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Bounded Arithmetic and Witnessing

Bounded arithmetic and bounded quantifiers

Language of first-order theory of bounded includes:

0, S , +, ·, ≤, |x | := �log2(x + 1)�, �1
2x�, x#y := 2|x |·|y |.

Sometimes also add all polynomial time functions and relations.

Axioms can include (among others):

(a) Defining (equational) axioms for functions and relations,
“Basic”.

(b) Restricted forms of induction.
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Definition

A bounded quantifier is of the form (∀x ≤ t) or (∃x ≤ t). It is
sharply bounded provided t has the form |s|. A formula is bounded
or sharply bounded provided all its quantifiers are bounded or
sharply bounded (resp.).

Definition

Δb
0 = Σb

0 = Πb
0 : Sharply bounded formulas

Σb
i+1: Closure of Πb

i under existential bounded quantification and
arbitrary sharply bounded quantification, modulo prenex
operations.

Πb
i+1 is defined dually.

Σb
i , Πb

i define exactly the predicates at the i -th level of the
polynomial hierarchy (PH), if i ≥ 1.
Thus, Σb

1 and Πb
1 define exactly the NP and coNP sets.
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Induction axioms

Let formulas A be in Ψ, we have the following kinds of induction:

Ψ-IND: A(0) ∧ (∀x)(A(x) → A(x + 1)) → (∀x)A(x).

Ψ-PIND: A(0) ∧ (∀x)(A(�1
2x�) → A(x)) → (∀x)A(x).

Ψ-LIND: A(0) ∧ (∀x)(A(x) → A(x + 1)) → (∀x)A(|x |).

Definition (Fragments of bounded arithmetic, B’85)

S i
2: Basic + Σb

i -PIND.
T i

2: Basic + Σb
i -IND.

S2 = ∪iS
i
2 and T2 = ∪iT

i
2.

Note T2 is essentially IΔ0 + Ω1. [Parikh’71, Wilkie-Paris’87]
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Theorem (B’85, B’90)

(a) S1
2 ⊆ T 1

2 �∀Σb
2

S2
2 ⊆ T 2

2 �∀Σb
3

S3
2 ⊆ · · ·

(b) Thus, S2 = T2.
(c) S1

2 + Σb
i -LIND equals S i

2.

More axioms:

Φ-MIN: (∃x)A(x) → (∃x)(A(x) ∧ (∀y < x)¬A(y)).
Φ-LMIN: (∃x)A(x) → (∃x)(A(x) ∧ (∀y)(|y | < |x | → ¬A(y))).
Φ-replacement:

(∀x ≤ |t|)(∃y ≤ s)A(x , y) → (∃w)(∀x ≤ |t|)A(x , β(x ,w)).
Φ-strong replacement:

(∃w)(∀x ≤ |t|)[(∃y ≤ s)A(x , y) ↔ A(x , β(x ,w))].
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Σb
i -IND ⇐⇒ Πb

i -IND ⇐⇒ Σb
i -MIN ⇐⇒ Πb

i−1-MIN ⇐⇒ Δb
i+1-IND

⇓
Σb

i -PIND ⇐⇒ Πb
i -PIND ⇐⇒ Σb

i -LIND ⇐⇒ Πb
i -LIND

�
Σb

i -LMIN ⇐⇒ (Σb
i+1 ∩ Πb

i+1)-PIND ⇐⇒1 strong Σb
i -replacement

⇓
Σb

i−1-IND

S i
2 �∀Σb

i
T i−1

2 S i
2 �∀B(Σb

i ) T i−1
2 + Σb

i -replacement

Σb
1-PIND + Σb

i+1-replacement =⇒ Σb
i -PIND =⇒ Σb

i -replacement

Open: The exact relative strength of Σb
i -replacement.
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Provably total functions and Σb
i -definable functions

Definition

Let R be a bounded theory. A function f : N → N is provably total
in R provided there is a formula Af (x , y) that defines the graph
of f such that R proves (∀x)(∃!y)Af (x , y), with Af polynomial
time computable.

Definition

f is Σb
i -definable by R , provided there is a Σb

i -formula A(x , y) such
that

1. R � (∀x)(∃y ≤ t)A(x , y) for some term t.

2. R � (∀x)(A(x , y) ∧ A(x , z) → y = z).

3. A(x , y) defines the graph of f .
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Thm. Any Σb
1-definable function in S i

2 or T i
2 can be introduced

conservatively into the language of the theory with its defining
axiom, and be used freely in induction formulas.

Theorem (B’85)

1. S1
2 can Σb

1-define every polynomial time function.
2. S i

2 can Σb
i -define every function which is polynomial time

computable with an oracle from Σp
i−1.

(The converse holds too.)

Hence, we can w.l.o.g. assume that all polynomial time functions
are present in the language of bounded arithmetic.
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Similar definitions and results hold for predicates.

Definition

A predicate P is Δb
i -definable in R provided there are a

Σb
i -formula A and Πb

i -formula B which are R-provably equivalent
and which define the predicate P .

Theorem (B’85)

Every polynomial time predicate is Δb
1-definable by S1

2 .
Every predicate which is polynomial time computable with an
oracle from Σb

i−1 is Δb
i -definable in S i

2.

(Again, a converse holds.)

Thus, every polynomial time predicate can be conservatively
introduced to S i

2 or T i
2 with its defining axioms, and used freely in

induction axioms.
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Witnessing Theorem for S i
2

Theorem (Main Theorem for S i
2, B’85)

Let i ≥ 1. Suppose f is Σb
i -defined by S i

2. Then f is computable in

PΣp
i−1, that is, in polynomial time with an oracle for Σp

i−1.
For i = 1, f is in P, polynomial time computable.

This gives an exact characterization of the functions that are
Σb

i -definable in S i
2.

For i = 1, the Σb
1-definable functions of S1

2 are precisely the
polynomial computable functions.
Likewise, the Δb

1-definable predicates of S1
2 are precisely the

predicates that are provably in NP ∩ coNP.

Open: Give a more satisfactory account of the functions that are
Σb

1-definable in S i
2, i > 1. That is, of the provably total functions

of these theories. (Note the uniqueness condition.)
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We now start the proof of the Main Theorem.

Proof idea: Form a free-cut free proof, in which all formulas are in
Σb

i . The free-cut free proof is then essentially an algorithm for the
function f .

The proof is considerably simplified by working with strict
Σb

i -formulas, denoted sΣb
i for short. These are of the form:

(∃x1 ≤ t1)(∀x2 ≤ t2) · · · (Qxi ≤ ti)B(�x)

where B is sharply bounded, and the quantifiers alternate in type
(and subformulas of these formulas).

Thm. S i
2 can equivalently be formulated with sΣb

i -PIND, provided
.− and MSP are added to the language.

Proof idea: Careful bootstrapping, plus use of replacement.
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To prove the witnessing theorem, by free-cut elimination, it suffices
to consider sequent calculus proofs in which every formula is an
sΣb

i -formula (including, via pairing functions, the final, proved
formula). Henceforth, fix i > 0.

Definition

Let A(�c) be sΣb
i . The predicate WitA(�c , u) is defined so that

- If A is (∃x ≤ t)B(�c, x), B /∈ Σb
i−1, then WitA(�c , u) is the formula

u ≤ t ∧ B(�c , u).
- If A is in Πb

i−1, then WitA(�c , u) is just A(�c).

The following is trivial since we are working with strict formulas.

Fact: A(�c) ↔ (∃u)WitA(�c , u).

Fact: WitA is a Πb
i−1-formula (or Δb

1, when i = 1.)
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A cedent is a set of formulas. If Γ and Δ are cedents, then Γ→Δ
is a sequent. Its meaning is that the conjunction of Γ implies the
disjunction of Δ.

Letting Γ = A1, . . . ,Ak , then WitΓ(�c , u) is the statement:

∧k

i=1
WitAi

(�c , (u)i ).

For Δ = B1, . . . ,B�, WitΔ(�c , u) is the statement

∨�

j=1

(
(u)1 = j ∧ WitBj

(�c , (u)2)
)

The notation (u)i means β(i , u), the i -entry in the sequence coded
by u. That is, u = 〈u1, . . . , uk〉 in the first case, and u = 〈u1, u2〉
in the second case.
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Theorem (Witnessing Lemma)

If Γ→Δ is an S i
2-provable sequent of sΣb

i formulas with free
variables �c, then there is a function f (�c , u) which is Σb

i -definable
in S i

2 and computable in polynomial time with an oracle for Σb
i−1

such that S i
2 proves

WitΓ(�c , u) → WitΔ(�c , f (�c , u)).

The theorem is proved by induction on the number of lines in a
free-cut free S i

2-proof P of Γ→Δ. The base cases are the
equational axioms defining the symbols of the language. Since
witnesses for Δb

0-formulas are trivial, these cases are all trivial.

The induction step splits into cases depending on the last inference
of the proof P .
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Case (1): Last inference is ∃ ≤:right.

Γ→Δ,A(�c , s)

s ≤ t,Γ→Δ, (∃x ≤ t)A(�c , x)

The formula A is sΠb
i−1. The induction hypothesis gives a

function f , which accepts witnesses for Γ and produces a witness
either making a formula in Δ true or making A(�c , s) true. Modify
f , so that in the latter case, it returns 〈�, s〉.

g(�c , u) =

{
f (�c , cdr(u)) if (f (�c , cdr(u)))1 < �
〈�, s(�c)〉 if (f (�c , cdr(u)))1 = �.

(The “cdr” operation strips the first entry from a sequence.)
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Case (2): Last inference is ∃ ≤:left.

b ≤ t,A(�c , b),Γ→Δ

(∃x ≤ t)A(�c, x),Γ→Δ

where A is sΠb
i−1 but not sΣb

i−1. Let f be given by the induction
hypothesis. Define g by

g(�c , u) = f (�c , (u)1, 〈0〉 ∗ u)

(The “∗” operation is sequence concatenation.)
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Case (2’): Last inference is ∃ ≤:left.

b ≤ t,A(�c , b),Γ→Δ

(∃x ≤ t)A(�c, x),Γ→Δ

where A is sΠb
i−2. Let f be given by the induction hypothesis. Let

μA(�c) equal the least x ≤ t(�c) such that A(�c , x) is true, or equal
t + 1 if no such x exists.

Define g as
g(�c , u) = f (�c , μA(�c), 〈0〉 ∗ u).

Note that μA is computable in polynomial time with an oracle for
sΣb

i−1.

A similar argument applies for ∀ ≤: right inferences.
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Case (3): Last inference is PIND.

A(�1
2b�),Γ→Δ,A(b)

A(0),Γ→Δ,A(t)

where A ∈ Σb
i \ Σb

i−1. Let f be given by the induction hypothesis.
Define

h(�c , b, u) =

{
h(�c , �1

2b�, u) if (h(�c , �1
2b�, u))1 < �

f (�c , b, 〈(h(�c , �1
2b�, u))2〉 ∗ cdr(u)), otherwise

and h(�c , 0, u) = 〈�, (u)1〉. h can be defined by limited iteration on
notation and is polynomial time computable relative to f . Here, �
is the number of formulas in the antecedent.

Then set g(�c , u) = h(�c , t(�c), u). Q.E.D.
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TFNP problems of S1
2

Corollary

If R(x , y) ∈ P and S1
2 � (∀x)(∃y)R(x , y), then R(x , y) is

computable by some polynomial time function, provably in S1
2 .

That is, for some Σb
1-defined, hence ptime, function f ,

S1
2 � ∀xR(x , f (x)).

Proof: Parikh’s theorem gives a polynomial bound on y that is
provable in S1

2 . Then, the corollary is immediate from the
Witnessing Lemma. �
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T i
2 �Σb

i+1
S i+1

2

Next we sketch the proof of the fact that S i+1
2 is

∀Σb
i+1-conservative over T i

2.

Lemma

T i
2 � Πb

i -IND.

Proof. Given A(x) in Πb
i , instead of using induction on A(x)

from x = 0 up to x = t, use induction on ¬A(t .− x) with t fixed.

Lemma

T i
2 � Σb

i -minimization.

Proof. Suppose (∃x)A(x), but there is no least such x . Use
induction on the Πb

i -formula (∀x < a)¬A(x) to get a contradiction.
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Lemma

T i
2 can Σb

i+1-define every function in PΣb
i .

Proof. (Idea.) Let f be in PΣb
i . Without loss of generality, f is

computed using a “witness oracle” that when queried
“∃x ≤ t.A(x , n)?” either returns a value for x ≤ t that makes A
true, or returns t + 1 indicating no such x exists.

A consistent computation for f is a computation based on a
sequence of oracle answers such that any response x ≤ t does
satisfy A (but answers “t + 1” may be incorrect).

The property of being a consistent computation is Πb
i−1. Order

consistent computations lexicographically; T i
2, via

Σb
i -minimization, proves there exists a minimum consistent

computation. And, that this consistent computation has all oracle
answers correct. It is straightforward to check that the minimum
consistent computation is Σb

i+1-definable.
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Theorem (B’90)

S i+1
2 is ∀Σb

i+1-conservative over T i
2.

Proof. (Idea) Repeat the proof of the Witnessing Lemma for
S i+1

2 , but now the conclusion is that T i
2 proves the witnessing

sequent (instead of S i+1
2 ):

WitΓ(�c , u) → WitΔ(�c , f (�c , u)).

It can be checked that T i
2 can formalize all the reasoning that was

earlier formalized in S i+1
2 .
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T 1
2 and PLS [BK’94]

A Polynomial Local Search PLS is formalized in S1
2 provided its

feasible set, initial point function, neighborhood function, and cost
function are Σb

1-defined (as ptime functions).

Theorem

T 1
2 can prove that any (formalized) PLS problem is total.

Proof: By Σb
1-minimization, T 1

2 can prove there is a minimum
cost value c0 satisfying

(∃s ≤ b(x))(F (x , s) ∧ c(x , s) = c0).

Choosing s that realizes the cost c0 gives either a solution to the
PLS problem or a place where the PLS conditions are violated. �
Open: Can T 1

2 witness any PLS problem with a Σb
1-definable

(single-valued) function?
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Theorem (BK’94)

If A ∈ Σb
1 and T 1

2 � (∀x)(∃y)A(x , y), then there is a PLS
problem R such that T 1

2 proves

(∀x)(∀y)(R(x , y) → A(x , (y)1)).

If A ∈ Δb
1 , then can replace “(y)1” with just “y”.

This gives an exact complexity characterization of the
∀Σb

1-definable functions of T 1
2 , in terms of PLS-computability.
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Theorem (Witnessing Lemma)

If Γ→Δ is a T 1
2 -provable sequent of sΣb

1 formulas with free
variables �c, then there is a PLS problem R(〈�c , u〉, v) so that T 1

2

proves
WitΓ(�c , u) ∧ R(〈�c , u〉, v) → WitΔ(�c , v).

Proof idea: Use a free-cut free T 1
2 -proof, proceed by induction on

number of inferences in the proof. Arguments are similar to to
what was used to prove the witnessing lemma for S i

2 (i = 1 case).
Most cases just require closure of PLS under polynomial time
operations. However, induction (Σb

1-IND inference) now requires
exponentially long iteration: this is handled via the exponentially
many possible cost values. �

The Theorem and Witnessing Lemma generalize to i > 1 with

PLSΣb
i−1 . The fourth talk will improve on this, however.
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