IV: Polynomial local search higher in the bounded arithmetic hierarchy

Sam Buss, UCSD
sbuss@math.ucsd.edu

Prague, September 2009

Bounded arithmetic and provably total (multi)functions.

Theory	Graph	(Multi)Function class
S_{2}^{1}	\sum_{1}^{b}-defined	P functions [$\mathrm{B}^{\prime} 85$]
T_{2}^{1}	\sum_{1}^{b}-defined	PLS multifunctions. [$\left.\mathrm{BK}^{\prime} 94\right]$
S_{2}^{k}	Σ_{k}^{b}-defined	$\mathrm{FP}^{\Sigma_{k-1}^{b}}$ functions. [$\left.\mathrm{B}^{\prime} 85\right]$
T_{2}^{k}	\sum_{k}^{b}-defined	PLS ${ }^{\sum_{k-1}^{b}}$ multifunctions. [BK'94]
S_{2}^{k+1}	\sum_{k}^{b}-defined	PLS ${ }^{\sum_{k-1}^{b}}$ multifunctions. [BK'94]
T_{2}^{2}	Σ_{1}^{b}-defined	Colored PLS. [KST'06]
${ }_{\text {, }}{ }^{k}$	\sum_{1}^{b}-defined	Herbrand analysis [P'03].
		k-turn games, $G I_{k}$ [ST'ta].
"	"	local improvement. [NST'??].
T_{2}^{k}	\sum_{i}^{b}-defined	Π_{k}^{b}-PLS with Π_{i-1}^{b}-goal $(1 \leq i \leq k)$ [BB^{\prime} ??, BB^{\prime} ??, this talk]

Π_{k}^{p}-PLS — relativizing Polynomial Local Search.

PLS: Recall a PLS problem is given by polynomial time cost function c, neighborhood function N, initial function i, and feasible set F.
Gives Σ_{1}^{b}-definable functions of T_{2}^{1}.
Relativized PLS: $\operatorname{PLS}^{\Pi_{k}^{p}}=\operatorname{PLS}^{\Sigma_{k}^{p}}$ has F, c, N, i in $P^{\Pi_{k}^{p}}=P^{\Sigma_{k}^{p}}$.
Gives \sum_{k+1}^{b}-definable multifunctions of T_{2}^{k+1}.
New relativization: Π_{k}^{p}-PLS has $F \in \Pi_{k}^{p}$, but N, c, i are polynomial time.
Also gives \sum_{k+1}^{b}-definable multifunctions of T_{2}^{k+1}.
By adding a "goal" property $G(x, s)$ can give the \sum_{i}^{b}-definable multifunctions of T_{2}^{k+1}.

Π_{k}^{p}-PLS

Definition

A Π_{k}^{p}-PLS problem is given by a predicate $F(x, s) \in \Pi_{k}^{p}$, functions $N(x, s), c(x, s), i(x)$ in FP, and a polynomial size bound $d(n)$ that satisfy
(α) $\forall x \forall s(F(x, s) \rightarrow|s| \leq d(|x|))$.
(β) $\forall x(F(x, i(x)))$.
(γ) $\forall x \forall s(F(x, s) \rightarrow F(x, N(x, s)))$.
($\delta) \forall x \forall s(N(x, s)=s \vee c(x, N(x, s))<c(x, s))$.
and defines a multifunction $f(x)=y$ by:

$$
f(x)=y \Leftrightarrow\left(\exists s \leq 2^{d(|x|)}\right)\left[F(x, s) \wedge N(x, s)=s \wedge y=(s)_{1}\right] .
$$

PSPACE algorithm for Π_{k}^{p}-PLS:
Start with $s=i(x)$ and iterate $s \mapsto N(x, s)$
Note: $(s)_{1}$ is the projection function (Gödel beta function.)

Π_{k}^{p}-PLS with Π_{g}^{p}-goal G

Definition

A Π_{k}^{p}-PLS problem with Π_{g}^{p}-goal $G(x, s)$ satisfies the additional property:
($\epsilon) \forall x \forall s(G(x, s) \leftrightarrow[F(x, s) \wedge N(x, s)=s])$.
The graph of the multifunction can now be defined by

$$
f(x)=y \Leftrightarrow\left(\exists s \leq 2^{d(|x|)}\right)\left[G(x, s) \wedge y=(s)_{1}\right]
$$

Thus, f has a \sum_{g+1}^{b}-definition.

Definition (Formalized Π_{k}^{p}-PLS problems)

For a formalized Π_{k}^{p}-PLS problem, the predicates F and G are given by Π_{k}^{b} and Π_{g}^{b}-formulas, N, i, c are polynomial time functions, and the base theory S_{2}^{1} proves conditions $(\alpha)-(\epsilon)$.

Note S_{2}^{1}, not T_{2}^{k+1}, proves the conditions.
Formalized Π_{k}^{p}-PLS problems are called Π_{k}^{b}-PLS problems.

Existence of solutions to Π_{k}^{b}-problems

Theorem

Let \mathcal{P} be a $\Pi_{k}^{b}-P L S$ problem. Then T_{2}^{k+1} proves that, for all x, $\mathcal{P}(x)$ has a solution:

$$
T_{2}^{k+1} \vdash \forall x \exists s(F(x, s) \wedge N(x, s)=s)
$$

or, if there is a goal, $T_{2}^{k+1} \vdash \forall x \exists s(G(x, s))$.
This is a $\sum_{k+1^{-}}^{b}\left(\right.$ resp., $\left.\sum_{g+1^{-}}^{b}\right)$ definition of a multifunction.

Pf. Similar to before. \sum_{k+1}^{b}-minimization gives a least c_{0} satisfying

$$
\exists s \leq 2^{d(|x|)}\left(c_{0}=c(x, s) \wedge F(x, s)\right)
$$

Exact characterization of Σ_{i}^{b}-definable functions of T_{2}^{k+1}

Theorem

Let $0 \leq g \leq k$ and $A(x, y) \in \sum_{g+1}^{b}$. Suppose

$$
T_{2}^{k+1} \vdash(\forall x)(\exists y) A(x, y)
$$

Then there is a Π_{k}^{b}-PLS problem \mathcal{P} with Π_{g}^{b}-goal G such that S_{2}^{1} proves

$$
\forall x \forall s\left(G(x, s) \rightarrow A\left(x,(s)_{1}\right)\right) .
$$

Note that the conclusion is provable in S_{2}^{1}, but T_{2}^{k+1} is needed to prove the existence of s.

For $k=g=0$, the Σ_{1}^{b}-definable functions of T_{2}^{1} are in PLS.

Why formalization in S_{2}^{1} is important (\#1)

Consider a total multifunction defined by $(\forall x)(\exists!y \leq t) A(x, y)$, where $A \in \Delta_{1}^{b}$. Here is a Π_{1}^{p}-PLS search problem for it:

- Initial function: $i(x)=0$.
- Cost function: $c(x, y)=t-y$.
- Neighborhood function:

$$
N(x, y)= \begin{cases}y & \text { if } A(x, y) \text { or } y \geq t(x) \\ y+1 & \text { otherwise. }\end{cases}
$$

- Feasible set: $F(x, y) \Leftrightarrow\left(\forall y^{\prime}<y\right)\left(\neg A\left(x, y^{\prime}\right)\right) \wedge y \leq t(x)$.
- Goal: $G(x, y) \Leftrightarrow A(x, y) \wedge y \leq t(x)$.

This is a correct Π_{1}^{p}-PLS problem independently of provability in T_{2}^{k+1}. But it is not formalizable in S_{2}^{1}, so is not a Π_{1}^{b}-PLS problem.

The proof uses induction on the number of lines a free-cut free T_{2}^{k+1}-proof to establish a witnessing lemma. W.I.o.g. all formulas are $s \sum_{k+1}^{b}$.

Def'n: Let $A(\vec{c}) \in s \sum_{k+1}^{b}$. Recall that $\operatorname{Wit}_{A}(\vec{c}, u)$ is a Π_{k}^{b}-formula that states u is value for the outermost existential quantifier of $A(\vec{c})$ making $A(\vec{c})$ true.

For a sequent $\Gamma \longrightarrow \Delta$, where Γ is A_{1}, \ldots, A_{k} and Δ is B_{1}, \ldots, B_{ℓ},

$$
\operatorname{Wit}_{\Gamma}(\vec{c}, u) \text { is } \quad \bigwedge_{i=1}^{k} \operatorname{Wit}_{A_{i}}\left(\vec{c},(u)_{i}\right)
$$

and

$$
\operatorname{Wit}_{\Delta}(\vec{c}, u) \text { is } \quad \bigvee_{j=1}^{\ell}\left((u)_{1}=j \wedge \operatorname{Wit}_{B_{j}}\left(\vec{c},(u)_{2}\right)\right) .
$$

Theorem (Witnessing Lemma.)

If T_{2}^{k+1} proves a sequent $\Gamma \longrightarrow \Delta$ of $s \sum_{k+1}^{b}$-formulas with free variables \vec{c}, then there is a multifunction f defined by a $\Pi_{k}^{b}-P L S$ problem such that

$$
S_{2}^{1} \vdash \text { Wit }_{\wedge}(\vec{c}, u) \wedge y=f(\langle\vec{c}, u\rangle) \rightarrow \text { Wit }_{\vee} \Delta(\vec{c}, y)
$$

The proof is by induction on length of a free-cut free proof. All lines in the proof are sequents of $s \sum_{k+1}^{b}$-formulas.

The arguments split into cases based on the final inference of the T_{2}^{k+1}-proof P. Since PLS functions are easily seen to be closed under polynomial time operations, many of the arguments are similar to earlier witnessing arguments. (But not all all!)

Suppose the last inference in P is $\forall \leq$:right.

$$
\frac{b \leq t, \Gamma \longrightarrow \Delta, A(\vec{c}, b)}{\Gamma \longrightarrow \Delta,(\forall x \leq t) A(\vec{c}, x)}
$$

Let $f(\vec{c}, u)$ be given by the induction hypothesis for witnessing the upper sequent.

As before, the idea is to set $\mu_{\neg A}(\vec{x})$ equal to the least $b \leq t$ s.t. $\neg A(\vec{c}, b)$, or equal to $t+1$ if no such b exists.

In the former case, $g(\vec{c}, u)=f(\vec{c}, b,\langle 0\rangle * u)$, where f is given by the induction hypothesis. In the latter case, $g(\vec{c}, u)=\langle\ell, 0\rangle$.

However, f and g do not have access to any oracle for Π_{k}^{b}, and can use only polynomial time operations. For this reason, we must define a special Π_{k}^{b}-PLS algorithm, called \mathcal{P}_{A} that (in essence) computes $\mu_{A}(\vec{c})$ for A a \sum_{k}^{b}-formula.

Lemma

Let $A(x)=(\exists y \leq t) B(y, x) \in s \Sigma_{k}^{b}$. There is a $\Pi_{k}^{b}-P L S$ problem \mathcal{P}_{A} that determines the truth of $A(x)$ by computing

$$
\mathcal{P}_{A}(x)= \begin{cases}\langle 0, t+1\rangle & \text { if } \neg A(x) \\ \langle 1, i\rangle & \text { if } i \leq t \text { is the least value s.t. } B(i, x) .\end{cases}
$$

Pf. Define initial function $i(x):=\langle 0,0\rangle$. Define

$$
\begin{aligned}
N(x,\langle 0, i\rangle) & = \begin{cases}\langle 0, i+1\rangle & \text { if } \neg B(i, x), i \leq t . \\
\langle 1, i\rangle & \text { if } B(i, x), i \leq t\end{cases} \\
N(x, s) & =s \text { for all other } s .
\end{aligned}
$$

For $k>1$, determining $\neg B(i, x)$ involves calling $\mathcal{P}_{\neg B}$, a Π_{k-1}^{b}-PLS problem. For $k=0$, it is polynomial time to decide $B(i, x)$.
Feasible set is $F(x,\langle 0, i\rangle) \Leftrightarrow i \leq t+1 \wedge(\forall j<i)(\neg B(j, x))$ and

$$
F(x,\langle 1, i\rangle) \Leftrightarrow i \leq t \wedge B(i, x) \wedge(\forall j<i)(\neg B(j, x)) .
$$

Cost function $c(x,\langle j, i\rangle)=t+1-i-j$.

Skolemization: A stronger version of Π_{k}^{b}-PLS witnessing

Skolemization: For a Boolean combination of formulas, create equivalent prenex form by the following procedure. Find all outermost blocks of quantifiers not yet processed. Bring out all universal ones first, then all existential ones. Repeat until in prenex form. Then Skolemize with terms.

Example: Recall (γ) is: $\forall x, s(F(x, s) \rightarrow F(x, N(x, s)))$
Suppose F is $\forall y \exists z F_{0}(y, z)$. Then (γ) is Skolemized as follows:
Prenex form: $\forall x, s, y_{2} \exists y_{1} \forall z_{1} \exists z_{2}\left(F_{0}\left(x, s, y_{1}, z_{1}\right) \rightarrow F_{0}\left(x, s, y_{2}, z_{2}\right)\right)$.
Skolem form:
$\forall x, s, y_{2}, z_{1}\left(F_{0}\left(x, s, r\left(x, s, y_{2}\right), z_{1}\right) \rightarrow F_{0}\left(x, s, y_{2}, t\left(x, s, y_{2}, z_{1}\right)\right)\right)$.
where r and t are terms (over the language $0, S,+, \cdot,-, M S P$ that allows simple fixed-length sequence coding.) r and t are polynomial time.

Definition

A Π_{k}^{b}-PLS problem with Π_{g}^{b} goal is formalized in Skolem form provided the functions N, c, and i are defined by terms, and the formulas F and G are strict formulas in $s \Pi_{k}^{b}$ and $s \Pi_{g}^{b}$, and provided S_{2}^{1} proves all the conditions $(\alpha)-(\delta)$ plus
$\left(\epsilon^{\prime}\right) \forall x \forall s(G(x, s) \rightarrow[F(x, s) \wedge N(x, s)=s])$
$\left(\epsilon^{\prime \prime}\right) \forall x \forall s([F(x, s) \wedge N(x, s)=s] \rightarrow G(x, s))$
in Skolem form using terms as Skolem functions.
Trivially:

Theorem

If \mathcal{P} is formalized in Skolem form, it is also formalized in the usual form.

Exact characterization revisited, Skolemized form

Theorem

Let $0 \leq g \leq k$ and $A(x, y) \in \sum_{g+1}^{b}$. Suppose

$$
T_{2}^{k+1} \vdash(\forall x)(\exists y) A(x, y)
$$

Then there is a Π_{k}^{b}-PLS problem \mathcal{P} with Π_{g}^{b}-goal G which is formalized in Skolem form such that S_{2}^{1} proves a Skolemization of:

$$
\forall x \forall s\left(G(x, s) \rightarrow A\left(x,(s)_{1}\right)\right) .
$$

The proof of the theorem is similar to before, but much more delicate.

One potential problem: For $A \in \Pi_{k}^{b}$, the formula

$$
A \rightarrow A \wedge A
$$

may not be provable in Skolem form by S_{2}^{1}.
We need this, however, in many cases, especially ones with (explicit or implicit) contraction in the antecedent.

Solution: Use \mathcal{P}_{A}, the Π_{k}^{b}-PLS problem that determines the truth of A. The formula

$$
A(x) \wedge y=\mathcal{P}_{A}(x) \rightarrow A(x) \wedge A(x)
$$

is provable in Skolem form by S_{2}^{1}.

A separation conjecture

We can set up a "generic" Skolemized Π_{k}^{b}-PLS problem with Π_{0}^{b}-goal as follows:

Adjoin a new predicate symbol for G and a new predicate symbol F_{0} for the sharply bounded subformula of F.
Also adjoin new function symbols which are used as Skolem functions for the Π_{k}^{b}-PLS problem's defining conditions.

Then, the Skolemized definition of the Π_{k}^{b}-PLS problem can be expressed as a single $\forall \Delta_{0}^{b}$-formula.

Encoding the new functions and predicates by a single new predicate α, we can encode this $\forall \Delta_{0}^{b}$-formula as a single $\forall \Delta_{0}^{b}$-formula $\forall x \Psi(x, \alpha)$.

Consider the formula

$$
\begin{equation*}
\forall x \Psi(x) \rightarrow \forall x \exists y \leq x(y=N(x, y) \wedge G(x, y)) \tag{1}
\end{equation*}
$$

By the relativized version of the first theorem, it is provable in $T_{2}^{k+1}(\alpha)$.

On the other hand, by the conjectured properness of the bounded arithmetic and polynomial time hierarchies, we expect this is not provable in $T_{2}^{k}(\alpha)$.
This gives a single $\forall \Sigma_{1}^{b}(\alpha)$-formula that is known to be provable in $T_{2}^{k+1}(\alpha)$ but conjectured to not be provable by $T_{2}^{k}(\alpha)$.

Why formalization in S_{2}^{1} is important (\#2). Since the Skolem functions are polynomial time, they can be conservatively added to S_{2}^{1}, T_{2}^{k+1}, etc., and can be used freely in induction axioms. Thus, it is reasonable to allow $T_{2}^{k+1}(\alpha)$ use α freely in induction axioms.

Conjectured separation for constant depth Frege proofs

By Paris-Wilkie translation, we get a conjectured separation for bounded depth propositional proof systems as follows:

A depth k Tait system has sequents of formulas of depth k. Depth is measured by alternations of \wedge 's and V 's with small fanin at the bottom level counting as a $\frac{1}{2}$ depth.

The $T_{2}^{k+1}(\alpha)$-proof (1) translates to a depth $k-1$ proof by the Paris-Wilkie translation (after several careful transformations, as discussed in the last talk, and note the extra $\frac{1}{2}$ reduction in depth for this special case).

This gives a family Ξ_{k} of sets of sequents of literals such that members of $\bar{\Xi}_{k}$ have depth $k-1$ Tait-style refutations, but are conjectured to not have depth $k-1 \frac{1}{2}$ depth refutations (by the conjectured non-provability of (1) in T_{2}^{k}).

Some open problems

1. Is there a non-uniform version of the witnessing theorems for T_{2}^{k} that will apply to depth $k-1 \frac{1}{2}$ propositional proofs?
2. Are there good analogues of Thms 2 or 3 for fragments of Peano arithmetic?
3. The weak pigeonhole principle (WPHP) for $\alpha:[2 n] \rightarrow[n]$ is provable in $T_{2}^{2}(\alpha)$, but not $T_{2}^{1}(\alpha)$. (Paris-Wilkie-Woods, 1988; Maciel-Pitassi-Woods, 2000.) Can this be reversed?
4. Ramsey's Theorem for pairs is provable in $I \Delta_{0}+\Omega_{1}$ (perhaps S_{2}^{3} ?). (Pudlak, 1991.) Can this be reversed?

- S. Buss, Bounded Arithmetic, Ph.D. thesis, 1985. Bibliopolis, 1986. Also available online.
- S. Buss, J. Krajíček, An application of Boolean complexity to separation problems in bounded arithmetic. Proc. LMS 69 (1994) 1-21.
- P. Pudlák, Consistency and games - in search of combinatorial principles, Logic Colloquium, 2003.
- J. Krajíček, A. Skelley, N. Thapen, "NP search problems in low fragments of bounded arithmetic", JSL 72 (2007)649-672.
- A. Skelley, N. Thapen, The provably total search problems of bounded arithmetic, ta.
- P. Nguyen, A. Skelley, N. Thapen, The provably total NP search problems of weak second order bounded arithmetic, submitted, 2009.
- A. Beckmann, S. Buss, Characterizing Definable Search Problems in Bounded Arithmetic via Proof Notations, submitted, 2009.
- A. Beckmann, S. Buss, Polynomial Local Search in the Polynomial Hierarchy and Witnessing in Fragments of Bounded Arithmetic, submitted, 2009.

