II. Introduction to Bounded Arithmetic and Witnessing

Sam Buss, UCSD sbuss@math.ucsd.edu

Prague, September 2009

Bounded arithmetic and bounded quantifiers

Language of first-order theory of bounded includes:

0, S, +, ·,
$$\leq$$
, $|x| := \lceil \log_2(x+1) \rceil$, $\lfloor \frac{1}{2}x \rfloor$, $x \# y := 2^{|x| \cdot |y|}$.

Sometimes also add all polynomial time functions and relations.

Axioms can include (among others):

- (a) Defining (equational) axioms for functions and relations, "Basic".
- (b) Restricted forms of induction.

Definition

A bounded quantifier is of the form $(\forall x \leq t)$ or $(\exists x \leq t)$. It is sharply bounded provided t has the form |s|. A formula is bounded or sharply bounded provided all its quantifiers are bounded or sharply bounded (resp.).

Definition

 $\Delta_0^b = \Sigma_0^b = \Pi_0^b: \text{ Sharply bounded formulas}$ $\Sigma_{i+1}^b: \text{ Closure of } \Pi_i^b \text{ under existential bounded quantification and arbitrary sharply bounded quantification, modulo prenex operations.}$

 Π_{i+1}^{b} is defined dually.

 Σ_i^b , Π_i^b define exactly the predicates at the *i*-th level of the polynomial hierarchy (PH), if $i \ge 1$. Thus, Σ_1^b and Π_1^b define exactly the NP and coNP sets.

(日) (日) (日)

3

Induction axioms

Let formulas A be in Ψ , we have the following kinds of induction:

$$\Psi\text{-IND:} \qquad A(0) \land (\forall x)(A(x) \to A(x+1)) \to (\forall x)A(x).$$

 $\Psi\text{-PIND:} \qquad A(0) \land (\forall x)(A(\lfloor \frac{1}{2}x \rfloor) \to A(x)) \to (\forall x)A(x).$

$$\Psi\text{-LIND:} \qquad A(0) \land (\forall x)(A(x) \to A(x+1)) \to (\forall x)A(|x|).$$

Definition (Fragments of bounded arithmetic, B'85)

 S_2^i : BASIC + Σ_i^b -PIND. T_2^i : BASIC + Σ_i^b -IND.

$$S_2 = \cup_i S_2^i$$
 and $T_2 = \cup_i T_2^i$.

Note T_2 is essentially $I\Delta_0 + \Omega_1$. [Parikh'71, Wilkie-Paris'87]

A > < 3 > < 3 > .

Theorem (B'85, B'90)

(a)
$$S_2^1 \subseteq T_2^1 \preccurlyeq_{\forall \Sigma_2^b} S_2^2 \subseteq T_2^2 \preccurlyeq_{\forall \Sigma_3^b} S_2^3 \subseteq \cdots$$

(b) Thus, $S_2 = T_2$.
(c) $S_2^1 + \Sigma_i^b$ -LIND equals S_2^i .

More axioms:

$\begin{array}{ll} \Phi-\mathsf{MIN}: & (\exists x)A(x) \to (\exists x)(A(x) \land (\forall y < x) \neg A(y)). \\ \Phi-\mathsf{LMIN}: & (\exists x)A(x) \to (\exists x)(A(x) \land (\forall y)(|y| < |x| \to \neg A(y))). \\ \Phi\text{-replacement:} \end{array}$

 $(\forall x \leq |t|)(\exists y \leq s)A(x, y) \rightarrow (\exists w)(\forall x \leq |t|)A(x, \beta(x, w)).$ Φ -strong replacement:

$$(\exists w)(\forall x \leq |t|)[(\exists y \leq s)A(x,y) \leftrightarrow A(x,\beta(x,w))].$$

(4月) (王) (王) (王)

$$\begin{split} \Sigma_{i}^{b}\text{-}\mathsf{IND} & \Longleftrightarrow \ \Pi_{i}^{b}\text{-}\mathsf{IND} & \Longleftrightarrow \ \Sigma_{i}^{b}\text{-}\mathsf{MIN} & \Longleftrightarrow \ \Pi_{i-1}^{b}\text{-}\mathsf{MIN} & \Longleftrightarrow \ \Delta_{i+1}^{b}\text{-}\mathsf{IND} \\ & \Downarrow \\ \Sigma_{i}^{b}\text{-}\mathsf{PIND} & \Leftrightarrow \ \Pi_{i}^{b}\text{-}\mathsf{PIND} & \Leftrightarrow \ \Sigma_{i}^{b}\text{-}\mathsf{LIND} & \Leftrightarrow \ \Pi_{i}^{b}\text{-}\mathsf{LIND} \\ & \Uparrow \\ & \searrow \\ \Sigma_{i}^{b}\text{-}\mathsf{LMIN} & \Leftrightarrow \ (\Sigma_{i+1}^{b} \cap \Pi_{i+1}^{b})\text{-}\mathsf{PIND} & \Leftrightarrow_{1} \text{ strong } \Sigma_{i}^{b}\text{-}\mathsf{replacement} \\ & \downarrow \\ & \Sigma_{i-1}^{b}\text{-}\mathsf{IND} \\ & S_{2}^{i} \preccurlyeq_{\forall \Sigma_{i}^{b}} \ T_{2}^{i-1} \qquad S_{2}^{i} \preccurlyeq_{\forall \mathcal{B}(\Sigma_{i}^{b})} \ T_{2}^{i-1} + \Sigma_{i}^{b}\text{-}\mathsf{replacement} \\ & \Sigma_{1}^{b}\text{-}\mathsf{PIND} + \Sigma_{i+1}^{b}\text{-}\mathsf{replacement} \implies \Sigma_{i}^{b}\text{-}\mathsf{PIND} \implies \Sigma_{i}^{b}\text{-}\mathsf{replacement} \end{split}$$

Open: The exact relative strength of Σ_i^b -replacement.

- * @ * * 注 * * 注 * … 注

Provably total functions and Σ_i^b -definable functions

Definition

Let *R* be a bounded theory. A function $f : \mathbb{N} \to \mathbb{N}$ is provably total in *R* provided there is a formula $A_f(x, y)$ that defines the graph of *f* such that *R* proves $(\forall x)(\exists ! y)A_f(x, y)$, with A_f polynomial time computable.

Definition

f is Σ_i^b -definable by R, provided there is a Σ_i^b -formula A(x,y) such that

1. $R \vdash (\forall x) (\exists y \leq t) A(x, y)$ for some term t.

2.
$$R \vdash (\forall x)(A(x, y) \land A(x, z) \rightarrow y = z).$$

3. A(x, y) defines the graph of f.

Thm. Any Σ_1^b -definable function in S_2^i or T_2^i can be introduced conservatively into the language of the theory with its defining axiom, and be used freely in induction formulas.

Theorem (B'85)

- 1. S_2^1 can Σ_1^b -define every polynomial time function.
- 2. S_2^i can Σ_i^b -define every function which is polynomial time computable with an oracle from Σ_{i-1}^p .

(The converse holds too.)

Hence, we can w.l.o.g. assume that all polynomial time functions are present in the language of bounded arithmetic.

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Similar definitions and results hold for predicates.

Definition

A predicate P is Δ_i^b -definable in R provided there are a Σ_i^b -formula A and \prod_i^b -formula B which are R-provably equivalent and which define the predicate P.

Theorem (B'85)

Every polynomial time predicate is Δ_1^b -definable by S_2^1 . Every predicate which is polynomial time computable with an oracle from Σ_{i-1}^b is Δ_i^b -definable in S_2^i .

(Again, a converse holds.)

Thus, every polynomial time predicate can be conservatively introduced to S_2^i or T_2^i with its defining axioms, and used freely in induction axioms.

(4回) (4回) (4回)

Witnessing Theorem for S_2^i

Theorem (Main Theorem for S_2^i , B'85)

Let $i \geq 1$. Suppose f is Σ_i^b -defined by S_2^i . Then f is computable in $P^{\sum_{i=1}^p}$, that is, in polynomial time with an oracle for $\sum_{i=1}^p$. For i = 1, f is in P, polynomial time computable.

This gives an exact characterization of the functions that are Σ_i^b -definable in S_2^i .

For i = 1, the Σ_1^b -definable functions of S_2^1 are precisely the polynomial computable functions.

Likewise, the Δ_1^b -definable predicates of S_2^1 are precisely the predicates that are provably in $NP \cap coNP$.

Open: Give a more satisfactory account of the functions that are Σ_1^b -definable in S_2^i , i > 1. That is, of the provably total functions of these theories. (Note the uniqueness condition.)

We now start the proof of the Main Theorem.

Proof idea: Form a free-cut free proof, in which all formulas are in Σ_i^b . The free-cut free proof is then essentially an algorithm for the function f.

The proof is considerably simplified by working with *strict* Σ_i^b -formulas, denoted $s\Sigma_i^b$ for short. These are of the form:

$$(\exists x_1 \leq t_1)(\forall x_2 \leq t_2) \cdots (Qx_i \leq t_i)B(\vec{x})$$

where B is sharply bounded, and the quantifiers alternate in type (and subformulas of these formulas).

Thm. S_2^i can equivalently be formulated with $s\Sigma_i^b$ -PIND, provided \div and MSP are added to the language.

Proof idea: Careful bootstrapping, plus use of replacement.

→

To prove the witnessing theorem, by free-cut elimination, it suffices to consider sequent calculus proofs in which every formula is an $s\Sigma_i^b$ -formula (including, via pairing functions, the final, proved formula). Henceforth, fix i > 0.

Definition

Let $A(\vec{c})$ be $s\Sigma_i^b$. The predicate $Wit_A(\vec{c}, u)$ is defined so that

- If A is $(\exists x \leq t)B(\vec{c},x)$, $B \notin \sum_{i=1}^{b}$, then $Wit_A(\vec{c},u)$ is the formula $u \leq t \land B(\vec{c},u)$.
- If A is in $\prod_{i=1}^{b}$, then $Wit_A(\vec{c}, u)$ is just $A(\vec{c})$.

The following is trivial since we are working with strict formulas.

Fact: $A(\vec{c}) \leftrightarrow (\exists u) Wit_A(\vec{c}, u)$.

Fact: Wit_A is a $\prod_{i=1}^{b}$ -formula (or Δ_{1}^{b} , when i = 1.)

(< ≥) >

A cedent is a set of formulas. If Γ and Δ are cedents, then $\Gamma \rightarrow \Delta$ is a *sequent*. Its meaning is that the conjunction of Γ implies the disjunction of Δ .

Letting $\Gamma = A_1, \ldots, A_k$, then $Wit_{\Gamma}(\vec{c}, u)$ is the statement:

$$\bigwedge_{i=1}^k Wit_{A_i}(\vec{c},(u)_i)$$

For $\Delta = B_1, \ldots, B_\ell$, $\textit{Wit}_\Delta(\vec{c}, u)$ is the statement

$$\bigvee_{j=1}^{\ell} \left((u)_1 = j \land Wit_{B_j}(\vec{c}, (u)_2) \right)$$

The notation $(u)_i$ means $\beta(i, u)$, the *i*-entry in the sequence coded by u. That is, $u = \langle u_1, \ldots, u_k \rangle$ in the first case, and $u = \langle u_1, u_2 \rangle$ in the second case.

伺下 イヨト イヨト

Theorem (Witnessing Lemma)

If $\Gamma \rightarrow \Delta$ is an S_2^i -provable sequent of $s\Sigma_i^b$ formulas with free variables \vec{c} , then there is a function $f(\vec{c}, u)$ which is Σ_i^b -definable in S_2^i and computable in polynomial time with an oracle for Σ_{i-1}^b such that S_2^i proves

$Wit_{\Gamma}(\vec{c}, u) \rightarrow Wit_{\Delta}(\vec{c}, f(\vec{c}, u)).$

The theorem is proved by induction on the number of lines in a free-cut free S_2^i -proof P of $\Gamma \rightarrow \Delta$. The base cases are the equational axioms defining the symbols of the language. Since witnesses for Δ_0^b -formulas are trivial, these cases are all trivial.

The induction step splits into cases depending on the last inference of the proof P.

→ 同→ → 三→

Case (1): Last inference is $\exists \leq :right$.

$$\frac{\Gamma {\rightarrow} \Delta, \mathcal{A}(\vec{c}, s)}{s \leq t, \Gamma {\rightarrow} \Delta, (\exists x \leq t) \mathcal{A}(\vec{c}, x)}$$

The formula A is $s \prod_{i=1}^{b}$. The induction hypothesis gives a function f, which accepts witnesses for Γ and produces a witness either making a formula in Δ true or making $A(\vec{c}, s)$ true. Modify f, so that in the latter case, it returns $\langle \ell, s \rangle$.

$$g(\vec{c}, u) = \begin{cases} f(\vec{c}, cdr(u)) & \text{if } (f(\vec{c}, cdr(u)))_1 < \ell \\ \langle \ell, s(\vec{c}) \rangle & \text{if } (f(\vec{c}, cdr(u)))_1 = \ell. \end{cases}$$

(The "cdr" operation strips the first entry from a sequence.)

Case (2): Last inference is $\exists \leq :$ left.

$$\frac{b \leq t, A(\vec{c}, b), \Gamma {\longrightarrow} \Delta}{(\exists x \leq t) A(\vec{c}, x), \Gamma {\longrightarrow} \Delta}$$

where A is $s \prod_{i=1}^{b}$ but not $s \sum_{i=1}^{b}$. Let f be given by the induction hypothesis. Define g by

$$g(\vec{c}, u) = f(\vec{c}, (u)_1, \langle 0 \rangle * u)$$

(The "*" operation is sequence concatenation.)

白 ト イヨ ト イヨ ト

Case (2'): Last inference is $\exists \leq :$ left.

$$b \leq t, A(\vec{c}, b), \Gamma \rightarrow \Delta$$

 $(\exists x \leq t) A(\vec{c}, x), \Gamma \rightarrow \Delta$

where A is $s \prod_{i=2}^{b}$. Let f be given by the induction hypothesis. Let $\mu_A(\vec{c})$ equal the least $x \leq t(\vec{c})$ such that $A(\vec{c}, x)$ is true, or equal t+1 if no such x exists.

Define g as

$$g(\vec{c}, u) = f(\vec{c}, \mu_A(\vec{c}), \langle 0 \rangle * u).$$

Note that μ_A is computable in polynomial time with an oracle for $s\Sigma_{i-1}^b$.

A similar argument applies for $\forall \leq :$ *right* inferences.

Case (3): Last inference is PIND.

$$\frac{A(\lfloor \frac{1}{2}b \rfloor), \Gamma \longrightarrow \Delta, A(b)}{A(0), \Gamma \longrightarrow \Delta, A(t)}$$

where $A \in \Sigma_i^b \setminus \Sigma_{i-1}^b$. Let f be given by the induction hypothesis. Define

$$h(\vec{c}, b, u) = \begin{cases} h(\vec{c}, \lfloor \frac{1}{2}b \rfloor, u) & \text{if } (h(\vec{c}, \lfloor \frac{1}{2}b \rfloor, u))_1 < \ell \\ f(\vec{c}, b, \langle (h(\vec{c}, \lfloor \frac{1}{2}b \rfloor, u))_2 \rangle * cdr(u)), \text{ otherwise} \end{cases}$$

and $h(\vec{c}, 0, u) = \langle \ell, (u)_1 \rangle$. *h* can be defined by *limited iteration on notation* and is polynomial time computable relative to *f*. Here, ℓ is the number of formulas in the antecedent.

Then set
$$g(\vec{c}, u) = h(\vec{c}, t(\vec{c}), u)$$
. Q.E.D.

通 と イヨ と イ ヨ と

TFNP problems of S_2^1

Corollary

If $R(x, y) \in P$ and $S_2^1 \vdash (\forall x)(\exists y)R(x, y)$, then R(x, y) is computable by some polynomial time function, provably in S_2^1 . That is, for some Σ_1^b -defined, hence ptime, function f, $S_2^1 \vdash \forall xR(x, f(x))$.

Proof: Parikh's theorem gives a polynomial bound on y that is provable in S_2^1 . Then, the corollary is immediate from the Witnessing Lemma.

 $\overline{|T_2^i|} \preccurlyeq_{\Sigma_{i+1}^b} S_2^{i+1}$

Next we sketch the proof of the fact that S_2^{i+1} is $\forall \Sigma_{i+1}^b$ -conservative over T_2^i .

Lemma

 $T_2^i \vdash \prod_i^b$ -IND.

Proof. Given A(x) in Π_i^b , instead of using induction on A(x) from x = 0 up to x = t, use induction on $\neg A(t - x)$ with t fixed.

Lemma

 $T_2^i \vdash \Sigma_i^b$ -minimization.

Proof. Suppose $(\exists x)A(x)$, but there is no least such x. Use induction on the $\prod_{i=1}^{b}$ -formula $(\forall x < a) \neg A(x)$ to get a contradiction.

Lemma

$$T_2^i$$
 can Σ_{i+1}^b -define every function in $\mathcal{P}^{\Sigma_i^b}$.

Proof. (Idea.) Let f be in $P^{\sum_{i}^{b}}$. Without loss of generality, f is computed using a "witness oracle" that when queried " $\exists x \leq t.A(x, n)$?" either returns a value for $x \leq t$ that makes A true, or returns t + 1 indicating no such x exists.

A consistent computation for f is a computation based on a sequence of oracle answers such that any response $x \le t$ does satisfy A (but answers "t + 1" may be incorrect).

The property of being a consistent computation is Π_{i-1}^{b} . Order consistent computations lexicographically; T_{2}^{i} , via Σ_{i}^{b} -minimization, proves there exists a minimum consistent computation. And, that this consistent computation has all oracle answers correct. It is straightforward to check that the minimum consistent computation is Σ_{i+1}^{b} -definable.

Theorem (B'90)

$$S_2^{i+1}$$
 is $\forall \Sigma_{i+1}^b$ -conservative over T_2^i .

Proof. (Idea) Repeat the proof of the Witnessing Lemma for S_2^{i+1} , but now the conclusion is that T_2^i proves the witnessing sequent (instead of S_2^{i+1}):

$$Wit_{\Gamma}(\vec{c}, u) \rightarrow Wit_{\Delta}(\vec{c}, f(\vec{c}, u)).$$

It can be checked that T_2^i can formalize all the reasoning that was earlier formalized in S_2^{i+1} .

T_2^1 and PLS [BK'94]

A Polynomial Local Search PLS is formalized in S_2^1 provided its feasible set, initial point function, neighborhood function, and cost function are Σ_1^b -defined (as ptime functions).

Theorem

 T_2^1 can prove that any (formalized) PLS problem is total.

Proof: By Σ_1^b -minimization, T_2^1 can prove there is a minimum cost value c_0 satisfying

$$(\exists s \leq b(x))(F(x,s) \wedge c(x,s) = c_0).$$

Choosing *s* that realizes the cost c_0 gives either a solution to the PLS problem or a place where the PLS conditions are violated. \Box **Open:** Can T_2^1 witness any PLS problem with a Σ_1^b -definable (single-valued) function?

Theorem (BK'94)

If $A \in \Sigma_1^b$ and $T_2^1 \vdash (\forall x)(\exists y)A(x, y)$, then there is a PLS problem R such that T_2^1 proves

$$(\forall x)(\forall y)(R(x,y) \rightarrow A(x,(y)_1)).$$

If $A \in \Delta_1^b$, then can replace " $(y)_1$ " with just "y".

This gives an exact complexity characterization of the $\forall \Sigma_1^b$ -definable functions of T_2^1 , in terms of PLS-computability.

Theorem (Witnessing Lemma)

If $\Gamma \rightarrow \Delta$ is a T_2^1 -provable sequent of $s\Sigma_1^b$ formulas with free variables \vec{c} , then there is a PLS problem $R(\langle \vec{c}, u \rangle, v)$ so that T_2^1 proves

$$Wit_{\Gamma}(\vec{c}, u) \wedge R(\langle \vec{c}, u \rangle, v) \rightarrow Wit_{\Delta}(\vec{c}, v).$$

Proof idea: Use a free-cut free T_2^1 -proof, proceed by induction on number of inferences in the proof. Arguments are similar to to what was used to prove the witnessing lemma for S_2^i (i = 1 case). Most cases just require closure of PLS under polynomial time operations. However, induction (Σ_1^b -IND inference) now requires exponentially long iteration: this is handled via the exponentially many possible cost values.

The Theorem and Witnessing Lemma generalize to i > 1 with $PLS^{\sum_{i=1}^{b}}$. The fourth talk will improve on this, however.

Some selected references

- R. Parikh, Existence and Feasibility in Arithmetic, JSL, 1971.
- A. Wilkie, J. Paris, On the Scheme of Induction for Bounded Arithmetic Formulas, APAL, 1987.
- S. Buss, *Bounded Arithmetic*, Ph.D. thesis, 1985. Bibliopolis, 1986. Also available online.
- S. Buss, Axiomatizations and conservation results for fragments of bounded arithmetic. In *Logic and Computation*, AMS Contemp. Math. 106 (1990) 57-84.
- S. Buss, J. Krajíček, An application of Boolean complexity to separation problems in bounded arithmetic. Proc. LMS 69 (1994) 1-21.

伺下 イヨト イヨト