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Motivation: Algorithmic Randomness

Algorithmic Randomness:
What does it mean for X ∈ {0, 1}∞ to be algorithmically random?

Three classic paradigms, which often yield equivalent definitions:

Unpredictability: No effective betting strategy succeeds by betting on
the bits of a random object. [Schnorr ’71]

Typical-ness: A random object avoids effective measure 0 sets.
[Levin’73, Schnorr’73]

Incompressibility: (Kolmogorov Complexity) Finite portions of a
random object cannot be concisely described effectively. [Martin-Löf ’66]

Different notions of “effective” give rise to different notions of randomness.

We shall discuss only the Unpredictability paradigm.
This paradigm is the most closely tied to algorithms and betting strategies.
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Betting strategies

Let X ∈ {0, 1}∞. A betting strategy A satisfies:

A sees the bits X (i) of X sequentially,

A decides how much to bet that the next bit of X is 0 or 1,

For σ ∈ {0, 1}∗ an initial segment of X , A’s current winnings are
given by a capital function C = d(σ) where d is a martingale:

d(λ) 6= 0 and d(σ) =
d(σ0) + d(σ1)

2
.

A succeeds against X if limn d(X � n) =∞.

The bets made by A are specified by a stake function q = q(σ), such that
q ∈ [0, 2] and means that A bets $(q − 1)C that the next bit is 0.

Therefore, q(σ) = d(σ0)/d(σ): the new capital C after the bet becomes

C + (q − 1)C = qC if next bit is 0,

C − (q − 1)C = (2− q)C if next bit is 1.
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Effective betting strategies and algorithmic randomness

X is . . .

Computable random if for each computable martingale d ,

lim
n

d(X � n) 6=∞.

Partial computable random if for each partial computable martingale
d ,

lim
n

d(X � n) 6=∞.

Martin-Löf (ML) random if for each computably enumerable
martingale d ,

lim
n

d(X � n) 6=∞.

Note: each limit can be replaced by limsup.

For computable and partial computable, the martingale is w.l.o.g. rational-valued.

A “c.e.” function outputs a real value α by enumerating the rationals less than α.
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Notions of algorithmic randomness

ML-random

⇓ 6⇑
partial computable random

⇓ 6⇑
computable random

Separations: [Nies, Stephan, Terwijn ’05, Merkle ’08, . . . ]
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Schnorr’s Critique

ML-randomness is a (the?) central notion in algorithmic randomness.

Strongest of the natural notions of randomness based on effective
computability.

Elegant characterizations in all three paradigms.

“Well-behaved” and tractable mathematical theory, including
universal objects.

BUT

Schnorr’s critique:

ML-randomness is defined in terms of computably enumerable objects
rather than computable ones.

“Left c.e.” property for a martingale is somewhat unnatural.

Goal: Give a computable characterization of ML-randomness. . .
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Probabilistic strategies [B.-Minnes ’12]

A probabilistic betting strategy A does the following at each step:

Computes a probability p of betting

Computes stake value q for bet (if one is placed)

Bets on the next bit of X with probability p, or passes (“waits”) with
probability 1− p.

If the algorithm does not bet (passes), then the same bit of X remains
available to be bet upon in the next step.

Finite initial segment of a betting game is

σ ∈ {0, 1}∗ - the bits of X seen — and bet upon — so far,
and

π ∈ {b,w}∗ - the history of bet (b) vs. wait (w) moves.

A probabilistic strategy A is specified by two total computable
rational-valued functions pA and qA:

p = pA(π, σ) and q = qA(π, σ).
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Probabilistic strategies

The capital at node π after seeing σ is

CA(λ, λ) = 1;

CA(πw , σ) = C (π, σ);

CA(πb, σ0) = CA(π, σ)qA(π, σ);
CA(πb, σ1) = CA(π, σ)(2− qA(π, σ)) .

The probability of reaching node π when playing against σ is

PA(λ, λ) = 1;

PA(πw, σ) = PA(π, σ)(1− pA(π, σ));

PA(πb, σi) = PA(π, σ)pA(π, σ).

For a fixed X ∈ {0, 1}∞, PA defines a measure µXA on the space of
possible bet/wait plays, {b,w}∞, defined by

µXA ([π]) = PX
A (π) := PA(π,X � n)), where n = |π|b = #b’s in π.
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How to define success for probabilistic strategy?

The outcome of a probabilistic strategy on X is random, depending on the
bet / wait choices. Success can be defined as either success with
probability one (P1) or success in expectation (Ex):

Def. A is a successful P1-strategy for X if the set of Π ∈ {b,w}∞ s.t.

lim
n

CX
A (Π � n) =∞

has µXA -measure one.

Def. A is a successful Ex-strategy for X if

lim
n

ExXA (n) =∞

where ExXA (n) is the expected capital after n-th bet.

- ExXA (n) =
∑

π∈R(n) PX
A (π)CX

A (π),

- R(n) = {π : π = π′b, |π|b = n}.
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How to define success?

X is . . .

P1-random if there is no successful P1-strategy for X .

Ex-random if there is no successful Ex-strategy for X .

We can also require that the strategy must eventually bet:

X is . . .

- Weak P1- or Weak Ex-random if no computable probabilistic strategy
which always eventually bets with probability one is a successful

P1-strategy (resp. Ex-strategy) for X .

- Locally weak Ex-random if no computable probabilistic strategy which
eventually bets on X with probability one is a successful Ex-strategy

for X .
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New characterizations of algorithmic randomness

ML-random

⇓ 6⇑
partial computable random

⇓ 6⇑
computable random

All definitions are equivalent with lim sup instead of lim.

Equalities: [B-Minnes ’12]
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New characterizations of algorithmic randomness

Remarks

The crucial difference between computable randomness and partial
computable randomness is that the strategy may stop betting with
non-zero probability on inputs other than X .

The crucial difference between ML-random and (partial) computably
random is partly the expectation (Ex) versus probability one (P1)
distinction, and but also partly that the strategy for ML-randomness
has unknown probability of never betting.
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New characterizations of algorithmic randomness

Replacing success probability one (P1) with success probability α > 0 does
not change the definitions in the (locally) weak cases:

Theorem [B-Minnes, i.p.]
A sequence X is partial computable random if and only if there is no

locally-weak probabilistic strategy which is successful against X with
probability α > 0.

A sequence X is computable random if and only if there is no weak
probabilistic strategy which is successful against X with probability α > 0.
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Proof intuition:
Given a betting strategy A that succeeds on X with probability α > 0.
W.l.o.g. A uses the “slow but surely savings trick” so that A never loses
much of its capital.

Let q1 ≈ q2 be rationals s.t. q1 < α ≤ q2.
Values C0 << C1 << C2 << · · · will be chosen to be sufficiently large.

A P1 strategy B works as follows:

a. Initially i = 0 and C0 is large enough so that the capital will
exceed C0 with probability ≤ q2.

b. B acts like A in choosing p and q values, using the stake value q
when an unknown bit of X is available. At the same time, B
simulates other possible plays of the betting game by A, dovetailing
over all possible moves with the same number of bets.

c. Whenever fraction ≥ q1 of the simulated plays by A exceed capital Ci :
B chooses one of these at random, “jumps to” that play of A,
increments i , computes a new sufficiently large Ci , and returns to b.
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Open Problems

Understanding Ex-randomness. The current definition uses the
number of bets (“b” moves) as a stopping criterion to define
successive capital values for the increasing expectation. Other natural
definitions fail dramatically and unexpectedly — at least in the
lim sup case.
Open: Does the “lim” definition of Ex-random remain equivalent with
more general stopping criteria?

Kolmogorov-Loveland (KL) randomness is defined by non-monotonic
betting strategies, which can bet on bits of X out of sequential order.
It is known that ML randomness implies KL randomness. A major
open question is whether the notions coincide.

ML random ⇒ KL random ⇒ Partial computable random
Open: What is the strength of a non-monotonic betting strategies
under the P1 definition of success? This defines a class of random
reals that lies between KL random and ML-random. Is it equal to
either of these?
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The End

Thank you!

S. Buss, M. Minnes, “Probabilistic Algorithmic Randomness”, preprint, 2012.
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