
III. Bounded Arithmetic, Paris-Wilkie Translations,
and Witnessing in P and PLS

Sam Buss, UCSD
sbuss@math.ucsd.edu

Prague, September 2009

Sam Buss Bounded arithmetic and propositional proofs

Constant depth propositional LK proofs

Syntax: Tait-style calculus. Variables: p. Literals: p, p.

Unbounded fanin OR’s and AND’s:
∨

and
∧

.

Cedent Γ is set of formulas; intended meaning is disjunction,
∨

Γ.

Axioms: Neg: p, p Taut: Γ , where Γ is a tautology.

Rules of inference:

∨
:

Γ, ϕi0 , where i0 ∈ I.
Γ,

∨
i∈I ϕi

∧
:

Γ, ϕi for all i ∈ I
Γ,

∧
i∈I ϕi

Weakening: Γ
Γ,Δ

Cut:
Γ, ϕ Γ, ϕ

Γ

In the Cut, we can assume w.l.o.g. that outermost connective of φ
is not an

∧
.

Sam Buss Bounded arithmetic and propositional proofs

Depth and Σ′-depth of LK formulas and proofs

The depth of a formula is the maximum nesting depth of blocks of
∧’s and ∨’s. Literals have depth 0.

For the Paris-Wilkie translation from bounded arithmetic formulas
to propositional logic, a better notion is Σ′-depth which allows
small fanin at the bottom for free:

Definition

Let S be a proof size parameter (size upper bound). The formulas
that have Σ′-depth d with respect to S are inductively defined as
follows:

a. If ϕ has size ≤ log S , then ϕ has Σ′-depth 0.
b. If ϕ has Σ′-depth d , then it has Σ′-depth d ′ for all d ′ > d .
c. If each ϕi has Σ′-depth d , then

∨
i∈I ϕi and

∧
i∈I ϕi have

Σ′-depth (d + 1).

Σ′-depth d is often called “depth d +1
2”.

Sam Buss Bounded arithmetic and propositional proofs

Definition

Let S be a size parameter. An LK-proof P is a Σ′-depth d proof
of size S provided:

a. P has ≤ S symbols,
b. Every formula in P has Σ′-depth d ,
c. Every Taut axiom has size at most log S . That is, only small

tautologies are allowed.

Σ′-depth d proofs are particularly useful for translating sΣb
d and

sΠb
d formulas to propositional logic. The inner, sharply bounded

quantifiers correspond to the bottom level of small fanin gates.

Definitions similar to Σ′ depth given by: [K’94] of Σ-depth;
[BB’03] of Θ-depth.

Sam Buss Bounded arithmetic and propositional proofs

Sharply Strict Bounded Arithemetic

A formula is form restricted Σb
i , or sharply strict Σb

i , denoted ssΣb
i

if it is of the form

(∃y1 ≤ t1)(∀y2 ≤ t2) · · · (Qyi ≤ ti)(Qz ≤ |r |)B ,

where B is quantifier-free.

Every Σb
i -formula is equivalent to a sharply strict one: this fact can

be proved in S i
2 using induction on only ssΣb

i -formulas (with .−
and MSP in the base language).

Therefore, by free-cut elimination, bounded arithmetic may be
equivalently formulated with induction only for ssΣb

i -formulas.

These notions are similar to Takueti’s “pure i -form”, and, later,
“strictly i -normal proof”.

Sam Buss Bounded arithmetic and propositional proofs

Def’n: Let P be a proof. The free variables in the endsequent, �c ,
are called parameter variables.
A quantifier (Qx ≤ t) is restricted by parameter variables iff t uses
only parameter variables.

A proof is restricted by parameter variables iff (a) every quantifier
is restricted by parameter variables and (b) every sequent which
contains a non-parameter b contains a formula b ≤ t(�c) in its
antecedent.

Theorem

Let R be S i
2 or T i

2, i ≥ 1. If S := Γ→Δ contains only
ssΣb

i -formulas and R � S, then it has an R-proof which is
restricted by parameter variables and in which every formula
is ssΣb

i .

Such proofs are called restricted-Σb
i . These proofs are conveniently

formed for translation into propositional logic.

Sam Buss Bounded arithmetic and propositional proofs

From S i
2, T

i
2 to LK: First Paris-Wilkie Translation

Let d ≥ 1 and R be one of Sd
2 or T d

2 . Suppose A(x) is ssΣb
d and

R � A. We describe how to transform a restricted proof of A into
a Σ′-depth d LK proof. W.l.o.g., x is the only parameter variable.

Fix n ∈ N. The translation [[A]]n is a propositional formula stating
that A(x) is true for all x such that |x | ≤ n. The free variables of
[[A]]n are variables px ,i representing the i -th bit of the binary
representation of x .

Base case of defn: For quantifier-free formulas ϕ, the formula [[ϕ]]
is any polynomial size formula that expresses the value of φ. Since
the function and relations are computable with polynomial size
formulas, [[φ]] has size mO(1) if the free variables of ϕ are integers
of length ≤ m. Because we have the Taut axioms, the choice of
translation formula [[φ]] is unimportant. (In any event, elementary
properties of [[φ]] should have polynomial size proofs.)

More generally, [[φ]] respects Boolean connectives.

Sam Buss Bounded arithmetic and propositional proofs

Quantifier case of defn. Consider (∀y ≤ |s|)B or (∃y ≤ |s|)B .
Because the term s contains only parameter variables as variables,
and since the parameter variables have at most n bits, we can find
a bound ny = nO(1) such that |s| ≤ ny . Then,

[[(∀y ≤ |s|)B]] =

ny∧

i=0

[[y ≤ |s| → B]]/(y �→ i).

The notation “ψ/(y �→ i)” means replace each py ,j by the
(constant) jth bit of the integer i .

[[(∀y ≤ |s|)B]] has size only nO(1). Thus, it has Σ′-depth 0 for

suitable S(n) = 2nO(1)
.

General bounded quantifiers translated by exactly the same
construction, but have bigger size: 2nO(1)

.

A Σb
d -formula is translated to a Σ′-depth d formula with size

parameter S(n) = 2nO(1)
.

Sam Buss Bounded arithmetic and propositional proofs

To translate a sequent S in a restricted R-proof, view it as a
Tait-style cedent by moving all formulas to right of the sequent
(negated). All non-parameter variable y1, . . . , yk are restricted by
parameter variables. So |yj | ≤ nj for some nj = nO(1).

S is translated into a set of cedents, one cedent for each choice of
i1, . . . , ik with each |ij | < nj . The cedents are just

[[S]]/(y1 �→ i1, . . . , yk �→ ik),

where the translation is applied individually to each formula.

Note: the only variables left are px ,i .

As the next theorem states, the translated cedents Γ can be pieced
together into a valid proof.

Sam Buss Bounded arithmetic and propositional proofs

Theorem

Let i ≥ 1. Suppose A(x) ∈ ssΣb
i . Let [[A]]n denote the

propositional translation of A; [[A]]n has free variables px ,i , for
i < n.

a. Suppose S i
2 � A. Then there is a function S(n) = 2nO(1)

such that,
for all n, [[A]]n has a Σ′-depth i proof of size S(n). This proof

i. has height O(log log S(n)), and
ii. contains only O(1) many formulas in each cedent.

b. Suppose T i
2 � A. Then there is a function S(n) = 2nO(1)

such that,
for all n, [[A]]n has a Σ′-depth i proof of size S(n). This proof

i. has height O(log S(n)), and
ii. contains only O(1) many formulas per cedent.

Defn. The height of a proof is the maximum length of any branch
in the proof.

The same theorem applies to S i
2(α) and T i

2(α) under the 2nd
Paris-Wilkie translation, (defined later).

Sam Buss Bounded arithmetic and propositional proofs

Case (1): translation of ∧:right inference

An ∧:right inference

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
translates to

[[Γ]], [[φ]]

[[Γ]], [[ψ]]

[[ψ ∧ φ]], [[φ]], [[ψ]]
Weakening

[[Γ]], [[ψ ∧ φ]], [[φ]], [[ψ]]
Cut

[[Γ]], [[ψ ∧ φ]], [[φ]]
Cut

[[Γ]], [[ψ ∧ φ]]

Note that the upper right sequent is a Taut axiom.

Sam Buss Bounded arithmetic and propositional proofs

Case 2: ∀ ≤:-right inference. The inference

c ≤ t(a),Γ→Δ,B(c)

Γ→Δ, (∀y ≤ t(a))B(y)

translates into

[[¬c ≤ t(a)]]/(c �→ i), [[¬Γ]], [[Δ]], [[A(c)]]/(c �→ i)

[[¬Γ]], [[Δ]], [[c ≤ t(a) → A(c)]]/(c �→ i)

[[¬Γ]], [[Δ]], [[(∀y ≤ t(a))B(y)]]

Here the top two lines are repeated for all values of i ≤ t(a).
That is, the last inference is a

∧
inference, with many hypotheses.

Note the added height is constant (two), independent of n.

Sam Buss Bounded arithmetic and propositional proofs

Case (3): Consider an induction inference in P . This translates
into m Cut inferences in the LK proof, where m is the “length” of
the induction. By balancing the tree of cuts, the added height is
only O(log m).
The induction bound t involves only parameter variables, so m can
be bounded in terms of parameter variables.)

If R is S i
2, the induction inference translates into m = |t| = nO(1)

many cuts, so the added height is O(log n).

If R is T i
2, the induction inference translates into m = t = 2nO(1)

many cuts, so the added height is O(nO(1)).

Important fact: The LK-proofs given by Theorem 4 are
polynomial time uniform. Given a path from the root of the proof,
one can determine that part of the proof in polynomial time.

Sam Buss Bounded arithmetic and propositional proofs

Paris-Wilkie with Oracle Relation

The Paris-Wilkie translation is more usually defined with a
predicate α adjoined to the language. In this case, there are
additional propositional variables qi that encode the truth of α(i).
In this setting, it is usual for there to be no free (parameter)
variable x , so the variables px ,i are not used. To keep the
framework above, we just assign x = 2n − 1 so that px ,i ’s are all
true.

Then [[α(t)]] is qi where i is the value of the closed term t.

It is also possible to combine the use of the x with α.
Then [[α(t)]] can be expressed as both a large disjunction or a large
conjunction.

Sam Buss Bounded arithmetic and propositional proofs

Main Theorem for S1
2

Theorem (B’85)

Suppose A(x , y) ∈ Σb
1 and that S1

2 proves (∀x)(∃y)A(x , y). Then
there is a polynomial time function f (x) = y such that for
all x ∈ N, A(x , f (x)) holds.

Proof. By Parikh, S1
2 � (∃y ≤ s(x))A(x , y). x is the parameter

variable. Applying Theorem (a) yields a Σ′-depth 1 proof; adding a
Cut to the end of this proof turns the proof into a refutation R of

[[(∀y ≤ s(x))¬A(x , y)]]. (1)

We give a polynomial time procedure that is has as input a
particular value for x , and traverses the refutation R until it arrives
at a false initial cedent. Of necessity, this false initial cedent is the
cedent (1), and when it is reached, the procedure will know a
value y that falsifies the cedent. This value y will be f (x).

Sam Buss Bounded arithmetic and propositional proofs

The polynomial time procedure acts as follows: it starts at the root
of the proof and traverses the proof upward, backtracking as
needed as described below. At each stage, the procedure is at
some cedent Γ in the proof that it believes (or, hopes or assumes)
to be false. In particular, every Σ′-depth 0 formula in Γ is False.
(Recall that the variables px ,i are the only variables in R , and the
procedure has values for these.) Furthermore, for any formula in Γ
which is a conjunction of Σ′-depth 0 formulas, a particular conjunct
is known to be false. For the formulas which are a disjunction of
Σ′-depth 1 formulas, the procedure does not know for sure that
they are false, it merely tentatively assumes they are false.

At the beginning, the procedure is at the endsequent of R , which
is the empty cedent.

We next describe how the procedure handles Cut,
∧

, and
∨

inferences.

Sam Buss Bounded arithmetic and propositional proofs

If the procedure is at the lower cedent of a cut inference

Γ, ϕ Γ, ϕ

Γ

If ϕ is Σ′-depth 0, then it can be evaluated as being either True or
False. If it is true, the procedure proceeds to the right upper
cedent, otherwise, it proceeds to the left upper cedent. Otherwise,
ϕ is w.l.o.g. a disjunction, and the algorithm proceeds to the left
upper cedent.

If the procedure is at the lower cedent of a
∧

-inference:

Γ, ψi , for i ∈ I
Γ,

∧
i∈I ψi

the algorithm acts as follows. By assumption, the procedure knows
a value i0 such that the conjunct ψi0 is false. The algorithm
proceeds to the upper cedent Γ, ψi0 where i = i0.

Sam Buss Bounded arithmetic and propositional proofs

If the procedure is at the lower cedent of a
∨

-inference:

Γ, ψi0

Γ,
∨

i∈I ψi

the algorithm acts as follows. If ψi0 is false, it proceeds to the
upper cedent. However, if it is true, the algorithm has discovered a
disjunct of ϕ =

∨
i∈I ψi which is true, contradicting the tentative

assumption that ϕ was false. The procedure then backtracks down
the path towards the root until it finds the Cut inference where the
formula ϕ was added to the cedent. It then proceeds to the other
(right) upper cedent of the Cut, and saves the information about
which conjunct of ϕ is false.

Sam Buss Bounded arithmetic and propositional proofs

Run-time analysis: The assumption on how Cut hypotheses are
ordered implies that if the procedure backtracks, it moves from the
left sub-proof above a Cut to the right subproof above the Cut.
Therefore, the procedure is always following a left-to-right-ordered
depth-first traversal in the proof.

The run time therefore O(nO(1)), because there are only this many
Cut’s and since this is an upper bound on the height of the proof.

This upper bound of O(nO(1)) on the size of the subproof visited
during the traversal applies even though the proof is exponentially
big! (It is big but shallow, due to large fan-in of

∧
-inferences.

The procedure can terminate only at the cedent (1), since that is
the only false leaf cedent. When it reaches this, it knows a value
for y that falsifies it.

This value of y satisfies A(x , y).

Sam Buss Bounded arithmetic and propositional proofs

The Main Theorem for T 1
2

Theorem (BK’94)

Suppose A(x , y) ∈ Σb
1 and that T 1

2 proves (∀x)(∃y)A(x , y). Then
there is a Polynomial Local Search (PLS) function f (x) = y such
that for all x ∈ N, A(x , f (x)) holds.

The proof is identical to before, based on exactly the same
procedure. Now the procedure may need 2nO(1)

steps, instead of
nO(1). Use the position in the proof to define a decreasing cost
function, based on the procedure following a left-to-right depth
first traversal.

The theorems both hold if all true Πb
1-formulas are added as

axioms (no change to proof needed).

The generalize to S i
2 and T i

2 for i > 1 by the same proof.
(Improved T i

2 results will be discussed in the next talk.)

Sam Buss Bounded arithmetic and propositional proofs

Transforming constant depth proofs.

Theorem (K’94, R’94, see BB’03)

Let d ∈ N, and {An}n be a family of sets of cedents. Then the
following conditions (1) and (2) are equivalent:

(1) An has a Σ′-depth d LK refutation of sequence-size
quasi-polynomial in n, for all n.

(2) An has a Σ′-depth (d + 1) LK refutation of tree-size
quasi-polynomial in n, for all n.

Furthermore, the following conditions (3) and (4) are equivalent:

(3) An has Σ′-depth d LK refutation of tree-size quasi-polynomial
in n, for all n.

(4) An has a Σ′-depth (d + 1) LK refutation which simultaneously has
tree-size quasi-polynomial in n and height
poly-logarithmic in n, for all n.

Sam Buss Bounded arithmetic and propositional proofs

Corollary

Let d ≥ 2. Suppose A is a ssΣb
d -formula and that T d

2 � A.
Without loss of much generality, A has the form

(∃y ≤ t(x))(∀z ≤ r(x))C (x , y , z).

Let nt = nO(1) bound |t(x)| for all x < 2n, and nr = nO(1) bound
|r(x)| for all x < 2n Then the set An of cedents

{[[y ≤ t → (z ≤ r ∧ ¬C (x , y , z)]]n/(y �→ i , z �→ j) : j < 2nr } ,

for i < 2nt , has a Σ′-depth (d − 2) LK-refutation of size 2nO(1)
.

Explanation: In effect, [[A]] has a Σ′-depth (d − 2) proof.

This is a depth (d − 11
2) refutation of the clauses expressing ¬A.

Sam Buss Bounded arithmetic and propositional proofs

Some selected references

- S. Buss, Bounded Arithmetic and Constant Depth Frege Proofs,
Quaderni di Matematica, 2004. (This paper has the main
constructions of the talk.)

- A. Beckmann, S. Buss, Separation results for the size of
constant-depth propositional proof systems, APAL 136 (2005)
30-55.

- S. Buss, Bounded Arithmetic, Ph.D. thesis, 1985. Bibliopolis,
1986. Also available online.

- S. Buss, J. Kraj́ıček, An application of Boolean complexity to
separation problems in bounded arithmetic. Proc. LMS 69
(1994) 1-21.

- J. Kraj́ıček, Lower bounds to the size of constant-depth Frege
proofs. JSL, 59 (1994) 73-86.

- A. Razborov, On provable disjoint NP pairs, BRICS & ECCC, 1994.

Sam Buss Bounded arithmetic and propositional proofs

