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PROBABILISTIC ALGORITHMIC RANDOMNESS

SAM BUSS AND MIA MINNES

Abstract. We introduce martingales defined by probabilistic strategies, in which ran-

domness is used to decide whether to bet. We show that different criteria for the success

of computable probabilistic strategies can be used to characterize ML-randomness, com-

putable randomness, and partial computable randomness. Our characterization of ML-

randomness partially addresses a critique of Schnorr by formulating ML randomness in

terms of a computable process rather than a computably enumerable function.

§1. Introduction. The intuitive notion of what it means for a 0/1 sequence
to be algorithmically random is that the sequence should appear completely
random to any computable process. This simple idea has led to a rich and
complex theory of algorithmic randomness. Most of this theory is based on three
important paradigms for defining algorithmic randomness: first, using Martin-
Löf tests [10]; second, using algorithmic betting strategies or martingales [15, 17];
and, third, using Kolmogorov information theory and incompressibility [8, 16].
As it turns out, there are a number of natural notions of algorithmically random
sequences, including Martin-Löf randomness (1-randomness), partial computable
randomness, computable randomness, and Schnorr randomness, among others.
A particularly attractive aspect of these, and other, notions of randomness is
that they have equivalent definitions in all three paradigms.

Martin-Löf randomness is commonly considered the central notion of algo-
rithmic randomness. There are several reasons for this. First, although there
are a number of different natural notions of randomness, Martin-Löf random-
ness is the strongest of these that does not explicitly use the halting problem or
higher levels of the arithmetic hierarchy. Second, Martin-Löf randomness was
one of the earliest notions of randomness to be given elegant characterizations
in terms of all three paradigms of Martin-Löf tests, martingales, and (prefix-
free) Kolmogorov complexity; in addition, Martin-Löf randomness has several
other equivalent elegant characterizations, e.g., as Solovay randomness. Third,
the theory of Martin-Löf randomness is mathematically elegant and has nice
mathematical properties, such as the existence of universal Martin-Löf tests.

On the other hand, already Schnorr [15, 17] critiqued the notion of Martin-Löf
randomness as being too strong, based on the fact that the associated martingales
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are only left c.e. functions, not computable functions. The problem is that
these left c.e. functions do not correspond in any intuitive way to a computable
betting strategy. For this reason, Schnorr proposed two alternate weaker notion
of randomness, now known as computable randomness and Schnorr randomness.

In recent years, there has been more widespread recognition that Schnorr’s
critique casts serious doubt on the status of Martin-Löf randomness as the best
model for algorithmic randomness. This has led a number of researchers to seek
a characterization of Martin-Löf randomness in terms of more constructive mar-
tingales. One example in this direction is the proposal by Hitchcock and Lutz [6]
of computable martingale processes; these exactly characterize Martin-Löf ran-
domness [6, 11]. The drawback of computable martingale processes, however, is
that they do not correspond to any reasonable algorithmic betting strategy. In
another line of work, the open problem of whether Martin-Löf randomness co-
incides with the Kolmogorov-Loveland (KL) definition of randomness based on
non-monotonic computable betting strategies [13, 2, 12, 7] is largely motivated
by Schnorr’s critique.

The present paper presents a new kind of martingale, one derived from proba-
bilistic strategies, that provides a possible answer to Schnorr’s critique of Martin-
Löf randomness. We present a definition of probabilistic betting strategies: these
betting strategies can be carried out by a deterministic algorithm with the aid
of random coin flips. Our main theorems give exact characterizations of Martin-
Löf randomness, partial computable randomness, and computable randomness
in terms of these probabilistic betting strategies. We prove that Martin-Löf
random sequences are precisely the sequences for which no probabilistic betting
strategy has unbounded expected capital, in other words, unbounded expected
winnings as the number of bets increases. Computable randomness and partial
computable randomness are characterized in terms of having unbounded capital
with probability one.

Precise definitions are in the next section, but it is easy to informally describe
these probabilistic betting strategies. The probabilistic betting strategy A places
a sequence of bets on the bits of a sequence X ∈ {0, 1}∞. Initially, A has capital
equal to 1. At each step, the strategy A deterministically computes a probability
value p ∈ [0, 1] and a stake value q ∈ [0, 2]. At this point, A either bets with
probability p, or with probability 1 − p does not bet at this time. If A bets,
it bets on the next unseen bit of X , betting the amount (q − 1)C that the bit
is zero (equivalently, betting the amount (1 − q)C that the next bit is one),
where C is the current capital held by A. If the bet is correct, the capital
amount is then increased by the bet amount; otherwise, it is decreased by that
amount. If A does not bet, the bit of X is not revealed; in the next step, A will
again probabilistically decide whether to bet on this bit, possibly changing the
probability with which it bets on the next bit and the associated stake.

The probabilistic strategy is defined to be successful against an infinite se-
quence provided it gains unbounded capital as winnings in expectation or, alter-
nately, provided it gains unbounded capital with probability one. It is the former
definition that gives our new characterization of Martin-Löf randomness.

An advantage of our approach is that, unlike the left c.e. martingales that
traditionally correspond to Martin-Löf randomness, our probabilistic betting
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strategies correspond to algorithms that can actually be carried out. The only
non-algorithmic aspect is the use of randomness to decide whether to bet or
not at each step. Furthermore, the fact that betting strategies are allowed to
use randomness is entirely natural. In practical terms, randomness is feasible
to implement, for instance by flipping coins or waiting for atomic decay events.
In addition, it seems quite natural that if a sequence is random, then it should
also be random relative to most randomly chosen advice strings. An additional
motivation is that incorporating randomness into deterministic computation is
already widely done in complexity theory to study cryptography and other prob-
lems related to the P versus NP problem, see for instance the texts [3, 5]. Our
definitions below of probabilistic strategies use a somewhat more restricted ver-
sion of randomized computation than is common in complexity theory; namely,
our probabilistic strategies are allowed to use randomness only when deciding
whether or not to place a bet. However, as we show in work in progress, the
strength of our probabilistic strategies is unchanged when randomness is allowed
at any point instead of just when deciding whether or not to bet.

Section 2 introduces our new notions of Ex-randomness (expected unbounded
winnings) and of P1-randomness (unbounded winnings with probability one).
The reader may wish to refer to the texts [4, 9, 14] for more background on
algorithmic randomness. Section 3 discusses the equivalence of using limsup and
lim for the definition of success of probabilistic martingales. Section 4 proves our
main equivalences for Martin-Löf randomness. Section 5 proves our new char-
acterizations for computable randomness. Section 6 then establishes a similar
characterization for partial computable randomness. Section 7 discusses some
counterexamples, showing that certain types of natural definitions for proba-
bilistic betting strategies are too strong to characterize random sequences; these
results discuss theorems we initially conjectured to be true, but later discovered
to be false. We conclude with some observations and open questions in Section 8.

Our results are summarized in the following figure. The implications and
separations are well-known [1, 13, 16]. The equalities involve our new Ex and P1

concepts, and are established in this paper.

ML-random = Ex-random
⇓ 6⇑

partial computably random = P1-random = locally weak Ex-random

⇓ 6⇑

computably random = weak P1-random = weak Ex-random

We thank Leszek Ko lodziejczyk for suggestions and corrections, and Logan
Axon, Denis Hirschfeldt, Bjørn Kjos-Hanssen, Joe Miller, and especially the two
anonymous referees for helpful comments.

§2. Preliminaries.

Definition 2.1. Let Γ be a finite alphabet. We denote by Γ∗ and Γ∞ the sets
of finite and infinite strings (respectively) over Γ. The empty string is denoted λ.
For α ∈ Γ∗ ∪ Γ∞ and n ≥ 0, we write α(n) to denote the symbol in position n
in α: the first symbol of α is α(0), the second is α(1), etc. For β ∈ Γ∗, we write
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β ⊑ α (or β ⊏ α) to mean β is a (proper) initial prefix of α. Now suppose α ∈ Γ∗.
The length of α is denoted |α|. We let |α|a denote the number of occurrences of
the symbol a in α. For α 6= λ, α− is α minus its last symbol. Also, [α] denotes
the set containing the infinite sequences X ∈ Γ∞ for which α ⊏ X . We write
X↾n to denote the initial prefix of X of length n. A set S ⊂ Γ∗ is prefix-free
provided there do not exist σ, σ′ ∈ S with σ ⊏ σ′.

Recall the well-known definitions associating martingales and algorithmic ran-
domness:

Definition 2.2. A function d : {0, 1}∗ → R≥ is a martingale if for all σ ∈
{0, 1}∗

d(σ) =
d(σ0) + d(σ1)

2
.(1)

It is a supermartingale if the equality = in (1) is replaced by the inequality ≥.
A partial function d : {0, 1}∗ → R≥ is a (super)martingale provided, for all
σ ∈ {0, 1}∗, if either of d(σ0) or d(σ1) is defined, then equation (1) holds with
all of its terms defined. A (super)martingale d succeeds on X ∈ {0, 1}∞ if

lim sup
n→∞

d(X↾n) = ∞.(2)

Since a martingale is a real-valued function, it can be classified as computable
or computably enumerable using the standard definitions (see, e.g., chapter 5
in [4]). Namely, a martingale d is computable provided there is a rational-valued
computable function f(σ, n) such that f(σ, n) ↓ iff d(σ) ↓, and |f(σ, n)−d(σ)| <
2−n for all n and σ. And, a martingale d is computably enumerable provided
{(σ, q) : q ∈ Q, q < d(σ)} is computably enumerable.

Martingales have been used to define notions of algorithmic randomness. The
intuition is that an infinite sequence X is random if no effective betting strategy
attains unbounded capital when playing against it. In a fair game, the capital
earned by a betting strategy satisfies the martingale property. Therefore, we
have the following definitions.

Definition 2.3. The infinite sequence X is called computably random if no
(total) computable martingale succeeds on it. It is partial computably random if
no partial computable martingale succeeds on it. And, it is Martin-Löf random
if no computably enumerable martingale succeeds on it.

Proposition 2.4. An infinite sequence X is computably random, partial com-
putably random, or ML-random if and only if limn d(X↾n) 6= ∞ for all com-
putable, partial computable, or computably enumerable martingales (respectively).

Proof. Theorem 7.1.3 in [4] proves the equivalence in the case of computable
and partial computable randomness. For ML-randomness, the proof of Schnorr’s
theorem (Theorem 6.3.4 in [4]) on the equivalence between the martingale and
ML-test characterizations of ML-randomness shows that if X is not ML-random,
then this is witnessed by a computably enumerable martingale d such that
limn d(X↾n) = ∞. ⊣

Even though a martingale is a real-valued function, the next proposition states
that rational-valued functions suffice for describing (possibly partial) computable
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randomness. A (partial) computable rational-valued function f is a function for
which there is an algorithm which, on input x, halts if and only if f(x)↓ and,
when it halts, outputs the exact value of f(x).

Proposition 2.5 (Schnorr, as attributed in [4, Prop. 7.1.2]). An infinite se-
quence X ∈ {0, 1}∞ is (partial) computably random if and only if no rational-
valued (partial) computable martingale succeeds on it.

Each of these classical martingales corresponds to a betting strategy in which,
after seeing σ, the strategy bets that X(|σ|) = 0 with stake q(σ) = d(σ0)/d(σ).
Our extension to probabilistic strategies A will use both a stake function qA and
a betting probability function pA. In particular, in addition to the outcome of
each bet, we also record decisions of the strategy to “bet” (b) or “wait” (w). The
next definition expresses this formally.

Definition 2.6. A probabilistic strategy A consists of a pair of rational-valued
computable functions pA(π, σ) and qA(π, σ) such that

pA : {b,w}∗ × {0, 1}∗ → Q ∩ [0, 1], qA : {b,w}∗ × {0, 1}∗ → Q ∩ [0, 2].

The input π ∈ {b,w}∗ is a description of the run of the strategy so far, where b

corresponds to a decision to bet and w to wait. The input σ ∈ {0, 1}∗ represents
the string of bits that have been bet on so far, an initial prefix of the infinite
string being played against. At each step during the run of the strategy, the
number of bets placed so far, |π|b, should equal the number of bits that have
been revealed by the bets, |σ|. Therefore, we always require that each input pair
(π, σ) satisfies |π|b = |σ|; the values of pA(π, σ) and qA(π, σ) are irrelevant when
this does not hold.

Let |σ| = |π|b. The intuition is that the value pA(π, σ) is the probability that
the strategy places a bet during this move:

pA(π, σ) = Prob[A bets at this step | π describes the bet/wait moves so far

in a game played against X ⊐ σ].1

If A does bet, it will be on the next bit X(|σ|) of X . The value q = qA(π, σ)
is the stake associated with this bet (if it occurs). If q > 1, then the strategy is
betting that X(|σ|) = 0; if q < 1, the bet is that X(|σ|) = 1.

The strings π ∈ {b,w}∗ form a binary tree called the computation tree. The
probability that the strategy A follows a particular path through the computa-
tion tree depends on the pA values, and these depend on the so-far revealed bits
of the infinite string being played against.

Lemmas 4.6 and 5.4 establish (super)martingale properties for the capital
earned by probabilistic strategies while playing on infinite strings.

Definition 2.7. The cumulative probability of π relative to σ, PA(π, σ), is
the probability that the strategy A reaches the node π when running against an
infinite string with prefix σ:

PA(π, σ) = Prob[π gives the initial bet/wait moves of A | σ ⊏ X ].

1In expressions involving probabilities, we use “|” to denote conditioning.
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The formal definition of PA proceeds inductively. For the base case, PA(λ, λ) = 1.
For non-empty π ∈ {b,w}∗,

PA(π, σ) =

{

PA(π−, σ−) · pA(π−, σ−) if π = (π−)b

PA(π−, σ) · (1 − pA(π−, σ)) if π = (π−)w.

The capital at π relative to σ, CA(π, σ), is the amount of capital the strategy has
at the node specified by π when playing against an infinite string with prefix σ.
We adopt the convention that the initial capital equals 1, so CA(λ, λ) = 1. For
non-empty π ∈ {b,w}∗, CA is inductively defined by

CA(π, σ) =











CA(π−, σ−) · qA(π−, σ−) if π = (π−)b and σ = (σ−)0,

CA(π−, σ−) · (2 − qA(π−, σ−)) if π = (π−)b and σ = (σ−)1

CA(π−, σ) if π = (π−)w.

For X ∈ {0, 1}∗, pXA (π) abbreviates pXA (π,X↾|π|b), and qXA (π), PX
A (π), CX

A (π)
are analogous abbreviations.

Lemma 2.8. For A a probabilistic strategy, π ∈ {b,w}∗, σ ∈ {0, 1}|π|b,
∑

j∈N

PA(πwj , σ)pA(πwj , σ) = PA(π, σ)
(

1 −
∏

j∈N

(1 − pA(πwj , σ))
)

.(3)

The quantity on the left-hand side of (3) is equal to the probability that, for
input X ∈ [σ], the strategy A reaches node π in the computation tree and goes
on to place a subsequent bet. The infinite product on the right-hand side of (3)
is the probability that the strategy never makes a bet after reaching node π when
playing against a string extending σ, conditioned on having reached π.

Proof. By definition of PA(πwj , σ), for j ≥ 0,

PA(πwj , σ) = PA(π, σ)

j−1
∏

k=0

(1 − pA(πwk, σ)).

Therefore, it suffices to prove the following holds for m ≥ 0:

m
∑

j=0

pA(πwj , σ)

j−1
∏

k=0

(1 − pA(πwk, σ)) = 1 −
m
∏

j=0

(1 − pA(πwj , σ)).(4)

This can readily be proved by induction on m. Alternately, and more intuitively,
the left-hand side of (4) is the probability that after reaching π, the strategy A
bets on its (j+1)st attempt (after j wait events) for some j ≤ m; the right-hand
side of (4) equals one minus the probability of waiting at least m+ 1 times after
reaching π. From this, it is clear that equality holds. ⊣

A classical martingale is successful against an infinite string X if it accumulates
unbounded capital during the play. In the context of probabilistic computation,
there are several ways to define analogous notions.

Definition 2.9. Let A be a probabilistic strategy and let X ∈ {0, 1}∞. Then
µX
A is the probability distribution on {b,w}∞ defined on the basic open sets [π],

π ∈ {b,w}∗, by µX
A ([π]) = PX

A (π).
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Definition 2.10. Let Π ∈ {b,w}∞ and X ∈ {0, 1}∞. A probabilistic strat-
egy A succeeds against X along Π provided

lim
n→∞

CX
A (Π↾n) = ∞.

Moreover, A succeeds against X with probability one if

µX
A

(

{Π ∈ {b,w}∞ : lim
n→∞

CX
A (Π↾n) = ∞}

)

= 1.

In this case, A is a P1-strategy for X . The infinite sequence X ∈ {0, 1}∞ is
P1-random if no probabilistic strategy is a P1-strategy for X .

An alternate definition of success for a probabilistic martingale uses expec-
tation. In particular, we will formalize the intuition of the expected capital of
the strategy being unbounded. The definition of expected capital will be given
in terms of the number of bets placed; for this, we let R(n) to be the set of
computation nodes that can reached immediately after the n-th bet.

Definition 2.11. Let n ∈ N. Then

R(n) = {π ∈ {b,w}∗ : |π|b = n, π 6= π−
w}.

Note that R(0) = {λ} and that R(n + 1) can be expressed in terms of R(n) as

R(n + 1) =
⋃

π∈R(n)

{πwj
b : j ∈ N}.

Definition 2.12. The expected capital after n bets of a probabilistic strat-
egy A over X ∈ {0, 1}∞ is

Ex
X
A (n) =

∑

π∈R(n)

PX
A (π)CX

A (π).(5)

The expected capital after seeing an initial prefix σ ∈ {0, 1}∗ is Ex
σ
A = Ex

X
A (|σ|)

for any X extending σ.

Of course, there may be runs of the strategy A over X that never place n bets.
To make sense of ExXA (n) as an expectation, we define the value of “the capital
of A after n bets” to equal zero in the event that A never makes n bets. Then
we have,

Ex
X
A (n) = the expected value for the capital of A after n bets.

Definition 2.13. A probabilistic strategy A is an Ex-strategy for X ∈ {0, 1}∞

if

lim
n→∞

Ex
X
A (n) = ∞.

The infinite sequence X ∈ {0, 1}∞ is Ex-random if no probabilistic strategy is
an Ex-strategy for X .

We can weaken the above criteria for randomness by only considering proba-
bilistic strategies that don’t “get stuck”. In general, a probabilistic martingale
might reach a state where it never bets on the next bit of X , or more generally
has positive probability of never betting on the next bit. This is disallowed by
the next definitions.
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Definition 2.14. A probabilistic martingale A always eventually bets with
probability one provided that, for all π ∈ {b,w}∗ and all σ ∈ {0, 1}|π|b,

PA(π, σ) ·
∏

i∈N

(1 − pA(πwi, σ)) = 0.(6)

The martingale A eventually bets on X with probability one provided for all
π ∈ {b,w}∗

PX
A (π) ·

∏

i∈N

(1 − pXA (πwi)) = 0.(7)

As in Lemma 2.8, the infinite products in (6) and (7) are equal to the probabil-
ity that, once node π has been reached, A never places another bet. Thus, these
definitions exclude the possibility of A reaching node π with non-zero probability
and having zero probability of ever placing another bet. We arrive at weakened
versions of probabilistic randomness.

Definition 2.15. A sequence X ∈ {0, 1}∞ is weak P1-random if no prob-
abilistic martingale which always eventually bets with probability one is a P1

strategy for X .

Definition 2.16. A sequence X ∈ {0, 1}∞ is weak Ex-random if no probabilis-
tic martingale which always eventually bets with probability one is an Ex-strategy
for X .

Definition 2.17. A sequence X ∈ {0, 1}∞ is locally weak Ex-random if no
probabilistic martingale which eventually bets on X with probability one is an
Ex-strategy for X .

It is easy to verify that any P1-strategy for X already satisfies the “locally
weak”property, so we do not need a definition of “locally weak P1-random”.

Proposition 2.18. Let X ∈ {0, 1}∞.

(a) If X is Ex-random, then X is locally weak Ex-random.
(b) If X is locally weak Ex-random, then X is weak Ex-random.
(c) If X is P1-random, then X is weak P1-random.
(d) If X is Ex-random, then X is P1-random.
(e) If X is weak Ex-random then X is weak P1-random.
(f) If X is locally weak Ex-random, then X is P1-random.

Proof. Parts (a)-(c) are immediate from the definitions. Now, suppose A is
a P1-strategy for X . The next lemma, Lemma 2.20, shows that A is already an
Ex-strategy for X ; this suffices to prove parts (d) and (e). Combined with the
observation above that any P1-strategy eventually bets with probability one for
any X , Lemma 2.20 also gives (f). ⊣

Definition 2.19. The probabilistic strategy A succeeds with non-zero proba-
bility against X if, for some T > 0,

µX
A

(

{Π ∈ {b,w}∞ : lim
n→∞

CX
A (Π↾n) = ∞}

)

= T.(8)

Lemma 2.20. Suppose that A succeeds against X with non-zero probability.
Then A also Ex-succeeds against X.
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The proof of Lemma 2.20 formalizes the fact that if a non-zero probability
fraction of the runs have capital tending to infinity, then the expected capital
(taken over all runs) tends to infinity.

Proof. Suppose (8) holds with T > 0. We need to show that limn Ex
X
A (n) =

∞. For N > 0 and s > 0, define Ps,N as

Ps,N = {Π ∈ {b,w}∞ : ∀n ≥ N,CX
A (Π↾n) > s}.

Fix s > 0. Then (8) implies that limN µX
A (Ps,N ) ≥ T . Therefore, there is some

Ns such that µX
A (Ps,Ns

) ≥ T/2. Therefore, for all n ≥ Ns,

Ex
X
A (n) =

∑

π∈R(n)

PX
A (π) · CX

A (π) > µX
A (Ps,Ns

) · s ≥ (T/2) · s.

The first inequality follows from the fact that R(n) is a prefix-free cover of
{b,w}∞ and each member of R(n) has length at least n ≥ Ns. Therefore, some
subset of R(n) covers Ps,Ns

and hence the sum of PX
A (π) over this set is greater

than or equal to µX
A (Ps,Ns

). For each of the strings, π, in this subset, CX
A (π) > s

by definition of Ps,Ns
.

Taking the limit as s → ∞ gives that limn Ex
X
A (n) = ∞ and proves Proposi-

tion 2.18. ⊣

For the next lemma, note that
∑

π∈R(n)

PA(π, σ)

is equal to the probability that the strategy A places at least n bets when run
against X ∈ [σ].

Lemma 2.21. Let A be a probabilistic strategy and n ∈ N.

(a) Suppose σ ∈ {0, 1}n. Then
∑

π∈R(n)

PA(π, σ) ≤ 1.

(b) Suppose A always eventually bets with probability one, and let σ ∈ {0, 1}n.
Then,

∑

π∈R(n)

PA(π, σ) = 1.

(c) Suppose A eventually bets on X ∈ {0, 1}∞ with probability one. Then,
∑

π∈R(n)

PX
A (π) = 1.

Proof. Part (a) is simply the fact that the probability of betting at least
n times is bounded by one. Parts (b) and (c) follow from the definition of A
eventually betting with probability one. Formally, induction on n can be used
to prove each part. We present the proof of part (b) and then mention the small
changes required to adapt it for the other two statements.
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The base case of (b) is trivial since R(0) = {λ} and PA(λ, λ) = 1. For the
induction step,

∑

π∈R(n+1)

PA(π, σ) =
∑

τ∈R(n)

∑

j∈N

PA(τwj
b, σ)(9)

=
∑

τ∈R(n)

∑

j∈N

PA(τwj , σ−)pA(τwj , σ−)

=
∑

τ∈R(n)

PA(τ, σ−)
(

1 −
∏

j∈N

(1 − pA(τwj , σ−))
)

=
∑

τ∈R(n)

PA(τ, σ−) = 1,

where the third equality is Lemma 2.8, the fourth equality follows from (6), and
the last equality is the induction hypothesis.

Part (c) is proved in exactly the same way, except that σ is assumed to be an
initial prefix of the given infinite string X . For part (a), the last two equalities
in (9) are replaced by inequalities. ⊣

§3. Limits and limsups. As we recalled in Proposition 2.4, the classical
notions of ML-randomness and (partial) computable randomness can be equiv-
alently defined in terms of either limits or limsups. The notions of P1- and
Ex-randomness were defined above in terms of limits; however, as we discuss
next, they can be equivalently defined using limsups.

Definition 3.1. A probabilistic strategy A is a limsup-P1-strategy for X pro-
vided that

µX
A

(

{Π ∈ {b,w}∞ : lim sup
n→∞

CX
A (Π↾n) = ∞}

)

= 1.

X is limsup-P1-random if there is no limsup-P1-strategy for X . Similarly, A is
a limsup-Ex-strategy for X provided

lim sup
n→∞

Ex
X
A (n) = ∞.

And, X is limsup-Ex-random if there is no limsup-Ex-strategy for X . The notions
of weak limsup-P1, and weak and locally weak limsup-Ex are defined similarly.

Since having lim supn equal to infinity is a weaker condition than having the
ordinary limit, limn, equal to infinity, it is immediate that the “limsup” notions
of randomness imply the “lim” notions. In fact, the limsup and lim notions
are equivalent. We first state and prove the equivalence of the P1 versions of
randomness.

Theorem 3.2. Let X ∈ {0, 1}∞. Then X is P1-random if and only if it is
limsup-P1-random. Likewise, X is weak P1-random if and only if it is weak
limsup-P1-random.

Proof. As just remarked, it is sufficient to prove the forward implications.
The proof is based on the same “savings trick” that works in the case of classical
martingales, see [4, Prop. 6.3.8]. The basic idea is that a probabilistic strategy
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with an unbounded limsup payoff can be converted into a probabilistic strategy
with payoff tending to infinity by occasionally saving (holding back) some of the
winnings.

Specifically, given a probabilistic strategy A, we define another probabilis-
tic strategy A′ such that pA′(π, σ) = pA(π, σ) for all π, σ (and so µX

A = µX
A′

for all X ∈ {0, 1}∞), but with a modified stake function that incorporates
the savings trick. We must ensure that, for X ∈ {0, 1}∞ and Π ∈ {b,w}∞,
lim supn C

X
A (Π↾n) = ∞ if and only if limn C

X
A (Π↾n) = ∞.

Fix a capital threshold C0 > 1, and a savings increment S0, where 0 < S0 <
C0. The new probabilistic strategy A′ acts as follows: A′ maintains a “current
savings amount”, S(π, σ). Initially, S(λ, λ) = 0. The strategy A′ views S(π, σ)
as being permanently saved, and views the remainder of its capital W (π, σ) :=
CA′(π, σ)−S(π, σ) as its current working capital. In other words, W (π, σ) is the
amount available for wagering at node π when playing against any extension of
σ. If the working capital ever rises above the threshold, A′ puts more money in
the bank. Formally, we set S(πw, σ) = S(π, σ) and

S(πb, σ) =

{

S(π, σ−) if CA′(πb, σ) ≤ S(π, σ−) + C0

S(π, σ−) + ∆ otherwise,

where ∆ is at least S0 and large enough so that W (πb, σ) ≤ C0. Whenever A′

places a bet, it scales the stake value so as to place the same relative wager as A
but only on the amount of capital available for wagering. That is,

qA′(π, σ) − 1 =
(qA(π, σ) − 1)W (π, σ) + S(π, σ)

W (π, σ) + S(π, σ)

It is not hard to show that, for every X ∈ {0, 1}∞ and every Π ∈ {b,w}∞,
limn C

X
A′(Π↾n) = ∞ iff lim supn C

X
A (Π↾n) = ∞, since if the latter holds, then

A′’s working capital must exceed its threshold value C0 infinitely often, and thus
its savings amount increases without bound. ⊣

It is not so easy to apply the savings trick to Ex-randomness since “savings”
cannot be protected in the same way from events that occur with low prob-
ability. Nonetheless, Ex-randomness, locally weak Ex-randomness, and weak
Ex-randomness are equivalent to limsup-Ex-randomness, locally weak limsup-
Ex-randomness, and weak limsup-Ex-randomness, respectively. We shall prove
these equivalences in the next three sections while proving their equivalences to
the notions of ML-randomness, partial computable randomness, and computable
randomness (respectively).

§4. Theorems and Proofs for Ex-randomness.

Theorem 4.1. Suppose X ∈ {0, 1}∞. If X is ML-random, then X is limsup-
Ex-random.

Theorem 4.2. Suppose X ∈ {0, 1}∞. If X is Ex-random, then X is ML-
random.

Recalling that limsup-Ex-random trivially implies Ex-random, we get the fol-
lowing equivalences:
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Corollary 4.3. A sequence X is limsup-Ex-random if and only if it is Ex-
random, and if and only if it is ML-random.

A strategy A is called a universal Ex-strategy if, for every X ∈ {0, 1}∞, if
there is some Ex-strategy for X then A is an Ex-strategy for X . While proving
Theorem 4.2, we define a probabilistic strategy which succeeds on exactly the
set of infinite sequences covered by a given ML-test (see the definition below of
ML-tests). The proof of Theorem 4.2, applied to a universal ML-test, gives the
following corollary.

Corollary 4.4. There is a universal Ex-strategy.

It will be convenient to work with a definition of ML-randomness in terms of
ML-tests.

Definition 4.5. A Martin-Löf test (ML-test) is a uniformly c.e. sequence
of sets Ui, with µ(Ui) ≤ 2−i for all i ≥ 1 (where µ is Lebesgue measure).
Furthermore, without loss of generality, there is an effective algorithm B which
enumerates pairs (i, σ) such that i ≥ 1 and σ ∈ {0, 1}∗ so that

1. Each Ui =
⋃

{[σ] : (i, σ) is output by B}.
2. For each i, Ui+1 ⊆ Ui.
3. If B outputs both (i, σ) and (i, σ′), then [σ] ∩ [σ′] = ∅.
4. For each i > 0, B outputs infinitely many pairs (i, σ). The σ’s of these

pairs can be effectively enumerated as σi,0, σi,1, σi,2, . . . .

An infinite sequence X ∈ {0, 1}∞ fails the ML-test if X ∈
⋂

i Ui. A sequence X
is ML-random provided it does not fail any ML-test.

We establish two properties of probabilistic strategies before proving Theorem
4.1. The first of these properties is that the average capital accumulated by a
probabilistic strategy is a supermartingale.

Lemma 4.6. If A is a probabilistic strategy and σ ∈ {0, 1}∗ then

Ex
σ
A ≥

Ex
σ0
A + Ex

σ1
A

2
(10)

Equation (10) is an inequality instead of an equality because of the possibil-
ity that A might “get stuck” after betting on the bits of σ and never place a
subsequent bet. Compare this to Lemma 5.4.

Proof. For σ ∈ {0, 1}∗ with |σ| = n, for any π ∈ {b,w}∗ with |π|b = n, and
for any j ∈ N,

PA(πwj
b, σ0) = PA(πwj , σ)pA(πwj , σ) = PA(πwj

b, σ1)

and

CA(πwj
b, σ0) + CA(πwj

b, σ1) = CA(π, σ)
(

qA(πwj , σ) + (2 − qA(πwj , σ))
)

= 2CA(π, σ).
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Therefore,

Ex
σ0
A + Ex

σ1
A

2

=
1

2

∑

π∈R(n)

∑

j∈N

(

PA(πwj
b, σ0)CA(πwj

b, σ0) + PA(πwj
b, σ1)CA(πwj

b, σ1)
)

=
∑

π∈R(n)

CA(π, σ)
∑

j∈N

PA(πwj , σ)pA(πwj , σ)

=
∑

π∈R(n)

PA(π, σ)CA(π, σ)
(

1 −
∏

j∈N

(1 − pA(πwj , σ))
)

≤
∑

π∈R(n)

PA(π, σ)CA(π, σ) = Ex
σ
A,

where the third equality is given by Lemma 2.8. ⊣

Lemma 4.7. Let σ0 ∈ {0, 1}∗, S ⊆ {0, 1}∗. If S is a prefix-free set of exten-
sions of σ0, and A is a probabilistic strategy, then

∑

σ∈S

2−|σ|
Ex

σ
A ≤ 2−|σ0|Ex

σ0

A .

Proof. This lemma is analogous to Kolmogorov’s Inequality for classical
(super-)martingales and is proved in a similar way [4, Theorem 6.3.3]. To sketch:
it is enough to prove the inequality for finite sets S, and this can be done by
induction via repeated applications of Lemma 4.6. ⊣

Proof of Theorem 4.1. Suppose A is a limsup-Ex-strategy for X ∈ {0, 1}∞.
We will define an ML-test {Ui}i∈N which X fails. Let

Ui = {Y ∈ {0, 1}∞ : ∃n
(

Ex
Y
A(n) > 2i

)

} =
⋃

σ:Exσ
A
>2i

[σ].

These sets are uniformly enumerable since the sum (5) defining Ex
σ
A has all

its terms computable and non-negative. Hence the values Ex
σ
A are uniformly

computably approximable from below. To bound µ(Ui), let Si be a prefix-free
subset of {0, 1}∗ such that ExσA > 2i for all σ ∈ Si and such that the union of the
cylinders [σ] for σ ∈ Si covers Ui. All strings in Si extend λ, so by Lemma 4.7

µ(Ui) =
∑

σ∈Si

2−|σ| < 2−i
∑

σ∈Si

2−|σ|
Ex

σ
A ≤ 2−i

Ex
λ
A = 2−i

since Ex
λ
A = 1.

By assumption on X , lim supn Ex
X
A (n) = ∞, and hence for all i there is some n

for which Ex
X
A (n) > 2i. That is, for each i, X ∈ Ui. Therefore, X is not ML-

random. ⊣

Proof of Theorem 4.2. Suppose X is not ML-random, as witnessed by
some ML-test {Ui}i∈N, as enumerated by an algorithm B. The first part of the
proof uses B to construct a limsup-Ex-strategy A which is successful against X .
At the end of the proof, we will further prove that A can be converted into an
Ex-strategy A′.
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We think of the strategy A as going through stages. At the beginning of a
stage, A has already made bets against the first n bits of X , for some n ≥ 0, and
thus knows the initial prefix X↾n. The strategy A begins running algorithm B
to enumerate the σn+1,j ’s that specify Un+1, for j = 0, 1, 2, . . . . When σn+1,j is

enumerated, set pn+1,j = 2n+1/2|σn+1,j|. Note that the measure constraint on
Un+1 implies that

∑

j pn+1,j ≤ 1. The intuition is that, with probability pn+1,j ,

A will bet all-or-nothing that X(k) = σn+1,j(k) for n ≤ k < |σn+1,j |. If X ∈
[σn+1,j ] then all of these bets will be correct and the capital accumulated by A

will increase by a factor of 2|σn+1,j |−n. Otherwise, X /∈ [σn+1,j ] and the capital
will drop to zero along this path of the computation.

Formally, we define pA and qA inductively. Suppose π is a minimal node for
which pA(π, σ) and qA(π, σ) are not yet defined, and let n = |π|b. Then, for each
j ∈ N, define pA(πwj , σ) so that

pA(πwj , σ)

j−1
∏

i=0

(1 − pA(πwi, σ)) = pn+1,j .

Note that since
∑

j pn+1,j ≤ 1, we have pA(πwj , σ) ≤ 1. Also, for all j ≥ 0 and

1 ≤ k < |σn+1,j | − n, define

pA(πwj
b
k, σ) = 1.

And, for j ≥ 0 and 0 ≤ k < |σn+1,j | − n, define

qA(πwj
b
k, σ) =

{

0 if σn+1,j(n + k) = 1

2 if σn+1,j(n + k) = 0;

Clearly, all pA and qA values are computable from the algorithm B for the ML-
test, and A is a probabilistic strategy. To prove that A is a limsup-Ex-strategy
for X , we analyze the expected capital of A when played against X . We must
show that lim supm Ex

X
A (m) = ∞.

Since X ∈
⋂

n Un, there is a (unique) sequence {σn,j′n
}n∈N such that σn,j′n

⊏ X
for each n. This has an infinite subsequence of values σn1,j1 , σn2,j2 , σn3,j3 , . . .
such that n1 = 1 and each ni+1 = |σni,ji |+ 1. We define ℓ0 = 0 and ℓi = |σni,ji |,
so that ni+1 = ℓi + 1. Note that ℓi ≥ ni. Consider the following sequence of
nodes πk in the computation tree:

πk = w
j1b

ℓ1w
j2b

ℓ2−ℓ1 · · ·wjkb
ℓk−ℓk−1 .

The nodes πk are chosen so that, when run against X , every bet made on the
computation path to πk is successful. Since |πk|b = ℓk, there are ℓk many bets
placed on this computation path, and since all of them are successful, CX

A (πk) =
2ℓk . We have

Ex
X
A (ℓk) =

∑

π∈R(ℓk)

PX
A (π)CX

A (π) ≥ PX
A (πk)CX

A (πk)(11)

= 2ℓk
k
∏

i=1

pni,ji = 2ℓk
k
∏

i=1

2ni

2ℓi
= 2n1

k−1
∏

i=1

2ni+1

2ℓi
= 2k.

The last equality follows from n1 = 1 and ni+1 = ℓi + 1. Thus, ExXA (ℓk) ≥ 2k.
Therefore, lim supn ExA(X↾n) = ∞.
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At this point, we would like to apply a modified savings trick (see the proof
of Theorem 3.2) to A to obtain an Ex-strategy A′ for X . The computation
showing that lim supn ExA(X↾n) = ∞ used only the probabilities on a single

computation path Π = w
j1b

ℓ1w
j2b

ℓ2−ℓ1w
j3b

ℓ3−ℓ2 · · · . A näıve application of the
savings trick would give a probabilistic strategy such that the path Π is still taken
with exactly the same probabilities. The problem with this is that no matter
how much capital is “saved”, the weighted capital PX

A (π)CX
A (π) can still become

arbitrarily small, because the probabilities pni,ji can be arbitrarily small. Thus
an alternate savings trick technique is needed: namely, to have the probabilistic
strategy choose with a non-zero probability to permanently switch to wagering
evenly (with stake value q equal to 1). Once the strategy starts wagering evenly,
its weighted capital along this path remains fixed for the rest of the execution.

Specifically, the probabilistic strategy A′ is defined to act like A most of the
time, but with the following exception: Every time a string σnk,jk has been
completely processed, A′ next chooses either (a) with probability 1/2, to enter
the mode of betting evenly with probability 1 and stake value 1 from that point
on; or (b) with probability 1/2, to not bet this step and then continue simulating
the strategy A by enumerating the members of Uℓk+1 where ℓk = |σnk,jk |. In
particular, if π is the node reached immediately following the processing of σnk,jk

then for any s ≥ 0,

PA′(πbs+1, σ) = PA′(πw, σ) =
1

2
PA′(π, σ)(12)

CA′(πbs+1, σ) = CA′(πw, σ) = CA′(π, σ).(13)

These distinguished computation nodes π will now be π′
k, defined as

π′
k = w

j1+1
b
ℓ1w

j2+1
b
ℓ2−ℓ1 · · ·wjk+1

b
ℓk−ℓk−1 .

That is, π = π′
k is the path πk padded by k many extra w symbols to indicate that

A′ continued to simulate A after handling each of σn1,j1 , . . . , σnk,jk . Following
(12) and (13), we can relate the values of PX

A′ and CX
A′ to PX

A and CX
A : for s ≥ 0

PX
A′(π′

kb
s+1) = PX

A′(π′
kw) = 2−(k+1) · PX

A (πk)

CX
A′(π′

kb
s+1) = CX

A′(π′
kw) = CX

A (πk).

By the above and by the string of equalities in (11),

PX
A′(π′

kb
s+1)CX

A′(π′
kb

s+1) =
(

2−(k+1) · PX
A (πk)

)

CX
A (πk) = 2−(k+1)2k =

1

2
.

Therefore, for each n,

Ex
X
A′(n) =

∑

π∈R(n)

PX
A′(π)CX

A′ (π)

≥
∑

k : ℓk<n

PX
A′(π′

kb
n−ℓk)CX

A′(π′
kb

n−ℓk) =
∑

k : ℓk<n

1
2 .

Since the sequence of ℓk values is infinite, this sum tends to ∞ as n → ∞. It
follows that limn Ex

X
A′(n) = ∞ as desired, and X is not Ex-random. ⊣
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It is interesting to note that both the limsup and the lim versions of the prob-
abilistic martingale described above are oblivious to a certain extent. Namely,
in defining A (and A′), the probability pn+1,j is set independently of whether or
not X↾n = σn+1,j↾n. Of course, if they are not equal, it would make more sense
to set pn+1,j = 0. However, it does not appear that taking this into account
would lead to any improvement in the analysis in the proof of Theorem 4.2.

§5. Theorems and Proofs for weak P1-randomness.

Theorem 5.1. Suppose X ∈ {0, 1}∞. If X is weak P1-random, then X is
computably random.

Theorem 5.2. Suppose X ∈ {0, 1}∞. If X is computably random, then X is
weak limsup-Ex-random.

As an immediate corollary of Proposition 2.18(e), Theorems 3.2, 5.1, and 5.2,
and the fact that weak limsup-Ex-randomness trivially implies weak Ex-randomness,
we obtain the following set of equivalences.

Corollary 5.3. The following notions are equivalent: weak P1-random, weak
limsup-P1-random, weak Ex-random, weak limsup-Ex-random, and computably
random.

Proof of Theorem 5.1. Suppose X is not computably random, and let d
be a total computable rational-valued martingale with limn d(X↾n) = ∞. The
martingale d immediately gives a probabilistic strategy; namely, for each π ∈
{b,w}∗ and σ ∈ {0, 1}|π|b, pd(π, σ) = 1 and for each n ∈ N,

qd(bn, σ) =
d(σ0)

d(σ)

In particular, there is exactly one infinite path through {b,w}∗ with non-zero
probability, and along this path, the capital accumulated by the probabilistic
strategy is exactly equal to the martingale d. Hence this is a P1-strategy for X .
Moreover, it always eventually bets with probability one since d is total and all
bets are made with probability one. It follows that X is not weak P1-random. ⊣

Proof of Theorem 5.2. Suppose X is not weak limsup-Ex-random, and
let A be a limsup-Ex-strategy for X which always eventually bets with probability
one. Define d : {0, 1}∗ → R≥ to be d(σ) = Ex

σ
A.

Lemma 5.4. If A always eventually bets with probability one, the function d
satisfies the martingale property (1).

Proof. By Lemma 4.6, d(σ) is a supermartingale. However, since A always
eventually bets with probability one, (6) gives that for π ∈ R(|σ|),

PA(π, σ)CA(π, σ)
(

1 −
∏

j∈N

(1 − pA(πwj , σ))
)

= PA(π, σ)CA(π, σ).

Hence, the inequality in the proof of Lemma 4.6 can be replaced by equality in
this case, and d(σ) is a martingale. ⊣
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Since A is a (weak) limsup-Ex-strategy, lim supn d(X↾n) = ∞. Thus, Theo-
rem 5.2 will be proved if we can show that d is computable. Since d is a martin-
gale by Lemma 5.4 and since d(λ) = 1,

∑

τ∈{0,1}n

d(τ) = 2n(14)

for all n. Define the approximation to d at level M > 0 to be

d(τ,M) =
∑

π∈R(|τ |):|π|w<M

PA(π, τ)CA(π, τ).

This is a finite sum of computable terms and approaches d(τ) from below. It suf-
fices to describe an algorithm which, given σ ∈ {0, 1}∗ and ǫ > 0, approximates
d(σ) to within ǫ of the true value. To do so, compute

∑

τ∈{0,1}|σ|

d(τ,M)

for increasingly large values of M , until a value for M is found satisfying that this
sum is greater than 2|σ| − ǫ. By (14), this value of M puts the value of d(σ,M)
within ǫ of d(σ). This shows d is computable, and proves Theorem 5.2. ⊣

§6. Theorems and Proofs for P1-randomness.

Theorem 6.1. Suppose X ∈ {0, 1}∞. If X is P1-random, then X is partial
computably random.

Theorem 6.2. Suppose X ∈ {0, 1}∞. If X is partial computably random,
then X is locally weak limsup-Ex-random.

As an immediate corollary of Proposition 2.18(f), Theorems 3.2, 6.1, and 6.2,
and the fact that locally weak limsup-Ex-randomness trivially implies locally
weak Ex-randomness, we obtain the following set of equivalences.

Corollary 6.3. The following notions are equivalent: P1-random, limsup-
P1-random, locally weak Ex-random, locally weak limsup-Ex-random, and partial
computably random.

Proof of Theorem 6.1. Suppose d is a rational-valued partial computable
martingale which succeeds on X . We will define a probabilistic strategy A that
eventually bets on X with probability one and is a P1-strategy for X . The idea
is that A waits to bet on σ until it has seen that both d(σ)↓ and d(σ0)↓ and, at
that point, bets the appropriate stake with probability one. Formally, define for
π ∈ {b,w}∗ and σ ∈ {0, 1}|π|b,

pA(π, σ) =

{

1 if it takes |π|w steps for both d(σ), d(σ0) to have converged,

0 otherwise.

And,

qA(π, σ) =

{

d(σ0)
d(σ) if pA(π, σ) = 1,

1 otherwise.
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Then, when run against X , all but one of the infinite paths through the com-
putation tree have zero probability. Moreover, since d(X↾n)↓ for all n, there
is a (unique) path with infinitely many bets that is taken with probability one
during the run of the strategy on X . On this probability one path, A behaves
exactly as d would on X . Thus, A is a weak P1-strategy for X . ⊣

Proof of Theorem 6.2. Let X ∈ {0, 1}∞ and suppose A is a limsup-Ex-
strategy for X that eventually bets on X with probability one. We wish to define
a rational-valued partial computable martingale that succeeds on X .

We will actually define a rational-valued partial computable supermartingale d
that succeeds on X . This will suffice since it is possible to use d to define a
rational-valued partial computable martingale d0 such that for all σ

d0(σ) ≥ d(σ).

In particular, if lim supn d(X↾n) = ∞ then also lim supn d0(X↾n) = ∞. The
construction of d0 from d is well-known and can be found in [14, 7.1.6]: namely,

d0(σ) = d(σ) +
∑

σ′⊏σ

(

d(σ′) −
d(σ′0) + d(σ′1)

2

)

.

The intuition is that the supermartingale d(σ) outputs an approximation
to Ex

σ
A when there is evidence that A eventually bets after seeing σ with suf-

ficiently high probability. We will prove that d(X↾n) is defined for all n and,
more generally, that d(σ) satisfies

|d(σ) − Ex
σ
A| ≤ 1(15)

whenever d(σ) is defined. In particular, since lim supn Ex
X
A (n) = ∞, it must be

that lim supn d(X↾n) = ∞.
We first define a partial computable function M : {0, 1}∗ → N by

M(σ) = the least M s.t.
∑

π∈R(|σ|):|π|w<M

PA(π, σ) ≥ 1 − 2−2|σ|.

That is, M(σ) is the threshold “w-distance” required to guarantee that, with
high probability, every bit of σ is bet on. The intuition is that M(σ) gives
the number of terms needed to get a good approximation to the value of ExσA.
Lemma 2.21(a) implies that

∑

π∈R(|σ|):|π|w≥M(σ)

PA(π, σ) ≤ 2−2|σ|(16)

provided M(σ) is defined. Since A eventually bets on X with probability one,
Lemma 2.21(b) implies that M(σ) is defined for all σ ⊏ X .

We use another auxiliary computable function, f : N → Q, given by f(n) =
21−n − 1. This function has a useful inductive definition that we will exploit:
f(0) = 1 and f(n + 1) = f(n) − 2−n. We have −1 < f(n) ≤ 1 for all n, and
f(n) ≤ 0 for all n ≥ 1.

Define d : {0, 1}∗ → Q to be the partial computable function

d(σ) = f(|σ|) +
∑

π∈R(|σ|):|π|w<M(σ)

PA(π, σ)CA(π, σ).(17)
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Note that d(σ) is undefined if and only if M(σ) is undefined. In particular, d(σ)↓
for all σ ⊏ X . By the definition of ExσA,

d(σ) = Ex
σ
A + f(|σ|) −

∑

π∈R(|σ|):|π|w≥M(σ)

PA(π, σ)CA(π, σ).(18)

CA(π, σ) is the capital accumulated after betting |π|b many times on σ, and
each bet can at most double the capital. Therefore, CA(π, σ) ≤ 2|π|b = 2|σ| for
π ∈ R(|σ|). This fact and (16) imply that

∑

π∈R(|σ|):|π|w≥M(σ)

PA(π, σ)CA(π, σ) ≤ 2−|σ|.(19)

Combining (18), (19), and the definition of f , we get

Ex
σ
A − (1 − 2−|σ|) ≤ d(σ) ≤ Ex

σ
A − (1 − 21−|σ|)

whenever d(σ) is defined. It follows that (15) holds.
We have shown that d is partial computable and that, for all σ ⊏ X , d(σ) is

defined and approximates Ex
σ
A with bounded error. It remains to prove that d

is a supermartingale.
It is a simple observation that M(σ0) = M(σ1) since PA(π, σ0) = PA(π, σ1)

holds whenever π ∈ R(|σ| + 1). In addition, if M(σ0) is defined then M(σ) is
defined and M(σ) ≤ M(σ0). This is because the w-distance M(σ0) which suffices
to guarantee that all bits of σ0 are bet on with high probability certainly suffices
to guarantee that all bits of σ are bet on with at least the same probability.
Therefore, if either d(σ0)↓ or d(σ1)↓, then all three of d(σ)↓, d(σ0)↓, and d(σ1)↓.

Finally, we prove that the supermartingale property holds for d. We have

d(σ0) + d(σ1)

= Ex
σ0
A + Ex

σ1
A + 2f(|σ| + 1)

−
∑

π∈R(|σ|+1):|π|w≥M(σ0)

PA(π, σ0)(CA(π, σ0) + CA(π, σ1))

≤ Ex
σ0
A + Ex

σ1
A + 2f(|σ| + 1)

≤ 2(ExσA + f(|σ|) − 2−|σ|)

≤ 2 · d(σ)

where the second inequality uses the supermartingale property for Ex
σ
A from

Lemma 4.6 and the definitions of f and CA, and the third inequality follows from
(18) and (19). This establishes the supermartingale property d(σ0) + d(σ1) ≤
2d(σ) for all σ. ⊣

The proof of Theorem 6.1 yields yet another characterization of partial com-
putable randomness. Consider probabilistic strategies where, at each stage, the
probability of betting is either zero or one. That is, pA(π, σ) ∈ {0, 1} for all
π, σ. A probabilistic strategy with this property that succeeds on an infinite se-
quence X is called a w-strategy for X . We say that X is w-random if there is no
w-strategy for X . Intuitively, w-strategies can be seen as interpolating between
classical (non probabilistic) strategies and probabilistic strategies. Nonetheless,
the following equivalence holds.
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Corollary 6.4. The following notions are equivalent: P1-random and w-
random.

§7. Counterexample to an alternate definition. The definition of Ex-
randomness is based on unbounded expected success of a probabilistic strategy A
with respect to snapshots of the computation of A at finite times. Specifically,
the expected capital value is computed over computation paths π ∈ R(n). Be-
fore defining Ex-randomness in this way, we considered a more general alternate
definition: namely, we considered studying nested sequences of arbitrary finite
portions of the computation tree and defining Ex-randomness in terms of the
expected capital at the leaves of these partial computation trees. However, this
turned out to be too powerful a notion, as it excludes all but measure zero many
strings from being random, contradicting our intuition that “typical” sequences
are random.

Since this notion of randomness seemed very natural to us, we feel it is inter-
esting to present the counterexample which convinced us that this attempt at a
more general notion of randomness had failed. The counterexample is interesting
also for the reason that it can be adapted to rule out other possible definitions
of randomness.

In the definitions below, the definition of a probabilistic strategy A is un-
changed; the only difference is the definition of the expected capital of the strat-
egy.

Definition 7.1. A partial computation tree is a finite set f ⊆ {b,w}∗ which
is downward closed and whose maximal elements cover all computation paths.
That is, if π ∈ f then all π′ ⊏ π are in f , and πb ∈ f ⇔ πw ∈ f . Thus, f is a
binary tree. A maximal node π ∈ f is called a leaf node.

Definition 7.2. A sequence {fi}i∈N of partial computation trees is nested if
fi ⊆ fj for all i ≤ j.

Definition 7.3. Let f be a partial computation tree. The expected capital
earned by strategy A playing on X ∈ {0, 1}∞ up to f is given by

Ex
X
A (f) =

∑

π a leaf of f

PX
A (π)CX

A (π).

We say that X ∈ {0, 1}∞ is I-random if there is no probabilistic strategy A
and computable sequence of nested partial computation trees {fi}i∈N such that

lim supn Ex
X
A (fn) = ∞.

Note that the sets {R(n)}n∈N in the definition of Ex-random play the roles
of the sets {fi}i∈N in definition of I-random. However, since each R(n) is in-
finite, the sequence {R(n)}n∈N cannot witness the success of a strategy in the
I-randomness setting. In developing the theory of probabilistic strategies, we
initially considered using I-random in place of Ex-random. However, we were
quite surprised to discover that nearly no A is I-random. (The “I” stands for
“(nearly) impossibly”.) That is, for almost all X , there is a probabilistic strat-
egy that succeeds on X in the sense of I-randomness. In fact, and even more
surprisingly, there is a single choice for A and {fi}i∈N that works for almost
all X :
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Theorem 7.4. There is a probabilistic strategy A and a computable sequence
of nested partial computation trees F = {fi}i∈N such that

µ{X : lim sup
n→∞

Ex
X
A (fn) = ∞} = 1.

The measure, µ, is Lebesgue measure.

The probabilistic strategy A is very simple; the complexity in the proof lies in
the choice of partial computation trees. The algorithm for A does the following,
starting with Step α:

Step α: With probability 1/2, bet all-or-nothing (stake q = 2) that the next
bit is 0, and return to Step α. Otherwise place no bet (that is, wait) and
go to Step β.

Step β: With probability 1, bet all-or-nothing (stake q = 0) that the next bit
is 1. Then go to Step α.

The strategy A is not biased towards any particular sequence X ∈ {0, 1}∞.
Indeed, for each bit, A places two bets with net probabilities 1/2 each: first that
the bit equals 0 and then that the bit equals 1. It is the partial computation
trees fi that will bias the expectation towards particular sequences X .

Lemma 7.5. Let K ≥ 3
2 and ǫ > 0. There is a finite nested sequence {fi}i≤L

such that

µ{X : max
i

Ex
X
A (fi) ≥ K} ≥ 1 − ǫ.

And, for all X, there is at least one leaf node π of fL such that PX
A (π)CX

A (π) > 0.

The proof of Lemma 7.5 will show that L and the fi’s are uniformly con-
structible from K and ǫ. Before proving the lemma, we sketch how it implies
Theorem 7.4.

Proof sketch of Theorem 7.4 from Lemma 7.5. Choose an unbounded
increasing sequence of values Kj , say Kj = j + 1. Let ǫj = 2−j, so limj ǫj = 0.
Initially pick the finite sequence F1 of partial computation trees {fi}i≤L1

as
given by Lemma 7.5 with K = K1 and ǫ = ǫ1.

Suppose Fj has already been chosen as a nested sequence of Lj+1 many partial
computation trees; we extend Fj to a nested sequence Fj+1 of length Lj+1 + 1.
Let fLj

be the final partial computation tree in Fj. Let n = max{|π|b : π ∈ fLj
}.

Then the behavior of A on any X up to fLj
is determined by the first n bits

of X . Lemma 7.5 guarantees that for each σ ∈ {0, 1}n there is at least one
leaf node π ∈ fLj

with PA(π, σ)CA(π, σ) > 0; call the least of these nonzero
PA(π, σ)CA(π, σ) values wσ. Then, define w = min{wσ : σ ∈ {0, 1}n}. Note
that w > 0 and is computable from fLj

and A. Let K = Kj+1/w and ǫ = ǫj+1,
and choose {f ′

i′}i′≤L′ as given by Lemma 7.5 for these parameters. Define fLj
◦fi′

to be the result of attaching a copy of fi′ to each leaf of fLj
; namely, to be the

partial computation tree containing the strings π ∈ fLj
plus the strings ππ′

such that π is a leaf node in fLj
and π′ is in fi′ . Finally define Fj+1 to be the

sequence Fj extended with the partial computation trees fLj
◦ fi′ for i′ ≤ L′.

It is not hard to show that the X ’s that have ExXA (f) ≥ Kj+1 for some f ∈ Fj+1

form a set of measure ≥ 1 − ǫj+1. Now, form the infinite sequence F by taking
the union of the sequences Fj . ⊣
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Proof sketch for Lemma 7.5. The proof is by induction. The base case
is K = 3/2. After that, we argue that if the lemma holds for K, then it holds
also for K + 1/2.

Let K = 3/2 and ǫ = 2−j . Define the strings πi = (wb)i; namely, πi represents
the situation where, for i times in a row, the strategy A does not bet (w) in Step α
and does bet (b) in Step β. Define fi = {πk, π

−
k w, πkb, πkw : k ≤ i}. Clearly,

each fi is a partial computation tree and the sequence {fi}i∈N is nested and
computable. Suppose that 1k0 ⊏ X . It is straightforward to calculate that
PX
A (πkb)CX

A (πkb) = 2−(k+1)2k+1 = 1, and PX
A (πkw)CX

A (πkw) = 2−(k+1)2k =

1/2. Therefore, ExXA (fk) ≥ 3/2. (In fact, equality holds, as all other leaves have
capital equal to zero for X .) Letting F = {fi}i≤j , this suffices to prove the
K = 3/2 case of the lemma since only a fraction ǫ = 2−j of X ’s start with 1j .

Now suppose we have already constructed a sequence F ′ = {f ′
i′}i′≤L′ which

satisfies the lemma for K with ǫ = 2−(j+1). We will construct a sequence F ′′

that works for K + 1/2 and ǫ = 2−j . The idea is to start with the F = {fi}i≤L

just constructed for the K = 3/2 and ǫ = 2−(j+1) case. We interleave the
construction of members of F with copies of F ′ added at the leaf node πib of
each fi ∈ F . For this define f ′′

0 = f0 and

f ′′
i,i′ = f ′′

i ∪ πibf
′
i′ and f ′′

i+1 = f ′′
i,L′ ∪ fi+1.

where πibf
′
i′ = {πibτ : τ ∈ f ′

i′}. This forms a nested sequence F ′′ of partial
computation trees, f ′′

0 , f
′′
0,0, . . ., f

′′
0,L′ , f ′′

1 , f
′′
1,0, . . ., f

′′
1,L′, f ′′

2 , . . ., f
′′
L,L′. We leave it

to the reader to verify that F ′′ satisfies the desired conditions of Lemma 7.5. ⊣

§8. Conclusions and Open Questions. We conclude with a few open
problems. First, we ask for characterizations of other notions of randomness
in terms of probabilistic strategies. In particular, what natural conditions on
the class of strategies are equivalent to Schnorr randomness? Algorithmic ran-
domness has also been studied relative to weaker models of computation (prim-
itive recursive functions, polynomial-time computation, etc.). Do probabilistic
strategies shed light on randomness in this setting as well?

Second, we note that the definition of unbounded expected success requires
some subtlety. In Section 4 we showed that defining this notion via Ex

X
A charac-

terizes ML-randomness, whereas Section 7 showed that another definition of ex-
pected value gives a trivial notion of randomness. One can redefine I-randomness
to use limn instead of lim supn. Does this revised version notion of I-randomness
make sense? Does the set of I-random sequences now have measure one?

Finally, what happens when the definition of probabilistic strategies is ex-
tended to non-monotonic Kolmogorov-Loveland randomness? Consider non-
monotonic probabilistic strategies which are similar to the probabilistic strategies
defined here but also have an integer-valued function nA(π, σ) which specifies
which bit to bet on. The string σ now codes the values of the bits X(n) that
have already been bet upon, and the index nA(π, σ) must not specify a bit that
has already been bet on. The non-monotonic probabilistic strategy A bets with
probability pA(π, σ) on the bit X(nX(π, σ)) using stake value qA(π, σ). Is there
a coherent definition of Ex-randomness that applies to non-monotonic proba-
bilistic strategies; for instance, one that has a set of measure one as its random
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sequences? Unfortunately, it is possible to adapt Theorem 7.4 to show that the
obvious way of defining limsup-Ex-randomness for non-monotonic probabilistic
martingales does not work. In another direction, it is straightforward to ex-
tend the notions of P1-randomness to non-monotonic probabilistic strategies.
How do these various definitions of P1-randomness for non-monotonic strate-
gies compare to each? How do they compare to Martin-Löf randomness and
Kolmogorov-Loveland randomness?
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