = {n1,2, . . . , ns−2,s−1, ns,1}
Now assume that the SAT algorithm nondeterministically returns the unsatis-
fiable core:

{n1,s+1 ∨ · · · ∨ ns,s+1 ∨ · · · ∨ ns+1,m, n1,s+1, . . . , ns,s+1, ns+1,s+2, . . . , ns+1,m}

At this point, the set of sets to hit K is

K = {{n1,2, . . . , n1,m}, {n1,2, n2,3, . . . , n2,m}, {n1,s+1, . . . , ns,s+1, ns+1,s+2, . . . , ns+1,m}}.

The hitting set still requires size s+1
2 and we can use hs = {n1,2, . . . , ns−2,s−1, ns,s+1}.1087

Let us justify now that the sets hs are minimum hitting sets. Any hitting1088

set would have to mention every node of the graph in {1, . . . , s + 1} at least1089

once, since there is a set in K for every such node. Every variable ni,j mentions1090

two nodes. So at least s+1
2 elements are needed if s is odd, and s

2 if s is even.1091

Any smaller set would fail to mention at least one element.1092

Thus, the minimum hitting set size is m+1
2 at the end of m steps. 21093
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1094

Theorem 25. Given a formula
⋃m
j=1Mj ∪ S s.t. each Mj and S are clauses1095

expressing the “at most” part in the dual-rail encoding of the parity principle,1096

there is an execution of the basic MaxHS algorithm that computes a MaxSAT1097

solution of cost (m−2)(m−1)
2 + m−1

2 in polynomial time.1098

Proof. Now the algorithm works with clauses of type pi,j ∨ pk,l. We assume1099

with no loss of generality that i ≤ k, and also that i < j and k < l since by1100

convention pi,j and pk.l are the same variables as pj,i and pl.k. We consider1101

clauses of pi,j ∨ pk,l of three types:1102

(a) i = k and 1 ≤ i < j < l ≤ m. We will deal with these in step 1 below.1103

(b) j = k and 1 ≤ i < j < l ≤ m. We will deal with these in step 2.1104

(c) j = l and 1 ≤ i < k < j ≤ m. When j 6= m we deal with them in step 2,1105

and when j = m we deal with them in step 3.1106

The variables pi,j will be viewed as the nodes of a graph. Given a clause1107

pi,j ∨ pk,l, where i = k or j = k or j = l, we can think of it as an edge from1108

node pi,j to node pk,l, and also denote it as {pi,j , pk,l}.1109

The construction of this part of the proof will consist of three steps. Step 1
will deal with all the unsatisfiable cores of type {pi,j ∨ pi,l, pi,j , pi,l}, where
1 ≤ i < j < l ≤ m. For fixed i, the set

Ki = {{pi,j , pi,l} : for all j, l s.t. 1 ≤ i < j < l ≤ m} (6)

is a clique. The nodes of the clique consist of all the pi,j variables with j > i.1110

Step 1 will generate unsatisfiable cores corresponding to disjoint cliques of de-1111

creasing size. For instance, if m = 5, the first clique will contain all pairs of ele-1112

ments in {p1,2, p1,3, p1,4, p1,5}, the second will contain all pairs in {p2,3, p2,4, p2,5},1113

the third will contain only the pair {p3,4, p3,5}, and the fourth will be {p4,5}.1114

Step 1 will increase the size of the minimum hitting set to (m−2)m−1
2 . Step 21115

will deal with the rest of unsatisfiable cores except cores of the form {pi,m∨pj,m, pi,m, pj,m}.1116

During this second step the minimum size of the hitting set will not be increased.1117

(The point of this is that the unsatisfiable cores found in step 2 will increase1118

the size of the minimum hitting set during step 3.)1119

Step 3 will obtain (m−1)(m−2)
2 unsatisfiable cores of type {pi,m∨pk,m, pi,m, pk,m},1120

where 1 ≤ i < k ≤ m. This last step will increase the size of the minimum hit-1121

ting set by m−1
2 .1122

Step 1: This step works the same as the argument for the at-most-11123

clauses in the pigeonhole principle. First we handle all cores involving node 1,1124

namely {p1,j ∨ p1,l, p1,j , p1,l}. These cores generate the set of sets to hit:1125

K1 = {{p1,j , p1,l} : 1 < j < l ≤ m}. The minimum hitting set hs for K11126

will contain all but one of the elements in {p1,2, . . . , p1,m}. Therefore at this1127

point the size of hs is m − 2 (since we are considering only the p1,j variables1128

for now). The justification that hs is a minimum hitting set is as follows: hs is1129

a hitting set for all the cores involving only node 1, because it is only missing1130

one variable p1,j . As a consequence, every set in K1 has an element in hs. It1131
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is minimal because if hs lacked two elements, for instance p1,j and p1,k, then it1132

would miss the set {p1,j , p1,k} in K1. The sets K1 and hs get built the same1133

way as it is done in the pigeonhole principle.1134

Working with node 2 next, we deal with all the unsatisfiable cores using1135

elements {p2,3, . . . , p2,m}. As before, we increase the size of hs by m− 3.1136

In general, working with the i-th node, we would obtain all unsatisfiable1137

cores using elements {pi,i+1, . . . , pi,m}. So the unsatisfiable cores will be of the1138

form {pi,j ∨pi,l, pi,j , pi,l}. These form a set of sets to hit that consist of a clique1139

of size m − i, and therefore they will increase the size of the minimum hitting1140

set by m− i− 1 new elements.1141

The m − 2 node will generate only one disjoint (from the previous cliques)1142

unsatisfiable core. It will be {pm−2,m−1 ∨ pm−2,m, pm−2,m−1, pm−2,m}, and as1143

before, it will add one element to the hitting set. The node m − 1 will not1144

generate disjoint unsatisfiable cores. It contains only the element pm−1,m.1145

It is important to notice that the elements of the different cliques are com-1146

pletely disjoint. Therefore the minimum hitting set size so far (using pi,j vari-1147

ables only) is (m − 2) + · · · + 1 = (m−1)(m−2)
2 . The hitting set is any set of1148

elements that removes one element of every clique. Since each clique i has size1149

m− i, it introduces m− i− 1 new elements in the hitting set.1150

Step 2: In this step the algorithm will generate the unsatisfiable cores that
relate elements of two different disjoint cliques, but it will not increase the size
of the minimum hitting set. The unsatisfiable cores will be of type (b),

{pi,j ∨ pj,l, pi,j , pj,l}, (7)

where 1 ≤ i < j < l ≤ m, or of type (c),

{pi,j ∨ pk,j , pi,j , pk,j}, (8)

where 1 ≤ i < k < j < m. Note here that j < m.1151

To deal with these two types of unsatisfiable cores, the algorithm will use an
ordering and deal with all the unsatisfiable cores involving some pi,j together
with each pk,j (for i < k < j) or pj,l (for j < l ≤ m), before dealing with pi,j+1

(or pi+1,i+2 if j + 1 = m). The ordering will be the following:

p1,2, . . . , p1,m−1, p2,3, . . . , p2,m−1, . . . , pm−2,m−1.

We will show the algorithm only for cores of type (b) as shown in (7). The
other type is identical. Suppose now that the algorithm is considering the core
{pi,j ∨ pj,l, pi,j , pj,l}, and that at this point

hs = {pt,t+1, . . . , pt,m−1 : t 6= i, j and 1 ≤ t ≤ m− 2}
∪ {pi,i+1, . . . , pi,j−1, pi,j+1, . . . , pi,m}
∪ {pj,j+1, . . . , pj,l−1, pj,l+1, . . . , pj,m}.

(9)
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Then if l < m, the new minimum hitting set will be

hs = {pt,t+1, . . . , pt,m−1 : t 6= i, j and 1 ≤ t ≤ m− 2}
∪ {pi,i+1, . . . , pi,j−1, pi,j+1, . . . , pi,m}
∪ {pj,j+1, . . . , pj,l, pj,l+2, . . . , pj,m},

(10)

Note that hs covers all the cliques from Step 1, but excludes pi,j and pj,l+1. Now1152

the algorithm is able to find the unsatisfiable core {pi,j ∨ pj,l+1, pi,j , pj,l+1}.1153

Step 2 uses this method to deal one-by-one with the unsatisfiable cores join-
ing the cliques created in step 1, except unsatisfiable cores like {pi,m∨pj,m, pi,m, pj,m}.
The last unsatisfiable core should be {pm−2,m−1, pm−1,m}. At the end of step 2,
we will have

hs = {pi,j : i 6= j and 1 ≤ i < j ≤ m− 1}
as a minimal hitting set of size (m − 2)(m − 1)/2, the same size as in step 1.1154

hs is a hitting set because for every unsatisfiable core of the type shown in (7)1155

or (8), the two elements of the set are in hs if the vertex m is not mentioned,1156

and if m is mentioned, one element of the set is in hs. The set is minimum1157

because no smaller set would suffice to hit the unsatisfiable cores of step 1.1158

Step 3: In the last step, the algorithm will find unsatisfiable cores of the
form

{pi,m ∨ pj,m, pi,m, pj,m},
and the number of new elements that get introduced in hs is m−1

2 . As in step 1,1159

the algorithm will iteratively build a clique, this time with elements pi,m for1160

every i. As a consequence, we will end up having m − 2 elements pi,m in the1161

minimum hitting set; but at the same time, some elements ps,t for s, t < m,1162

that were in hs, now won’t be there.1163

Suppose now the algorithm non-deterministically finds the unsatisfiable core

{p1,m ∨ p2,m, p1,m, p2,m}.

In this case the algorithm introduces either p1,m or p2,m in hs. Even though we1164

might take out another element from the set, the size of hs will have to increase.1165

Suppose wlog that the algorithm introduces p2,m in hs. Then we might remove1166

some p2,l from hs, given that the clique on the node 2 would continue having1167

m − 2 elements in hs. But then the algorithm must introduce pl,m in hs to1168

be able to ensure that the unsatisfiable set {p2,l, pl,m} has one of its elements1169

in the hitting set. Therefore in either case, the minimum hitting set increases1170

by 1, and we assume the new element is p2,m.1171

Suppose the next unsatisfiable core is

{p1,m ∨ p3,m, p1,m, p3,m}.

Now the minimum hitting set could be {p1,m}∪{pi,j : for all i, j, 1 ≤ i < j < m}.
If the next unsatisfiable core is

{p2,m ∨ p3,m, p2,m, p3,m},
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then it will have produced a clique of size 3, but the size of hs will be as in the1172

previous two cases of step 3. In this case, p2,m and p3,m are added to hs, and1173

p1,m and p2,3 are eliminated. Notice that by this change, the hitting set hs uses1174

m−2 elements to cover the cliques on 1 and 2, and uses m−1 elements to cover1175

the clique on 3, compensating for the fact that we have eliminated p2,3.1176

In general, we can assume that when the algorithm builds the clique with
the elements {p1,m, . . . , ps,m}, the minimum hitting set can have the elements

{pi,j : 1 ≤ i < j < m} ∪ {p2,m, . . . , ps,m} \ {p2,3, p4,5 . . . , ps−1,s} (11)

for s odd, and

{pi,j : 1 ≤ i < j < m} ∪ {p2,m, . . . , ps,m} \ {p2,3, p4,5 . . . , ps−2,s−1} (12)

for s even. So if s is odd, we have added (s − 1) − s−1
2 = s−1

2 to the size of1177

hs from what it was at the end of step 2. And if s is even, we have added1178

(s− 1)− s−2
2 = s

2 to the size of hs. Therefore, the size of the minimum hitting1179

set increases by one only when we complete a clique of even size on the elements1180

pi,m.1181

Let us justify the previous statements. First, let us see that (11) and (12) are1182

minimum hitting sets for the corresponding sets of unsatisfiable cores. Notice1183

that for every i < m, the set of elements pi,j in hs, contains at least m − 21184

elements, and if s is odd, it contains exactly m − 2 elements. Also the set1185

of elements pi,m in hs contains exactly s − 1 elements. It is an easy exercise1186

to check that every unsatisfiable core contains one element in the hitting set.1187

All this shows that the sets are hitting sets. In the case of (11), it also shows1188

minimality, since by Observation 20, the set contains the minimum number of1189

elements to be a minimum hitting set.1190

In the case of (12), the set of elements containing s has m− 1 elements, one1191

more than required. But in this case, if we eliminate ps,m from hs, we need1192

to include p1,m, and then the set of cliques containing 1 would have one more1193

element than strictly necessary. Another option is to remove another element1194

from the clique of s, say pi,s, but then the clique on i would be missing one1195

element. 21196

1197

Theorem 26. The basic MaxHS algorithm algorithm (Algorithm 2) is able to1198

conclude in polynomial time that the dual-rail encoding of the parity principle1199

must falsify at least m(m−1)
2 +1 soft clauses, thus proving that the original parity1200

principle is unsatisfiable.1201

Proof. This follows from Theorem 24 and Theorem 25.1202

5. Dual-Rail MaxSAT Simulates Resolution1203

In this section we will show various simulations of the resolution proof system1204

by different MaxSAT algorithms using the dual-rail encoding. First we show1205
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that core-guided MaxSAT (using the dual-rail encoding) simulates resolution.1206

When we use MaxSAT resolution instead of the core-guided algorithm, we need1207

somewhat stronger forms of MaxSAT resolution. If we only want to simulate1208

tree-like resolution, we need multiple dual-rail encodings; but if we want to1209

simulate full resolution, we need weighted dual-rail. On the other hand, we do1210

not know of a simulation of resolution by MaxHS algorithms (using dual-rail).1211

5.1. Core-Guided MaxSAT Simulates Resolution.1212

In this section we show how core-guided MaxSAT algorithms with the dual-1213

rail encoding simulate full resolution.1214

Theorem 27. Core-guided MaxSAT with the dual-rail encoding p-simulates gen-1215

eral resolution.1216

Proof. Let R be a resolution refutation of Γ over the variables x1, . . . , xn. We1217

will produce a core-guided MaxSAT refutation of Γdr.1218

The first n iterations of the core-guided procedure will be independent of R.1219

From the soft clauses ni and pi, and the hard clause pi ∨ ni (for 1 ≤ i ≤ n),1220

we obtain ⊥ using the resolution rule. We obtain n empty clauses ⊥ and the1221

unsatisfiable cores contain the soft clauses {ni, pi} (for 1 ≤ i ≤ n) which are1222

disjoint. The soft clauses in the core are substituted by a new set of hard clauses1223

{pi ∨ ai, ni ∨ a′i,¬a1 ∨ ¬a′i} using new variables ai and a′i. The last clause is1224

equivalent to ai + a′i ≤ 1. So far, we have obtained n empty clauses, and we1225

haven’t yet used the resolution refutation of Γ.1226

The resulting set of clauses so far is unsatisfiable. In the next iteration of1227

the core-guided MaxSAT algorithm, the SAT solver is called, and a possible1228

execution of the SAT solver simulates the following resolution refutation. First,1229

the hard clauses corresponding to the clauses of Γ are transformed to have only1230

pi variables. For every i, 1 ≤ i ≤ n, resolving pi ∨ ai against ¬ai ∨ ¬a′i, we1231

obtain pi∨¬a′i. Resolving this last clause with ni∨a′i, we obtain ni∨pi. At this1232

point we can eliminate all the occurrences of ¬ni from the set of hard clauses,1233

by resolving each clause C ∨ ¬ni with ni ∨ pi, and obtaining C ∨ pi. Now we1234

have an unsatisfiable set of (soft) clauses on variables p1, . . . , pn, equivalent to Γ.1235

We get one final ⊥ by replicating the resolution refutation R using pi variables1236

instead of xi variables. 21237

1238

5.2. Multiple Dual-Rail MaxSAT Simulates Tree-like Resolution.1239

We start with an observation that will be useful for the simulations in the1240

following subsections. The definition of multiple dual-rail MaxSAT can be found1241

at the end of Section 3.1.1242

Observation 28. The dual-rail encodings include soft unit clauses pi and ni1243

and hard clauses pi ∨ ni. Applying a MaxSAT inference to pi and pi ∨ ni yields1244

the two soft clauses ni and pi ∨ ni. Combining ni and ni with a MaxSAT1245

inference yields the clause ⊥. Thus, we have used up the soft clauses pi and ni1246

and obtained one instance of ⊥ plus the soft clause pi ∨ ni.1247
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Theorem 29. Multiple dual-rail MaxSAT resolution simulates tree-like resolu-1248

tion.1249

Proof. Let R be a tree-like resolution refutation of Γ over the variables1250

x1, . . . , xn. Let ki be the number of times that xi is resolved on in R. We form1251

Γmdr by adding the soft clauses pi and ni with multiplicity ki, and the hard1252

clauses pi ∨ni. (This is permitted as the values ki correspond to the weights wi1253

of a weighted dual-rail MaxSAT refutation.) Set K =
∑
i ki. By the above1254

Observation 28, from these clauses there is a MaxSAT derivation of K many1255

instances of ⊥, plus the soft clauses pi ∨ ni with multiplicity ki.1256

We modify the refutation R. For each clause A in Γ, let Adr be the result1257

of replacing members xi with ni, and members xi with pi. An inference in Γ1258

resolving xi ∨A and xi ∨B to obtain A ∨B becomes1259

ni ∨Adr pi ∨Bdr

Adr ∨Bdr
1260

To make this a valid MaxSAT inference, first resolve ni ∨ Adr against an avail-1261

able soft clause pi ∨ ni to obtain the soft clause pi ∨ A plus some additional1262

clauses. A further MaxSAT inference resolves this against pi ∨ Bdr to obtain1263

Adr ∨ Bdr plus some additional clauses. Continuing this process yields a valid1264

MaxSAT refutation of ⊥dr, i.e. of ⊥. This gives a total of K + 1 clauses ⊥ as1265

desired. 21266

1267

Note the proof works as long as ki is greater than or equal to the number of1268

times xi is resolved on. For applications, this means it is only needed to have an1269

upper bound on the number of resolutions on xi; for instance, taking ki equal1270

to the total number of inferences in R certainly works.1271

5.3. Weighted Dual-Rail MaxSAT Simulates Resolution.1272

The definition of weighted dual-rail MaxSAT can be found at the end of1273

Section 3.1.1274

Theorem 30. Weighted dual-rail MaxSAT resolution simulates general resolu-1275

tion.1276

Proof. Let R be a resolution refutation of Γ containing clauses C1, . . . , Cm.1277

Each Ci is either an initial clause from Γ or is derived from two clauses Cj11278

and Cj2 , where j1 < j2 < i. We define a directed graph G = ([m], E) encoding1279

the dependencies in the derivation. The set of vertices of G is {1, . . . ,m},1280

corresponding to the m clauses of R. The edges are based on inference rules;1281

E is the set of directed edges (j, i) such that Cj is a hypothesis of the resolution1282

inference introducing Ci. Thus, the vertex m (corresponding to the empty1283

clause Cm) is a sink of G. The sources in G correspond to initial clauses in Γ.1284

All other vertices in G have in-degree two. Since R is not assumed to be tree-1285

like, the out-degrees can be greater than one.1286
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We must assign to each clause Ci ∈ R a weight wi ∈ N. These weights
give the weights ki needed for the soft clauses ni and pi when we construct a
weighted dual-rail MaxSAT refutation of Γ. The last clause Cm is the final™¡
⊥ derived for the MaxSAT refutation: this clause has weight one, wm = 1. For
all j < m, define

wj =
∑

(j,i)∈E wi.

This is the same as defining wj to be the sum of the weights of the clauses which1287

are inferred directly from Cj .1288

Recall the Fibonacci numbers F1 = F2 = 1 and Fi = Fi−1 + Fi−2 for i > 2.1289

The next lemma depends only on the fact that G = ([m], E) has in-degree 0 or 21290

at every node, and that the directed edges respect the usual ordering of [m].1291

Lemma 31. wi ≤ Fm+1−i. Thus wi < φm/
√

5 where φ is the golden ratio.1292

Proof. Since every clause has in-degree two in G, this lemma is intuitively1293

obvious; we sketch a proof nonetheless for completeness. For this, it will suffice1294

to prove the weights wj are collectively maximized provided that for every i > 2,1295

the two edges (i−1, i) and (i−2, i) are in E. Define i ∈ [m−2] to be out-good if1296

its only outgoing edges are (i, i+1) and (i, i+2); and define m−1 to be out-good1297

if its only out-going edge is (m−1,m). Clearly if all i ∈ [m−1] are out-good1298

then each wi = Fm+1−i; this is proved using induction on m+ 1− i (that is, by1299

induction with i ranging from m to 1).1300

Without loss of generality, every j > 2 has in-degree 2, not 0, since otherwise,1301

we could add two incoming edges to j and this will increase the weights.1302

Suppose i0 is the least i which is not out-good. Since i0+1 and i0+2 have1303

in-degree two, and by choice of i0, the edges (i0, i0+1) and (i0, i0+2) are both1304

present. Suppose there is an edge (i0, j) with j > i0+2. Since the in-degree of j1305

is 2, there is at least one of i0+1 and i0+2 which is not an immediate predeces-1306

sor of j; denote this non-predecessor i1. We create a set of edges E′ from E by1307

removing the edge (i0, j) and adding the edge (i1, j). This modifies the weights1308

wi to new values w′i. Clearly w′i = wi for i > i1. And, w′i1 = wi1 + wj > wi1 .1309

Thus, for i0 < i ≤ i1, we have w′i ≥ wi. It follows that w′i0 ≥ wi0 . Once1310

all such edges j are handled, i0 is out-good. Therefore, we have created one1311

new out-good vertex, increased at least one weight, and did not decrease any1312

weights. Proceeding inductively proves the lemma. 21313

1314

To finish the proof of Theorem 30, we also need to fix weights ki for the
variables xi. Set ki to be equal (or be greater than) the sum of the weights
wj of clauses Cj which are introduced by a resolution on xi. By Lemma 31,

ki ≤
∑m−2
i=1 φi < φm−1, so ki = 2m is always sufficient. Now Theorem 30 can be

proved with the essentially the same construction as Theorem 29. A clause C`
in R becomes the weighted clause (Cdr

` , w`) in Rwdr. If C` is equal to A∨B and
is derived from xi ∨A and xi ∨B, then in Rwdr, it becomes the (not-yet-valid)
inference

(ni ∨Adr, w`) (pi ∨Bdr, w`)

(Adr ∨Bdr, w`)
(13)
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Note the weights of all three clauses are equal to w`. As described below,1315

this is arranged for the two hypotheses by earlier extraction inferences. In1316

Rwdr, the “inference” (13) is replaced by two MaxSAT resolution inferences1317

which resolve against the weighted soft clauses (ni, w`) and (pi, w`) and the1318

hard clauses (ni ∨ pi,>).1319

Rwdr needs inferences to fix up the weights. For i ≤ n, let C`1 , . . . , C`s be1320

the clauses which are inferred by resolving on xi, so ki≥
∑
j w`j . At the start of1321

Rwdr, from the initial soft clauses (ni, ki) and (pi, ki), extraction rules are used1322

to derive all the clauses (ni, w`j ) and (pi, w`j ). Similarly, let C`1 , . . . , C`s now1323

denote clauses which are derived by resolution using C`, so w`=
∑
j w`j . Ex-1324

traction inferences are used to derive all of the clauses (C`, w`j ) from (C`, w`).1325

These clauses are used as hypotheses of later inferences similarly as was done1326

for (13). 21327

1328

Note that ki can be upper bounded by
∑m−2
i=1 φi < φm−1. As before, the1329

proof of Theorem 30 works as long as the ki’s are sufficiently large.1330

6. Dual-Rail MaxSAT does not Simulate Cutting Planes1331

The primary result of the present section (Theorem 32) is that the dual-rail1332

MaxSAT resolution proof system can be polynomially simulated by the constant1333

depth Frege proof system augmented with the schematic pigeonhole principle.1334

It is known that the proof system of constant depth Frege augmented with1335

the schematic pigeonhole principle, denoted AC0-Frege+PHP, requires expo-1336

nential size to prove the parity principles [1, 11]. Therefore, we obtain as an1337

immediate corollary that MaxSAT resolution refutations of the dual-rail encoded1338

parity principle require exponential size. Additionally, the dual-rail MaxSAT1339

resolution proof system does not polynomially simulate the Cutting Planes proof1340

system.1341

Theorem 32. AC0-Frege+PHP p-simulates the dual-rail MaxSAT resolution1342

system. More precisely, there is a constant d0 and a polynomial p(s) so that1343

the following holds. If Γ is a set of clauses and Γdr has a MaxSAT resolution1344

refutation of size s, then Γ has a depth d0 Frege refutation from instances of the1345

PHP of size p(s).1346

The value of d0 depends on the exact definitions of the Frege system (e.g.,1347

with modus ponens, or with the sequent calculus, etc.) and of depth; however,1348

d0 is small, approximately equal to 3. In particular, the Frege proof uses in-1349

stances of PHP which are obtained by substituting depth one formulas (either1350

conjunctions or disjunctions of literals) for the variables zi,j of a pigeonhole1351

formula.1352

It is open whether the theorem holds for the dual-rail MaxSAT system gen-1353

eralized to allow arbitrary (binary-encoded) weights.1354

Proof. We prove Theorem 32. Let Γ be an unsatisfiable set of clauses in1355

the variables x1, . . . , xN . Its dual-rail encoding Γdr uses the variables ni and1356
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pi for i ∈ [N ]. By hypothesis, there is a MaxSAT resolution derivation D of1357

N + 1 many empty clauses ⊥ from Γdr. Our goal is to give a AC0-Frege+PHP1358

refutation of Γ; this refutation involves only the variables xi. The intuition1359

for forming the AC0-Frege proof is that we assume that Γ is satisfied by (the1360

assignment of truth values to) the variables x1, . . . , xN , and use the refutation D1361

to define a contradiction to the pigeonhole principle. In other words, we argue1362

that a polynomial size AC0-Frege can use the formulas in Γ as hypotheses to1363

derive a contradiction to the pigeonhole principle. This contradiction will be1364

defined using clauses Pα,β (defined below) involving the variables xi, where α, β1365

will range over vertices of a bipartite graph; the AC0-Frege proof will argue that1366

these clauses define a contradiction to the pigeonhole principle.1367

The MaxSAT refutation D has size s and contains m < s inferences. The
j-th inference of D has the form

l ∨A l ∨B
A ∨B l ∨A ∨B l ∨A ∨B

(14)

for l a literal. Here, l∨A∨B and l∨A∨B denote sets of zero or more clauses,1368

which depend on orderings of the literals in A and in B. W.l.o.g., D is annotated1369

with information about which clauses are used in the j-th inference including1370

the orderings on the literals of A and B.1371

Let Dj be the multiset of clauses which are available for use in D after the1372

j-th inference. Thus, D0 is the same as Γdr. The multiset Dj+1 is obtained1373

from Dj by removing the hypotheses of the j-th inference (14) and adding its1374

conclusions. Since D is a valid MaxSAT refutation, the final set Dm contains1375

N + 1 many empty clauses ⊥. Two extra sets D−1 and Dm+1 are defined by1376

letting D−1 contain the N unit clauses x1, . . . , xN and letting Dm+1 be the1377

multiset containing N + 1 copies of the empty clause ⊥.1378

Let D∗ denote the disjoint union of the multisets Dj for −1 ≤ j ≤ m+1.1379

Members of the multiset D∗ are denoted (C, j) indicating that C is a member1380

of Dj . If there are multiple occurrences of C in Dj , then there are multiple1381

occurrences of (C, j) in D∗. We will assume that multiple occurrences are cor-1382

rectly tracked with each “C” labeled as to which occurrence it is, but suppress1383

this in the notation. In other words, C is a particular occurrence of a clause1384

in Dj . (Strictly speaking, we should write something like (C, i, j) to indicate1385

that C is the i-th occurrence of C in Dj , but we prefer to keep the notation1386

simple and do not do this.)1387

Let S be the cardinality of D∗, so S = sO(1). Define

T =
⋃

0≤i≤m+1Di and U =
⋃
−1≤i≤mDi.

We have |T | = S − N and |U | = S − N − 1, so |T | = |U | + 1. We wish1388

to define a total and injective function f : T → U , based on the assumption1389

that x1, . . . , xN specify a satisfying assignment for Γ: this will contradict the1390

pigeonhole principle. The function f will be defined by giving formulas Pα,β1391

(involving the variables x1, . . . , xn) that define the graph of f . For this, we1392
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define formulas Pα,β for each α = (C, j) ∈ T and each β = (C ′, j′) ∈ U which1393

define the condition that f(α) = β. Again, these formulas Pα,β will involve the1394

variables x1, . . . , xN .1395

If (C, j) ∈ U , then C is a clause (possibly empty) involving only the variables1396

ni and pi. We wish to identify pi and ni with xi and xi to evaluate the truth1397

of C. Accordingly, define X(C) to the the formula obtained by replacing the1398

literals pi and ni with xi, and the literals pi and ni with xi. If C contains both1399

pi and ni (or both pi and n1) for some i, then X(C) becomes a tautologous1400

clause and can be treated as the constant >.1401

We next give the definition of the function f and define the formulas Pα,β .1402

Let α be (C, j) and β be (C ′, j′). The intuition is that if X(C) is true, then1403

f(α) = α; and if X(C) is false then f(α) = β exactly when j′ = j − 1 and1404

C ′ is the formula in Dj which corresponds to C under the application of the1405

j-th inference of D and thus has X(C ′) false. More formally:1406

1. Suppose j = m + 1, so C is an empty clause ⊥ in the “extra” set Dm+1.1407

We arbitrarily order the members ⊥ of Dm+1 and Dm. Suppose C is the1408

`-th member of Dm+1. We wish to assign f(α) to equal the `-th ⊥ in Dm.1409

Accordingly, Pα,β is the constant > (true) if and only if j′ = j−1 = m1410

and C ′ is the `-th ⊥ in Dm. Otherwise, Pα,β is the constant ⊥ (false).1411

2. Suppose j ≥ 1, and that C, as a member of Dj , is not a clause in the1412

conclusion of the j-th inference (14). The idea is that if C is true, then1413

f(α) = α, and if C is false, then f(α) = β provided j′ = j − 1 and1414

C ′ is the same formula as C, namely the occurrence of the clause in Dj−11415

which corresponds to C. More formally, Pα,α is the formula X(C). And,1416

if j′ = j−1 and C ′ ∈ Dj−1 is the corresponding occurrence of the clause1417

C in Dj−1, then Pα,β is the formula ¬X(C). In all other cases, Pα,β is ⊥.1418

3. Suppose j ≥ 1, and C is one of the conclusions of the j-th inference (14). The1419

idea is that if C is true, then f(α) = α, and if C is false, then f(α) = β1420

provided j′ = j − 1 and C ′ is the false hypothesis of (14). More formally,1421

Pα,α is the formula X(C). And, if j′ = j−1 and C ′ ∈ Dj−1 is one of the1422

hypotheses of (14), then Pα,β is the formula ¬X(C)∧¬X(C ′), which is a1423

conjunction of literals. (This can make Pα,β false by virtue of containing1424

both ` and `.) In all other cases, Pα,β is ⊥.1425

4. Suppose j = 0 and C is a hard clause of Γdr in D0. Assuming Γ is satisfied1426

by x1, . . . , xN , C is true; the idea is that f(α) = α. Accordingly, Pα,α is1427

the clause X(C). For all other β, Pα,β is ⊥.1428

5. Finally suppose j = 0 and C is a soft unit clause in Γdr, i.e. either pi1429

or ni. The intuition is again that f(α) = α if C is true. Otherwise1430

f(α) = (xi,−1). Formally, Pα,α is X(C). And, for β = (xi,−1), Pα,β1431

is ¬X(C). For all other β, Pα,β is ⊥.1432

The formulas Pα,β are linear size and depth one, either conjunctions or
disjunctions of literals. We must argue there are constant depth Frege proofs of
the injectivity conditions

¬Pα,β ∨ ¬Pα′,β for all α 6= α′ ∈ T and all β
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and of the totality conditions∨
β∈U Pα,β for all α ∈ T .

The injectivity conditions are easy to check since so many Pα,β ’s are the con-1433

stant ⊥. First, suppose that α = (C, j) and α′ = (C ′, j) where C and C ′ are two1434

of the conclusions of the j-th inference (14). By inspection, C and C ′ contain1435

a clashing literal; thus they cannot both be false. It follows that at least one1436

of Pα,β or Pα′,β is false. Obviously this fact, ¬Pα,β ∨ ¬Pα′,β , is easily prov-1437

able in AC0-Frege in this case. A similar, even simpler, argument works when1438

α = (pi, 0) and α′ = (ni, 0). The injectivity conditions for all other α, α′, β are1439

trivial.1440

There are only a couple non-trivial cases to check for the provability of the1441

totality conditions. The first case is when α = (C, j) is the conclusion of the1442

j-th inference (14). For this, we must argue that if X(C) is false, then (14)1443

has a hypothesis C ′ that has X(C ′) false. This is completely trivial to prove1444

with a constant depth Frege proof, since either (a) one of the hypotheses is a1445

sub-clause C ′ of C so X(C ′) is a sub-clause of X(C) and thus X(C ′) is false,1446

or (b) C is A ∨B in (14) and since X(`) is either false or true and C ′ is either1447

the first or second hypothesis (respectively, based on the truth value of `). The1448

second non-trivial case to check for totality is the case where α = (C, 0) with1449

C one of the hard clauses in Γdr. In this case, Pα,α holds only if X(C) is true.1450

However, X(C) is a member of Γ, and hence X(C) holds under the assumption1451

that x1, . . . , xN satisfy the clauses of Γ.1452

The above obtained a contradiction to the pigeonhole principle from the as-1453

sumption that the clauses of Γ are true. The argument can be formalized in1454

constant depth Frege; hence AC0-Frege+PHP refutes Γ. By construction, the1455

AC0-Frege+PHP refutation is polynomial size in s. 21456

1457

Notice that in the proof of Theorem 32, every pigeon can only go to at1458

most three holes. The following corollary answers the question of whether this1459

restricted principle is as hard as the usual pigeonhole principle for AC0-Frege.1460

Corollary 33. The pigeonhole principle where every pigeon can only go to a1461

constant number d ≥ 3 of holes, requires exponential size proofs in AC0-Frege.1462

Proof. By the proof of Theorem 32, if AC0-Frege has sub-exponential size1463

proofs of PHP when every pigeon can only go to a three holes, then AC0-Frege1464

simulates dual-rail MaxSAT. Since dual-rail MaxSAT has polynomial size refu-1465

tations of the pigeonhole principle, AC0-Frege has them too. This is impossible1466

by the known lower bounds of PHP in AC0-Frege [1, 11]. Therefore the corollary1467

follows. 21468

1469

Corollary 34. MaxSAT resolution refutations of the dual-rail encoded parity1470

principle require exponential size 2n
ε

for some ε > 0.1471

Proof. Corollary 34 follows from Theorem 32 since [11] and [65], building1472

on [1], showed that AC0-Frege+PHP refutations of Parityn require size 2n
ε

for1473
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some ε > 0. 21474

1475

Corollary 35. The dual-rail MaxSAT resolution proof system does not polyno-1476

mially simulate CP or even CP∗.1477

Proof. Corollary 35 follows from Corollary 34 since it is easy to give polynomial1478

size CP∗ (Cutting Planes proof system with polynomially bounded coefficients)1479

proofs of the parity principle [39]. 21480

1481

7. Experiments1482

This section evaluates the power of the dual-rail based MaxSAT solving and1483

aims at confirming the theoretical claims of the paper. A thorough experimenta-1484

tion is presented testing modern SAT and MaxSAT solvers, as well as solutions1485

based on mixed integer programming (MIP). We consider several benchmark1486

sets encoding hard combinatorial principles: pigeonhole principle formulas, dou-1487

bled pigeonhole principle, mutilated chessboard formulas [52, 42, 58, 59], parity1488

principle, Urquhart formulas [72] and their combination. The evaluation com-1489

prises extensions of the results presented in earlier works [38, 17], as well as1490

novel contributions. The evaluation shows clear performance gains provided by1491

the dual-rail problem transformation and the follow-up MaxSAT solving.1492

7.1. Experimental Setup1493

In the evaluation, a large number of solvers were tested. However, the dis-1494

cussion below focuses on the results of the best performing representatives of1495

the considered families of solvers. Solvers that are missing in the discussion1496

are meant to be “dominated” by their representatives, i.e. these solve fewer1497

instances. The families of the evaluated solvers as well as the chosen represen-1498

tatives for the families are listed in Table 4. The family of CDCL SAT solvers1499

comprises MiniSat 2.2 (minisat) and Glucose 3 (glucose) while the family of SAT1500

solvers strengthened with the use of other powerful techniques (e.g. Gaussian1501

elimination (GA), and/or cardinality-based reasoning (CBR) includes lingeling1502

(lgl) and CryptoMiniSat (crypto). The MaxSAT solvers include the known tools1503

based on implicit minimum-size hitting set enumeration, i.e. MaxHS (maxhs)1504

and LMHS (lmhs), and also a number of core-guided solvers shown to be best1505

for industrial instances in a series of recent MaxSAT Evaluations7, e.g. MSCG1506

(mscg), OpenWBO16 (wbo) and WPM3 (wpm3 ), as well as the recent MaxSAT1507

solver Eva500a (eva) based on MaxSAT resolution.1508

The other competitor considered is CPLEX (lp). Three configurations of1509

CPLEX were tested: (1) the default configuration and the configurations used1510

in (2) MaxHS (maxhs) and (3) LMHS (lmhs). Given the overall performance,1511

we decided to present the results for one best performing configuration, which1512

7https://maxsat-evaluations.github.io/
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Table 4: Families of solvers considered in the evaluation (their best performing represen-
tatives are written in italics). SAT+ stands for SAT strengthened with additional tech-
niques, IHS MaxSAT is for implicit hitting set based MaxSAT, CG MaxSAT is for core-guided
MaxSAT, MRes is for MaxSAT resolution, MIP is for mixed integer programming.

SAT SAT+ IHS MaxSAT CG MaxSAT MRes MIP

minisat glucose lgl crypto maxhs lmhs mscg wbo wpm3 eva lp

[30] [8] [13, 15] [70, 69] [27, 28, 29] [67] [56] [51] [5] [57] [37]

turned out to be the default one. Also, the performance of CPLEX was mea-1513

sured for the following two types of LP instances: (1) the instances encoded to1514

LP directly from the original CNF formulas (see lp-cnf ) and (2) the instances1515

obtained from the dual-rail encoded formulas (lp-wcnf ).1516

Regarding the IHS-based MaxSAT solvers, both MaxHS and LMHS imple-1517

ment the Eq-Seeding constraints [28]. Given that all soft clauses constructed by1518

the proposed HornMaxSAT transformation are unit and that the set of all vari-1519

ables of HornMaxSAT formulas is covered by the soft clauses, these eq-seeding1520

constraints replicate the complete MaxSAT formula on the MIP side. As a re-1521

sult, after all disjoint unsatisfiable cores are enumerated by MaxHS or LMHS,1522

only one call to an MIP solver is needed to compute the optimum solution. In1523

order to show the performance of an IHS-based MaxSAT solver with this fea-1524

ture disabled, we additionally considered another configuration of LMHS called1525

lmhs-nes.81526

All the conducted experiments were performed in Ubuntu Linux on an Intel1527

Xeon E5-2630 2.60GHz processor with 64GByte of memory. The time limit was1528

set to 1800s and the memory limit to 10GByte for each individual process to1529

run.1530

7.2. Pigeonhole Principle benchmarks1531

This first set of experiments is supposed to assess thoroughly the perfor-1532

mance among all the considered families of solvers with the pigeonhole formulas1533

(PHP) [26]. The set of PHP formulas contains 2 families of benchmarks differ-1534

ing in the way AtMost1 constraints are encoded: (1) standard pairwise-encoded1535

(PHP-pw) and (2) encoded with sequential counters [68] (PHP-sc). Each of the1536

families contains 46 CNF formulas encoding the pigeonhole principle with the1537

number of pigeons varying from 5 to 100. Figure 49 shows the performance of1538

the solvers on sets PHP-pw and PHP-sc. As can be seen, the MaxSAT solvers1539

(except eva and wbo) and also lp-∗ are able to solve all instances. As expected,1540

CDCL SAT solvers perform poorly for PHP with the exception of lingeling,1541

which in some cases detects cardinality constraints in PHP-pw. However, dis-1542

abling cardinality constraints reasoning or considering the PHP-sc benchmarks1543

impairs its performance tremendously.1544

8We chose LMHS (not MaxHS) because it has a command-line option to disable eq-seeding.
9Note that all the shown cactus plots scale the Y axis logarithmically.
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Figure 4: Performance of the considered solvers on pigeonhole formulas.

7.2.1. On discarding P clauses1545

As described above, given a CNF formula over variables X, its dual-rail1546

MaxSAT encoding contains hard P clauses, namely clauses of the form (pi∨ni)1547

for each variable xi ∈ X, among other clauses. Observe that the polynomial1548

upper bounds for PHP formulas in Theorems 8, 11 and 18 for all three of1549

the dual-rail systems core-guided MaxSAT, MaxHS-like MaxSAT, and MaxSAT1550

resolution are obtained without using the P clauses. Also, note that other ways1551

of refuting PHP in dual-rail MaxSAT exist, e.g. those replicating non-polynomial1552

resolution refutations. Such refutations involve getting trivial unsatisfiable cores1553

comprising triples of clauses of the form (pi ∨ ni,>), (pi, 1), and (ni, 1).1554

Since there is generally no control of what unsatisfiable cores a MaxSAT1555
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(c) Performance of wbo w/ and w/o P clauses

Figure 5: Performance of MaxSAT solvers on PHP-pw ∪ PHP-sc w/ and w/o P clauses.

solver computes, our conjecture is that in some cases the presence of the P1556

clauses in the formula can be harmful for a MaxSAT solver as they may confuse1557

it to go in a “wrong direction”, i.e. by computing these trivial unsatisfiable cores.1558

This may result in hampering the overall performance of a MaxSAT solver in1559

some cases. To confirm this conjecture, we also considered both PHP-pw and1560

PHP-sc instances without the P clauses. Figure 5 compares the performance of1561

the MaxSAT solvers working on PHP formulas w/ and w/o the P clauses. The1562

lines with (no P) denote solvers working on the formulas w/o P clauses (except1563
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Figure 6: Performance of SAT and MaxSAT solvers on “doubled” pigeonhole formulas.

maxhs and lmhs whose performance is not affected by removal of P). As can be1564

observed, the P clauses can indeed hamper a solver’s ability to get a sequence of1565

good unsatisfiable cores, which affects its performance. For instance, as detailed1566

in Figure 5c, the efficiency of wbo is improved by a few orders of magnitude1567

if the P clauses are discarded. Also, as shown in Figure 5b, mscg gets about1568

an order of magnitude performance improvement outperforming all the other1569

solvers.1570

Note that although discarding the P clauses can be done for the PHP for-1571

mulas due to the existence of a correct refutation ignoring them, in general1572

discarding them completely can lead to incorrect MaxSAT solutions. The rea-1573

son is that some formulas have to be refuted necessarily by exploiting (a subset1574

of) the P clauses. Given the above, one can envision a possible strategy to1575

solve problems (in general) without considering the P clauses at the beginning,1576

and then adding them on demand, as deemed necessary to block non-solutions.1577

The operation is similar to the well-known counterexample-guided abstraction1578

refinement paradigm (CEGAR) [23].1579

7.3. Doubled Pigeonhole Principle1580

This section aims at comparing the performance of the state-of-the-art SAT1581

and MaxSAT solvers with respect to the “doubled” pigeonhole formulas. More1582

concretely, two sets of 2PHP2m+1
m formulas were considered encoding AtMost21583

constraints by (1) triplewise encoding (PHP-tw) as studied earlier in this paper1584

and (2) sequential counters [68] (PHP-sc), i.e. with the use of auxiliary vari-1585
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ables [71]. The former set contains 2PHP2m+1
m formulas for m ∈ {5, . . . , 25}101586

while the latter one contains instances for m ∈ {5, . . . , 100}. The total number1587

of instances in both 2PHP benchmark sets is 67.1588

Figure 6 depicts the performance of the considered competitors on the total1589

set of 2PHP benchmarks consisting of both 2PHP-tw and 2PHP-sc instances.1590

As expected, SAT solvers with no additional reasoning can only deal with1591

2PHP2m+1
m for m ≤ 7 given 1800s timeout (lgl performs better and solves 271592

instances in total). Surprisingly, MaxSAT solvers do not perform much better1593

being able to deal with m ≤ 15 if the P clauses are present in the formula.1594

Given the fact of existence of a short dual-rail based MaxSAT proof for 2PHP,1595

this comes as another evidence that the P clauses can prevent MaxSAT solvers1596

to compute good unsatisfiable cores, which affects their overall performance.1597

Indeed, our results confirm this as the performance of all MaxSAT solvers gets1598

tremendously increased when clauses (pi ∨ni,>) are discarded11. In particular,1599

maxhs, lmhs, as well as mscg can solve all the considered instances (for m up1600

to 100) with the “harmful” clauses being discarded while lmhs-nes, eva and1601

wbo are a few instances behind. Observe that the performance of maxhs and1602

lmhs is affected by the presence of the P clauses, which was not the case for1603

PHP formulas studied in Section 7.2. This seems a little bit surprising provided1604

that PHP and 2PHP formulas share a common structure. We believe that a1605

deeper understanding of the principles underlying the IHS-based MaxSAT solv-1606

ing could shed light on this phenomenon. Finally, another surprise is that lp-cnf1607

and lp-wcnf have a hard time dealing with 2PHP formulas, which is in clear1608

contrast to the case of PHP.1609

7.4. Mutilated Chessboard1610

This section targets assessing the practical efficiency of dual-rail MaxSAT1611

compared to modern SAT solvers for the mutilated chessboard principle formu-1612

las (CB) [52, 42], which is known to be hard for resolution [3].1613

The benchmark formulas considered here encode the mutilated chessboard1614

principle for chessboard of size 2n × 2n with n being varied from 3 to 50 in-1615

clusively. The encoding is standard and follows [3]. Thus, the total number1616

of formulas is 48. Recall that the standard encoding of CB is “redundant” in1617

the following sense: after removing two corner squares of the chessboard (let us1618

assume those are white), the principle forces mappings between adjacent black1619

and white squares and vice versa, which is clearly impossible given that the1620

number of black and white squares is n2 and n2 − 2, respectively. As shown1621

above (see Section 4), for refuting CB formulas it is enough to use only a half1622

of the complete CB formula. This half can be seen as forcing a mapping from1623

the set of black squares into the set of white squares, which is similar to the1624

10Larger values of m were not considered for triplewise-encoded 2PHP2m+1
m formulas be-

cause the size of the formulas grows as m3.
11Note that discarding the P clauses can be done for 2PHP because the short proofs for

2PHP2m+1
m provided in this paper do not use clauses (pi ∨ ni,>).
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Figure 7: Performance of SAT and MaxSAT solvers on CB formulas.

pigeonhole principle. Based on this observation, we additionally created a set1625

of benchmarks encoding this half of the formula. In contrast to the complete1626

CB instances, this additional set of CB benchmarks is referred to as partial CB1627

formulas. The partial CB benchmark set is constructed with the same values1628

of parameter n, and thus its size is also 48. Finally, both complete and partial1629

formulas were considered with and without the P clauses.1630

Figure 7 show cactus plots detailing the performance of the considered1631

solvers. Similar to the PHP and 2PHP case, IHS-based MaxSAT solvers maxhs1632

and lmhs demonstrate the best performance. This is the case for both complete1633

and partial CB benchmarks. Observe that their configurations dealing with the1634

CB formulas without the P clauses are not shown in the plots because the per-1635
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Table 5: Performance of considered solvers on formulas encoding Parity Principle.

n crypto glucose lgl lgl-nocard minisat lp-cnf mscg wbo lmhs lmhs-neqs maxhs lp-wcnf
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.02 1.65
2 0.0 0.0 0.0 0.0 0.0 1.08 0.0 0.0 0.03 0.01 0.02 23.25
3 0.0 0.0 0.0 0.0 0.0 19.42 0.0 0.0 0.02 0.08 0.03 26.63
4 0.0 0.00 0.0 0.0 0.0 21.87 0.0 0.01 0.03 0.2 0.03 23.88
5 0.04 0.05 0.04 0.04 0.03 20.59 0.13 0.13 0.04 1.4 0.07 2.09
6 1.09 1.08 0.67 0.62 0.69 24.04 4.73 2.16 0.05 1.45 0.14 26.0
7 23.35 43.02 18.94 19.6 38.74 22.46 139.82 24.84 0.13 10.7 0.07 24.9
8 733.35 1506.72 876.98 980.47 1703.33 22.30 — 1070.46 0.05 6.46 0.28 26.36
9 — — — — — 22.08 — — 0.12 6.43 0.57 39.92
10 — — — — — 21.06 — — 0.13 45.03 0.54 39.71
11 — — — — — 23.0 — — 0.18 36.15 0.37 46.88
12 — — — — — 21.68 — — 0.84 37.04 0.86 44.11
13 — — — — — 23.91 — — 0.83 92.47 0.91 31.65
14 — — — — — 18.8 — — 0.23 24.16 1.02 86.26
15 — — — — — 15.64 — — 1.04 287.28 1.15 36.31
16 — — — — — 16.45 — — — 365.06 1.17 23.23
17 — — — — — 12.84 — — 0.42 531.51 0.31 115.03
18 — — — — — 16.49 — — 0.52 234.13 1.32 23.27
19 — — — — — 18.26 — — 1.87 457.45 1.68 25.34
20 — — — — — 17.86 — — 1.76 112.82 1.69 22.93

formance of maxhs and lmhs is not affected by them. As expected, SAT solvers1636

have hard time refuting the CB formulas being able to deal with only relatively1637

small values of n, e.g. when n ≤ 8. Surprisingly, core-guided MaxSAT solvers1638

mscg and wbo dot not succeed either if the P clauses are present. This is the1639

case for both complete and partial CB formulas, which is in contrast with the1640

results for PHP shown earlier (mscg was able to solve all the PHP instances,1641

even with the P clauses enabled). Moreover, eva, which is based on MaxSAT1642

resolution, significantly outperforms its core-guided rivals. In fact, eva is able1643

to refute the complete CB formulas with or without the P clauses showing the1644

same performance (that is why only one configuration of eva is shown in Fig-1645

ure 7a). Although we do not have a clear understanding of this phenomenon1646

at this point, a hypothesis is that eva has some pattern matching heuristics1647

working effectively in this concrete case of the complete CB formulas. Observe1648

that the core-guided MaxSAT solver mscg is able to find a way to refute the1649

partial CB formulas efficiently, when the P clauses are enabled or disabled. In1650

contrast to these results, inefficiency of both core-guided MaxSAT solvers on1651

the complete CB formulas can be attributed to the additional clauses of the1652

formulas that bring a number of unsatisfiable cores and, thus, ways to refute1653

the formula taken by the solvers.1654

7.5. Parity Principle1655

Similar to the previous sections, this section targets assessing the practical1656

efficiency of dual-rail MaxSAT for the Parity Principle as expressed in Sec-1657

tion 4.3.3. In this set of experiments, consider n that varies between 1 and 20.1658

The size of the graph of the Parity Principle encoded is m, corresponding to1659

m = 2n+ 1. Recall that the Parity Principle expresses a kind of mod 2 count-1660

ing, which states that no graph on m (odd) nodes consists of a complete perfect1661

matching [1, 9, 11].1662
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Table 6: Performance of considered solvers on dual-rail MaxSAT formulas encoding Parity
Principle w/o P clauses.

n mscg wbo lmhs lmhs-neqs maxhs lp-wcnf
1 0.0 0.0 0.01 0.01 0.0 0.01
2 0.0 0.0 0.01 0.01 0.0 3.77
3 0.0 0.0 0.01 0.02 0.0 3.32
4 0.01 0.01 0.01 0.06 0.01 3.47
5 0.1 0.08 0.02 0.07 0.01 3.55
6 1.41 0.82 0.02 0.20 0.01 3.54
7 23.38 5.66 0.02 0.26 0.01 3.74
8 427.46 113.15 0.04 0.39 0.02 32.98
9 — — 0.04 0.82 0.02 35.41
10 — — 0.06 1.09 0.03 32.58
11 — — 0.07 1.80 0.04 33.08
12 — — 0.09 3.07 0.05 3.76
13 — — 0.11 4.82 0.06 3.71
14 — — 0.14 6.77 0.07 3.76
15 — — 0.17 7.73 0.09 36.09
16 — — 0.8 14.99 0.57 6.0
17 — — 0.76 26.82 0.19 14.32
18 — — 1.04 68.49 0.76 12.56
19 — — 1.50 — 0.84 44.54
20 — — 5.6 100.9 0.21 24.92

Table 5 shows the results of running the considered solvers on the encoded1663

Parity Principle formulas, while Table 6 shows the results of running the dual-1664

rail MaxSAT encoding of the encoded Parity Principle formulas, but disregard-1665

ing the P clauses. As before, IHS-based MaxSAT solvers maxhs and lmhs1666

demonstrate the best performance. In this case, there is one outlier where lmhs1667

was unable to compute the solution, which does happen when disregarding the1668

P clauses. Interestingly, CPLEX works well on this set on benchmarks, both1669

with lp-cnf and lp-wncf, which solve all the 20 parity formulas, on average one1670

order of magnitude slower than maxhs. On the other hand, the core-guided ap-1671

proaches using dual-rail MaxSAT perform equally to the SAT based approaches,1672

both of approaches not solving more than 8 instances.1673

Finally, note that for this set of benchmarks, ignoring the P clauses does1674

not produce gains in the performances of the dual-rail MaxSAT approaches.1675

7.6. Urquhart benchmarks and combined instances1676

The Urquhart (URQ) instances (of the Tseitin tautologies) are based on1677

linear equations mod 2 which are known to be hard for resolution [72], but not1678

for BDD-based reasoning [22]. Here, we follow the encoding of [22] to obtain1679

the formulas of varying size given the parameter n of the encoder. In the1680

experiments, we generated 84 instances with n ranging from 3 to 30. The best1681

performance is demonstrated by both maxhs and lmhs. Note that both maxhs1682

and lmhs do exactly 1 call to CPLEX (due to eq-seeding) after enumerating1683

disjoint unsatisfiable cores. This contrasts sharply with the poor performance1684

of lp-wcnf, which is fed with the same problem instances. Lingeling if augmented1685

with Gaussian elimination (GA, see lgl in Figure 8a) performs reasonably well1686

being able to solve 29 instances. However, as the result for lgl-nogauss suggests,1687
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Figure 8: Performance of the considered solvers on URQ and combined formulas.

GA is crucial for lgl to efficiently decide URQ. Note that lp-cnf is not shown in1688

Figure 8a due to its inability to solve any instance.1689

The COMB benchmark set inherits the complexity of both PHP and URQ1690

instances and contains formulas PHPm+1
m ∨ URQn,i with the PHP part being1691

pairwise-encoded, where m ∈ {7, 9, 11, 13}, n ∈ {3, . . . , 10}, and i ∈ {1, 2, 3},1692

i.e. |COMB| = 96. By construction, in order to refute the COMB formulas, one1693

has to refute both PHP and URQ subformulas. This makes the COMB formulas1694

at least as hard as the subformulas involved. As one can observe in Figure 8b,1695

even the small values of m and n used result in instances that are hard for most1696

of the competitors. All IHS-based MaxSAT solvers (maxhs, lmhs, and lmhs-nes)1697
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Table 7: Number of solved instances per solver.

glucose lgl lgl-no12 maxhs lmhs lmhs-nes mscg wbo eva lp-cnf lp-wcnf

PHP-pw (46) 7 29 7 46 46 29 46 10 46 46 46
PHP-sc (46) 13 11 11 46 46 45 46 15 40 46 46
2PHP (67) 10 27 9 5 11 9 6 9 6 17 18
CB (96) 12 23 12 96 96 89 47 10 83 — —

Parity (20) 8 8 8 20 19 20 7 8 — 20 20
URQ (84) 3 29 4 50 44 37 5 22 3 0 6
COMB (96) 11 37 41 78 91 80 7 13 6 0 18

Total (455) 64 164 92 341 353 309 164 87 184 13 12914 154

perform well and solve most of the instances. Note that lgl is confused by the1698

structure of the formulas (neither CBR nor GA helps it solve these instances).1699

As for CPLEX, while lp-cnf is still unable to solve any instance from the COMB1700

set, lp-wcnf can also solve only 18 instances.1701

7.7. Summary of Experimental Results1702

This section presents an overall summary of the experiments in this work.1703

Table 7 shows that, given all the previously considered benchmarks sets, the1704

dual-rail problem transformation and the follow-up IHS-based MaxSAT solv-1705

ing can cope with by far the largest number of instances overall (see the data1706

for maxhs, lmhs, and lmhs-nes). The core-guided and also resolution based1707

MaxSAT solvers generally perform well on the pigeonhole formulas (except wbo,1708

and this has to be investigated further), which supports the theoretical claims1709

of the paper. However, using them does not help solving the other considered1710

benchmarks families. As expected, SAT solvers cannot deal with most of the1711

considered formulas as long as they do not utilize additional powerful reasoning1712

techniques (e.g. GA or CBR). However, and as the COMB instances demon-1713

strate, it is easy to construct formulas that are hard for the state-of-the-art1714

SAT solvers, even if strengthened with GA and CBR. Finally, one should note1715

the performance gap between maxhs (also lmhs) and lp-wcnf given that they1716

solve the same instances by one call to the same MIP solver with the only1717

difference being the disjoint cores precomputed by maxhs and lmhs.1718

In the experiments, we have also considered the possibility of discarding P1719

clauses. Discarding P clauses in general does not lead to correct results, but1720

depending on the benchmark family, and as demonstrated in each of the sections1721

associated to the specific benchmark families, the inclusion of P clauses can be1722

harmful for the performance of the MaxSAT solvers, (leading in some cases to1723

orders of magnitude improvements).1724

12This represents lgl-nogauss for URQ and lgl-nocard for PHP-pw, PHP-sc, and COMB.
13As Parity results are unavailable for eva, the total number of instances solved by eva

should be seen an under-approximation.
14As CB results are unavailable for the two configurations of CPLEX used, the total number

of instances solved by lp-cnf and lp-wcnf should be seen an under-approximation.
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To conclude, the experimental results confirm the practical efficiency of the1725

dual-rail based MaxSAT solving compared to the CDCL SAT approach, which1726

is known to be equivalent to resolution. A number of families of formulas encod-1727

ing hard combinatorial principles were considered for showing this. Moreover,1728

in some situations dual-rail based MaxSAT solving was shown to outperform1729

solutions based on mixed integer programming and cutting planes. We deem1730

these results encouraging in light of the success of MaxSAT solvers in the recent1731

years.1732

8. Conclusions & Research Directions1733

This paper contributes to the ongoing quest for a practically effective SAT1734

algorithm that exploits a proof system stronger than resolution. The paper’s1735

main contribution is to aggregate and extend earlier results on the dual-rail1736

MaxSAT proof system [38, 17, 55].1737

Although the paper offers a characterization of upper bounds and some ini-1738

tial simulation results, additional work remains for establishing the comparative1739

strength of the different approaches using the dual-rail encoding. This is the1740

subject of future work. Another line of work is to assess whether practical imple-1741

mentations of the dual-rail MaxSAT proof system are effective as an alternative1742

to CDCL SAT solvers.1743
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