II. Introduction to
 Bounded Arithmetic and Witnessing

Sam Buss, UCSD
sbuss@math.ucsd.edu

Prague, September 2009

Bounded arithmetic and bounded quantifiers

Language of first-order theory of bounded includes:

$$
0, S,+, \cdot, \leq,|x|:=\left\lceil\log _{2}(x+1)\right\rceil,\left\lfloor\frac{1}{2} x\right\rfloor, x \# y:=2^{|x| \cdot|y|} .
$$

Sometimes also add all polynomial time functions and relations.

Axioms can include (among others):
(a) Defining (equational) axioms for functions and relations, "Basic".
(b) Restricted forms of induction.

Definition

A bounded quantifier is of the form $(\forall x \leq t)$ or $(\exists x \leq t)$. It is sharply bounded provided t has the form $|s|$. A formula is bounded or sharply bounded provided all its quantifiers are bounded or sharply bounded (resp.).

Definition

$\Delta_{0}^{b}=\Sigma_{0}^{b}=\Pi_{0}^{b}$: Sharply bounded formulas
\sum_{i+1}^{b} : Closure of Π_{i}^{b} under existential bounded quantification and arbitrary sharply bounded quantification, modulo prenex operations.
Π_{i+1}^{b} is defined dually.
$\sum_{i}^{b}, \Pi_{i}^{b}$ define exactly the predicates at the i-th level of the polynomial hierarchy (PH), if $i \geq 1$.
Thus, Σ_{1}^{b} and Π_{1}^{b} define exactly the NP and coNP sets.

Induction axioms

Let formulas A be in Ψ, we have the following kinds of induction:
Ψ-IND: $\quad A(0) \wedge(\forall x)(A(x) \rightarrow A(x+1)) \rightarrow(\forall x) A(x)$.
Ψ-PIND: $\quad A(0) \wedge(\forall x)\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right) \rightarrow(\forall x) A(x)$.
Ψ-LIND: $\quad A(0) \wedge(\forall x)(A(x) \rightarrow A(x+1)) \rightarrow(\forall x) A(|x|)$.

Definition (Fragments of bounded arithmetic, B'85)

$S_{2}^{i}:$ BASIC $+\sum_{i}^{b}$-PIND.
$T_{2}^{i}:$ BASIC $+\sum_{i}^{b}$-IND.
$S_{2}=\cup_{i} S_{2}^{i}$ and $T_{2}=\cup_{i} T_{2}^{i}$.
Note T_{2} is essentially $/ \Delta_{0}+\Omega_{1}$. [Parikh'71, Wilkie-Paris'87]

Theorem (B'85, B'90)

(a) $S_{2}^{1} \subseteq T_{2}^{1} \preccurlyeq_{\forall \Sigma_{2}^{b}} S_{2}^{2} \subseteq T_{2}^{2} \preccurlyeq_{\forall \Sigma_{3}^{b}} S_{2}^{3} \subseteq \cdots$
(b) Thus, $S_{2}=T_{2}$.
(c) $S_{2}^{1}+\sum_{i}^{b}$-LIND equals S_{2}^{i}.

More axioms:
Ф-MIN

$$
\begin{array}{ll}
\text { Ф-MIN: } & (\exists x) A(x) \rightarrow(\exists x)(A(x) \wedge(\forall y<x) \neg A(y)) . \\
\text { Ф-LMIN: } & (\exists x) A(x) \rightarrow(\exists x)(A(x) \wedge(\forall y)(|y|<|x| \rightarrow \neg A(y))) .
\end{array}
$$

Φ-replacement:

$$
(\forall x \leq|t|)(\exists y \leq s) A(x, y) \rightarrow(\exists w)(\forall x \leq|t|) A(x, \beta(x, w))
$$

Φ-strong replacement:

$$
(\exists w)(\forall x \leq|t|)[(\exists y \leq s) A(x, y) \leftrightarrow A(x, \beta(x, w))] .
$$


```
    \Downarrow
\mp@subsup{\sum}{i}{b}-\mathrm{ PIND }\Longleftrightarrow\mp@subsup{\Pi}{i}{b}-\mathrm{ -IND }\Longleftrightarrow\mp@subsup{\sum}{i}{b}\mathrm{ -LIND }\Longleftrightarrow\mp@subsup{\Pi}{i}{b}\mathrm{ -LIND}
    |
\Sigmai-LMIN \Longleftrightarrow(\mp@subsup{\sum}{i+1}{b}\cap\mp@subsup{\Pi}{i+1}{b})\mathrm{ -PIND <}
    \Downarrow
\sum i-1 -IND
S i}\mp@subsup{\preccurlyeq}{\forall\mp@subsup{\Sigma}{i}{b}}{}\mp@subsup{T}{2}{i-1}\quad\mp@subsup{S}{2}{i}\mp@subsup{\preccurlyeq\forall\mathcal{B}(\mp@subsup{\sum}{i}{b})}{}{\mp@subsup{T}{2}{i-1}+\mp@subsup{\sum}{i}{b}\mathrm{ -replacement}
```


Open: The exact relative strength of \sum_{i}^{b}-replacement.

Provably total functions and \sum_{i}^{b}-definable functions

Definition

Let R be a bounded theory. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is provably total in R provided there is a formula $A_{f}(x, y)$ that defines the graph of f such that R proves $(\forall x)(\exists!y) A_{f}(x, y)$, with A_{f} polynomial time computable.

Definition

f is \sum_{i}^{b}-definable by R, provided there is a \sum_{i}^{b}-formula $A(x, y)$ such that

1. $R \vdash(\forall x)(\exists y \leq t) A(x, y)$ for some term t.
2. $R \vdash(\forall x)(A(x, y) \wedge A(x, z) \rightarrow y=z)$.
3. $A(x, y)$ defines the graph of f.

Thm. Any Σ_{1}^{b}-definable function in S_{2}^{i} or T_{2}^{i} can be introduced conservatively into the language of the theory with its defining axiom, and be used freely in induction formulas.

Theorem (B'85)

1. S_{2}^{1} can \sum_{1}^{b}-define every polynomial time function.
2. S_{2}^{i} can \sum_{i}^{b}-define every function which is polynomial time computable with an oracle from \sum_{i-1}^{p}.
(The converse holds too.)

Hence, we can w.l.o.g. assume that all polynomial time functions are present in the language of bounded arithmetic.

Similar definitions and results hold for predicates.

Definition

A predicate P is Δ_{i}^{b}-definable in R provided there are a \sum_{i}^{b}-formula A and Π_{i}^{b}-formula B which are R-provably equivalent and which define the predicate P.

Theorem (B'85)

Every polynomial time predicate is Δ_{1}^{b}-definable by S_{2}^{1}.
Every predicate which is polynomial time computable with an oracle from Σ_{i-1}^{b} is Δ_{i}^{b}-definable in S_{2}^{i}.
(Again, a converse holds.)
Thus, every polynomial time predicate can be conservatively introduced to S_{2}^{i} or T_{2}^{i} with its defining axioms, and used freely in induction axioms.

Witnessing Theorem for S_{2}^{i}

Theorem (Main Theorem for $S_{2}^{i}, B^{\prime} 85$)

Let $i \geq 1$. Suppose f is Σ_{i}^{b}-defined by S_{2}^{i}. Then f is computable in $P^{\Sigma_{i-1}^{p}}$, that is, in polynomial time with an oracle for \sum_{i-1}^{p}.
For $i=1, f$ is in P , polynomial time computable.

This gives an exact characterization of the functions that are Σ_{i}^{b}-definable in S_{2}^{i}.
For $i=1$, the Σ_{1}^{b}-definable functions of S_{2}^{1} are precisely the polynomial computable functions.
Likewise, the Δ_{1}^{b}-definable predicates of S_{2}^{1} are precisely the predicates that are provably in NP \cap coNP.
Open: Give a more satisfactory account of the functions that are Σ_{1}^{b}-definable in $S_{2}^{i}, i>1$. That is, of the provably total functions of these theories. (Note the uniqueness condition.)

We now start the proof of the Main Theorem.
Proof idea: Form a free-cut free proof, in which all formulas are in Σ_{i}^{b}. The free-cut free proof is then essentially an algorithm for the function f.

The proof is considerably simplified by working with strict \sum_{i}^{b}-formulas, denoted $s \sum_{i}^{b}$ for short. These are of the form:

$$
\left(\exists x_{1} \leq t_{1}\right)\left(\forall x_{2} \leq t_{2}\right) \cdots\left(Q x_{i} \leq t_{i}\right) B(\vec{x})
$$

where B is sharply bounded, and the quantifiers alternate in type (and subformulas of these formulas).

Thm. S_{2}^{i} can equivalently be formulated with $s \Sigma_{i}^{b}$-PIND, provided - and MSP are added to the language.

Proof idea: Careful bootstrapping, plus use of replacement.

To prove the witnessing theorem, by free-cut elimination, it suffices to consider sequent calculus proofs in which every formula is an $s \sum_{i}^{b}$-formula (including, via pairing functions, the final, proved formula). Henceforth, fix $i>0$.

Definition

Let $A(\vec{c})$ be $s \sum_{i}^{b}$. The predicate $\operatorname{Wit}_{A}(\vec{c}, u)$ is defined so that

- If A is $(\exists x \leq t) B(\vec{c}, x), B \notin \sum_{i-1}^{b}$, then $\operatorname{Wit}_{A}(\vec{c}, u)$ is the formula $u \leq t \wedge B(\vec{c}, u)$.
- If A is in Π_{i-1}^{b}, then $\operatorname{Wit}_{A}(\vec{c}, u)$ is just $A(\vec{c})$.

The following is trivial since we are working with strict formulas.
Fact: $A(\vec{c}) \leftrightarrow(\exists u)$ Wit $_{A}(\vec{c}, u)$.
Fact: Wit $_{A}$ is a Π_{i-1}^{b}-formula (or Δ_{1}^{b}, when $i=1$.)

A cedent is a set of formulas. If Γ and Δ are cedents, then $\Gamma \longrightarrow \Delta$ is a sequent. Its meaning is that the conjunction of Γ implies the disjunction of Δ.

Letting $\Gamma=A_{1}, \ldots, A_{k}$, then $\operatorname{Wit}_{\Gamma}(\vec{c}, u)$ is the statement:

$$
\bigwedge_{i=1}^{k} \operatorname{Wit}_{A_{i}}\left(\vec{c},(u)_{i}\right)
$$

For $\Delta=B_{1}, \ldots, B_{\ell}$, Wit $_{\Delta}(\vec{c}, u)$ is the statement

$$
\bigvee_{j=1}^{\ell}\left((u)_{1}=j \wedge \text { Wit }_{B_{j}}\left(\vec{c},(u)_{2}\right)\right)
$$

The notation $(u)_{i}$ means $\beta(i, u)$, the i-entry in the sequence coded by u. That is, $u=\left\langle u_{1}, \ldots, u_{k}\right\rangle$ in the first case, and $u=\left\langle u_{1}, u_{2}\right\rangle$ in the second case.

Theorem (Witnessing Lemma)

If $\Gamma \rightarrow \Delta$ is an S_{2}^{i}-provable sequent of $s \sum_{i}^{b}$ formulas with free variables \vec{c}, then there is a function $f(\vec{c}, u)$ which is \sum_{i}^{b}-definable in S_{2}^{i} and computable in polynomial time with an oracle for \sum_{i-1}^{b} such that S_{2}^{i} proves

$$
\operatorname{Wit}_{\Gamma}(\vec{c}, u) \rightarrow \operatorname{Wit}_{\Delta}(\vec{c}, f(\vec{c}, u)) .
$$

The theorem is proved by induction on the number of lines in a free-cut free S_{2}^{i}-proof P of $\Gamma \longrightarrow \Delta$. The base cases are the equational axioms defining the symbols of the language. Since witnesses for Δ_{0}^{b}-formulas are trivial, these cases are all trivial.

The induction step splits into cases depending on the last inference of the proof P.

Case (1): Last inference is $\exists \leq$:right.

$$
\frac{\Gamma \rightarrow \Delta, A(\vec{c}, s)}{s \leq t, \Gamma \rightarrow \Delta,(\exists x \leq t) A(\vec{c}, x)}
$$

The formula A is $s \Pi_{i-1}^{b}$. The induction hypothesis gives a function f, which accepts witnesses for Γ and produces a witness either making a formula in Δ true or making $A(\vec{c}, s)$ true. Modify f, so that in the latter case, it returns $\langle\ell, s\rangle$.

$$
g(\vec{c}, u)= \begin{cases}f(\vec{c}, c d r(u)) & \text { if }(f(\vec{c}, c d r(u)))_{1}<\ell \\ \langle\ell, s(\vec{c})\rangle & \text { if }(f(\vec{c}, \operatorname{cdr}(u)))_{1}=\ell\end{cases}
$$

(The "cdr" operation strips the first entry from a sequence.)

Case (2): Last inference is $\exists \leq$:left.

$$
\frac{b \leq t, A(\vec{c}, b), \Gamma \rightarrow \Delta}{(\exists x \leq t) A(\vec{c}, x), \Gamma \rightarrow \Delta}
$$

where A is $s \Pi_{i-1}^{b}$ but not $s \sum_{i-1}^{b}$. Let f be given by the induction hypothesis. Define g by

$$
g(\vec{c}, u)=f\left(\vec{c},(u)_{1},\langle 0\rangle * u\right)
$$

(The "*" operation is sequence concatenation.)

Case (2'): Last inference is $\exists \leq$:left.

$$
\frac{b \leq t, A(\vec{c}, b), \Gamma \rightarrow \Delta}{(\exists x \leq t) A(\vec{c}, x), \Gamma \rightarrow \Delta}
$$

where A is $s \Pi_{i-2}^{b}$. Let f be given by the induction hypothesis. Let $\mu_{A}(\vec{c})$ equal the least $x \leq t(\vec{c})$ such that $A(\vec{c}, x)$ is true, or equal $t+1$ if no such x exists.

Define g as

$$
g(\vec{c}, u)=f\left(\vec{c}, \mu_{A}(\vec{c}),\langle 0\rangle * u\right)
$$

Note that μ_{A} is computable in polynomial time with an oracle for $s \sum_{i-1}^{b}$.

A similar argument applies for $\forall \leq$: right inferences.

Case (3): Last inference is PIND.

$$
\frac{A\left(\left\lfloor\frac{1}{2} b\right\rfloor\right), \Gamma \longrightarrow \Delta, A(b)}{A(0), \Gamma \longrightarrow \Delta, A(t)}
$$

where $A \in \Sigma_{i}^{b} \backslash \sum_{i-1}^{b}$. Let f be given by the induction hypothesis. Define
$h(\vec{c}, b, u)= \begin{cases}h\left(\vec{c},\left\lfloor\frac{1}{2} b\right\rfloor, u\right) & \text { if }\left(h\left(\vec{c},\left\lfloor\frac{1}{2} b\right\rfloor, u\right)\right)_{1}<\ell \\ f\left(\vec{c}, b,\left\langle\left(h\left(\vec{c},\left\lfloor\frac{1}{2} b\right\rfloor, u\right)\right)_{2}\right\rangle * c d r(u)\right), & \text { otherwise }\end{cases}$
and $h(\vec{c}, 0, u)=\left\langle\ell,(u)_{1}\right\rangle$. h can be defined by limited iteration on notation and is polynomial time computable relative to f. Here, ℓ is the number of formulas in the antecedent.

Then set $g(\vec{c}, u)=h(\vec{c}, t(\vec{c}), u)$.
Q.E.D.

TFNP problems of S_{2}^{1}

Corollary

If $R(x, y) \in \mathrm{P}$ and $S_{2}^{1} \vdash(\forall x)(\exists y) R(x, y)$, then $R(x, y)$ is computable by some polynomial time function, provably in S_{2}^{1}. That is, for some \sum_{1}^{b}-defined, hence ptime, function f, $S_{2}^{1} \vdash \forall x R(x, f(x))$.

Proof: Parikh's theorem gives a polynomial bound on y that is provable in S_{2}^{1}. Then, the corollary is immediate from the Witnessing Lemma.

$T_{2}^{i} \preccurlyeq \Sigma_{i+1}^{b} S_{2}^{i+1}$

Next we sketch the proof of the fact that S_{2}^{i+1} is $\forall \sum_{i+1}^{b}$-conservative over T_{2}^{i}.

Lemma

$T_{2}^{i} \vdash \Pi_{i}^{b}-I N D$.
Proof. Given $A(x)$ in Π_{i}^{b}, instead of using induction on $A(x)$ from $x=0$ up to $x=t$, use induction on $\neg A(t-x)$ with t fixed.

Lemma

$T_{2}^{i} \vdash \sum_{i}^{b}$-minimization.
Proof. Suppose $(\exists x) A(x)$, but there is no least such x. Use induction on the Π_{i}^{b}-formula $(\forall x<a) \neg A(x)$ to get a contradiction.

Lemma

T_{2}^{i} can \sum_{i+1}^{b}-define every function in $P^{\sum_{i}^{b}}$.
Proof. (Idea.) Let f be in $P^{\sum_{i}^{b}}$. Without loss of generality, f is computed using a "witness oracle" that when queried " $\exists x \leq t . A(x, n)$?" either returns a value for $x \leq t$ that makes A true, or returns $t+1$ indicating no such x exists.
A consistent computation for f is a computation based on a sequence of oracle answers such that any response $x \leq t$ does satisfy A (but answers " $t+1$ " may be incorrect).
The property of being a consistent computation is Π_{i-1}^{b}. Order consistent computations lexicographically; T_{2}^{i}, via
\sum_{i}^{b}-minimization, proves there exists a minimum consistent computation. And, that this consistent computation has all oracle answers correct. It is straightforward to check that the minimum consistent computation is \sum_{i+1}^{b}-definable.

Theorem (B'90)

S_{2}^{i+1} is $\forall \sum_{i+1}^{b}$-conservative over T_{2}^{i}.
Proof. (Idea) Repeat the proof of the Witnessing Lemma for S_{2}^{i+1}, but now the conclusion is that T_{2}^{i} proves the witnessing sequent (instead of S_{2}^{i+1}):

$$
\operatorname{Wit}_{\Gamma}(\vec{c}, u) \rightarrow \operatorname{Wit}_{\Delta}(\vec{c}, f(\vec{c}, u)) .
$$

It can be checked that T_{2}^{i} can formalize all the reasoning that was earlier formalized in S_{2}^{i+1}.

T_{2}^{1} and PLS [BK'94]

A Polynomial Local Search PLS is formalized in S_{2}^{1} provided its feasible set, initial point function, neighborhood function, and cost function are Σ_{1}^{b}-defined (as ptime functions).

Theorem

T_{2}^{1} can prove that any (formalized) PLS problem is total.
Proof: By Σ_{1}^{b}-minimization, T_{2}^{1} can prove there is a minimum cost value c_{0} satisfying

$$
(\exists s \leq b(x))\left(F(x, s) \wedge c(x, s)=c_{0}\right)
$$

Choosing s that realizes the cost c_{0} gives either a solution to the PLS problem or a place where the PLS conditions are violated. \square
Open: Can T_{2}^{1} witness any PLS problem with a Σ_{1}^{b}-definable (single-valued) function?

Theorem (BK'94)

If $A \in \Sigma_{1}^{b}$ and $T_{2}^{1} \vdash(\forall x)(\exists y) A(x, y)$, then there is a PLS problem R such that T_{2}^{1} proves

$$
(\forall x)(\forall y)\left(R(x, y) \rightarrow A\left(x,(y)_{1}\right)\right)
$$

If $A \in \Delta_{1}^{b}$, then can replace " $(y)_{1}$ " with just " y ".
This gives an exact complexity characterization of the $\forall \Sigma_{1}^{b}$-definable functions of T_{2}^{1}, in terms of PLS-computability.

Theorem (Witnessing Lemma)

If $\Gamma \rightarrow \Delta$ is a T_{2}^{1}-provable sequent of $s \Sigma_{1}^{b}$ formulas with free variables \vec{c}, then there is a PLS problem $R(\langle\vec{c}, u\rangle, v)$ so that T_{2}^{1} proves

$$
\operatorname{Wit}_{\Gamma}(\vec{c}, u) \wedge R(\langle\vec{c}, u\rangle, v) \rightarrow \text { Wit }_{\Delta}(\vec{c}, v)
$$

Proof idea: Use a free-cut free T_{2}^{1}-proof, proceed by induction on number of inferences in the proof. Arguments are similar to to what was used to prove the witnessing lemma for S_{2}^{i} ($i=1$ case). Most cases just require closure of PLS under polynomial time operations. However, induction (Σ_{1}^{b}-IND inference) now requires exponentially long iteration: this is handled via the exponentially many possible cost values.

The Theorem and Witnessing Lemma generalize to $i>1$ with PLS ${ }^{\sum_{i-1}^{b}}$. The fourth talk will improve on this, however.

Some selected references

- R. Parikh, Existence and Feasibility in Arithmetic, JSL, 1971.
- A. Wilkie, J. Paris, On the Scheme of Induction for Bounded Arithmetic Formulas, APAL, 1987.
- S. Buss, Bounded Arithmetic, Ph.D. thesis, 1985. Bibliopolis, 1986. Also available online.
- S. Buss, Axiomatizations and conservation results for fragments of bounded arithmetic. In Logic and Computation,AMS Contemp. Math. 106 (1990) 57-84.
- S. Buss, J. Krajíček, An application of Boolean complexity to separation problems in bounded arithmetic. Proc. LMS 69 (1994) 1-21.

